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A multiscale Time-Laplace method for non-stationary DLS A multiscale Time-Laplace method to extract relaxation times from non-stationary Dynamic Light Scattering signals

Dynamic Light Scattering (DLS) is a well-known technique to study the relaxation times of systems at equilibrium. In many soft matter systems, we actually have to consider non-equilibrium or non-stationary situations. We discuss here the principles, the signal processing techniques we developed, based on regularized inverse Laplace transform, sliding with time, as well as the light scattering signal acquisition, that enable us to use DLS experiments in this general situation. In this article we show how to obtain such a Time-Laplace analysis. We claim that this method can be adapted to numerous DLS experiments dealing with non-equilibrium systems so as to extract the non-stationary distribution of relaxation times. To prove that, we test this Time-Laplace method on three different non-equilibrium processes or systems investigated by means of DLS technique: the cooling kinetics of a colloidal particle solution; the sol-gel transition; and the internal dynamics of a living cell nucleus.
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 . How-56 ever, in these cases, usual analyses of I scat (t) data no longer 57 hold; particularly the autocorrelation function g 2 (τ) of the 58 scattered intensity only makes sense if the dynamics of the 59 investigated system is stationary over the duration of its mea-60 surement. Theoretical models linking measurements of g 2 (τ) 61 to ζ i assume, indeed, that the system is stationary. Here, as 62 this is not the case, the computed autocorrelation function 63 should depend on the time t at which it is estimated; that is:

The relaxation times of the sample, 65 ζ i , as well as the mean scattered intensity, evolve through-66 out the measurement. The signal measured in non-stationary 67 DLS is thereby complex, and the analysis of its autocorrela-68 tion function is intrinsically complicated. The non-stationarity 69 of I scat (t) may also appear as a long relaxation time (possibly 70 longer than the typical duration T 0 on which autocorrelation is 71 estimated). And mostly, an issue is how to deal with change 72 in ζ i with time during the acquisition. Consequently, to take 73 full advantage of DLS technique to investigate the dynamics 74 of non-equilibrium, non-ergodic or non-stationary systems, it 75 is necessary to develop new signal processing methods able 76 to reliably extract the time-dependent dynamics of these sys-77 tems. The following properties are required: 78 • The analysis must be possible under non-stationary 79 conditions. This means that the analysis has to be 80 made time-dependent so that it evolves with t, the time 81 at which it is carried out. Hence, formally, we have 82 to work with a non-stationary autocorrelation function, 83 g 2 (τ,t). 84 • The duration of the data acquisition ∆T has to be taken 85 into account, as well as T 0 the duration over which the 86 autocorrelation function is estimated. Indeed, if ∆T is 87 large compared to the time evolution of the ζ i 's, auto-88 correlation function will tend to provide time-average 89 values, which poorly reflects the evolution of the system 90 (especially for the short ζ ). Conversely, if it is chosen a 91 too short ∆T , it will no longer be possible to probe the long relaxation time, even if they are stationary. More-93 over, the measured g 2 (τ,t) might be very noisy which 94 will prevent good estimation even of the short ζ i . So, it 95 is required to adapt the estimation and choose a suitable 96 T 0 which may vary and be different from ∆T . 97 • In out-of-equilibrium systems, there are often several 98 characteristic relaxation times, denoted ζ i , for i = 99 1, ..., M, which occur at the same moment and that may 100 be distributed over a broad time range. M is unknown, 101 so is the time range, yet it is needed to find out all these 102 times. 103 All that calls for developing a new methodology for the 104 analysis of DLS data recorded on non-equilibrium, non-105 ergodic or non-stationary systems. This is the first objective 106 of the present article. For this purpose, we will revisit 107 S.W. Provencher's regularized Inverse Laplace Transform 108 method 36,37 , and from there develop an original Inverse 109 Laplace Transform method that can be used as a multiscale, 110 non-stationary method for DLS analysis. Thereby, the nov-111 elty of this work is to develop a comprehensive method for 112 estimating a non-stationary inverse (and regularized) Laplace 113 Tranform, which can cope the three issues mentioned above. 114 Thus, the originality of the present work is to carefully study 115 sampling, resolution, duration of the estimation window T 0 , 116 then to validate the method on various systems of soft matter.

117 118 Section II recalls in A the basics of DLS experiments, in B 119 the classical analysis of DLS signals on systems in thermo-120 dynamic equilibrium, in C the attempts done to analyse DLS 121 signals on non-stationary systems, finally in D we explain the 122 aim of the present work and how we adapt the current analysis 123 of DLS signals to non-stationary signals. Then, Section III de-124 scribes the inverse Laplace transform procedure, based on the 125 CONTIN method 36,37 , which we develop to extract valuable 126 information from non-stationary DLS signals. In the second 127 part of this section it is discussed a numerical experiment val-128 idating this method. Next, in Section IV, it is first explained 129 the proposed Time-Laplace approach that aims at following 130 the time evolution of the relaxation times for non-equilibrium 131 systems thanks to DLS experiments. Then it is described the 132 experimental setting for data acquisition of the scattering sig-133 nal required to allows this approach. Finally, in Section V 134 in order to validate this method it is shown its application 135 to the investigation of the dynamics of three different non-136 equilibrium processes or systems: the cooling kinetics of a 137 colloidal particle solution; the sol-gel transition; and the inter-138 nal dynamics of a living cell nucleus.

I. INTRODUCTION

Dynamic light scattering (DLS), also known as Quasi-Elastic Light Scattering (QELS) or Photon Counting Spectroscopy (PCS), is a non-invasive spectroscopic analysis technique. Its fields of applications are diverse and range from chemistry, through biophysics, to physics. DLS principle is based upon analysis of the temporal fluctuations in the light intensity scattered by the sample under investigation, I scat (t).

One of the main applications of DLS is likely to be the size measurement of nano-and micro-scale particles in solutions, e.g. colloidal particles, micelles, polymers, proteins; all objects with radii smaller than ∼ 300 nm 1-3 . In this case, experiments are carried out with dilute solutions in stationary conditions so as to probe the Brownian motion of these objects. Nevertheless, particle sizing is not the only application of DLS. Several phenomena in statistical and soft condensed matter physics can be investigated thanks to DLS measurements: dynamics of liquid crystal phases 4-8 , dispersions of colloids [9][10][11] , micelles [12][13][14] , polymers [15][16][17][18] . DLS measurements then are performed with more concentrated solutions and provide information on the collective relaxation processes, therefore, on the sample thermodynamics.

For all these reasons, DLS has been extensively used to probe the dynamics of "soft matter systems" in thermodynamic equilibrium for more than fifty years. To characterize the dynamics of the sample, commercial DLS devices return the autocorrelation function of the scattered light intensity, namely g 2 (τ) = ⟨I scat (t)I scat (t + τ)⟩. The decay of g 2 (τ) as a function of the delay τ is related to the relaxation times ζ i (possibly several of them, hence the index i) of the sample. This technique allows to probe relaxation times of the system over a broad range, typically from microsecond to minute. In usual DLS applications, the investigated samples are in thermodynamic equilibrium, or at least stationary over the duration of the measurement.

Of course non-equilibrium or non-stationary systems scatter light as well, and therefore it is tempting to use DLS experiments to probe their dynamics. This has already been done for the study of continuous phase transitions 19,20 , spintion spectroscopy (XPCS), since the scattered intensity can be for particles of arbitrary shape that are relatively small but 165 may be larger than Rayleigh scattering limits; the RGD ap-166 proximation implies: a|n 0n 1 |2π/λ ≪ 1, a being the size 167 of the particles. In this framework, the refractive index of the 168 medium can be written as a function of space⃗ r and time t, as: 169 n(⃗ r,t) = ⟨n⟩ + δ n(⃗ r,t), where δ n(⃗ r,t) represents both spa-170 tial and time fluctuations in the refractive index of the sample 171 around its mean value ⟨n⟩; in most cases ⟨n⟩ ≈ n 0 . The scat-172 tered electromagnetic field, E scat , is proportional to the spatial 173 Fourier transform of the fluctuations of n(⃗ r,t), i.e. δ n(⃗ q,t),
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where ⃗ q is the scattering wave vector. Thereby, the scattered 175 light intensity, I scat (q,t) = |E scat (q,t)| 2 = E * scat (q,t)E scat (q,t), 176 is the "diffraction pattern" of the scattering volume (the sam- mation on the thermodynamics of the system as well as on 197 hydrodynamic interactions [START_REF] Peter | Particle interactions[END_REF] .
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The principle of DLS experiment is therefore simple, as 

209 q = (4π⟨n⟩sin(θ /2)) /λ . (1) 
This scattering wave vector sets the length scale l over which decades, with in some cases very long relaxation times, larger 290 than a few seconds [4][5][6][7][8][9][10][11][12][13][14][15][16][17][18] . Under these conditions, one approach 291 is to fit |g 1 (τ)| 2 to a model that is the square of a sum of exponential decays. Thus:

293 |g 1 (τ)| 2 = M ∑ i=1 a i e -τ/ζ i 2 (4)
with M > 2 the number of modes, and ζ i the mean relaxation approach works for both ACFs built using a correlator and of-a-priori method available yet to analyse non-stationary sig-394 nals of DLS in order to obtain the full spectrum of relaxation times of an out-of-equilibrium system and follows its evolution. This is the goal of our article.

D. Adaptation of "CONTIN" based methods to non-stationary signals.

In this article, we intend to bring about a general, systematic and accurate method allowing to extract temporal evolution of the relaxation times of non-stationary signals. As we aim to investigate samples having, a priori, a dynamic with many relaxation times, polydispersed and spread over a broad time range, we believe that the best approach is to assume that the ACF of the scattered intensity is the Laplace transform of a density distribution of relaxation times. In this case, however, the ACF is a non-stationary function of the time t and, consequently, one should deal with a more general non-stationary ACF, which is g 2 (τ,t, T 0 ), and the correspond-

ing |g 1 (τ,t, T 0 )| 2 .
There, indeed, the ensemble average is replaced by a local temporal average computed between t and t + T 0 , where T 0 is the duration over which the ACF is built.

In this notation, we highlight the dependence of g 2 (τ) with t, which is the starting time of the ACF measurement. Furthermore, we make explicit that the estimation of g 2 (τ,t, T 0 ) (i.e.

g 1 (τ,t, T 0 )), also depends on the duration over which g 2 (τ,t)

(g 1 (τ,t)) is computed. Therefore, g 1 (τ,t, T 0 ) can be written as the Laplace transform of a density distribution of relaxation times, G(s,t, T 0 ):

g 1 (τ,t, T 0 ) = +∞ 0 G(s,t, T 0 ) e -τ/s ds (6) 
Let us explain the ideas behind our approach. First of all, it is chosen a first starting time t 1 , and g 1 (τ,t 1 , T 0 ) is computed between t 1 and t 1 + T 0 . Then, it is chosen a second starting time t 2 , and a new ACF g 1 (τ,t 2 , T 0 ) is computed between t 2 and t 2 + T 0 . This process is iterated in order to achieve a series of ACFs whose starting times are all different. Thanks to eq (6), each of these g 1 (τ,t i , T 0 ) is related to a density distribution of relaxation times G(s,t i , T 0 ). As in the classical CONTIN used on systems in equilibrium, here also one has to invert eq. ( 6) to obtain a non-parametric estimation of the distribution of relaxation times G(s,t i , T 0 ). Such a procedure should provide the relaxation times of the studied system as a function of time; i.e. ζ j (t i ). This use of a sliding window connects the method to a non-stationary setting. T 0 reminds us that G(s,t i , T 0 ) (and thus the relaxation times ζ j ), cannot be well estimated when they are not small enough compared to T 0 . Hence, by playing with T 0 , it is possible to change the investigated s range, allowing thus a multiscale approach of the scattering signal analysis.

In order to follow such a strategy to investigate the dynamics, as well as its time evolution, for non-equilibrium and non-stationary systems, care has to be taken when measuring 

g 2 (τ,
501 ĝ2 (τ,t, T 0 ) = ∑ t+T 0 -τ u=t I c (u)I c (u + τ) ∑ t+T 0 u=t I c (u) 2 . ( 7 
)
Here ĝ2 is normalized (on contrary to g 2 in eq. ( 3)). One can 502 notice that this expression of ĝ2 (τ,t, T 0 ) is as writing that:

ĝ2 (τ,t, T 0 ) = ⟨I scat (t)I scat (t + τ)⟩ T 0 -⟨I scat (t)⟩ 2 T 0 ⟨I scat (t)⟩ 2 T 0 (8) 
Which according to Siegert's equation (eq. ( 3)) is equivalent to

ĝ2 (τ,t, T 0 ) = 1 β ⟨I scat (t)I scat (t + τ)⟩ T 0 ⟨I scat (t)⟩ 2 T 0 -1 = |g 1 ((τ,t, T 0 )| 2 (9)
The estimated ACF, ĝ2 , is thus equal to |g 1 | 2 . Hence, by normalizing and centering the ACF, the experimental aspects of the measurement are eliminated (the baseline and β ) to give rise to a quantity directly related to g 1 . Moreover, if one would assume a model as in eq. 4: are not distinguishable from polydispersity. Therefore

|g 1 (τ)| 2 = M ∑ i a i e -τ/ζ i 2 = ∑ i |a i | 2 e -2τ/ζ i + ∑ i̸ = j a i a * j e -τ/ζ i -τ/ζ j , (10) 
510 |g 1 (τ)| 2 ≃ ∑ i |b i | 2 e -2τ/ζ i (11)
where the amplitudes b i reflect the influence of the cross 511 terms. Thereby

512 ĝ2 (τ,t, T 0 ) ≃ ∑ i |b i (t, T 0 )| 2 e -2τ/ζ i (t,T 0 ) (12)
Hence one expect the characteristic (local) relaxation times of 
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ILT algorithms, such as CONTIN, aim at performing the inverse Laplace transform of ĝ2 (τ), by numerically solving an inverse problem to provide an estimate Ĝ written as follows:

Ĝ(s,t, T 0 ) = arg min G∈G ∥LT (G) -ĝ2 (τ,t, T 0 )∥ 2 w + γ 2 R(G) (13)
where R(G) is the regularization term, γ a parameter, G is the 6):

529 LT (G)(τ j ) = N s ∑ k=1 G(s k )e -τ j /s k (14)
The set of constraints G is that ∀ s, G(s) ≥ 0. The regular- 

530 ization term R(G)
R(G) = D (2) (G) 2
, where D (2) is the second order discrete 533 difference operator, which writes:

534 D (2) (G(s k )) = G(s k+1 ) -2G(s k ) + G(s k-1 ) (15) 
The weight function w(τ) is introduced in the first term of 535 eq. ( 13) because it is expected, by letting the τ j 's increase up 536 to T 0 , to have higher statistical fluctuations at large delays than 537 at small delays. This constrains LT ( Ĝ) to follow more closely 538 Ĝ2 at short delays than for the large delays. This weight is:

539 w j = w(τ j ) = T 0 τ j (16) 
Indeed, it can be expected that the variance of the fluctuations 540 of the autocorrelation estimators [START_REF] Papoulis | Signal Analysis[END_REF] roughly evolves as τ/T 0 .
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In other words, the number of decorrelated measures at de-542 lay τ over a duration T 0 evolves as T 0 /τ and this leads to the 543 following choice of weighting.

544

Altogether, and introducing both the logarithmic incre-545 ments ∆sk and ∆τ j , as well as the matrix notation (A) jk = 546 exp(-τ j /s k ) for the exponential term in the LT, it is obtained 547 the discrete form of the eq. ( 13):

548 Ĝ(s,t, T 0 ) = arg min G≥0 N ∑ j=1 w j [(AG) j -ĝ2 (τ j ,t, T 0 )] 2 ∆τ j + γ 2 ∑ N s k=1 D (2) (G(s k )) 2 ∆s k ( 17 
)
where N is the size of the downsampled vector ĝ2 .

549

The minimization of eq. ( 17) is implemented in Matlab, 550 based on the CONTIN algorithm [START_REF] Provencher | A constrained regularization method for inverting data 1381 represented by linear algebraic or integral equations[END_REF][START_REF] Provencher | Contin: A general purpose constrained regularization 1384 program for inverting noisy linear algebraic and integral equations[END_REF] for the all ranges of relaxation times.
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To test these three points, this method is first applied to 568 modeled ACFs. For this purpose, ACFs described by a sum 569 of decreasing exponential functions were modelled in which 570 some polydispersity was incorporated as in the cumulant ex-571 pansion model (here with order 2 in the cumulants only).

572

These ACFs follow the model:

573 g 2,mod (τ) = ∑ M i=1 A i e -τ/ζ i 1 + 1 2 (σ i τ/ζ i ) 2 ∑ M i=1 A i ( 18 
)
where M is the number of relaxation modes; A i is the ampli-574 tude of mode i, ζ i its mean relaxation time, and σ i the relative

575 standard deviation associated to ζ i (so that σ 2 i = µ 2i ζ 2 i ). Fi- 576
nally, it is added noise to these ACFs. As in the experiments,

577
the noise is higher at long times than short ones. Then, the ILT 

FIG. 2. Left panel (a)

: modeled ACF from eq. 18; M = 5, with ζ i = 10 -5 s, 10 -4 s, 10 -3 s, 10 -2 s, 10 -1 s, respectively, and A i = 1, 0.2, 0.5, 1, 0.2. The polydispersity around each relaxation time is the same: (∀ i, σ i = 0.2). The orange dashed line is the noise-free ACF; the blue solid line is the noisy ACF (a random noise increasing with τ was added to this ACF). Middle panel (b): density distributions of the relaxation times computed for the noisy ACF; using the ILT algorithm we developed ( Ĝ(s); gray solid line), and a classical implementation of CONTIN [START_REF] Marino | RILT procedure in MATLAB[END_REF] ( Ĝdirect (s)(s); green dashed line), this latter algorithm does not take into account weighting w nor a logarithmic scale, γ = 0.1 in both cases. Right panels (c): density distributions of the relaxation times computed for the noise-free ACF; using the ILT algorithm we developed ( Ĝ(s); gray solid line), and a classical implementation of CONTIN [START_REF] Marino | RILT procedure in MATLAB[END_REF] ( Ĝdirect (s)(s); green dashed line) the idea behind this study is to set γ so that relaxation times separated by at least one decade are always discriminated, and that each peak with a polydispersity of the order of 25% is not split into several peaks. With such an idea, it found out that a good compromise is obtained when γ belongs the interval [0.1 -10]. Usually, under these conditions, the relaxation times can be separated if there is at least a ratio of 3 between these times. These values of γ also imply that one cannot estimate a polydispersity lower than 10%; below this value, such a polydispersity will lead to a broadening of the peaks similar to the smoothing imposed by the regularization.

IV. TIME-LAPLACE APPROACH FOR OUT-OF-EQUILIBRIUM SYSTEMS

There is now a ILT algorithm for extracting a large number of relaxation times, spread over a broad time range, from any measured g 2 (τ,t, T 0 ) (g 1 (τ,t, T 0 )). In Sections II and III we have thought of an approach, based on this algorithm where the evolution of the Laplace variables s is studied as a function of time. By analogy with time-frequency analysis, hereafter, this approach will be call Time-Laplace analysis. However, at this point there is still a problem: in practice, how can this method be applied to analyze DLS experiments carried out on non-equilibrium, non-ergodic or non-stationary systems? In this section, we summarize what has already been written in this article and explain how this method is implemented.

A. Concepts of Time-Laplace analysis.

To illustrate our approach and demonstrate that usual DLS approaches cannot work properly for non-stationary systems, we will use a toy example. Let us consider a non-stationary signal measured over 100 s, with an instantaneous relaxation Therefore, in order to obtain a correct measurement of the temporal evolution of all the relaxation times existing in the system using a correlator, it would be necessary to measure several ACFs with different delays and acquisition durations.

Each g 2 (τ,t, T 0 ) would have to be measured on a different sample which must have the same evolution as the others. This is experimentally complicated and time consuming. It is therefore necessary to find out an alternative.

Consequently, the Time-Laplace method we propose consists in decoupling the data acquisition and their analyzes. Instead of building the scattered intensity ACF using a correlator, we simply record the raw scattered intensity as a function of time, i.e. I scat (t), over a duration ∆T , by means of an acquisition card. In other words, I scat is sampled at a frequency f 0 = 1/δt Hz over ∆T seconds. Thanks to this, non-stationary ACFs, ĝ2 (τ,t, T 0 ), can be estimated according to eq (7); there, 

T
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We use the method as described above, with a logarithmic 809 spacing in τ j and s k , with overlapping windows of duration 810 T 0 at times t n so as to follow in a smoother way the temporal 811 evolution of the relaxation times. detected by the APD, N p , is counted during time intervals δt over a duration ∆T that is much larger than δt (δt is the sample time; ∆ = νδt, where ν is the number of times the photon counting process is repeated). Thus,

I scat (t i ) = N p ([t i ,t i +δt i ]).
The acquisition card is computer-controlled by means of a LabVIEW program we developed that provides the number of detected photons as a function of time, N p (t). Both values of parameters δt and ∆T can be monitored. The choice of both parameters is essential to ensure that the measurements of the scattering intensity upon time provide reliable information on the dynamic properties of the considered sample. Basically, δt has to be short enough to allow access to the entire "fast" dynamics of the system, while ∆T has to be long enough so it can provide access to the full "slow" dynamics of the system.

Moreover, to ensure good photon statistics, the incident laser power as to be set so there are at least ten photons in each δt interval are required, with the constraint that the number of photons detected per second is less than 10 7 photons.

V. DLS EXPERIMENTS WITH OUT-OF-EQUILIBRIUM SYSTEMS: EXPERIMENTAL VALIDATION

To experimentally validate the proposed Time-Laplace method, we investigate the time-evolution of the dynamics of three different non-equilibrium processes or systems: the cooling kinetics of a colloidal particle solution; the sol-gel transition; and the internal dynamics of a living cell nucleus.

A. Temporal evolution of particle Brownian motion upon cooling

First of all, we apply the Time-Laplace method to the investigation of the Brownian relaxation of colloidal latex particles in a solution whose temperature evolves spontaneously 

918 ζ 0 = 1 2D 0 q 2 = 3πηR h k B T q 2 (19)
Both methods lead to the same result: it is found a particle 919 radius R h = 91± 9 nm, which seems to be rather constant as The green curve (diamonds) exhibits the distribution of relaxation times Ĝ(s) computed with the proposed method with γ = 1. The gray curve (crosses) is the ACF fit calculated from the result Ĝ(s) using eq. ( 14).

As expected, it is clearly seen that the sample dynamics slows The sample viscosity as a function of T has been measured.

962

The temporal evolution of the particle diffusion coefficient 963 D 0 (t) can therefore be calculated during the cooling process, 964 allowing modeling of ζ 0 (t). growth of fractal objects formed by their aggregation [START_REF] Cao | Structural and rheological 1446 evolution of silica nanoparticle gels[END_REF][START_REF] Kawaguchi | Dispersion stability and rheological properties of silica 1448 suspensions in aqueous solutions[END_REF] .

965 ζ 0 (t) = 1 2D 0 (t)q 2 = 3πη(T (t))R h k B T (t)q 2 (20) 
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Once these structures percolate the gel phase is formed.

997

Here, the used system is an aqueous solution of silica 998 nanobeads of ∼ 12 nm diameter. This colloidal suspension At the beginning of the process, the ACFs are close to a single exponential decay with a short relaxation time, then the ACFs take on a more and more pronounced stretched exponential shape, with an increasing relaxation time.

Figure 9 shows an instance of the ACF fitted by the proposed method. One sees that (here before full gelation) the distribution of relaxation times is largely spread over two decades. Our results are consistent with the results of other groups on 1102 similar systems [START_REF] Cao | Structural and rheological 1446 evolution of silica nanoparticle gels[END_REF][START_REF] Zackrisson | Concentra-1451 tion effects on irreversible colloid cluster aggregation and gelation of silica 1452 dispersions[END_REF] . Nevertheless, we believe that the method shows the ACF computed from the data. The ACF was computed 23min24 after the beginning of the experiment with T 0 = 60 s. The green curve (diamonds) exhibits the distribution of relaxation times Ĝ(s) computed with the proposed method with γ = 1. The gray curve (crosses) is the ACF fit calculated from the result Ĝ(s) using eq. ( 14).

beam is focused with a microscope objective (Nikon, mag- Our results are consistent with the results of Suissa et 1216 al. [START_REF] Suissa | Dynamic 1372 light scattering as an investigating tool to study the global internal dynamics 1373 of a living cell nucleus[END_REF][START_REF] Suissa | Internal dynamics of 1375 a living cell nucleus investigated by dynamic light scattering[END_REF][START_REF] Suissa | Evolution of the 1378 global internal dynamics of a living cell nucleus during interphase[END_REF] . Again, our purpose in this article is not to study the 1217 dynamics of a living cell nucleus, and therefore, we will not different time length T 0 , even if we think that an all-in-one computation is possible. A minor limitation is the difficulty to treat ACF decays faster than a simple exponential. Nevertheless, a possibility is to use Gaussian transforms as mentioned in the article of Andrew et al. [START_REF] Andrews | Inverse transformation: unleashing spatially heterogeneous dynamics with 1402 an alternative approach to xpcs data analysis[END_REF] Therefore, we would like to stress out that the obtained results clearly show that DLS experiments capture all the richness and complexity of the dynamics of various processes and systems, and that the Time-Laplace method we have developed allows to extract them. Henceforth, the proposed approach can prove to be very useful for the study of the dynamics of many out-of-equilibrium "soft matter" systems. We claim, indeed, that this signal treatment can be adapted to numerous DLS experiments dealing with non-equilibrium or non-ergodic systems. In our case we aim at applying this method to investigate the internal dynamics of living cell nucleus. Moreover, this Time-Laplace method could be applied as well in XPCS, but also to all ACFs that could reasonably be decomposed as a weighted sum of exponential decays.

Regarding the signal processing aspect, the next step is to use more efficient algorithms to reduce the numerical expensive cost raised by resolution of inverse problems. Further-more, S. Provencher (more recently Andrew et al. [START_REF] Andrews | Inverse transformation: unleashing spatially heterogeneous dynamics with 1402 an alternative approach to xpcs data analysis[END_REF] ) brought

  146 recorded continuously and an autocorrelation function (ACF) 147 of the scattered intensity can be computed, in this article we 148 only focus on the case of a single scattering process in a ho-149 modyne light scattering experiment. 150 A. DLS principles 151 Light scattering originates in the spatio-temporal fluctua-152 tions of the medium refractive index 38 . It therefore arises from 153 the local optical properties of the sample, which are them-154 selves linked to both the structure and the internal dynamics 155 of the investigated sample. Fluctuations of the medium re-156 fractive index imprints information about particle motion in 157 the scattering signal. We restrict the present study to light 158 scattering in the Rayleigh-Gans-Debye regime (RGD). This 159 theory is an approximate solution to light scattering by opti-160 cally "soft" particles dispersed in a medium. Optical softness 161 means that the size of particles is smaller or of the order of the 162 light wavelength λ , and their refractive index n 1 is close to 163 that of the surrounding medium n 0 . The approximation holds 164

  177 ple's volume where the scattered light comes from). The size 178 of the scattering volume is defined both by the optics and by 179 the size of the hole placed in front of the detector. 180 For systems in thermodynamic equilibrium, the measured 181 light scattering signal shows random fluctuations around a 182 mean value: I scat (t) = I 0 + δ I(t), with ⟨δ I(t)⟩ = 0. According 183 to the RGD theory, these fluctuations are related to the dy-184 namics of the processes involved in the temporal fluctuations 185 of the refractive index n. For dispersions, these fluctuations 186 δ I(t) come from the particle motion and reflect the randomly 187 changing relative position of the particles as a result of ther-188 mal agitation. Thus analysis of δ I(t) yields information about 189 the dynamics of the system. In the case of non-interacting 190 particles (i.e. in practice for dilute samples) this provides in-191 formation on the Brownian motion of the particles; henceforth 192 DLS measurements give access to the diffusion coefficient of 193 the objects: D 0 = k B T /6πηR h , where η is the solvent viscos-194 ity and R h the hydrodynamic radius of the objects. In the case 195 of interacting particles, then DLS measurements yield infor-196
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  FIG. 1. Schematic representation of DLS set-up.

  513 ĝ2 (τ) to be equal to the half of the ζ i , and therefore the ILT of 514 ĝ2 (τ), should provide relaxation times that are the half of the 515 real relaxation times.

517

  set of constraints defining the admissible G, and w(τ) leaves 518 the possibility to have a weight in the norm with respect to the 519 delay τ. The discretization of the Laplace transform has to 520 be specified, as well as the choice for the regularizations and 521 weights. To take advantage of the acquisition of the scattered 522 light intensity over a long duration, we use a logarithmic sam-523 pling both in the delays τ j and in the Laplace variable s k . This 524 sampling goes from the smallest measured delay τ 1 (equal to 525 the sampling interval) up to τ N = T 0 , as it is the maximum 526 value that makes sense. A similar sampling is done for the s k , 527 using N s points. LT (G) is computed as the discretized expres-528 sion of the integral in eq. (
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  Fig. 2 (a); it is the orange dashed curve. Then, a random noise 591

  607(c), for the noisy and the noise-free ACFs, respectively (both 608 gray solid lines

FIG. 3 .

 3 FIG. 3. Scheme illustrating our method: We compare the relaxation time(s) extracted when they are computed i) from only one large temporal window (middle panel) ii) from several shorter windows (right panel).

  Figure3(hence overlap between two consecutive windows of 5 s). This provides a more continuous estimation of Ĝ(s,t, T 0 ) as a function of t, leading to obtain a "smoother" evolution of

B.

  Light scattering signal acquisition Let us now describe what is the second key to our approach: the acquisition of the light scattering signal. In practice, the scattered photons are detected by means of an avalanche photodiode (Perkin Elmer) that is a photon counting system capable of detecting single photons of light over visible to near infrared wavelength range (400 nm to 1060 nm). This module is supplied by a triple output stabilized DC Power Supply (BK Precision-BK9130). The maximum number of photons that can be detected is of the order of 10 7 photons/s. Over the visible range the APD module detects about 60 -70 % of the received photons and its "dark noise" is in the range of 150-200 counts/s, so much lower than the number of photons detected in our experiments (typically of the order of, or larger than 10 5 photons/s). Each photon detected by the photodiodes gives rise to a transistor-transistor logic pulse (TTL). These pulses are sent to a "counting" channel of a data-acquisition card, which allows for counting each detected photon (DAQ NI USB-6361 -National Instrument; resolution 32-bits and maximum acquisition rate 10 MHz). To measure the scattered intensity as a function of time, I scat (t), the number of photons

  FIG. 4. Density map of the extracted relaxation times from a colloidal solution at constant temperature (paragraph V A 0 a). The xaxis corresponds to the beginning time when the ACF was computed. The y-axis corresponds to the measured relaxation times. The colorbar displays the density of the relaxation times distribution. T 0 = 1 min, overlap = 0%, γ = 1, signal was recorded for 10 minutes.
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 6 FIG. 5. ACFs computed along the experiment of the relaxation in temperature (paragraph V A 0 b) with T 0 = 60 s, each color corresponds to a computed time indicated by the colorbar.
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 930 FIG.7. Visualization of the data adjustment with the proposed ILT algorithm for the temperature cooling experiment. The yellow curve (stars) shows the ACF computed from the data. The ACF was computed 181 min after the beginning of the experiment with T 0 = 60 s. The green curve (diamonds) exhibits the distribution of relaxation times Ĝ(s) computed with the proposed method with γ = 1. The gray curve (crosses) is the ACF fit calculated from the result Ĝ(s) using eq. (14).
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  down with time (see Fig 6 (a)). One notices that in almost 952 all cases, the relaxation is not a single exponential; several re-953 laxation times can be observed. Nevertheless, one relaxation 954 always dominates strongly; its amplitude being much higher 955 than that of the others. The temporal evolution of this relax-956 ation time is assumed to be the evolution of the relaxation time 957 of the Brownian motion of the particles ζ 0 (t) as the system 958 cools down. 959 The radius of the latex particles is known, as well as T (t) 960 the temperature in the sample as a function time from t = 0 s 961

Fig. 6

 6 Fig. 6 (b) displays both measured and calculated values of 966

999

  is stabilised due to electrostatic interactions between the par-1000 ticles. In that case, addition of ions to the solution changes 1001 the ionic strength and leads to screening of these interactions 1002 and induces the transition. Concentration in silica particles, as 1003 well as the kind of ions added to the solution and their con-1004 centration monitor this transition and its kinetic 61 . 1005 For these experiments, we used two different DLS setups; 1006 the setup used for the colloid solution cooling experiment 1007 as in Sec. V A, and a setup we developed to investigate 1008 the dynamics of a living cell nucleus. Here, it is only dis-1009 played experiments performed with the latter device. 0.3 g 1010 of the final mixture is introduced into a special chamber of 1011 10 × 10 × 3 mm 3 , that is made by sandwiching a stainless 1012 frame (65 × 35 × 3 mm 3 ) between 2 microscope slides. This 1013 provides a container of low thickness and small volume whose 1014 both sides of entry and exit of light are transparent. The so-1015 lution is introduced into this chamber thanks to two channels 1016 of 1 mm diameter drilled in the section. The chamber is set in 1017 a vice, the glass surfaces perpendicular to a laser beam (He-1018 Ne laser, vertically polarized; λ = 632, 8 nm). Temperature is ∼ 20 o ± 0.5 o C. Once the sample is placed, recording of the scattering signal is started with the following parameters: δt = 10 -5 s and ∆T = 2 400 s (40 minutes). These measurements were made at θ = 12 o ; 25 o and 30 o .Here, it is shown the result of an experiment performed using the second DLS setup, with θ = 25 o . The recording of the scattering signal starts 6 minutes after the mixing of the solutions. The colloidal solution is prepared by simply mixing 4.54 g of LUDOX® HS-40 (suspension of colloidal silica in H 2 O with 40 wt % of solid; from Sigma Aldrich) with 13.39 g, of milliQ ultrapure water (ρ = 18 ± 0.1 MΩ cm; from an in house ELGA system). In order to remove dusts and big aggregates, the obtained solution is first filtered through a glass fiber membrane (GF/A) with pores of 1.6 µm diameter (What-man® Puradisc 13 syringe filters). At the same time, 3.93 g of a NaCl solution with a NaCl concentration of 17.55 wt % are prepared. At t = 0 s, 0.33 g of the NaCl solution are added to 1.5 g of the colloidal mixture. This gives rise to a final solution with a colloidal silica concentration of 8.3 wt % and a NaCl concentration of 3.15 wt %. Dissociation of NaCl molecules into Na + and Cl -ions make the electrostatic interactions between particles vanish (the negative charges of the silica nanobeads are screened by Na + ions) and the gelation process starts. According to rheology studies62 , in these experimental conditions, it takes about 27 minutes after mixing the two solutions to form the gel phase.

Figure 8

 8 Figure8shows the evolution of the computed ACFs as a function of time throughout the gelation process (in this case, ACFs are computed from I scat (t) over T 0 = 300 s with an overlap between two consecutive slots of 70 %). The observations are coherent with previous works[START_REF] Cao | Structural and rheological 1446 evolution of silica nanoparticle gels[END_REF] : First, the value of the ACFs plateau that is seen at short delay times increases (this is related to the increase in scattered intensity), then, in a second part, the plateau position starts to decrease with time (due to the decrease of the scattered intensity). This change of behavior in the scattering intensity is assumed to indicate the full gelation of the sample; the drop of the plateau of the ACFs indicating a reduced mobility due to the formation of a longrange network. According to this result, the full gelation process takes about 26-27 minutes after the mixing, in agreement with rheology measurements. It is also noticed that the shape of these ACFs evolves strongly as gelation process progresses.

•

  Figure 10 displays four different Time-Laplace analyses of the recorded signal along the full experiment. • ACFs are computed from I scat (t) over T 0 =5 s sliding windows with no overlap between two consecutive slots • ACFs are computed from I scat (t) over T 0 =60 s sliding windows with an overlap between two consecutive slots of 70 %. • ACFs are computed from I scat (t) over T 0 =120 s sliding 1076 windows with an overlap of 70 %. 1077 ACFs are computed from I scat (t) over T 0 =300 s sliding 1078 windows with an overlap of 70 %. 1079 This figure clearly shows the influence, on the distribution 1080 of relaxation times, of the duration T 0 of the window over 1081 which the ACFs are computed. However, some characteris-1082 tics are preserved. In particular the change in dynamics be-1083 tween the gelation phase and the gel phase. During the whole 1084 gelation phase, the dynamics evolves as a function of time. 1085 Regardless the time at which the scattered signal is analyzed, 1086 or the window over which the ACFs are computed, we al-1087 ways observe several relaxation times that are more and more 1088 widely distributed as the gelation process progresses. The 1089 overall dynamics slows down; the relaxation time with the 1090 largest amplitude increases exponentially with time. Once the 1091 system has turned into a gel phase, its dynamics changes. The 1092 system is non ergodic but does not seem to evolve much with 1093 time (at least not over 25 minutes); it is observed several relax-1094 ation processes between 10 -4 s and 10 -1 s, as well as a very 1095 long relaxation time (∼ 15 s), which is caught correctly only 1096 if the ACFs are computed over a large window (T 0 = 300 s). 1097 The fact that, in the sample, there are several relaxation times 1098 of non-negligible amplitudes, distributed over 2 to 3 decades 1099 in time, at the same observation window, most likely explains 1100 the observed stretched exponential shape of the ACFs.
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  FIG. 9. Visualization of the data adjustment with the developed ILT algorithm for transition sol-gel experiment. The yellow curve (stars) shows the ACF computed from the data. The ACF was computed 23min24 after the beginning of the experiment with T 0 = 60 s. The green curve (diamonds) exhibits the distribution of relaxation times Ĝ(s) computed with the proposed method with γ = 1. The gray curve (crosses) is the ACF fit calculated from the result Ĝ(s) using eq. (14).

  Figure11shows a scattering signal recorded as a function

  1215

T 0 =

 0 FIG. 10. Density maps of the relaxation times computed with different parameters for the transition sol-gel experiment: a) T 0 = 5 s, overlapping rate = 0%, b) T 0 = 60 s, overlapping rate = 70%, c) T 0 = 120 s, overlapping rate = 70 %, d) T 0 = 300 s, overlapping rate = 70 %. On the x-axis: Time t when the ACF has been computed (in minutes), the scale is logarithmic. On the y-axis: Relaxation times s, in seconds, estimated using the developed ILT algorithm, eq. (13); the scale in s is logarithmic. The color represents the density of the relaxation time, the scale is logarithmic. γ = 1 for the four figures. Signal duration is 40 minutes.

  [START_REF] Madsen | Beyond 1410 simple exponential correlation functions and equilibrium dynamics in x-ray 1411 photon correlation spectroscopy[END_REF][START_REF] Fluerasu | Slow dynamics and aging in colloidal gels studied by x-ray photon correlation spec-troscopy[END_REF] and Cipilletti et al.[START_REF] Cipelletti | Universal non-diffusive slow dynamics in aging soft 1441 matter[END_REF] 

	384	
	385	geneities. These analyses, however, do not attempt to measure
	386	the relaxation spectrum, i.e. the different characteristic times
	387	that compose the dynamics of the investigated systems, nor
	388	their evolution as a function of time.
	389	It is still lacking an accurate signal processing tool able to
		quantify, from DLS measurements (or XPCS), the whole dy-
	393	

364 investigated dynamics of gels or glassy-like systems by 365 analysing the ACFs of the scattered intensity using KWW 366 models. Mostly, they followed the temporal evolution of the 367 coefficient α of the KWW model. In these cases, and con-368 trary to what is observed for systems at thermodynamic equi-369 librium, it can be found α < 1, or α > 1. Sometimes, as for 370 equilibrium systems, the ACF is a stretched exponential, and 371 then α is likely the signature of a broad distribution of relax-372 ation times. But at other times, it is found 1 < α; when 1 < α, 373 g 1 (τ) is a compressed exponential function, which means the 374 ACF decays faster than a single exponential relaxation. The 375 physical meaning of such a relaxation is not yet well under-376 stood. Nevertheless, such approaches allow to characterise 377 the investigated dynamics through the degree of stretching or 378 compression of its exponential relaxation. For aging systems 379 slow dynamics can be investigated thanks to such methods, 380 yet assumptions on the dynamics are required and faster relax-

381

ations are overlooked, or not investigated, as mentioned

[START_REF] Andrews | Inverse transformation: unleashing spatially heterogeneous dynamics with 1402 an alternative approach to xpcs data analysis[END_REF][START_REF] Madsen | Beyond 1410 simple exponential correlation functions and equilibrium dynamics in x-ray 1411 photon correlation spectroscopy[END_REF] 

.

382 All these analyses manage to provide temporal evolution of 383 an average behavior of the dynamics as well as of its hetero-390 namics of a non-stationary system as a function of time (at 391 least over a broad range of relaxation times). Indeed, from 392 our knowledge, there is no systematic, multiscale and free-

  t, T 0 ). It is obvious that building the ACF of the scattered scat (t) recorded, the different g 2 (τ,t i , T 0 ) (g 1 (τ,t, T 0 ))

	as:	450	I scat (t), with a high acquisition rate and over a long period of
			time ∆t, is indeed necessary to apply our signal processing.
		452	
		453	can be computed, where it will be possible to play with both
		454	parameters t i and T 0 in order to be able to finely follow the
		455	time evolution of the dynamics (multi scale approach). As
		456	written previously, to analyze these functions properly, the
		457	first step of this work is, therefore, to rewrite a new version
		458	of CONTIN that takes into account a logarithmic distribution
		459	of the delay times τ, over at least 6-7 decades, with appropri-
		460	ate regularization that makes it resilient to experimental noise
		461	and statistical limits in the estimates of ACFs over these broad
		462	time ranges. We will then demonstrate that this modified ver-
		463	sion of CONTIN is still a suitable non-parametric method to
		464	allow, from DLS measurements, the extraction of characteris-
		465	tic relaxation times of systems with multiple relaxation pro-
		466	cesses and high polydispersity. This modified algorithm, in-
		467	deed, is a new ILT algorithm.
		468	That is by combining computation of g 1 (τ,t, T 0 ) functions,
		469	from I scat (t) measurements, with the new ILT algorithm, that
		470	the time evolution of the dynamics of non-equilibrium and
		471	non-stationary systems can be accessed. This will be proved
		472	on experimental situations.
		473	
		474	The objectives and novel contributions of the present article
		475	are the following:
		476	• Revisit the classical CONTIN method in a modern and
		477	practical way, so as to put forward its advantages when
		478	processing non-stationary DLS experiments.
		479	• Provide a "Time-Laplace method" that brings a system-
		480	atic way to analyze the temporal evolution of relaxation
		481	times for systems exhibiting multiple relaxations and
		482	strong polydispersities.
		483	• Provide a multiscale approach allowing to monitor the
		484	resolution of the relaxation times and of their evolution.
		485	III. NON-STATIONARY DLS SIGNAL PROCESSING
		486	BASED ON INVERSE LAPLACE TRANSFORM
		487	A. Log spaced and weighted Inverse Laplace Transform
		488	algorithm.
		489	Let's assume that we have a measure of the scattered light
		490	intensity as a function of time, I scat (t) (we will describe the
		491	procedure for acquiring I scat (t) in section IV B). The starting
		492	point of the procedure we develop here is the estimation of the
		493	ACFs of the scattering intensity (ACF) from I scat (t). Here-
		494	after these estimated ACF are noted ĝ2 (τ,t, T 0 ). As discussed,
		495	these ACF are computed over a time window of length T 0 , be-
		496	tween time t and t + T 0 . In practice, to probe a broad range
		497	of relaxation times, ĝ2 (τ,t, T 0 ) is calculated as a logarithmic
	intensity thanks to a correlator will not bring about worthwhile 498	downsampled version of the standard, biased and normalized,
	499 results, since the correlator returns g 2 (τ,t, ∆T ), where t can-not be tuned. A direct measurement of the scattered intensity,	autocorrelation estimator, expressed with the centered inten-sity I c (u) = I scat (u) -∑ t+T 0 v=t I(v). Therefore ĝ2 (τ,t, T 0 ) writes

451

Once I

  is taken to promote regularity and smooth-

531

ness, with a minimum number of peaks; an adequate choice is 532

it is not possible to measure it using 10 windows. Two issues, 722 indeed, raise from the non-stationarity of the scattering signal:

723

• Using a correlator, the signal acquisition and its process 724 only allow to take "snapshots" of the dynamics of the