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2 rue Conté, 75003 Paris, France

roger.ohayon@cnam.fr

Keywords. POD, reduced-order model, nonlinear system, Galerkin projection, Navier-
Stokes equation, aeroelasticity.

Abstract. In this paper, reduced-order models (ROMs) based on the Proper Orthogonal
Decomposition (POD) are developed in view of decreasing the computational cost of
simulations involving fluid-structure interactions. For that purpose, a truncated POD
basis is used to build two types of ROMs from the Galerkin projection of the continuous
nonlinear Navier-Stokes equations. First, simulations with a classical POD-Galerkin ROM
are performed to reproduce the unsteady vortex shedding process in the wake of a fixed
airfoil with a large angle of attack. Then, the ROM formulation is extended to take
into account the rigid body motion of the airfoil. To improve the stability, a POD-based
Galerkin-free ROM is developed. The aeroelastic response of an airfoil oscillating around
an equilibrium position is then reproduced at very low computational cost.

1 INTRODUCTION

Computation of complex fluid flows is nowadays a reachable task, even when transonic
turbulent flows are involved in aeroelastic processes. However, the simulations are often
very time consuming and only few runs can be performed although the response to differ-
ent parameters is generally needed. Since the usual numerical models for the flow involve
too many degrees of freedom, the solution is to replace them by reduced-order models
(ROMs). These models mimic the behavior of the original, complex model but with sig-
nificantly less degrees of freedom. For that pupose, the equations governing the system
are generally projected on a suitably chosen basis which can be obtained for example from
a set of solutions of the complex system. The form of the ROM is thus the same as the
one of the original model and the physical properties are likely to be preserved.

In fluid dynamics, several techniques of reduced-order modeling have emerged [1, 2] and
the Proper Orthogonal Decomposition (POD) has proved to be very powerful to reduce
the size of nonlinear fluid dynamical systems. We therefore focus in the following on
the POD method which has been widely used for incompressible flows [3–5] even if the
resulting ROMs have sometimes to be carefully stabilized [6, 7]. Much less studies have
been carried out for nonlinear compressible flows [2, 8, 9] because of the complexity of
the equations and this is why some authors have focused on the linearized compressible
equations [1, 10, 11].

In this paper, a POD-Galerkin ROM is firstly developed to reproduce a nonlinear com-
pressible flow field characterized by the vortex shedding in the wake of a fixed airfoil. This
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model is close to the one used in [8] but different stabilization techniques are involved
here. A second POD-Galerkin ROM is then developed to take into account the rigid
body motion of the airfoil but the stabilization turn out to be a difficult task. A new
type of ROM called POD-based Galerkin-free ROM is therefore developed. Unlike the
POD-Galerkin method, the coefficients of the ROM are not computed from the Galerkin
projection of the continuous equation on the POD modes, but a least-squares problem is
resolved to determine the best coefficients which fit the generic equation of the ROM. In
this way, the long term behavior of the dynamical system is accurately reproduced.

2 FLUID FLOW MODEL

In this paper, the fluid is governed by the instantaneous Navier-Stokes equations for a
Newtonian, viscous and compressible flow. For the construction of the ROM, the viscosity
of the fluid is assumed to be constant and equal to a reference viscosity (μ = μr) and the
effects of the turbulence are neglected. The Navier-Stokes equations are usually written
in a conservative form using the density, the momentum and the total energy as variables.
However this set of variables is not appropriate to build a ROM in the framework of a
Galerkin projection because the system of equations is no longer polynomial. To avoid
this problem, the isentropic Navier-Stokes equations have been used by Rowley et al. [9]
since the system becomes quadratic. Iollo et al . [8] advocated the use of the modified
primitive variable set [ϑ,u, p], where ϑ = 1/ρ is the covolume, u is the vector of the
velocity components and p is the pressure. With those variables, the system of equations
becomes polynomial and can be written under the dimensionless form:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂ϑ

∂t
+ u.∇ϑ = ϑ div u

∂u

∂t
+ u.∇u = −ϑ∇p +

1

Re
ϑ div τμr(u)

∂p

∂t
+ u.∇p = −γ p div u +

γ − 1

Re
∇u : τμr(u) +

γ

Re Pr
div

(
kθ

cv

∇(ϑ p)

) (1)

In the previous expression, γ = cp/cv is the heat capacity ratio, cp and cv are the spe-
cific heat capacities (under constant pressure and at constant volume respectively), kθ

is the thermal conductivity, and Re and Pr are respectively the dimensionless Reynolds
and Prandtl numbers. The dimensionless viscous stress tensor τμr(u) =

(∇u + ∇uT
) −

2/3 (div u) I stem from the division of the viscous stress tensor τ by the reference viscosity
μr. For the second example treated in Section 4.2, the fluid is perfect and can be modeled
with the Euler equations in which all the viscous terms multiplied by the inverse of the
Reynolds number vanish.

Equations (1) are written in an Eulerian framework and are not adapted to take into
account the motion a structure like an airfoil. If the previous equations are rewritten
with the Arbitrary Lagrangian-Eulerian (ALE) formulation [12], the advective operator
u.∇ is modified by the relative velocity c = u − s where s is the velocity of the mesh
points. The mesh velocity is determined to match the airfoil velocity on the airfoil surface
and is null on the free boundaries. The mesh is thus deforming in the domain with an
arbitrary velocity at each time step. Unfortunately this deformation is incompatible with
the determination of POD modes since it requires the evaluation of temporal correlations
in some fixed points in the space, which are generally chosen to be the mesh points. Prob-
lems arise with the ALE formulation since the same mesh point has no longer the same
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fixed position in space at different time instants. The equations should be formulated on
a fixed grid if a POD-based ROM is considered. This can be achieved if the structure is
supposed to be rigidly moving : the equations are reformulated in the moving frame of
reference and the mesh points are therefore seen as fixed points in the space.

The position of a point M of the mesh can be defined as x = x0 + R x̃, where x is the
position of M in the absolute reference frame RA, x0 is the position of the origin M0 of
the moving frame RE defined in the reference frame RA, x̃ is the position of the point M
relative to M0 in the moving frame RE and R is the change-of-basis matrix between RE

and RA. The matrix is orthogonal (RTR = RRT = I) and ΩA = ṘRT is an antisym-
metric tensor describing the rotation. The angular velocity vector ωA is defined for all
position vector r ∈ R

3 by ΩA r = ωA ∧ r. The velocity s of the mesh point M is defined
by the time derivative of the position vector x:

s(M) = ẋ = ẋ0 + Ṙ x̃︸ ︷︷ ︸
se

+ R ˙̃x︸︷︷︸
sd

(2)

The mesh velocity can thus be divided into two parts: the first one se is the velocity of
the rigid body motion composed of the translation velocity s0 = ẋ0 and of the rotational
velocity Ṙ x̃ and the second one sd is the velocity associated to the deformation of the
mesh. Since the airfoil is assumed to be rigidly moving, the relative position x̃ is time-
independent and the deformation velocity sd vanishes. The relative position vector can
be written x̃ = RT (x − x0) according to the definition of the absolute position vector.
Introducing this relation in Eq. (2) and using the relation ΩA = ṘRT , the mesh velocity
becomes:

s(M) = s0 + ωA ∧ (x − x0) (3)

The previous relation defines the mesh velocity in the absolute frame of reference RA,
using the coordinates of M and M0 in the same frame. This expression could be introduced
in Eq. (1) to obtain the equation governing the fluid in an absolute frame of reference
where a structure is rigidly moving. However the spatial differential operators are still
defined on a moving grid since the absolute position vector of the mesh points x changes
with time. It is thus necessary to formulate the equations in the moving frame RE . The
scalar quantities (like ϑ and p) are invariant to the reference change, unlike the vector and
matrix quantities (like the velocity vector u and the viscous stress tensor τμr). A vector
r ∈ R

3 will be denoted rA when its components are evaluated in the basis associated to
RA, and rE for RE ; similarly a matrix M ∈ R

3 × R
3 is defined either in RA with MA

or in RE with ME . The relations between the components are obtained by means of
the change-of-basis matrix R and additional relations are then obtained for the spatial
differential operators:

rA = RrE MA = RME RT divA rA = divE rE

rE = RT rA ME = RT MA R ∇A p = R∇E p
(4)

With the preceding relations, the scalar equations (for the covolume ϑ and the pressure
p) can be rewritten for the absolute velocity uE in the moving frame. The expression of
the momentum equation in the moving frame has to be projected in RE by multiplying
by RT since it is a vectorial equation. Besides, the time derivative of the velocity vector
is given by the following formula:

∂uA

∂t
=

δuA

δt
+ ωA ∧ uA with

δ•
δt

= R
∂

∂t

(
RT •) (5)
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where δ/δt is the time derivative in the moving frame. The projection of the time deriva-
tive on RT leads to:

RT ∂uA

∂t
=

∂uE

∂t
+ ωE ∧ uE (6)

where a new angular velocity vector ωE is defined such that for all r ∈ R
3, ΩE r = ωE ∧r

and ΩE = RT ΩA R = RT Ṙ. Finally the expression of the Navier-Stokes equations in
the moving frame reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ϑ

∂t
+ (uE − se,E).∇Eϑ = ϑ divE uE

∂uE

∂t
+ (uE − se,E).∇EuE = −ϑ∇E p +

1

Re
ϑ divE τμr ,E(uE) − ωE ∧ uE

∂p

∂t
+ (uE − se,E).∇E p = −γ p divE uE +

γ − 1

Re
∇EuE : τμr ,E(uE)

+
γ

Re Pr
divE

(
kθ

cv
∇E(ϑ p)

)
(7)

The equations in the moving frame are just modified by the introduction of a volumic
force in the momentum equation and a new convective velocity uE−se,E . In the following,
the subscript E will be dropped to simplify the notations.

Equations (1) and (7) are not intended to be resolved on a computational mesh with
traditional discretization methods but they are just considered as governing equations for
the ROM since the conservative formulation is not adapted in this case. Consequently, the
database necessary to build the POD basis does not come directly from the resolution of
Eqs (1) or (7) but from the resolution of the classical Navier-Stokes equations written with
the conservative variables. A computational code like elsA [13] is thus adapted to generate
the database and in the context of reduced-order modeling, the Navier-Stokes equations
written with conservative variables and discretized with a Finite Volume technique define
the so-called high-order model.

Equations (1) and (7) are considered under their continuous form for the construction
of the ROM. The nv modified primitive variables q = [ϑ,u, p]T involved in the Navier-
Stokes equations are therefore assumed to be continuous squared integrable functions on
a domain Ω ⊂ R

nd (nd = 1, 2, 3). The vector q is thus contained in the Hilbert space
H = (L2(Ω))nv . In practice, the variables are only known under a discrete form by means
of their degrees of freedom w, which are an approximation of the continuous variables.
Within the framework of a Finite Volume resolution of the high-order model, the degrees
of freedom represent the average values of the continuous variables at the center of the N
control cells of the computational mesh. Consequently the discretized variables contain
Nv = nvN degrees of freedom and w ∈ R

Nv .

The Navier-Stokes equations written for a fixed domain Eq. (1) or a moving domain
Eq. (7) have a polynomial form when the modified primitive variable set q = [ϑ,u, p]T

is adopted. The system of partial differential equations is quadratic and can be written
under the generic form:

q̇ = QC(q,q) +
1

Re
QD(q,q) + T(q, se) (8)
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where the different operators are given by:

QC(q,q) =

⎡⎣ −u.∇ϑ + ϑ div u
−u.∇u − ϑ∇p

−u.∇p − γ p div u

⎤⎦ T(q, se) =

⎡⎣ se.∇ϑ
se.∇u − ω ∧ u

se.∇p

⎤⎦

QD(q,q) =

⎡⎢⎣ 0
ϑ div τμr(u)

(γ − 1)∇u : τμr(u) +
γ

Pr
div [∇(ϑ p)]

⎤⎥⎦
(9)

The source term T vanishes in the case of a fixed domain. Otherwise it is a linear term for
the aerodynamic variable q and the system becomes non-autonomous. In the following
we describe how a reduced-order model can be developed on the basis of the preceding
equations.

3 POD-BASED REDUCED-ORDER MODELS

The Proper Orthogonal Decomposition (POD) is a powerful method which provides the
description of a high order system by means of a small number of elements, called the
POD modes (POMs). These POMs contain the main features of the system response,
such that the solution of the system can be reconstructed as a linear combination of
the POMs. The starting point of the POD method is a set of snapshots describing the
system and obtained either from numerical simulations with the high-order model or
experiments. The set of snapshots is combined into a correlation tensor, whose properties
ensure that real eigenvectors (the so-called POMs) exist. The basis containing the POMs
is the best basis among all other basis of same dimension to approximate any element
of the snapshots set. The POD is therefore a powerful technique for data analysis since
an important database can be efficiently represented by only a small number of modes.
The basis can also be used as a low-dimensional projection basis when the first POMs are
kept. The Galerkin projection of the dynamical system leads to a reduced-order model
whose size is equal to the number of POMs in the basis. A more detailed description of
the method can be found in [14, 15] for example and a brief overview is given here.

3.1 Computation of the POD modes

Let Q =
{
q(m) ∈ H, m = 1, .., M

}
be a finite set of snapshots, which are solutions of the

high-order system at different instants tm ∈ [t0; t0 + Ts]. The snapshots are assumed
to be the continuous modified primitive variables q = [ϑ,u, p]T and the Hilbert space
H = (L2(Ω))nv is therefore adapted to formulate the ROM. The inner product associated
to the Hilbert space is defined for continuous functions:

∀q, r ∈ (L2(Ω))nv 〈q, r〉 =

∫
Ω

nv∑
k=1

qk rk dΩ (10)

The inner product should ideally be defined such that the norm ‖q‖2 = 〈q,q〉 represents
some kind of energy of the system [9] (in the case of incompressible flows, the previous
inner product represent twice the kinetic energy). For compressible flows, the total energy
is not a quadratic form of the modified primitive variables and the inner product cannot
represent this energy. The classical inner product for continuous functions Eq. (10) is
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however adopted but the energy associated to the norm is purely mathematical. Note
that the inner product is well-defined as long as the snapshots are dimensionless.

The POD consists then in finding a subspace S ⊂ H of finite dimension q 
 N which
provides the best approximation of any member of Q. Usually the snapshots are centered
and the problem is to find the best basis to approximate the snapshots q̃(m) = q(m) − q,
where q = E(q) =

∑M
m=1 αmq(m) is a discrete weighted temporal average, with αm > 0.

The subspace is entirely characterized by the basis
{
ϕ(j) ∈ H, j = 1, .., q

}
so that S =

span
{
ϕ(1), ..., ϕ(q)

}
. Each snapshot q(m) can therefore be approximated on the subspace

S by a linear combination of the POMs ϕ(j):

q(m) = q +

q∑
j=1

a
(m)
j ϕ(j) ∀m ∈ [1; M ] (11)

The POD modes ϕ(j) are solutions of the following maximization problem:

max
ϕ(j)∈H,‖ϕ(j)‖=1

E
(〈

q(m), ϕ(j)
〉2)

(12)

The previous problem is equivalent to the resolution of the eigenvalue problem R ϕ(j) =
λj ϕ(j), where R is a spatial correlation tensor. Since the dimension of the correlation
tensor is Nv ×Nv when the discrete snapshots with Nv degrees of freedom are considered,
the determination of the eigenvectors is generally too costly. A powerful variant called the
snapshots method proposed in [16] reduces considerably the size of the eigenproblem. The
method is based on the fact that the POMs are a linear combination of the snapshots:

ϕ(j) =

M∑
m=1

c(j)
m q(m) (13)

It can be shown [15, 16] that the eigenvalue problem can be transformed to obtain the
small equivalent M × M problem involving the temporal correlation tensor R∗:

R∗d(j) = λjd
(j) (14)

where R∗
ij =

√
αiαj

〈
q(i),q(j)

〉
. Once the eigenvectors d(j) are computed, the POMs are

obtained by Eq. (13) and the relation c(j) = α̃d(j), where α̃ = diag(
√

α1, . . . ,
√

αM).

3.2 POD-Galerkin reduced-order models

The construction of POD-Galerkin ROMs relies on the projection of the equations govern-
ing the system on the truncated POD basis which contains the most energetic modes, i.e.
those associated to the greatest eigenvalues. The introduction of the POD decomposition
Eq. (11) in Eq. (8) governing the dynamical system and the use of the multilinearity of
the operators defined in Eqs (9) lead to:

q∑
j=1

ȧjϕ
(j) = QC(q,q) +

1

Re
QD(q,q) + T(q, se) +

q∑
j=1

T
(
ϕ(j), se

)
aj

+

q∑
j=1

[
QC
(
q, ϕ(j)

)
+ QC

(
ϕ(j),q

)
+

1

Re
QD
(
q, ϕ(j)

)
+

1

Re
QD
(
ϕ(j),q

)]
aj

+

q∑
j,k=1

[
QC
(
ϕ(j), ϕ(k)

)
+

1

Re
QD
(
ϕ(j), ϕ(k)

)]
ajak

(15)
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Finally, the Galerkin projection on each orthonormal POD mode ϕ(i) produces a set of q
nonlinear quadratic ordinary differential equations defining the ROM:

ȧi = Ki +

q∑
j=1

Lijaj +

q∑
j,k=1

Qjikajak + Ke
i (t) +

q∑
j=1

Le
ij(t)aj (16)

When the spatial domain is fixed, the terms Ke
i and Le

ij vanish and the system is au-
tonomous. Note that the ROM contains constant and linear terms although the Navier-
Stokes equations only contain quadratic terms. This comes from the affine POD decom-
position using centered snapshots. The constant, linear and quadratic coefficients defining
the polynomial equations of the ROM for the fixed domain are detailed below:

Ki = KC
i +

1

Re
KD

i with

⎧⎨⎩ KC
i =

〈
QC(q,q), ϕ(i)

〉
KD

i =
〈
QD(q,q), ϕ(i)

〉
Lij = LC

ij +
1

Re
LD

ij with

{ LC
ij =

〈
QC
(
q, ϕ(j)

)
+ QC

(
ϕ(j),q

)
, ϕ(i)

〉
LD

ij =
〈
QD
(
q, ϕ(j)

)
+ QD

(
ϕ(j),q

)
, ϕ(i)

〉
Qijk = QC

ijk +
1

Re
QD

ijk with

{ QC
ijk =

〈
QC
(
ϕ(j), ϕ(k)

)
, ϕ(i)

〉
QD

ijk =
〈
QD
(
ϕ(j), ϕ(k)

)
, ϕ(i)

〉
(17)

According to Eq. (17), the detailed expression of the different coefficients only requires
to develop QC

ijk and QD
ijk. Indeed, the expressions of the linear (reps. constant) terms are

inferred by substituting ϕ(k) or ϕ(j) by q (resp. ϕ(k) and ϕ(j) by q). Furthermore, the
vector of the POMs is divided into nv parts corresponding to the aerodynamic variables
ϕ(i) = [ϕ

(i)
ϑ , ϕ

(i)
u , ϕ

(i)
p ]T , so that the expressions become:

QC
ijk = −

∫
Ω

(
ϕ(j)

u .∇ϕ
(k)
ϑ − ϕ

(k)
ϑ div ϕ(j)

u

)
ϕ

(i)
ϑ dΩ

−
∫

Ω

(
ϕ(j)

u .∇ϕ(k)
u + ϕ

(j)
ϑ ∇ϕ(k)

p

)
.ϕ(i)

u dΩ

−
∫

Ω

(
ϕ(j)

u .∇ϕ(k)
p + γ ϕ(j)

p div ϕ(k)
u

)
ϕ(i)

p dΩ

(18)

QD
ijk =

∫
Ω

ϕ
(j)
ϑ div τμr

(
ϕ(k)

u

)
.ϕ(i)

u dΩ

+

∫
Ω

[
(γ − 1)∇ϕ(j)

u : τμr

(
ϕ(k)

u

)
+

γ

Pr
div
(
∇
(
ϕ

(j)
ϑ ϕ(k)

p

))]
ϕ(i)

p dΩ
(19)

The computation of the diffusive coefficient with the previous expression requires the
evaluation of second order spatial derivative. To avoid this, the volumic integrals can
be transformed by means of the Green-Ostrogradsky theorem and the diffusive term is
therefore split into a volume and a surface contribution which are given by:

QD
Vol = −

∫
Ω

ϕ
(j)
ϑ ∇ϕ(i)

u : τμr

(
ϕ(k)

u

)
dΩ −

∫
Ω

(
ϕ(i)

u ⊗∇ϕ
(j)
ϑ

)
: τμr

(
ϕ(k)

u

)
dΩ

+(γ − 1)

∫
Ω

∇ϕ(j)
u : τμr

(
ϕ(k)

u

)
ϕ(i)

p dΩ − γ

Pr

∫
Ω

ϕ
(j)
ϑ ∇ϕ(k)

p .∇ϕ(i)
p dΩ

− γ

Pr

∫
Ω

ϕ(k)
p ∇ϕ

(j)
ϑ .∇ϕ(i)

p dΩ

(20)
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QD
Surf =

∮
∂Ω

[
ϕ

(j)
ϑ

(
ϕ(i)

u

)T
τ
(
ϕ(k)

u

)]
.n d∂Ω +

γ

Pr

∮
∂Ω

ϕ(i)
p ∇

(
ϕ

(j)
ϑ ϕ(k)

p

)
.n d∂Ω (21)

When the domain is rigidly moving, additional terms have to be taken into account in the
ROM. The expression of the linear moving frame coefficient is given below (the expression
of the constant term is obtained by replacing ϕ(j) by q):

Le
ij(t) =

∫
Ω

(
se,E(t).∇ϕ

(j)
ϑ

)
ϕ

(i)
ϑ dΩ +

∫
Ω

(
se,E(t).∇ϕ(j)

p

)
ϕ(i)

p dΩ

+

∫
Ω

(
se,E(t).∇ϕ(j)

u − ωE(t) ∧ ϕ(j)
u

)
.ϕ(i)

u dΩ

(22)

These terms make the system become non-autonomous because the mesh velocity se,E,
and consequently the moving frame coefficients Ke

i and Le
ij , are time-dependent. The

expression Eq. (22) is not adapted since the translation and rotational velocities which
describe the airfoil motion appear implicitly. This means that the motion applied to
the airfoil could not be changed in the ROM unless the moving frame coefficients are
recalculated at each time step. This would be very costly because it involves vectors of
dimension Nv. The expression has thus to be modified so that the velocities of the airfoil
appear explicitly in the ROM.

The prescribed motion is described by the mesh velocity se = s0,E+ωE∧x̃. More precisely,
the rigid body motion is governed by two degrees of freedom which are the translation
velocity s0,E and the rotational velocity ωE. These two parameters are independent of
the spatial position and can therefore be extracted from the volume integrals involved in
the expression Eq. (22) of the moving frame coefficients. The relative position x̃ is on
the contrary position-dependent, but since a rigid body motion is assumed, x̃ is time-
independent. Consequently there is a natural space-time separation and the expression of
the coefficients can be transformed so that time-independent coefficients which are then
multiplied by the motion parameters can be obtained. The constant and linear moving
frame coefficients can be written as follows:

Ke
i (t) = s0,E(t).Ke,T

i + ωE(t).Ke,R
i (23)

Le
ij(t) = s0,E(t).Le,T

ij + ωE(t).Le,R
ij (24)

The moving frame coefficients are split into two parts relative to the translational and
the rotational degrees of freedom for the rigid body motion. For each mode ϕ(i), a three
components vector Ke,T

i (resp. Ke,R
i ) must be computed for the constant contribution.

These new coefficients are time-independent and can be computed once for all before the
time integration of the ROM. The same procedure is carried out for the linear moving
frame coefficient. In this way, the translational and rotational velocities of the rigid body
motion can be changed in the ROM ad libitum without computing again the coefficients.
The detailed expression of the translational and rotational linear moving frame coefficients
are given below (the expression of the constant term is obtained by replacing ϕ(j) by q):

Le,T
ij =

∫
Ω

ϕ
(i)
ϑ ∇ϕ

(j)
ϑ dΩ +

∫
Ω

ϕ(i)
p ∇ϕ(j)

p dΩ +

∫
Ω

[(
ϕ(i)

u

)T∇ϕ(j)
u

]T
dΩ (25)

Le,R
ij =

∫
Ω

(
x̃ ∧ ∇ϕ

(j)
ϑ

)
ϕ

(i)
ϑ dΩ +

∫
Ω

(
x̃ ∧∇ϕ(j)

p

)
ϕ(i)

p dΩ

+

∫
Ω

x̃ ∧
[(

ϕ(i)
u

)T∇ϕ(j)
u

]T
dΩ −

∫
Ω

ϕ(j)
u ∧ ϕ(i)

u dΩ

(26)
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The POD-Galerkin procedure provides a ROM which preserves the nonlinearities of the
original high order model. For a fixed domain, the ROM is given by Eq. (16) without the
unsteady coefficients Ke

i and Le
ij. The coefficients are defined by Eqs. (17) and detailed

in Eqs (18), (20) and (21). When q basis vectors are used in the projection basis, the
ROM requires the computation of q + q2 + q3 coefficients. For a rigidly moving frame,
the formulation of the Navier-Stokes equations in the moving frame leads to the ROM
Eq. (16) including all the coefficients and the moving frame coefficients are defined by
Eqs (23) and (24) and detailed in Eqs (25) and (26). In this case, the ROM is defined by
6q + 6q2 additional coefficients.

POD-Galerkin ROMs are able to reproduce accurately the system response but they of-
ten lack stabilization [4–7]. This can be due to the truncation of the POD basis, to
the non-respect of certain boundary conditions by the POMs, or to numerical errors.
Many stabilization techniques have been developed to correct the damping of the system.
Amongst them, those using the exact modal amplitudes ae associated to the POD de-
composition Eq. (11) of the snapshots over the time interval [t0; t0 + Ts] are often able to
provide a robust stabilization. The modal amplitudes also contain important information
regarding the system because the POD can be regarded as a Singular Value Decompo-
sition (SVD) of the correlation tensor: the POMs are thus the left singular vectors and
the modal amplitudes are the right ones. Cazemier et al . [5] introduced a linear diagonal
correction term defined in such a way that the average energy of the modal amplitudes is
conserved over the time interval. To improve this correction, Couplet et al . [6] defined
an optimization problem to calibrate some chosen coefficients of the ROM so that the
response of the ROM match the exact modal amplitudes on the sampling time interval
[t0; t0 +Ts]. In this case, constant, linear and even quadratic coefficients can be corrected.
These calibration techniques improve considerably the short-term response of the system
but some kind of divergence occurs sometimes in long-term simulations [7].

3.3 POD-based Galerkin-free reduced-order models

POD-Galerkin ROMs are sometimes unable to reproduce correctly the long-term behavior
of the high order model. Moreover, the computation of the coefficients becomes very time-
consuming when the number of degrees of freedom of the high order model and the size of
the projection basis increase. To avoid these problems, POD-based Galerkin-free methods
can be used [17]. The philosophy is different from the POD-Galerkin method since the
coefficients are not directly computed from the inner products of the Galerkin projection,
but they are found as the solution of a least-squares problem: given the generic form of the
ROM and the exact modal amplitudes associated to the POMs computed, the coefficients
are determined to match the exact response.

Since the form of the ROM has already been established in the previous section, the
coefficients are sought in the following to fit the response produced by Eq. (16) to the
exact response but another type of equations (linear, cubic polynomials,...) could be
considered. The method is called Galerkin-free since the equation to fit can be chosen
independently of the equation governing actually the system. The procedure is described
here for a fixed domain for simplicity but it can be easily extended to a moving domain.

Given the exact modal amplitudes and their time derivatives, M relations can be written
with Eq. (16) at each time instant tm. The problem is then, for each POM ϕ(i), to find
the vector Xi containing the 1 + q + q2 coefficients corresponding to the i-th equation of
the ROM such that Ai Xi = Bi. The matrix Ai contains the exact modal amplitudes
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and the correlations involved in generic polynomial equations (16) which are going to be
fitted and Bi is the time derivative of the i-th modal amplitude at each time instant tm:

Ai =

⎡⎢⎣1 · · · ai(t1) · · · ai(t1)aj(t1) · · ·
...

...
...

1 · · · ai(tM) · · · ai(tM)aj(tM) · · ·

⎤⎥⎦ Xi =

⎡⎣ Ki

Lij

Qijk

⎤⎦ Bi =

⎡⎢⎣ ȧi(t1)
...

ȧi(tM )

⎤⎥⎦ (27)

The matrix Ai is not invertible since the problem is generally over-determined (M >
1+q+q2) and the problem can only be approximated. A simple least-squares minimization

procedure provides the following estimation of the coefficients: Xi =
(Ai

T Ai

)−1 Ai
T Bi.

The results is generally not accurate because the matrix Ai is ill-conditioned and the
smallest singular values lead to spurious results. A better solution consists in computing
a truncated singular value decomposition (TSVD) of Ai in which the smallest singular val-
ues have been neglected. Then the approximated pseudo-inverse matrix A+

i is computed
and coefficients obtained with Xi = A+

i Bi are much better.

4 NUMERICAL APPLICATIONS

Reduced-order models of the Navier-Stokes and Euler equations are constructed in order
to reproduce the aerodynamic forces applied on a fixed or a rigidly moving airfoil. In the
first case, the domain is fixed and the flow field over the airfoil generates a vortex street
in the wake, which causes the unsteadiness of the aerodynamic forces. In the second case,
the forces oscillate because of the rigid body motion applied to the airfoil.
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Figure 1: Percentage of energy captured by each eigenvalue λi associated to the POM ϕ(i) computed for
the NACA0012 example. Several dimensions M of the snapshots set are investigated.

4.1 Vortex shedding in the wake of a fixed NACA0012 airfoil

The first example is close to the one treated in [8], where the aerodynamic 2D flow around
a NACA0012 is considered. The flow is assumed to be subsonic (Ma = 0.2) and laminar
(Re = 2000) so that no turbulence closure model is necessary. The angle of attack is set to
α = 20̊ to observe the vortex street in the wake. Snapshots are generated over about one
period of vortex shedding by means of the resolution of the Navier-Stokes equations with
Onera’s CFD software elsA [13]. The simulation with the high-order model is performed
in a conservative framework but the variables extracted at each time instant tm are the
dimensionless modified primitive variables q = [ϑ,u, p]T .

The percentage of energy captured by each POM is represented on Figure 1 for different
numbers of snapshots extracted on the same time interval [t0; t0 + Ts] after the transient
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Figure 2: Shape of the first six pressure POMs ϕ
(i)
p (i = 1, . . . , 6) of the flow field around the NACA0012

airfoil. M = 50 snapshots have been used.

vanishes. The first-ever POMs contain almost the totality of the energy: the cumulated
percentage of energy ηq =

∑q
i=1 λi/

∑M
i=1 λi with only q = 6 POMs is equal to 99.99% and

is almost 100% with q = 10 POMs. The number of snapshots used has little influence on
the spectrum and in the following, only M = 50 snapshots are used. The first six POMs
for the pressure are represented on Figure 2. It can be seen that the POMs are grouped
by pairs and that the size of the coherent structures appearing in each POM is decreasing
when the number i of the POM increases.
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Figure 3: Comparison of the reference lift coefficient (−) to the solutions computed with the ROM with-
out correction (−−), with the correction of Cazemier et al. [5] (◦) and with the calibration
procedure inspired by the one of Couplet et al. [6] (+).

A POD-Galerkin ROM is constructed with 10 POMs so that almost all of the energy is
contained in the projection basis. The short term behavior of the ROM response (i.e. the
response on the sampling time interval [t0; t0 + Ts]) is quite satisfactory: the red curve of
the lift coefficient on the plot Figure 3 matches the reference curve in blue which stem
from the high order model simulation. However, outside the black rectangle representing
the sampling time interval, the response of the ROM lacks dissipation and the lift coeffi-
cient reaches another limit cycle. This lack of damping can not reasonably be attributed
to the truncation of the POD basis since the energy lost by the truncation εq = 1 − ηq

is less than 10−4% with q = 10. The reason is probably due to the absence of artificial
dissipation in the ROM unlike the high order model. The artificial dissipation operator
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has not been included in the ROM because its form is not adapted to a POD decomposi-
tion. The solution is thus to correct the ROM by means of the exact modal amplitudes:
two corrections based on those proposed in [5] and [6] are used here. In the first case,
only the linear diagonal terms are modified so that the energy of the modal amplitude is
conserved. In the second case, the constant and linear diagonal coefficients are calibrated.

The POD-Galerkin ROM of the aerodynamic flow field constructed here is able to repro-
duce accurately the aerodynamic force in only several seconds. The time gain (ratio of
the time integration of the high order model over the one of the reduced order model)
given in the last column of Table 1 is significant. However, the construction of the ROM
is costly, particularly when the correction of Couplet et al. [6] is adopted.

ROM Construction Time integration Time gain
NACA0012 (correction [5]) 5060 6.7 187
NACA0012 (correction [6]) 8250 8.8 143

NACA0064 (POD-Galerkin KdL) 10598 11.8 33
NACA0064 (POD-Galerkin K3dL) 12326 7.3 50
NACA0064 (POD-Galerkin KdL E) 18558 7.8 53

NACA0064 (Galerkin-free) 1503 4.9 80

Table 1: CPU times (in seconds) for the construction and the time integration of the different ROMs and
comparison with the CPU times of the high order model.

4.2 Transonic flow around a NACA0064 oscillating airfoil

In the second example, a rigid body motion is applied to a NACA0064 airfoil. The flow
is assumed to be perfect (no viscous term) and compressible (Ma = 0.796). The airfoil is
subjected to a translational motion at a constant horizontal velocity V∞ and a rotational
motion such that the pitch angle α oscillates at the reduced frequency kred = ωα/V∞. The
rotational motion is described by the pitch angle α(t) = α0 + αm sin (ωα t), where α0 = 0
and αm = −1.0. The translational velocity se,E and the angular velocity ωE are given by:

se,E = V∞

⎡⎣cos α(t)
0

sin α(t)

⎤⎦ ωE =

⎡⎣ 0
α̇(t)
0

⎤⎦ (28)
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Figure 4: Percentage of energy captured by each eigenvalue λi associated to the POM ϕ(i) computed for
the NACA0064 example. Several dimensions M of the snapshots set are investigated.

The percentage of energy captured by the POMs is represented on figure 4 for different
numbers of snapshots. The sampling time interval [t0; t0 + Ts] has also been increased
in one case (M = 120) to cover about 2.5 periods of the oscillation. The slope of the
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Figure 5: Shape of the first six pressure POMs ϕ
(i)
p (i = 1, . . . , 6) of the flow field around the NACA0064

oscillating airfoil. M = 120 snapshots have been used.

spectrum is less steep than in the previous example, but only few POMs can still be kept
in the truncated POD basis. The shock-like structure of the transonic flow is revealed by
the POMs represented on Figure 5. These POMs are clearly different from the previous
example although in both case the flow around an airfoil is considered. This illustrates
the strong dependence of the POMs on the application considered: this POD basis is
optimal to represent the features of this particular transonic flow field but would be
utterly inappropriate to treat the previous example with vortex shedding.

The POD-Galerkin ROM constructed with q = 10 POMs and M = 64 snapshots is
very unstable. This can be explained by the absence of any dissipation in the ROM
since the equations from which the ROM is constructed are the Euler equations without
artificial dissipation. The corrections used previously for the NACA0012 airfoil are only
effective for the short-term behavior: after the sampling time interval, the ROM converges
towards erroneous limit cycles or diverges (see Figure 6, left). The correction of Cazemier
et al. [5] is too simplistic for the aeroelastic ROM since only the linear diagonal terms are
modified. Consequently the correction of Couplet et al. [6] is used in order to calibrate
more coefficients of the ROM. However, even with a complex calibration involving constant
and diagonal terms (KdL), constant terms and linear terms of the three main diagonals
(K3dL) but also the moving frame coefficients (KdL E), the long term behavior of the ROM
response remains unstable or converges towards a wrong attractor. The stability of the
system is not improved when the size of the projection basis or the sampling time interval
is increased (see Figure 6, right, with M = 120 snapshots over about 2.5 periods).

A second ROM is therefore built by means of the POD-based Galerkin-free approach.
In this case, no correction is needed and the ROM provides the right limit cycle for the
aerodynamic forces as long as the SVD involved to compute the pseudo-inverse has been
correctly truncated, i.e. the smallest eigenvalues have been discarded. The result of the
time integration of the ROM is presented on the right of Figure 6 and is compared to the
response of the POD-Galerkin ROM corrected with KdL. In this case, M = 120 snapshots
have been used so that M > 1 + q + q2 for q = 10 and the problem is actually over-
determined. The computational cost of the ROM construction and the time savings are
presented in Table 1.
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Figure 6: On the left, comparison of the reference lift coefficient (−) to the solutions computed with the
POD-Galerkin ROM corrected with KdL (−−), with K3dL (◦) or with KdL E (+). On the right,
the reference response (−) is compared to the response of the Galerkin-free ROM (◦) and the
response of the POD-Galerkin ROM corrected with KdL. The black rectangles represent the
sampling time interval.

5 CONCLUSION

In this paper, ROMs of the Navier-Stokes equations have been developed on the basis of
the POD method to reproduce the aerodynamic forces applied on airfoils in fixed or rigidly
moving domains. First, a classical POD-Galerkin projection procedure has been used to
obtain the small set of ODEs describing the ROM. An accurate response is obtained after
the introduction of a correction to make up for the problem of dissipation. Encouraging
results have been obtained for the NACA0012 example, but the same approach used for
the aeroelastic example with the NACA0064 airfoil demonstrates the limitations of the
method for long-term integration: the response of the ROM either diverges or converges
towards an erroneous limit cycle, even when a complex calibration is performed. A POD-
based Galerkin-free approach has therefore been developed for the second example. The
procedure is much less time-consuming and is able to reproduce the right attractor of
the system even for long-term time integration. Both types of ROMs provide responses
in very few seconds and the CPU time savings are significant. The construction of the
ROM is however costly and can be even more time-consuming than the time integration
of the high-order model. The use of ROMs is therefore only interesting when many
responses for different parameter values can be obtained with the same ROM, i.e. a
ROM for which the coefficients have been computed once for all simulations. Future work
will deal with the adaptation of the ROM to the modification of the rigid body motion
parameters. Indeed, a very accurate response has been obtained here since the validation
was performed on the response already computed with the high order model for the same
parameter. The response to another set of parameter will certainly not be so accurate
and additional techniques like interpolations between POD basis [18] could be used to
obtain the response of the system over a certain parameter range.
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