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Abstract

We introduce a novel harmonic analysis for functions defined on the vertices of a strongly
connected directed graph (digraphs) of which the random walk operator is the corner-
stone. As a first step, we consider the set of eigenvectors of the random walk operator
as a non-orthogonal Fourier-type basis for functions over digraphs. We find a frequency
interpretation by linking the variation of the eigenvectors of the random walk operator
obtained from their Dirichlet energy to the real part of their associated eigenvalues. From
this Fourier basis, we can proceed further and build multi-scale analyses on digraphs.
We propose both a redundant wavelet transform and a decimated wavelet transform as
an extension of spectral graph wavelets and diffusion wavelets framework respectively for
digraphs. The development of our harmonic analysis on digraphs thus leads us to consider
both semi-supervised learning problems and signal modeling problems on graphs applied
to digraphs highlighting the efficiency of our framework.

Keywords: harmonic analysis, graph signal processing, Fourier analysis, wavelets,
directed graphs, random walks, semi-supervised learning

1. Introduction

In a world where data available for scientific or social purposes accumulates at an
exponential pace, managing, exploiting, and analyzing this torrent of data has become
one of the challenges of our era. Some of them take the form of graphs, structures that arise
in various fields such as neuroscience, the Internet, genomic data, road transportation, or
social networks to name a few [3, 4]. Thus, there is a need to develop efficient mathematical
and computational approaches to process and analyze such graphs and data on graphs.
Among the existing methods, a large number involve the (graph) Laplacian [5–9]:

• As a fundamental subject in mathematics and physics, the Laplacian is known and
used, through its spectral study to extract relevant geometric properties from a
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manifold [10] or a graph [11] and plays a role in machine learning applications such
as spectral clustering [9] and semi-supervised learning [12].

• In continuous space, the eigenfunctions of the Laplace-Beltrami operator represent
the generalization of the Fourier basis on manifolds [10, 13].

• In discrete space, the eigenvectors of the graph Laplacian form an orthonormal
Fourier-type basis for functions on undirected graphs [14, 15], when undirected
graphs are considered as a discretization or sampling of a manifold [7, 8, 16, 17].
The eigenvalue associated with each eigenvector is then related to the notion of
frequency [14, 18].

Thanks to these properties, the graph Laplacian bridges the gap between spectral
graph theory and signal processing through the mathematical framework called “signal
processing on graphs" [14, 15]. This framework aims at extending the concepts of classical
signal processing such as filtering or sampling, for functions defined on the vertices of a
graph.

First developed in the context of undirected graphs, signal processing on graphs con-
siders the graph Laplacian (combinatorial or normalized) [11] as its core element. The
graph Laplacian is a symmetric positive semidefinite operator. By the spectral theorem,
the graph Laplacian admits an orthonormal basis of eigenvectors which can be consid-
ered as Fourier modes, the corresponding eigenvalues being associated with a notion of
frequency.

The purpose of this paper is to provide some answers to the extension of the frame-
work of signal processing on graphs to the case of digraphs. The extension of signal
processing on digraphs is of interest because many networks studied in the scientific (e.g.
neurosciences) or social (e.g. social networks) fields are directed. Therefore, the analysis
of information on digraphs also requires the development of mathematical approaches
and therefore an extension of the framework of signal processing on graphs to the case of
digraphs.

Formally, the direct use of the core element of graph signal processing, i.e. the graph
Laplacian, is no longer appropriate. A directed graph is naturally represented by a non-
symmetric adjacency matrix. It is always possible to naively define a graph Laplacian
in the directed case, but the spectral properties associated with this undirected graph
Laplacian (e.g. non-negative real eigenvalues and the existence of orthonormal eigenbases)
are no longer verified in the case of digraphs. There is no simple consensus on a definition
of a Laplacian for directed graphs for which the variation of eigenvectors is linked to a
notion of frequency. This is the main challenge of signal processing on digraphs and this
paper: which reference operator(s) should a Fourier analysis be built upon that would
also generalize Laplacian-based Fourier analysis on undirected graphs?

Hereafter, the random walk operator on graphs [19–21] is proposed as being a suitable
reference operator for extending the framework of signal processing on digraphs. Like
the graph Laplacian, the random walk operator is associated with the notion of diffu-
sion. However, unlike the graph Laplacian, its definition is as straightforward on directed
graphs and undirected ones. Assuming that the random walk operator is diagonalizable,
it potentially admits complex conjugate eigenvectors as well as associated complex conju-
gate eigenvalues. Our framework is based on the fact that the variational analysis of the
eigenvectors of the random walk operator through their associated Dirichlet energy [20]
is related to the real part of the eigenvalue [1]. Therefore, the Dirichlet energy of a given

2



eigenvector of the random walk operator on a digraph can be considered as its frequency,
using the same analogy as in [14], now for digraphs. Provided with this notion of fre-
quency, the eigenvectors of the random walk operator form a suitable Fourier basis on
digraphs. It is furthermore consistent with the undirected setting when the Fourier basis
is based on the random-walk Laplacian operator (see section 4.3.

By now considering the random walk operator as a reference operator and its associ-
ated eigenvectors as a Fourier basis for functions defined on digraphs, the last part of our
harmonic analysis on digraphs consists in building a multi-resolution analysis for func-
tions defined on the vertices of a digraph. Complex graphs, both directed and undirected,
have structures at different scales. Motivated by the efficiency of multi-resolution wavelet
analysis in traditional signal processing [22] and the multi-scale dimension of graph data,
a number of multi-resolution graph constructions have emerged in recent years [23–27].
Here, we propose a new harmonic analysis built around the random walk operator and
whose multi-resolution constructions generalize spectral graph wavelets [24, 25] and dif-
fusion wavelets [23, 28] on digraphs.

1.1. Literature review and related work
Wavelets [22, 29–33] have been thoroughly investigated for over two decades. Their

efficiency and success in analyzing functions defined on the real line have led to their gen-
eralization for functions defined on higher dimensional spaces such as the sphere [34–36]
or other manifolds [23, 24, 27, 37–40]. The development of wavelets on manifolds and the
multi-scale features of graphs and data on graphs recently led to the extension of wavelets
constructions to the discrete space setting. These wavelet-type constructions include
wavelets on unweighted graphs [41], lifting wavelets [42], diffusion wavelets [23, 28, 37], dif-
fusion polynomial frames [24], spectral graph wavelets [25, 43–45], Haar-like wavelets [46–
49], average interpolating wavelets [50], graph wavelets via deep learning [26], multi-scale
pyramid transform [51], tight wavelet frames on graphs [27, 52, 53] and intertwining
wavelets on graphs via random forests [54]. The wavelet constructions mentioned above
were all developed on undirected graphs. In the present work, we intend to construct a
harmonic analysis on digraphs. The first stage of the proposed harmonic analysis is the
development of a Fourier analysis.

In recent years, Sandryhaila and Moura generalized some fundamental concepts of
traditional signal processing such as filtering to digraphs using the adjacency matrix
as the central component of their framework [55]. They also proposed the generalized
eigenvectors of the adjacency matrix obtained by Jordan decomposition as a Fourier-type
basis on digraphs [56]. To the best of our knowledge, no wavelet design has been proposed
in this framework, except the development of the filterbank approach generalized in [57]
which can be applied to bipartite directed graphs and uses the adjacency matrix for a
polyphase representation of the filters.

More recently, new Fourier-type bases have been proposed which are based on a novel
measure of graph directed variation (GDV) for functions defined on directed graphs, which
is defined as the Lovàsz extension of the graph cut size [58, 59]. In both propositions,
Fourier modes are defined as a set of orthonormal functions that approximately solve a
non-convex optimization problem involving the GDVs of the Fourier modes. The two
approaches differ insofar as the minimized objective in [58] is simply the sum of the GDVs
of the Fourier modes whereas in [59] the objective is designed to spread the individual
GDVs. It is worth stressing that because of the non-convexity of the objective, the
Fourier modes are not properly defined by the optimization problems alone and depend
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on the specific algorithms used to approximately solve the problems. In both cases, the
Fourier modes could also be defined on undirected graphs but they would not coincide
with standard approaches based on Laplacian operators. The reasons are that the Fourier
modes are not eigenvectors of any given operator and that the GDV on undirected graphs
differs from the common quadratic variation measures used on undirected graphs. Unlike
these approaches, the Fourier basis that we propose is generally not orthogonal but it
does generalize the Laplacian-based Fourier basis for undirected graphs. Furthermore, we
associate a notion of frequency to the Fourier modes, eigenvectors of the random walk
operator, via their Dirichlet energy which is conveniently related to the corresponding
eigenvalues. Most of the Fourier-like bases approaches on directed graphs have been also
discussed in [60].

Mhaskar has proposed the first wavelet-type frame construction for functions defined
on digraphs [61] as an extension of the diffusion polynomial frames [24]. Although our
redundant wavelet construction on digraphs is inspired in part by that of polynomial
diffusion frames, it differs mainly in the choice of the Fourier basis and the considered
operator. Mhaskar used in [61] the set of left-singular vectors of the weighted adjacency
matrix of a digraph as a Fourier basis while we propose the set of eigenvectors of the
random walk operator. Recently, adaptive directional Haar tight framelets have been
proposed and can deal with digraph signal representations [62] inspired by a previous
harmonic analysis on digraphs [63].

Finally, Furutani et al. [64] proposed an extension of graph signal processing to di-
graphs using an operator called the Hermitian Laplacian or Magnetic Laplacian [65, 66] as
their reference operator. The main properties of this latter operator are to be hermitian
and preserve the directionality of the digraph. The magnetic Laplacian has been high-
lighted through machine learning applications such that community detection on digraphs
[67] and graph neural networks on digraphs [68]. Other operators based on digraphs such
that the Hermitian adjacency matrix [69] have been investigated through clustering on
digraphs [70, 71], but no Fourier analyses of these operators have been carried out.

1.2. Contributions
The contributions of this article are the following:

1. Construction of Fourier bases on digraphs. We propose the random walk
operator associated with a random walk on a digraph as a reference operator. We
propose the eigenvectors of the random walk operator as a Fourier basis on digraphs
and determine a variational characterization of the eigenvectors of the random walk
operator – see Proposition 4.1.

2. Construction of multi-resolution analyses on digraphs. We propose an over-
complete spectral wavelet transform on digraphs in Section 5.1. This construction
extends the framework of spectral wavelets on undirected graphs [25] and diffusion
polynomial frames [24]. We also propose a critically sampled wavelet transform in
Section 5.2 generalizing the framework of diffusion wavelets [23, 28] to the directed
case.

3. Efficiency of the theoretical framework through applications. The devel-
opment of our harmonic analysis on digraphs leads us to consider semi-supervised
learning problems with ℓ2 regularization in Section 6.1 and ℓ1 regularization in sec-
tion 6.3.3 and signal modeling by filtering on digraphs in Section 6.2 highlighting
the effectiveness of our theoretical framework.
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1.3. Outline of the paper
This paper is structured as follows. We introduce the essential aspects of graph theory

and review the foundations of graph signal processing in Section 2. We present operators
defined on digraphs built from the random walk operator and their properties in Section 3
and propose a new class of operators on digraphs expressed as the convex combination be-
tween the random walk operator and its time-reversed version. Section 4.1 is dedicated to
the presentation of a Fourier transform on digraphs as a set of eigenvectors of the random
walk operator, and we propose a Fourier-type analysis for functions defined on digraphs
by studying the variation of the random walk’s eigenvectors. Section 5 is dedicated to
multiresolution analyses on digraphs. We present a redundant wavelets construction, as
well as a critically sampled wavelets construction with the random walk operator as a
reference operator. To illustrate our Fourier-type analysis, we study the machine learning
problems in Section 6 such as semi-supervised learning and signal modeling on digraphs,
and show through numerical experiments the efficiency of our framework compared to
the existing approaches and we illustrate these multiresolution analyses through some
examples. We conclude in Section 7.

2. Preliminaries

2.1. Fundamentals of signal processing on graphs
Signal processing on graphs [14, 15, 55] is a mathematical framework in which the

core concepts of harmonic analysis are generalized to functions defined on the vertices of
a graph. In this section, we introduce the essential aspects of the signal processing on
graphs framework and give some additional remarks.

2.1.1. Graph theory setup
Let G “ pV , E , wq be a weighted directed graph (digraph) where V “ tv1, . . . , vNu is

a finite set of vertices, E Ď V ˆ V is a set of directed edges. Each edge eij “ pvi, vjq
is directed and represents a link from vertex vi to vertex vj. The edge weight function
w : V ˆ V Ñ R` associates a nonnegative real value to every vertex pair: wpvi, vjq ą 0 if
eij P E , otherwise wpvi, vjq “ 0. We denote by |V | “ N , the cardinality of the vertex set V ,
that is the total number of vertices in V . A weighted digraph G can be entirely represented
by its weighted adjacency matrix W “ twiju1ďi,jďN P RNˆN

` where wij “ wpvi, vjq are the
weights associated to the respective edges eij. We define respectively the out-degree and
the in-degree of a vertex vi P V by d`

i “
řN

j“1wij and d´
i “

řN
j“1wji. For the sake of

simplicity, we refer to the out-degree d`
i of a vertex vi P V as its degree that we denote

by di. A digraph is called strongly connected if there is a path in each direction between
each pair of vertices of the graph.

A limitation of our framework is that it only applies to the case of weighted digraphs
with nonnegative weights, that is W “ twiju1ďi,jďN P RNˆN

` . Other approaches exist for
the case of digraph with positive and negative weights but they are not compatible with
the one presented here [55, 56, 72].

We assume through the theoretical sections of this paper that the digraph G is strongly
connected and the random walk operators are diagonalizable. These are two necessary
conditions for our theoretical framework. If the digraph is not strongly connected, our
framework may still apply by modifying the digraph to make it strongly connected. This
can be achieved using e.g. the Pagerank method [73], which will be used in Section 6.2.
Since diagonalizable matrices form a dense set, the case of a non-diagonalizable random
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walk operator is a priori very rare in practice and typically never occurs in numerical
eigendecompositions.

2.1.2. Graph signals
Let f : V ÞÑ C be a function defined on the vertex set V of a given digraph G. We

define a graph signal f as a column vector representation of the function f applied at
each node vi P V , i.e.

f “ rfpv1q, . . . , fpvNqs
J

P CN .

We assume throughout this paper that the graph signals are defined in ℓ2pV , νq which
is the Hilbert space of functions defined over the vertex set V of G endowed with the inner
product associated with ν : V ÞÑ R`, a positive arbitrary vertex measure

xf , gyν “
ÿ

xPV
fpxqgpxqνpxq, (1)

for all functions f , g and where fpxq denotes the complex conjugate of fpxq. Note that
we can easily generalize to any other ℓp norm.

2.2. Linear filters on graphs
A linear operator on graph is represented by a matrix H P CNˆN that acts on a graph

signal input s P CN and produces a graph signal output s̃ P CN according to the matrix
vector product

s̃ “ Hs.

Within the framework of graph signal processing and inspired by conventional signal
processing, we are mainly interested in graph filters. As in [55], a graph filter is supposed
linear and “shift-invariant” (i.e., LSI) in the sense that it commutes with a chosen reference
operator R. In [55], the adjacency matrix is chosen as reference operator, and it has been
discussed since (e.g. [14, 74]) that other choices are possible. Hence, we consider any
reference operator R on the graph.

Definition 2.1 ([55, 74]). A graph filter is a linear shift-invariant (LSI) operator with
matrix representation H so that it commutes with the chosen reference operator R, i.e.

HR “ RH. (2)

Specifically, we can characterize graph filters as being expressed as a polynomial of
the reference operator R, thanks to the following Theorem 1 from [55]. Note that there
are some specific exceptions (when the characteristic and minimum polynomials of R are
not equal).

Theorem 2.1. [55] Let R be a reference operator on a digraph G. Let us assume that
the characteristic and minimum polynomials of R are equal, i.e. pRpxq “ mRpxq. Then
a graph filter H is linear and shift-invariant if and only if it is expressed as a polynomial
of R

H “

T
ÿ

t“0

htR
t, ht P C, @t “ 0, . . . , T. (3)
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As an example, considering a diagonalizable R whose eigenspaces are of dimension
1, then any graph filter H (linear and commuting with R) has an expression as a finite
polynomial of R (as there is only N degrees of freedom to define its effect in the eigenspaces
of R). Now, it is often useful to consider graph filters without reducing them to their
polynomial form, and a filter can be also seen as any function applied in the eigenspace of
R to the eigenvalues of R, see [14]. More general situations (with R non diagonalizable)
are discussed in the Section 2 of [74].

Remark 2.1. This notion of invariance with respect to a reference operator on graphs may
seem rather restrictive insofar as many diagonalizable reference operators on graphs may
have eigenspaces of dimension larger than 1. However, it could also be argued that the set
of all commutating filters may include unexpected elements and that the set of polynomial
filters may be a more relevant generalization of the LSI filters in classical signal processing.
As an example, let us consider the undirected cycle graph. Its (combinatorial) Laplacian
is the circulant matrix with three main diagonals

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

2 ´1 0 ¨ ¨ ¨ 0 ´1

´1
. . . . . . . . . . . . 0

0
. . . . . . . . . . . . ...

... . . . . . . . . . . . . 0

0
. . . . . . . . . . . . ´1

´1 0 ¨ ¨ ¨ 0 ´1 2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

for which the discrete Fourier basis is an eigenbasis. However, most eigenspaces of the
Laplacian matrix have dimension equal to 2 and are spanned by pairs of complex conju-
gate exponentials vjrks “ eikj{N and v´jrks “ e´ikj{N . The operator that turns a complex
exponential into its conjugate, swapping vj with v´j (i.e. swapping positive and negative
frequencies), is usually not considered a LSI filter in classical signal processing. It com-
mutes with the Laplacian but cannot be expressed as a polynomial of the Laplacian. In
contrast, filters defined as polynomials of the Laplacian correspond to symmetric filters in
classical signal processing, which seems more appropriate as a generic filter class on the
undirected cycle graph.

A graph filter can also be characterized by its eigenvalues on each eigenspace of R. Let
tEju

m
j“1 denote the eigenspaces of R and tEju

m
j“1 the corresponding spectral projectors,

characterized by E2
i “ Ei and EiEj “ δijEj. A graph filter with respect to a diagonalizable

operator R is a linear combination of the spectral projectors

H “

m
ÿ

j“1

γjEj, γj P C, Ej P CNˆN , @j “ 1, . . . ,m, (4)

where γj is the eigenvalue of H associated to the eigenspace Ej.

3. Canonical operators on digraphs

In this section, we introduce the fundamental linear operators and their properties in
order to develop a harmonic analysis on digraphs.
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3.1. Random walk operators on graphs
We define a random walk on a directed graph as follows.

Definition 3.1 ([19, 21]). A random walk on a strongly connected digraph G “ pV , E , wq is
a homogeneous Markov chain X “ pXnqně0 with a finite state space V and whose transition
probabilities are proportional to the edges’ weights. The entries of the transition matrix
P, written as ppx, yq, @x, y P V are defined as

ppx, yq “ PpXn`1 “ y|Xn “ xq “
wpx, yq

ř

y wpx, yq
.

A transition matrix must have non-negative entries and rows that sum up to one. This
is guaranteed by the fact that the wpx, yq are non-negative and that the denominators
are always non-zero thanks to the graph being strongly connected. From a graph theory
perspective, the transition matrix P P RNˆN is equal to

P “ D´1W,

where D “ diagtd1, . . . , dnu is the diagonal matrix of the out-degrees of the vertices and
W is the weighted adjacency matrix. We call Pn, the n-step transition matrix whose
entries written as pnpx, yq, @x, y P V are defined as

pnpx, yq “ PpXn “ y|X0 “ xq.

For any graph signal f , measure µ : V ÞÑ R` and states x, y P V , we adopt the
following conventions [75]:

Pfpxq “
ÿ

yPV
ppx, yqfpyq, (5)

µPpyq “
ÿ

xPV
µpxqppx, yq. (6)

where f and µ are respectively the column and row vector representations of f and µ.
Let us consider the transition matrix P P RNˆN and a Kronecker delta function δk at
vertex k P V , as a graph signal. If P acts on δk, i.e. Pδk, the mass at vertex vk in δk
propagates towards vertices where ppvi, vkq ‰ 0, that is vertices with edges pointing to
vk. In other words, the mass propagates towards parent vertices and not children, which
may seem counter-intuitive. Moreover, when δk is applied to the left of P, i.e. δkP, the
mass at vertex vk in δk propagates from the vertex vk towards vertices where ppvk, viq ‰ 0,
that is edges edges coming from vk. In other words, the mass propagates from the parent
vertex towards the children’s vertices. When applied to an arbitrary signal x, the random
walk operator P thus behaves as a local averaging of the children’s vertices. Given the
importance of local averaging in signal processing, this suggests that the random walk
operator P may be natural as a core element of graph signal processing. We define the
irreducibility of a random walk on a graph as follows.

Definition 3.2. A random walk X is said to be irreducible if for any x, y P V, the
probability from x to reach y is strictly positive, in other words:

@x, y P V , Dm ă 8 : PpXn`m “ y|Xn “ xq ą 0.

8



Irreducibility is equivalent to the strong connectivity of G, that is there is a (directed)
path from any vertex vi P V to any vertex vj P V .

Remark 3.1. In the case of connected undirected graphs, the graph is always strongly
connected and the associated random walk is always irreducible.

We now recall the notions of recurrent and transient state.

Definition 3.3 ([75]). Let X “ pXnqně0 be a random walk on G. We define the return
time to state x P V as

Ti “ inftn ě 1, Xn “ iu.

A vertex x P V is called recurrent if PpTi|X0 “ iq “ 1, and otherwise is called transient.

Proposition 3.1 ([75]). An irreducible random walk X with a finite state space is always
recurrent: all states are recurrent.

Remark 3.2. An irreducible random walk X with finite state space is positive recurrent.
Consequently, the random walk X admits a unique stationary distribution [75].

We define the periodicity of a random walk on a graph as follows.

Definition 3.4. Let X be a random walk on G. The period of a vertex x P V is:

ϱpxq “ gcdtn P N` : ppnq
px, xq ą 0u.

Thus starting in x, the Markov chain can return to x only at multiples of the period ϱ.
The state x is aperiodic if ϱpxq “ 1 and periodic is ϱpxq ą 1. Having defined the notions
of irreducibility and periodicity, we are able to define the notion of ergodicity of a random
walk.

Definition 3.5. Let X be a random walk on G. The random walk X is ergodic if it is
irreducible and aperiodic.

We set out the proposition for the stationary distribution of an ergodic random walk
on G.

Proposition 3.2 ([76]). Let G be a digraph with finite state space V. If a random walk
X with its transition matrix P is ergodic, i.e. irreducible and aperiodic, the measures
Pnpx, .q converge towards the row vector π “ rπpv1q, ¨ ¨ ¨ , πpvNqs P RN

` as n Ñ 8, i.e. the
unique stationary distribution. In particular, πP “ π, with :

N
ÿ

i“1

πpviq “ 1, πpviq ě 0.

3.1.1. Reversibility
Given the discrete-time Markov chain X “ pXnqně0 and M ą 0 a finite time horizon,

we define the time reversed Markov chain as X ˚ “ pX˚
nq “ pXM´nq for n “ 0, ¨ ¨ ¨ ,M . We

denote by P˚ “ tp˚px, yqux,yPV the transition matrix associated with the Markov chain
X ˚. It verifies

p˚
px, yq “ PpX˚

n`1 “ y|X˚
n “ xq “

PpXM´n´1 “ yq

PpXM´n “ xq
ppy, xq, @x, y P V .
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If we assume that X is ergodic with stationary distribution π, the time reversed Markov
chain X ˚ is also ergodic with stationary distribution π and the entries p˚px, yq P P˚ are

p˚
px, yq “

πpyq

πpxq
ppy, xq, @x, y P V

or in its transition matrix version

P˚
“ Π´1PJΠ,

where Π “ diagtπpv1q, ¨ ¨ ¨ , πpvNqu is the diagonal matrix of the stationary distribution.
A random walk X with stationary distribution π and transition matrix P is called

reversible if
πpxqppx, yq “ πpyqppy, xq, @x, y P V .

Let us use the function space ℓ2pV , πq (endowed with its inner product as in Eq. (1))
for the stationary distribution π.

In this space, P˚ is the adjoint of P, that is xf ,Pgyπ “ xP˚f , gyπ, for all f , g. The
ergodic random walk X with its transition matrix P is reversible if and only if we have
the following relation

P “ P˚.

Remark 3.3. Ergodic random walks on finite undirected graphs are reversible. That
means that the transition matrix associated to the time reversed random walk X ˚, P˚ is
equal to the transition matrix P associated to the original ergodic random walk X namely
P˚ “ P.

Remark 3.4. In the undirected setting, the stationary distribution π admits a closed
form expression. Indeed, on a given weighted undirected graph G “ pV , E , wq represented
by its symmetric adjacency matrix W “ twxyux,yPV P RNˆN

` and the degree of a vertex
x P V is cpxq “

ř

yPV wxy. As a result, the associated random walk is reversible with
stationary distribution π defined by πpxq “ cpxq{cG where cG “

ř

xPV cpxq. However, in
the directed setting, the stationary distribution π does not admit an analytical form. In
order to calculate it, we use iterative methods such as the power iteration method [77] or
Markov Chain Monte Carlo(MCMC) methods [78].

Remark 3.5. Ergodic random walks defined on digraphs are typically non-reversible. Nev-
ertheless, reversible ergodic random walks may be constructed on digraphs by modifying
the original non-reversible ergodic random walk. Such a modification is discussed in Sec-
tion 3.2.2.

3.1.2. Eigenvalue distribution
By the Perron-Frobenius theorem [75], if the random walk X is ergodic with a di-

agonalizable transition matrix P, the diagonalization of P admits a simple dominant
eigenvalue λmax “ 1. The other eigenvalues tλ ‰ 1u satisfy |λ| ă 1, which means that all
eigenvalues different of λmax lie within the unit circle.

3.2. Random walk generalizations
Given a random walk X on a digraph G with transition matrix P, we are able to build

new types of random walks based on P with various purposes.
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3.2.1. Lazy random walks
The periodicity of a random walk X can be overcome by considering the lazy random

walk version of X . The transition matrix P̃ associated to the lazy random walk X̃ , based
upon P is expressed as

P̃ “
I ` P

2
.

The lazy random walk can be seen as the random walk on a modified graph G̃ where an
edge from each vertex of G to itself is added with a weight equal to the vertex’s degree in
G. The lazy random walk X̃ is always aperiodic, hence when G is strongly connected, X̃
is also ergodic with a stationary measure π verifying π “ πP̃ “ πP.

More generally, let us define P̃ , the class of transition matrices associated with gener-
alized lazy random walks by

P̃ “

"

P̃γ : P̃γ “ p1 ´ γqP ` γI

ˇ

ˇ

ˇ

ˇ

γ P r0, 1q

*

.

We note that the elements P̃γ P P̃ share the same eigenspaces as P, hence the graph
filters with respect to P̃ are also graph filters with respect to P.

3.2.2. Additive reversibilization
From a non-reversible ergodic random walk X with transition matrix P and unique

stationary measure π, an additive reversibilization of X can be constructed [79], denoted
by X̄ , whose transition matrix is the average between P and its time reversed P˚:

P̄ “
P ` P˚

2
. (7)

X̄ is a reversible random walk with the same unique stationary distribution π.
More generally, let us define P̄ the class of convex combinations between the random

walk matrix P and its time reversed version P˚ as

P̄ “

"

P̄α : P̄α “ p1 ´ αqP ` αP˚

ˇ

ˇ

ˇ

ˇ

α P r0, 1s

*

. (8)

We note that the elements P̄α P P share the same stationary distribution π but do not
have the same eigenspaces. We also note that all the random walks associated to transition
matrices P̄α P P̄ are non-reversible except for α “ 1{2, namely P̄1{2 “ P̄.

Remark 3.6. Given an ergodic random walk pX ,P, πq, we note that all lazy and re-
versibilized versions, respectively P̃γ P P̃ and P̄α P P̄ share the same unique stationary
distribution π.

Remark 3.7. As a generalization of random walks, we may also consider the multiplica-
tive reversibilization of the ergodic non-reversible random walk P, that is PP˚ which is
also a reversible Markov chain with stationary distribution π. It is useful e.g. for defining
the convergence bounds of non-reversible Markov chains [79].

3.3. Laplacians on digraphs
In this section, we introduce several definitions of Laplacians on digraphs, which are

extended from the undirected case [60, 80, 81].
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3.3.1. Normalized directed graph Laplacian
The normalized Laplacian on a digraph G is expressed in terms of the transition matrix

P of an ergodic random walk X on G and is defined as follows.

Definition 3.6 ([82, 83]). Let G “ pV , Eq be a digraph with |V | “ N . Let X be an ergodic
random walk on G with transition matrix P and unique stationary distribution π. The
normalized Laplacian on G is defined by

L “ I ´
Π1{2PΠ´1{2

` Π´1{2PJΠ1{2

2
, (9)

where I is the identity matrix and Π “ diagtπpv1q, . . . , πpvNqu is the diagonal matrix of
the stationary distribution.

3.3.2. Random walk Laplacian
Another definition is the random walk Laplacian LRW, defined as

LRW “ I ´ P̄. (10)

The normalized Laplacian on digraphs L is connected to the random walk Laplacian
through the following relation

L “ Π1{2LRWΠ´1{2.

More generally, we define the random walk Laplacian on digraphs associated to a transition
matrix P̄α P P̄ by

LRW,α “ I ´
P̄α ` P̄˚

α

2
.

In the following proposition, we show that the random walk Laplacian LRW,α is equal to
LRW.

Proposition 3.3. For any P̄α P P̄, we have

LRW,α “ LRW, @α P r0, 1s. (11)

Proof.

LRW,α “ I ´
P̄α ` P̄˚

α

2

“ I ´
αP ` p1 ´ αqP˚ ` αP˚ ` p1 ´ αqP

2

“ I ´
αpP ` P˚q ` p1 ´ αqpP ` P˚q

2

“ I ´
P ` P˚

2
“ LRW.

3.3.3. Combinatorial Laplacian
Finally, we also introduce the combinatorial Laplacian L, defined as

L “ Π ´
ΠP ` PJΠ

2
. (12)

The latter is related to the random walk Laplacian through

L “ ΠLRW.
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Remark 3.8. As mentioned in remark 3.3, the transition matrix of a random walk on
an undirected graph is equal to the transition matrix of its time reversed Markov chain.
Furthermore, the stationary distribution π admits a closed form as we mention in re-
mark 3.4. As a result, the definitions eqs. (9) and (10), generalize the usual definitions
for undirected graphs [11]. The combinatorial Laplacian on digraphs (12) (thereafter de-
noted Ldirected) generalizes the one on undirected graphs up to a multiplicative factor:
Lundirected “ D ´ W “ p

ř

i diqLdirected.

3.4. Canonical operators on digraphs and Hilbert spaces
Let G “ pV , Eq be a directed graph, ℓ2pVq and ℓ2pV , πq be the Hilbert spaces associated

respectively with the counting measure and with the stationary measure π of the ergodic
random walk X on G. Let φ : ℓ2pVq Ñ ℓ2pV , πq be the linear mapping defined as follows

φ : f ÞÑ Π´1{2f , @f P ℓ2pVq. (13)

Definition 3.7 ([84]). Let H,K be two Hilbert spaces. A linear transformation V : H ÞÑ K
is an isometry if and only if

}Vpx´ yq}K “ }x´ y}H, @x,y P H.

Proposition 3.4. The linear transformation φ : ℓ2pVq ÞÑ ℓ2pV , πq is an isometry.

Proof. Given g,h P ℓ2pVq, and the linear transformation φ, we have

xφpgq, φphqyπ “ xΠ´1{2g,Π´1{2hyπ “ xg,hy.

Let us introduce the operator T P ℓ2pVq defined as

T “ Π1{2PΠ´1{2. (14)

Definition 3.8 ([84]). Let H,K bet two Hilbert spaces. An invertible bounded linear
transformation V : H ÞÑ K intertwines an operator M : H ÞÑ H to an operator S : K ÞÑ K
if

VM “ SV.

The operators M and S are called similar.

Proposition 3.5. The linear operator φ intertwines the operator T on ℓ2pVq to the op-
erator P on ℓ2pV , πq.

Proof.
φpTq “ Π´1{2T “ Π´1{2Π1{2PΠ´1{2

“ PΠ´1{2.

Hence the operators T and P are similar with respect to φ. Identically, the random
walk Laplacian LRW and the normalized Laplacian L are also similar with respect to φ.
This suggests that P and LRW are best viewed as operators on ℓ2pV , πq while T and L
are essentially the same operators on ℓ2pVq.

4. Fourier analysis on digraphs

In this section, we propose a new analysis on digraphs that is different from the
existing approaches on digraphs [56, 58, 59, 61]. It is based on the study of variations in
the eigenvectors of the random walk operator. Before discussing it in greater detail, we
introduce the elements that allow us to study the variation of signals on digraphs.
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4.1. Digraph Fourier transform
Let P be the transition matrix of the ergodic random walk X . We assume P is

diagonalizable, that is P admits an eigenvalue decomposition

P “ ΞΘΞ´1,

where Ξ “ rξ1, ¨ ¨ ¨ , ξN s is an eigenbasis with elements ξj, j “ 1, . . . , N and Θ “

diagtϑ1, ¨ ¨ ¨ , ϑNu is the corresponding diagonal eigenvalue matrix, not necessarily dis-
tinct. Given a graph signal s, its digraph Fourier transform denoted by ŝ “ rŝ1, . . . , ŝN s

is
ŝ “ Ξ´1s.

The values tŝju
N
j“1 characterize the content of the graph signal s in the graph Fourier

domain.
The graph Fourier transform is not uniquely defined as it depends on the choice of

eigenbasis Ξ. First all eigenvectors ξj are defined up to a multiplicative scalar. This
can be easily resolved by normalizing the vectors and e.g. making the first non-zero
coefficient of each eigenvector real and positive. Second, whenever there are eigenspaces
with dimension greater than 1, there are infinite choices for the orientations of the basis
vectors within such eigenspaces. There is generally no solution to this second issue. This
implies that the values of individual Fourier coefficients ŝj within such eigenspaces are
rather meaningless. However, it only impacts cases with eigenspaces of dimension greater
than 1, which are not that common in applications.

The inverse digraph Fourier transform corresponding to an eigenbasis Ξ is given by

s “ Ξŝ.

It reconstructs the original signal from its frequency contents by forming a linear combi-
nation of eigenvectors weighted by the Fourier coefficients. More generally, any P̄α P P̄
admits an eigenvalue decomposition

P̄α “ ΞαΘαΞ
´1
α .

Consequently, one can build an infinity of Fourier-type bases tΞαuαPr0,1s for functions
defined on digraphs. Among these, the case α “ 1{2 is particularly interesting insofar as
P̄1{2 “ P̄ is self-adjoint in ℓ2pV , πq. This implies that there is an orthonormal eigenbasis
Ξ1{2 of ℓ2pV , πq which yields the following theorem.

Theorem 4.1 (Generalized Parseval’s Theorem). Given an eigenbasis Ξ1{2 of P̄ that is
orthonormal in ℓ2pV , πq, the corresponding Fourier transform is an isometric operator
from ℓ2pV , πq to ℓ2pt1, . . . , Nuq

xΞ´1
1{2x,Ξ

´1
1{2yy “ xx,yyπ, @x,y P ℓ2pV , πq. (15)

Proof. ΞJ
1{2ΠΞ1{2 “ I ùñ xΞ´1

1{2x,Ξ
´1
1{2yy “ xJΞ´J

1{2Ξ
´1
1{2y “ xJΠy “ xx,yyπ

Another interesting property of P̄ is that its eigenspaces are the same as those of the
random walk Laplacian LRW (10).
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Remark 4.1. In the undirected setting, a suitable Fourier-type basis is usually defined as
an orthonormal eigenbasis of the combinatorial Laplacian L or its normalized counterpart
L [11]. These Fourier-type bases are both orthonormal for ℓ2pVq. Another less common
choice is a Fourier-type basis based upon the random walk Laplacian LRW “ I´P. As in
the directed case with P̄, it leads to a Fourier basis that is orthonormal in ℓ2pV , πq, where
π is proportional to the degrees of the vertices (see remark 3.4). Some properties of the
different definitions are investigated in [81].

.

4.2. Regularity of signals on graphs
The behavior of a graph signal over a graph can be analyzed by measuring the variation

or regularity. We first define the length of the graph gradient at a given vertex as follows.

Definition 4.1 ([20]). Let G “ pV , Eq be a digraph and q : E Ñ R` be a positive measure
defined on the edge set E. The length of the graph gradient of a graph signal f at vertex
x P V on an arbitrary graph G under the measure ν is

|∇fpxq| “

ˆ

1

2

ÿ

yPV,px,yqPE

|fpxq ´ fpyq|
2qpx, yq

˙1{2

.

Intuitively, the length of the graph gradient measures the variation of a graph signal
around a given vertex. We now introduce the Dirichlet energy as a measure of the variation
of a signal over a strongly connected graph.

Definition 4.2 ([76]). The Dirichlet energy of a graph signal f associated to the ergodic
random walk X with transition matrix P and stationary distribution π on a strongly
connected graph G is

D2
π,Ppfq “

1

2

ÿ

px,yqPE

πpxqppx, yq|fpxq ´ fpyq|
2, (16)

“ xf ,LRWfyπ.

For all P̄α P P̄ , the associated Dirichlet energy is the same:

D2
π,P̄α

pfq “ D2
π,Ppfq “ xf ,LRWfyπ.

We also introduce the Rayleigh quotient of a graph signal f associated to the Dirichlet
energy D2

π,Ppfq as

Rπ,Ppfq “
D2

π,Ppfq

}f}2π
.

For any P̄α P P̄ , we have
Rπ,Ppfq “ Rπ,P̄α

pfq.
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4.3. Frequency analysis on digraphs
The following proposition settles a key connection between the regularity of the eigen-

vectors of the transition matrix P of the ergodic random walk X and their associated
eigenvalues.

Proposition 4.1. Let ξ P CN be an eigenvector of a transition matrix P of an ergodic
random walk X , with stationary distribution π, associated to the eigenvalue ϑ P C. The
Rayleigh quotient of ξ is given by

Rπ,Ppξq “ 1 ´ Repϑq,

where Repϑq denotes the real part of ϑ P C.

Proof.

Rπ,Ppξq “
1

}ξ}2π

ˆ

xξ, ξyπ ´
1

2
xξ,Pξyπ ´

1

2
xξ,P˚ξyπ

˙

“
1

}ξ}2π

ˆ

}ξ}
2
π ´

ϑ ` ϑ̄

2
}ξ}

2
π

˙

Rπ,Ppξq “
“

1 ´ Repϑq
‰

.

The latter proposition thus indicates that the variation of any eigenvector ξ of P, as
described by its Rayleigh quotient, is associated to the real part of its respective eigenvalue
ϑ. More generally, the variation of any eigenvector ξα of P̄α P P̄ is characterized exactly
in the same manner as in Proposition 4.1, i.e.

Rπ,Ppξαq “ 1 ´ Repϑαq.

Therefore, we are now able to associate to each eigenvector ξ of P and generally to
each eigenvector ξα of a given P̄α P P̄ , a value ω characterizing its variation that we call
frequency expressed intuitively as

ω “ 1 ´ Repϑq, ω P r0, 2s. (17)

Remark 4.2. In the undirected setting, the random walk is reversible such that the Dirich-
let energy associated to the random walk operator P is

Dπ,Ppfq “ xf ,LRWfyπ,

where LRW “ I ´ P. The random walk operator P is self-adjoint in ℓ2pV , πq. As a result,
given an eigenvector ξ of P associated to an eigenvalue ϑ, the associated Rayleigh quotient
is

Rπ,Ppξq “ 1 ´ ϑ.

Therefore, the variation of the eigenvectors of P is directly related to their respective
eigenvalues. A similar result holds when the Fourier basis is based on the combinatorial
Laplacian L “ D ´ W thanks to the following identity

Dπ,Ppfq “ xf ,LRWfyπ “ xf ,Lfy.

As L is a symmetric semi-definite operator, its eigenvalues are non-negative and real.
Hence the Rayleigh quotient of an eigenvector ϕ of L associated to an eigenvalue λ is
Rπ,Ppϕq “ λ, which is the definition of frequency considered in [14].
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4.3.1. On the content of subspaces associated to the random walk
The eigenvalues of an ergodic transition matrix P associated to a random walk on a

strongly connected digraph G are either real or come as complex-conjugate pairs pϑ, ϑ̄q P

C2, ϑ “ α ` iβ. In the following, we examine how these individual eigenspaces can be
understood with respect to each other.

Let us first consider pairs of eigenspaces related to complex-conjugate eigenvalues
α ˘ iβ. Assuming that the eigenspaces have dimension equal to 1, the eigenvectors can
be chosen as complex-conjugate ξ, ξ̄ P CN . These eigenvectors share the same frequency
1 ´ α and can be seen as a generalization of the Fourier modes at frequencies ω and
´ω in one-dimensional classical Fourier analysis. One can also define the corresponding
real-valued Fourier modes

ξcos “
ξ ` ξ̄

2
, ξsin “

ξ ´ ξ̄

2i
,

which generalize the cosine and sine functions to graph signals. As with the discrete
Fourier transform, there are also frequencies for which the ω and ´ω frequency subspaces
are the same (the zero frequency and possibly the 1{2 frequency in discrete signal process-
ing). The case of real eigenvalues in graph signal processing can be seen as a generalization
of these.

When the eigenspaces have dimension greater than 1, the situation is similar to the
multidimensional classical Fourier analysis setting where the classical frequency is a vec-
tor ω “ rω1, . . . , ωnsJ. In graph signal processing, the ω frequency would then be a
generalization of the norm of the classical frequency vector }ω}.

Continuing the analogy with classical Fourier analysis, in more than one dimensions
Fourier modes with a given frequency ω are all oscillations at the same frequency but
with different orientations. We argue that the case in graph signal processing of eigen-
values with the same real part but different non-conjugate imaginary parts may be a
generalization of different orientations. This is illustrated in Section 4.5.2 on the directed
toroidal graph. For arbitrary graphs, low frequency Fourier modes are typically oscilla-
tory but some higher frequency modes may be highly localized which does not fit the
common interpretation of an oscillation [85, 86]. The interpretation that the imaginary
parts are related to different orientations mostly holds for oscillatory modes. On digraphs,
we can expect the same non trivial localization properties as in [85, 86] to hold, hence the
interpretation for orientations for localized modes should be considered differently.

4.4. Random walk graph filters
Having now tools for the Fourier analysis of digraphs, we define, thanks to that,

random walk graph filter as being a LSI filter with respect to the reference operator P:

H “

T
ÿ

t“0

htP
t.

Assuming that P is diagonalizable, we can represent a graph filter H as a linear combi-
nation of the spectral projectors tEϑk

umk“1 associated with P, as defined in (4):

H “

m
ÿ

k“1

γkEϑk
, γk P C, k “ 1, . . . ,m. (18)

The filter is characterized in the Fourier domain by its spectral response coefficients,
or Fourier coefficients, γk, k “ 1, . . . ,m. As in classical signal processing, the application
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of a filter to a signal in the Fourier domain is obtained by multiplying the filter’s Fourier
coefficients with the signal’s corresponding Fourier coefficients. A particularity here is that
a filter may only have one Fourier coefficient for a Fourier subspace of dimension larger
than 1 while the signal is generally described by as many coefficients as the dimension of
the subspace.

From a filter design point of view, we may also be interested in filters defined by a
frequency response. This is a special case of (18) where the spectral coefficients only
depend on the frequency: γk “ hpωkq “ hp1´Repϑkqq, where h : R` ÞÑ C is the frequency
response of the filter.

Let us define the projector associated with the frequency ω as

Sω “
ÿ

ϑ:1´Repϑq“ω

Eϑ. (19)

It is a projector that projects on the sum of the eigenspaces corresponding to the frequency
ω. We call Sω the mono-frequency projector associated with the frequency ω. A filter
based on a frequency response h can be expressed as

Hω “
ÿ

ωPω

hpωqSω, ω P r0, 2s. (20)

A major advantage of such a formulation is that it allows one to shift, contract or
dilate a filter along the frequency axis by simply applying these operations to its frequency
response. Unfortunately, this is not possible for all graph filters because a filter may have
different Fourier coefficients γk for different eigenspaces even when they share the same
frequency ω.

4.5. Fourier analysis on finite groups: a graph signal perspective
In order to show the consistency of our Fourier analysis with respect to traditional

signal processing, we depict the directed counterparts of two well-known objects: the cycle
graph associated with the cyclic group pZ{nZq and the toroidal graph that is the direct
product of cyclic groups, i.e. T “ pZ{n1Zq ‘ ¨ ¨ ¨ ‘ pZ{nrZq [87].

4.5.1. Fourier analysis on the directed cycle graph
A directed cycle graph CN is a graph with N vertices containing a single cycle through

all the vertices and were all the edges are directed in the same direction. The directed
cycle graph CN is represented by its adjacency matrix CN which is circulant

CN “

»

—

—

—

—

—

–

0 0 . . . 0 1
1 0 . . . 0 0

0
. . . . . . ...

...
... . . . . . . 0 0
0 . . . 0 1 0

fi

ffi

ffi

ffi

ffi

ffi

fl

As the out-degree matrix of CN is D “ IN , the transition matrix for the random
walk random walk X on CN is P “ CN . P is diagonalizable, i.e. P “ ΞΘΞ´1 with
Θ “ diagtϑ1, ¨ ¨ ¨ , ϑNu P CNˆN the eigenvalue matrix where

ϑk “ e2πipk´1q{N , k “ 1, . . . , N.
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and Ξ “ rξ1, ¨ ¨ ¨ , ξN s P CNˆN is the discrete Fourier basis where

ξk “
1

?
N

r1, ϑ1
k, . . . , ϑ

N´1
k s

J k “ 1, ¨ ¨ ¨ , N.

The random walk X is irreducible and periodic. As our frequency analysis only deals
with ergodic random walks, we need X to be aperiodic. In order to overcome the peri-
odicity issue, we consider a γ-lazy random walk X̃ characterized by its transition matrix
P̃γ P P̃ defined at Section 3.2.1. For such a lazy random walk, the stationary distribution
π exists and is constant. As a consequence, the Rayleigh quotient associated with a given
eigenvector ξk is given by

Rpγq

π,Ppξkq “ p1 ´ γq

„

1 ´ cos

ˆ

2πpk ´ 1q

N

˙ȷ

“ ω̃
pγq

k , k “ 1, ¨ ¨ ¨ , N.

Since the γ-lazy random walks X̃ have the same eigenspaces as the non-lazy random
walk, taking the limit γ Ñ 0 of these Rayleigh quotients allows us to define a frequency
for the eigenspaces of the non-lazy random walk too.

ωk “

„

1 ´ cos

ˆ

2πpk ´ 1q

N

˙ȷ

, k “ 1, ¨ ¨ ¨ , N.

Thus, the ordering of the frequencies tωkuNk“1 associated with the eigenvectors tξkuNk“1

by the Rayleigh quotient coincides exactly with the classical signal processing approach.
However, the actual values of the frequencies are warped by the function x ÞÑ 1 ´ cospxq

compared to their classical counterparts. As the warping could in theory be reversed by
modifying our definition of frequency, the notion of frequency that we propose is consistent
with the classical notion of frequency.

Finally, the trick we used here with taking the limit γ Ñ 0 of γ-lazy random walks
could be used for any graph where the random walk is irreducible but periodic. This
effectively allows us to define a meaningful notion of frequency for any graph that is
strongly connected.

4.5.2. Fourier analysis on the directed toroidal graph
A directed toroidal graph Tm,n is the Cartesian product of the directed cycle graphs Cm

and Cn, namely Tm,n “ Cm ˝ Cn. We introduce necessary definitions for the understanding
of the section.

Definition 4.3 ([88]). Let G “ pU , Eq and H “ pV ,Fq be two graphs with respective
vertex sets U “ pu1, . . . , unq and V “ pv1, . . . , vmq. The Cartesian product of G and H is
the graph G ˝ H with vertex set U ˆ V in which two vertices x “ pui, vjq and y “ pup, vqq
are adjacent if and only if either ui “ up and pvj, vqq P F or vj “ vq and pui, upq P E.

Definition 4.4 ([88]). Let G “ pU , Eq and H “ pV ,Fq be two graphs. The adjacency
matrix of the Cartesian product G ˝ H, denoted AG˝H is

AG˝H “ AG b I|V| ` I|U | b AH.

where b is the Kronecker product symbol.

Lemma 4.1. Suppose λ1, ¨ ¨ ¨ , λn are eigenvalues of AG and µ1, ¨ ¨ ¨ , µm are eigenvalues of
AH. Then the eigenvalues of AG˝H are all λi`µj for 1 ď i ď n and 1 ď j ď m. Moreover,
if u and v are eigenvectors for AG and AH with eigenvalues λ and µ respectively, then
the vector w “ u b v is an eigenvector of AG˝H with eigenvalue λ ` µ.
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Directed toroidal graph
Let Tm,n “ Cm˝Cn be the directed toroidal graph characterized by its adjacency matrix

ATm,n “ Cm b In ` Im b Cn. The eigenvalues of Cm are λk “ e2iπpk´1q{m for k P v1,mw

and the eigenvectors are denoted by rϕ1, . . . ,ϕms. Identically, the eigenvalues of Cn are
µℓ “ e2iπpℓ´1q{n for ℓ P v1, nw and the eigenvectors are denoted by rψ1, . . . ,ψns. The
directed toroidal graph Tm,n is a directed 2-regular graph. Consequently, the out-degree
matrix of Tm,n is DTm,n “ 2Imˆn. We thus define a random walk X on Tm,n with a
diagonalizable transition matrix P “ D´1

Tm,n
ATm,n . We specify its spectral properties in

the following lemma.

Lemma 4.2. Let Tm,n be a directed toroidal graph and X be a random walk associated
with the diagonalizable transition matrix P. The directed toroidal graph Tm,n is a directed
2-regular graph. Consequently, the spectrum of P is

σpPq “

"

ζi,j “
λi ` µj

2
, i P v1,mw, j P v1, nw

*

,

with associated eigenvectors
"

ϕi bψj, i P v1,mw, j P v1, nw

*

.

For the cycle graph, we observed that our notion of frequency was consistent with the
classical notion of frequency used in signal processing up to some monotonous transform.
This is only approximately true for the toroidal graph. Indeed, it is usually possible
to find pairs of eigenvectors of the toroidal graph for which the frequency order differs
compared to the classical case, although it does not seem to occur when the frequency
difference is large enough. An example where classical frequencies and graph frequencies
behave slightly differently is presented below.

As in Section 4.5.1, the associated random walk X is irreducible and periodic. In order
to overcome this periodicity issue, we consider a γ-lazy random walk X̃ with transition
matrix P̃γ P P̃ .

Figure 1 illustrates the eigenvalue distribution of the transition matrix of a directed
toroidal graph. As we can appreciate, the distribution of eigenvalues is remarkable. We
denote by Λg, the set of eigenvalues located on the green dotted line and Λo the set of
eigenvalues located on the orange dotted line. Sets Λg, and Λo, include respectively eigen-
values having the same real part and different imaginary parts i.e. RepΛgq “ ´0.25 and
RepΛoq “ 0.25. In order to illustrate the insights discussed in Section 4.3.1, we exhibit in
figure 2 the two-dimensional representation of some eigenvectors from the transition ma-
trix of a directed toroidal graph T36,60 corresponding to a graph frequency ω “ p7´

?
5q{8.

The eigenvalues associated with these eigenvectors have identical real parts but different
non-conjugate imaginary parts. Analytically, the Rayleigh quotients of the selected eigen-
vectors are equal, as explained in Section 4.3.1. As we can see in figure 2, the selected
eigenvectors are all (discretized) complex exponential waveforms with what look like iden-
tical or very similar frequencies. The main difference between them appears to be their
orientation, which seems related to the different imaginary parts of the eigenvalues. On a
side note, we also observe that the graph frequencies of these 4 eigenvectors are identical
but this is not exactly true for their classical frequencies, which are equal to 0.260, 0.269,
0.260 and 0.269 from top to bottom respectively.
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Figure 1: Eigenvalue distribution of the random walk matrix of a directed toroidal graph T6,4. Eigenvalues
on the dotted green line: Repλgq “ ´0.25,@λg P Λg. Eigenvalues on the dotted orange line: Repλoq “

0.25,@λo P Λo.

5. Multiresolution analyses on digraphs

In the previous Sections, we proposed a Fourier-like basis on digraphs, as the set of
random walk eigenvectors and determined a frequency analysis by studying their variation.
This allows the definition of a low-pass or band-pass filter, hence we are now able to
construct multiresolution analyses of functions over digraphs. In the first instance, we
propose wavelet frames made of analysis and synthesis graph filter banks. This multi-scale
construction is closely related to the diffusion polynomial frames [24] and spectral graph
wavelets [25]. In a second instance, we propose a critically sampled wavelet construction
on digraphs generalizing the diffusion wavelets framework [23]. For the sake of simplicity,
we will present our theoretical constructions in the ℓ2pVq space. The linear transformation
φ defined in eq. (13) and its inverse may be used to express the constructed wavelets and
scaling functions in ℓ2pV , πq or to map measured signals from ℓ2pV , πq into ℓ2pVq.

5.1. Spectral wavelet transform on digraphs
In this Section, we propose a redundant wavelet transform on digraphs. We follow

the construction of spectral wavelets on undirected graphs [25] and polynomial diffusion
frames [24]. The novelty is the construction of filters designed in the frequency domain
via a frequency response function as a linear combination of mono-frequency projectors
defined in eq. (19). We introduce the necessary elements for the construction of redundant
wavelets on digraphs.

5.1.1. Theoretical framework
Let G “ pV , Eq be a strongly connected digraph with cardinality |V | “ N . G is

characterized by its adjacency matrix W P RNˆN
` . On G, we define a random walk X
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imaginary partreal part

Figure 2: Two-dimensional representation of the eigenvectors for the toroidal graph T36,60 with a graph
frequency equal to p7 ´

?
5q{8. Each row shows one eigenvector, with its real part on the left hand side

and its imaginary part on the right hand side. Among the 8 eigenvectors with this frequency, we only
show those corresponding to eigenvalues with a non-negative imaginary part (shown on the left hand
side).
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characterized by its transition matrix P “ D´1W P RNˆN
` . X is assumed ergodic with

stationary distribution π. Let T “ Π1{2PΠ´1{2
P ℓ2pVq be the operator similar to P

in ℓ2pVq. We assume T diagonalizable. In the graph signal processing framework, the
concept of low-pass, high-pass, and band-pass frequency response is intrinsically related
to the frequency interpretation of the eigenvectors (or equivalently the eigenspaces) of the
reference operator. In Section 4.3, we have determined a frequency interpretation of the
eigenvectors of the random walk operator on digraphs. Let ω1 ď ¨ ¨ ¨ ď ωN be the random
walk’s graph frequencies ordered from the lowest frequency ω1 to the highest frequency
ωN . Let Hω be the graph filter defined in (20). Let us define the cut-off random walk’s
graph frequency ωcut. The ideal low-pass and high-pass frequency responses, respectively
h and g are defined by

hpωmq “ 1 ´ gpωmq “

"

1 if ωm ď ωcut

0 if ωm ą ωcut.

In addition, given two random walk’s graph frequencies ωℓ and ωk, ωk ă ωℓ, an ideal
band-pass frequency response u is defined by

upωkq “

"

1 if ωm ď ωk ď ωℓ

0 if ωk ą ωℓ and ωk ă ωm.

Hence, an ideal low-pass (resp. high-pass) operator is associated with a low-pass (resp.
high-pass) frequency response. As a practical example, it is convenient to use low pass
and high pass filters having cut-off frequency ωcut equal to the median of the bandwidth
i.e. such that exactly half of the frequencies ωm are lower frequencies that ωcut.

More generally, the term low-pass and bass-pass filters can be assumed in a relaxed
way, using the same intuitive meaning as in classical signal processing. We call filters
low-pass if they do not significantly affect the frequency content of low-frequency signals
but attenuate, i.e., reduce, the magnitude of high-frequency signals. Analogously, high-
pass filters pass high-frequency signals while attenuating low-frequency ones, and band-
pass filters pass signals with frequency content within a specified frequency band while
attenuating all others.

Definition 5.1. A low pass operator at dilation t, Ht on a strongly connected digraph G
is defined by

Ht “

p
ÿ

ℓ“1

hptωℓqSℓ, t P N.

with h : R` Ñ R`, a function giving a low-pass frequency response and tSℓu
p
ℓ“1, the set

of projectors (19) associated to the frequencies ωℓ of the eigenvectors of T. The scaling
function at dilation t and translation y is denoted by

ht,y “ Htδy

where δy is the Kronecker delta function at vertex y P V.

Definition 5.2. A band pass operator at dilation t, Gt on a strongly connected digraph
G is defined as

Gt “

p
ÿ

ℓ“1

gptωℓqSℓ, t P N.
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with g : R` Ñ R`, a function giving a band-pass frequency response and tSℓu
p
ℓ“1, the set

of projectors (19) associated to the frequencies ωℓ of the eigenvectors of T. The wavelet
function at dilation t and translation y is denoted by

gt,y “ Gtδy,

where δy is the Kronecker delta function at vertex y P V.

Having low-pass and band-pass operators on digraphs, we are able to build analysis
and synthesis filter banks on digraphs.

Definition 5.3. We define a bank of synthesis filters K as a set comprising a low-pass
filter at dilation tJ , HtJ and a series of band-pass filters at increasing dilations ttju

J
j“1,

tGtju
J
j“1 :

K “ tHtJ ,Gt1 , . . . ,GtJ u.

Definition 5.4. We define a bank of analysis filters K̃ as a set comprising a filter at
dilation tJ , H̃G

tJ
and a series of filters at increasing dilations ttju

J
j“1, tG̃tju

J
j“1 :

K̃ “ tH̃tJ , G̃t1 , . . . , G̃tJ u,

where

H̃G
tJ

“

p
ÿ

ℓ“1

h̃ptωℓqSℓ P RNˆN ,

and

G̃tj “

p
ÿ

ℓ“1

g̃ptωℓqSℓ P RNˆN , @j “ 1, . . . , J.

We also define h̃t,k and g̃t,k as row vectors as follows:

h̃t,k “ δJ
k H̃t, g̃t,k “ δJ

k G̃t.

Proposition 5.1. Given a fixed set of increasing dilations ttju
J
j“1, the synthesis and

analysis filters sets respectively K and K̃, the perfect reconstruction condition

HtJH̃tJ `

J
ÿ

j“1

GtjG̃tj “ I (21)

is guaranteed if and only if

hptJωℓqh̃ptJωℓq `

J
ÿ

j“1

gptjωℓqg̃ptjωℓq “ 1, @ℓ “ 1, . . . , p.

Proof.

HtJH̃tJ `

J
ÿ

j“1

GtjG̃tj “

p
ÿ

ℓ,ℓ1“1

hptJωℓqh̃ptJωℓ1qSℓSℓ1 `

J
ÿ

j“1

p
ÿ

ℓ,ℓ1“1

gptjωℓqg̃ptjωℓ1qSℓSℓ1

“

p
ÿ

ℓ“1

hptJωℓqh̃ptJωℓqSℓ `

J
ÿ

j“1

p
ÿ

ℓ“1

gptjωℓqg̃ptjωℓqSℓ

“

p
ÿ

ℓ“1

“

hptJωℓqh̃ptJωℓq `

J
ÿ

j“1

gptjωℓqg̃ptjωℓq
‰

Sℓ
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Consequently, (21) is guaranteed if and only if

hptJωℓqh̃ptJωℓq `

J
ÿ

j“1

gptjωℓqg̃ptjωℓq “ 1, @ℓ “ 1, . . . , p.

We now define a frame as follows.

Definition 5.5. Let G “ pV , Eq be a digraph and µ a measure on V. A countable family
of elements tfkunk“1 P ℓ2pVq is said to be a frame if for any graph signal f P ℓ2pVq we
have

A}f}
2

ď

n
ÿ

k“1

|xf ,fky|
2

ď B}f}
2,

for some constants 0 ă A ď B ă 8 which are called frame bounds.

We introduce the rectangular matrix K “ pHtJ ,Gt1 , . . . ,GtJ q P RNˆNpJ`1q where :

K “
`

htJ ,1, . . . , htJ ,N , gt1,1, . . . , gtJ ,1, . . . , gtJ ,N
˘

P RNˆNpJ`1q.

We also introduce the following rectangular matrix K̃ “ pH̃tJ , G̃t1 , . . . , G̃tJ qJ P RNpJ`1qˆN

K̃ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

h̃tJ ,1
...

h̃tJ ,N
g̃t1,1

...
g̃tJ ,1

...
g̃tJ ,N

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P RNpJ`1qˆN . (22)

Proposition 5.2. Let K and K̃ be respectively the synthesis and analysis filter banks. We
assume that the filter banks K and K̃ verify the perfect reconstruction condition stated
in proposition 5.1. Consequently, K̃ is a frame for ℓ2pVq with lower frame bound 1{}K}2

and upper frame bound }K̃}2.

Proof. The perfect reconstruction condition implies that }f}2 “ }KK̃f}2 ď }K}2}K̃f}2.
Hence, we have the frame inequalities

1

}K}2
}f}

2
ď }K̃f}

2
ď }K̃}

2
}f}

2, (23)

where the second inequality is just the definition of the spectral norm. }K}2 and }K̃}2

are finite because of finite dimensions, hence the frame bounds verify 0 ă }K}2 ď }K̃}2 ă

8.

Definition 5.6 (Wavelet decomposition of a signal on a digraph). Any graph signal
f P ℓ2pVq can be expressed as follows :

f “

N
ÿ

k“1

xf , h̃tJ ,ky htJ ,k `

J
ÿ

j“1

N
ÿ

k“1

xf , g̃tj ,ky gtj ,k.
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5.2. Diffusion wavelet transform on digraphs
We first recall relevant and useful notations for a clear understanding of the construc-

tion of diffusion wavelets [23, 37]. Two notations are introduced: one for the representation
of linear transformations as matrices and a second for the representation of sets of vectors
as matrices where columns correspond to a vector in the set. These notations were used in
[23, 37] except that we adopt a column vector convention whereas a row vector convention
was used in [23, 37].

Let V0 “ ℓ2pVq be the space of functions defined over the vertices of a digraph G “

pV , Eq. If L is a linear transformation of V0 into V0, rLs
B2
B1

indicates the matrix representing
the linear transformation L with respect to the basis B1 in the domain and B2 in the range.
A set of vectors X represented in a given basis B will be written in the matrix form rXsB

where the columns of rXsB are the coordinates of the vectors X in the coordinate system
defined by B. Generally, rB1sB2 “ rIsB2

B1
represent the basis vectors B1 in terms of the

basis B2. We will note that, for a given basis B if the input and output bases are the same,
rIsBB “ I the identity matrix. We will also abuse this notation if B1 spans a subspace of the
space spanned by B2. If B2 spans a subspace of the space spanned by B1 instead, then
we use the convention rIsB2

B1
“ prIsB1

B2
q`, where X` denotes the Moore-Penrose pseudo-

inverse of X. If B1 and B2 are two bases, the representations of X in B1 and B2 are
related as follows: rXsB2 “ rIsB2

B1
rXsB1 . If B1, B2, B3, B4 are arbitrary bases, the matrix

representation of L with respect to the basis B1 in the domain and B2 in the range in the
different bases is expressed as

rLs
B2
B1

“ rIsB2
B4

rLs
B4
B3

rIsB3
B1
.

Furthermore, if B1 and B2 are linearly independent sets of vectors that do not span the
whole space V0 then we will still use the notation rLs

B2
B1

, but in that case it will represent
the restriction of the linear transformation L to the domain and range subspaces spanned
by B1 and B2.

5.2.1. Diffusion wavelets
The construction of the diffusion wavelets [23, 37] enables a multi-resolution analysis

of functions on graphs generalizing the concept of classical multiresolution analysis [22].
The starting point of this construction is a diffusion operator T. Similarly to the classical
multiresolution analysis, diffusion wavelets is characterized by a family of nested subspaces
V0 Ě V1 Ě ¨ ¨ ¨ Ě Vj Ě ¨ ¨ ¨ , where each subspace Vj is spanned by a basis of scaling
functions Φj. The complement of Vj`1 into Vj is called Wj and is spanned by a set of
diffusion wavelets Ψj.

5.2.2. Construction
The construction of diffusion wavelets proceeds with a diffusion operator T defined

on a directed strongly connected graph G “ pV , Eq. In the original diffusion wavelets
framework by Coifman and Maggioni [23], the graph is assumed undirected and they
suggest using the reversible random walk operator P.

More generally, any operator T can be used as long as it acts like a low-pass filter.
Given a digraph G, an appropriate choice seems to be the operator T “ Π1{2PΠ´1{2 where
P is the random walk operator. However, the random-walk operator is not guaranteed
to have a low-pass frequency response as the highest frequency eigenvectors may have
eigenvalues with modulus arbitrarily close to one (as e.g. for the cycle graph). In such a
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case, a low-pass filter can be defined using a lazy random walk instead: T “ Π1{2
pγI `

p1 ´ γqPqΠ´1{2.
Assuming an ordering of vertices in V , T is originally represented on the canonical

basis Φ0 “ tδkukPV of V0 where δk is the Kronecker delta function corresponding to the
vertex k P V . Using the notations from Section 5.2, rTs

Φ0
Φ0

is the matrix representation of
the linear operator T with respect to the basis Φ0 in the domain and Φ0 in the range.

The columns of the matrix rTs
Φ0
Φ0

can be described as a set of functions rΦ1 “ trϕ1,kukPV

represented in the basis Φ0. Each element rϕ1,k, k P V of rΦ1 corresponds to the action of
T on the Kronecker δ-function at vertex k and is represented as rrϕ1,ksΦ0 “ rTs

Φ0
Φ0
δk.

The low-pass property of T leads to the fact that each element rϕ1,k of rΦ1 is a function
localized around its vertex k whose support extends to its close neighbors. In terms of
the diffusion wavelets construction, the elements rϕ1,k, k P V are therefore interpreted as
scaling functions. Due to the fact that the support of each element rϕ1,k covers a small
neighborhood around their respective vertices, these elements rϕ1,k can generally be well
approximated by a linear combination of the other functions rϕ1,l with l ‰ k. The next
stage of the construction is a column subset selection stage [89]. The aim is to find a small
number of columns of Φ̃1, forming a set C such that the residual }rΦ̃1sΦ0 ´ ΠCrΦ̃1sΦ0}β is
as minimal as possible where ΠC is the projection matrix onto the space spanned by the
columns of C and β denotes the spectral norm or the Frobenius norm.

More precisely, this step involves the selection of a subset trϕ1,k, k P I1u from rΦ1, |I1| ď

|V |. We select a subset trϕ1,k, k P I1u such that all rϕ1,k are well-enough approximated by
linear combinations of the functions in the subset. In classical signal processing terms,
this step is analogous to a subsampling of a set of scaling functions in the classical discrete
wavelet transform. Coifman and Maggioni used a greedy approach to build the set I1

iteratively by using a modified Gram-Schmidt orthogonalization procedure [23].
The subset trϕ1,k, k P I1u spans a subspace V1 which corresponds to the first approx-

imation subspace of the multi-resolution analysis. We will thus denote trϕ1,k, k P I1u as
Φ1, where Φ1 is by definition a basis of V1 that is generally not orthogonal. The vectors
in Φ1 are the scaling functions at scale 1.

To define the next scales of scaling functions, we consider the compression step of the
diffusion operator T on the subspace V1, that is its restriction on V1. The latter can be
represented in Φ1 as

rTs
Φ1
Φ1

“ rIsΦ1
Φ0

rTs
Φ0
Φ0

rIsΦ0
Φ1
.

where rIsΦ1
Φ0

represents the restriction of the signal space V0 to V1 (with respective bases
Φ0 and Φ1) and rIsΦ0

Φ1
represents the embedding of V1 in V0.

The next approximation space V2 Ă V1 and its associated basis Φ2 can be obtained
in the same way as the definition of V1 and its basis Φ1 except that we now consider the
operator T2 restricted to V1 instead of T in V0.

The columns of rT2s
Φ1
Φ1

« prTs
Φ1
Φ1

q2 can be interpreted as scaling functions at scale 2,
rΦ2 “ trϕ2,ku, represented in the basis Φ1. From these functions we extract a subset Φ2 “

trϕ2,k, k P I2u such that any function in rΦ2 is well-approximated by a linear combination
of functions of Φ2.

After j iterations of this procedure we have defined j approximation subspaces Vj Ă

Vj´1 Ă ¨ ¨ ¨ Ă V1 with corresponding bases Φj,Φj´1, . . . ,Φ1. At each step the basis Φj is
defined by its representation in the basis Φj´1 based on the restriction of the operator T2j
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to Vj´1. In order to represent these functions in the original basis Φ0 of V0 we can use

rΦjsΦ0 “ rIsΦ0
Φj

“ rIsΦ0
Φ0

rIsΦ0
Φ1

¨ ¨ ¨ rIs
Φj´2

Φj´1
rIs

Φj´1

Φj
.

Since every function in Φ0 is defined on V0, so is every function on Φj. Hence any
function in the approximation space Vj can be extended naturally to the whole space V0.

Regarding the construction of the wavelets, we propose to construct the wavelet bases
Ψj for the subspaces Wj by selecting a subset of the columns of the band pass operator
rIVj

´ Φj`1Φ
:

j`1s
Φj

Φj
which is the orthogonal projector on the complement of Vj`1 into Vj.

The wavelets capture the detail lost from going from Vj to Vj`1. As our framework falls
into a bi-orthogonal scope, we need to build the dual wavelet bases. For a scale j, we
have a wavelet base Ψj and we need to construct the associated dual base pΨj obtained
such that we have the following relation

Ψ1:

j Ψj “ I.

where Ψ1:

j is the pseudo-inverse of Ψj. We mention that in [37], bi-orthogonal wavelet
transform is proposed but only the scaling functions are actually defined. Our construction
is identical but we also propose a definition for wavelets.

5.2.3. A generalization using more arbitrary scaling operators
We propose a generalization of the diffusion wavelet framework that enables it to

be combined for instance with the wavelet construction presented in Section 5.2. The
idea is merely to replace the powers of T as multiresolution scaling operators by more
arbitrary low-pass filters. More precisely, where the operator T2j is used to define the
approximation space Vj`1 in section Section 5.2.2, we propose to use instead a low-pass
graph filter Hj. If the graph filters Hj correspond to the scaling operators defined in
Section 5.1 with appropriately increasing scales, this approach provides a way to reduce
the redundancy of the sets of scaling functions. Similarly, the same approach could be
used to reduce the redundancy of the wavelet functions defined in Section 5.2.

6. Applications

This section is devoted to illustrating our theoretical framework through examples
of semi-supervised learning and signal modeling on digraphs. It turns out that in the
following applications, we are able to work either in the Hilbert space ℓ2pVq or ℓ2pV , πq

where π is the unique stationary distribution of an ergodic random walk. Furthermore, by
the results obtained in Section 3.4, we define the isometries φ and φ´1 going from ℓ2pVq

to ℓ2pV , πq.
φ : f ÞÑ Π´1{2f , φ´1 : f ÞÑ Π1{2f , @f P ℓ2pV , πq. (24)

For the sake of simplicity, we will always map signals living in ℓ2pV , πq to ℓ2pVq, so
that we can work in ℓ2pVq where the inner product coincides with the one between vectors
in CN .

In practice, given a graph signal f measured in the real world, we must first decide
in which space the signal lives. This is a somewhat arbitrary choice between the signal
living in a space associated with the counting measure or in a space associated with the
stationary measure π of an ergodic random walk. If we decide that the signal lives in
ℓ2pV , πq, we then convert the signal into ℓ2pVq using the application φ´1, we perform all
the necessary operations in ℓ2pVq and then go back to the ℓ2pV , πq space using φ. In
ℓ2pVq, the operator T defined in eq. (14) corresponds to the random walk operator and
L is the operator such that xf ,Lfy is the Dirichlet energy.
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6.1. Semi-supervised learning on digraphs via ℓ2-regularization
We discuss the semi-supervised learning problem on digraphs with a regularization

term of type ℓ2. The following problem aims to show the efficiency and relevance of the
Dirichlet energy (16) as a regularization term for signal processing on digraphs.

6.1.1. Definition of the problem
Let G “ pV , Eq be a strongly connected digraph where V “ pv1, . . . , vNq is the vertex

set, E is the edge set and with cardinality |V | “ N . G is represented by its adjacency
matrix W P RNˆN

` . Let X be the associated random walk on G. The random walk X is
represented by its random walk operator P P RNˆN

` with unique stationary distribution
π.

We also introduce Gsym the symmetrized version of G. The undirected graph Gsym is
represented by its adjacency matrix Wsym “ pW ` WJq{2 P RNˆN

` . Let Xsym be the
associated random walk on Gsym. The random walk Xsym is represented by its random
walk operator Psym P RNˆN

` with unique stationary distribution πsym.
Let y : V Ñ t´1, 1u be a “label” function defined on the vertex set V . From the

function y, we obtain the graph signal y defined as follows

y “ rypv1q, . . . , ypvNqs
J.

Given the values ypvkqt1ďkďNu on only a subset of labeled vertices U Ă V , the aim is
to estimate the labels of the remaining unlabeled vertices. This is the semi-supervised
learning problem on graphs [6, 12, 90]. We introduce the formulation of the problem in
the next section.

6.1.2. Considered approaches
The standard approach with ℓ2 regularization is based on the following optimization

problem:

argmin
f

␣

c}Mlpf ´ yq}
2

` ϱ1}Muf}
2

` ϱ2Spfq
(

, c, ϱ1, ϱ2 ą 0. (25)

The term }Mlpf ´ yq}2 is the data fidelity term with Ml “ diagtm1, . . . ,mNu a diagonal
matrix where mi “ 1viPU , for all i “ 1 . . . , N (hence 0 on vertices with unknown labels).
In the second term, }Muf}2, Mu selects the unlabeled vertices and is defined as Mu “

IN ´Ml. This second term is a Tikhonov-like regularization term. The third term, Spfq,
is the variational regularization term derived from the graph

Spfq “ xf ,Xfy, X P RNˆN .

The semi-supervised learning on graphs problem is formulated in the same manner for
the digraph G or its symmetrized version Gsym, except that the variational regularization
term Spfq differs. In all these situations, for learning two classes, the solution is obtained
by constraining the previous continuous problem of having labels taking values only in
t`1,´1u; a relaxed version of the problem is to solve the continuous optimization problem
and take the sign of its solution. We now compare three methods for the directed case
and the symmetrized case. Note that we restrict the discussion to c “ ρ1 (or ρ1 “ 0 as it
is usually done in the literature [6, 90], and because it leaves only one trade-off, between
the supervised loss (possibly with a classical Tikhonov term) and the graph regularization
term. It simplifies also the expression of the closed form solutions.
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(a) Semi-supervised learning on G, the directed graph:.

Method 1: The first method is a version of eq. (25), that was previously investigated by [90].
Assuming the graph signal lives in ℓ2pVq, the optimization problem is

argmin
f

␣

c}Mlpf ´ yq}
2

` c}Muf}
2

` ϱ2xf ,Lfy
(

, c, ϱ2 ą 0. (26)

with L the directed normalized Laplacian (9). The term xf ,Lfy is the Dirichlet
energy in ℓ2pVq.

Method 2: For this method, we also use the formulation (26), except that we now assume that
the graphs signal lives in ℓ2pV , πq. Hence, we define ỹ P ℓ2pVq as follows

ỹ “ φ´1
pyq “ Π1{2y, y P ℓ2pV , πq.

The optimization problem is therefore

argmin
f̃

␣

c}Mlpf̃ ´ ỹq}
2

` c}Muf̃}
2

` ϱ2xf̃ ,Lf̃y
(

, c, ϱ2 ą 0. (27)

Equation (27) is the same as eq. (26) except for y which is now ỹ. The optimization
problem (27) can be rewritten as

argmin
f

␣

c}Mlpf ´ yq}
2
π ` c}Muf}

2
π ` ϱ2xf ,LRWfyπ

(

, c, ϱ2 ą 0. (28)

with LRW the random walk Laplacian on directed graphs (10). The term xf ,LRWfyπ

is then the Dirichlet energy (16).

Method 3: In the framework of "Discrete Signal Processing on Graphs" [55, 56], the semi-
supervised learning problem for digraphs is formulated as follows

argmin
f

␣

c}Mlpf ´ yq}
2

` ϱ2}f ´ Wnormf}
2
2

(

, c, ϱ2 ą 0, (29)

with Wnorm, a normalized version of the the adjacency matrix W so that its spectral
norm is equal to one.

Semi-supervised learning on Gsym, the symmetrized graph:. We consider the same methods
applied now on Gsym.

Method 1: Given the graph signal y P ℓ2pVq, the optimization problem is

argmin
f

␣

c}Mlpf ´ yq}
2

` c}Muf}
2

` ϱ2xf ,Lsymfy
(

, c, ϱ2 ą 0. (30)

with Lsym the normalized Laplacian defined as

Lsym “ I ´ Π1{2
symPsymΠ

´1{2
sym , Πsym “ diagtπsympv1q, . . . , πsympvNqu.

Method 2: The optimization problem is

argmin
f̃

␣

c}Mlpf̃ ´ ỹq}
2

` c}Muf̃}
2

` ϱ2xf̃ ,Lsymf̃y
(

, c, ϱ2 ą 0. (31)

This can be rewritten as

argmin
f

␣

c}Mlpf ´ yq}
2
π ` c}Muf}

2
π ` ϱ2xf ,LRW,symfyπ

(

, c, ϱ2 ą 0. (32)

with LRW,sym the random walk Laplacian defined as

LRW,sym “ I ´ Psym.
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6.1.3. Solutions in closed form
The problem (25) is quadratic and convex and therefore admits a closed form solution.

Semi-supervised learning on G.

Method 1: The solution of the optimization problem (26) is

f˚
“ pI ` γLq

´1Mly, γ “ ϱ2{c, f˚
P ℓ2pVq. (33)

Method 2: The solution of the optimization problem (27) is

f˚
“ pI ` γLRWq

´1Mly, γ “ ϱ2{c, f˚
P ℓ2pV , πq. (34)

Method 3: The solution of the optimization problem (29) is

f˚
“
`

Ml ` γR´1
M

˘

y, γ “ ϱ2{c, f˚
P ℓ2pVq.

with RM “ pI ´ WnormqJpI ´ Wnormq.

Semi-supervised learning on Gsym.

Method 1: The solution of the optimization problem (30) is

f˚
“ pI ` γLsymq

´1Mly, γ “ ϱ2{c, f˚
P ℓ2pVq. (35)

Method 2: The solution of the optimization problem (31) is

f˚
“ pI ` γLRW,symq

´1Mly, γ “ ϱ2{c, f˚
P ℓ2pV , πsymq. (36)

Remember that in each case, we take the approximated solution for 2 classes which
keeps only the sign of the solution as the label of the inferred class: y˚ “ sgnpf˚

q.
Moreover, in order to optimize the parameter γ, we use the same approach as many
authors [6, 90]: a grid search γ P r0, 100s on a controlled example (with ground-truth) to
have a numerical validation that the method can work well using some optimal γ. We
summarize the different methods in Table 1.

Method G Gsym

Method 1 L Lsym

Method 2 LRW LRW,sym

Method 3 [55] RM –

Table 1: Table of the different operators associated with the semi-supervised learning methods according
to G and Gsym.
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Figure 3: Semi-supervised learning on G1(left) and G2(right). The notations Ldir,norm and Lnorm corre-
spond respectively to L and Lsym.

6.1.4. Application of semi-supervised learning on directed stochastic block model
In this section, we apply a semi-supervised learning framework on a generalization of

the stochastic block model [91] (SBM) for digraphs. In contrast to the classical SBM, the
additional parameters of the model we propose are used to assign different probabilities
to the directions of the edges across different clusters. Let G “ pV , Eq be a directed
graph with cardinality |V | “ N . Our directed stochastic block model GpS, pin, pout, p, qq is
defined by S “ tn1, . . . , nku the set of the number of points associated with a given cluster
with k ě 2, pin the probability that there is an edge between two vertices within the same
clusters, pout the probability that there is an edge between two vertices belonging to two
different clusters, p the probability that there is an edge orientation between two vertices
belonging to the same cluster and q the probability that there is an edge orientation from
cluster ℓ to j, ℓ, j ď k given that there is an edge between two vertices belonging to
clusters ℓ and j respectively. Our purpose is to highlight the effectiveness of the Dirichlet
energy based on the random walk operator compared to the Dirichlet energy based on
the symmetrization of the adjacency matrix for semi-supervised learning problems on
digraphs.

Numerical simulations. We generate one instance from G1pS, pin, pout, p, qq where S “

tn1 “ 150, n2 “ 150u, pin “ 0.1, pout “ 0.01, p “ 0.5, q “ 0.5 and one instance from
G2pS, pin, pout, p, qq where S “ tn1 “ 150, n2 “ 150u, pin “ 0.1, pout “ 0.01, p “ 0.5, q “

0.9. The parameters of G1 and G2 are identical except for the q parameter. The edges
of G2 are much more oriented from cluster 1 to cluster 2 pq “ 0.9q while the edges of
G1 are uniformly oriented pq “ 0.5q between cluster 1 and cluster 2. Figure 3 shows the
performance of the semi-supervised learning on the instances generated by G1 and G2.
Regarding the instance generated by G1, we remark that for low proportions of known
labels, the semi-supervised approach based on the normalized directed Laplacian L per-
forms better than its unnormalized counterpart L (Ldir in Figure 3) and the symmetrized
counterparts based on Lsym and the unnormalized one Lsym (L in Figure 3) while for
higher proportions of known labels, the semi-supervised approach based on symmetrized
unnormalized Lsym gives the best performance. Regarding the instance generated by G2,
the semi-supervised approach based on L strongly outperforms the symmetrized coun-
terparts for all proportions of known labels. We show that when the orientations of the
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Figure 4: Semi-supervised learning on G1 of the political blogs of the 2004 US presidential campaign. The
notations Lnorm and Lnorm,sym correspond respectively to L and Lsym .

edges are important (q “ 0.9), the semi-supervised approach based on the normalized
directed Laplacian works is much more effective than the semi-supervised approach based
on the symmetrized counterpart. Consequently, the directionality plays a strong role and
the Dirichlet energy based on the random walk operator is meaningful for strong edges
orientation.

6.1.5. Application of semi-supervised learning on political blogs
Let us consider the dataset of the political blogs of the 2004 US presidential cam-

paign [92]. The dataset consists of 1224 blogs, each associated with a political orientation,
either republican or democrat. The hyperlinks between blogs provide the dataset with a
graph structure G “ pV , Eq, where each vertex v P V is associated to a blog and an edge
between two vertices tvi, vju indicates the presence of hyperlinks from blog i to blog j. The
political orientations of the blogs are modeled by a graph signal f 0 “ tf0pv1q, ¨ ¨ ¨ , f0pvNqu

where f0pviq “ `1 if blog i has a Democrat orientation and f0pviq “ ´1 if it is Republican.
The directed graph G is not strongly connected, which is a problem with our framework
that requires strongly connected graphs. As a result, we consider the largest strongly
connected subgraph of G, denoted by G 1 “ pV 1, E 1q which is made up of |V 1| “ N 1 “ 793
vertices (hence roughly 65% of the vertex set V) and its associated graph signal f 1

0. The
respective performances of the approaches eqs. (26), (28) and (29) and their symmetrized
counterparts eqs. (30) and (32) are compared in fig. 4.
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Numerical simulations. Figure 4 shows the performances of the semi-supervised approaches
eqs. (26), (28) to (30) and (32), in terms of the proportion of correct matching between
y˚ and f 0 (or f 1

0). For each method, several values of γ P r0, 10s were tested and we kept
the one giving the best performance over 500 realizations. The lines displayed in fig. 4
are averaged estimation accuracy over 500 realizations and the error bars show the corre-
sponding standard deviations.

Firstly, we remark that for all proportions of known labels, the semi supervised ap-
proaches based on L,LRW and its symmetrized counterparts Lsym,LRW,sym perform better
than the semi-supervised approaches based on RM . On the top left of fig. 4, we com-
pare the semi-supervised approaches involving the operators L,LRW and RM . The semi-
supervised approach associated with L performs the best compared to the approaches in-
volving LRW,RM for low proportions of known labels. Furthermore, L performs slightly
better than the approach involving LRW. On the top right of fig. 4, we compare the
semi-supervised approaches involving the operators Lsym,LRW,sym and RM . Similarly
the top left figure, the semi-supervised approach associated with Lsym performs slightly
better than the approach involving LRW. On the bottom left of fig. 4, we compare the
semi-supervised approaches involving the operators LRW,LRW,sym and RM . The approach
involving LRW and LRW,sym perform quite similarly for any proportion of known labels.
The same can be observed in the bottom right of fig. 4 comparing the semi-supervised
approaches involving LRW,LRW,sym and RM . This performance comparison leads us to
the following conclusions:

• The semi supervised learning approaches involving Dirichlet energies based upon L
and LRW (and their symmetrized counterparts) yield better performance compared
to the approach proposed by Sandryhaila and Moura [55] based upon RM . Con-
sequently, semi-supervised learning approaches on digraphs with Dirichlet energies
based on the random walk operator seem more appropriate.

• The Hilbert space where we assume the graph signal lives seems to have an influence
on the performance. Here, we obtain better performance when assuming that the
graph signal y belongs to ℓ2pVq rather than ℓ2pV , πq, or equivalently when using L
in the regularization term rather than LRW.

6.2. Signal modeling on directed graphs via filtering
In this section, we consider a way to model the relationships between the values of a

graph signal using a graph filter. The model is expressed as a graph filter that takes some
values from the graph signal and reconstructs the other values. A possible application of
such a model could be the lossy compression of the signal, where knowing only the graph,
the coefficients of the graph filter and a few signal values enable the reconstruction of the
whole signal. The major difference with the previous application is that we assume the
whole graph signal known to learn the filter.

6.2.1. Problem formulation
Let G “ pV , Eq be a digraph with cardinality |V | “ N and µ : V Ñ R` a positive

measure. The digraph G is characterized by its adjacency matrix W P RNˆN
` . Let

f0 P ℓ2pV , µq be a known graph function and f 0 “ rf0pv1q, . . . , f0pvNqsJ, the corresponding
graph signal. Let y be a random sampling of f0 according to some known sampling
strategy, where for a given sampling realization yj “ f0pvjq or yj “ 0 depending on
whether vertex j is selected in that sampling realization. The goal of the problem is to find
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a graph filter H that optimally reconstructs f 0 from the samples in y. More specifically,
we consider graph filters expressed as finite polynomials of a reference operator R with
order K.

H “

K
ÿ

k“0

θkR
k, θk P R, k “ 0, ¨ ¨ ¨ , K. (37)

The reconstruction of f 0 from y is then

f̂0 “ Hy “

K
ÿ

k“0

θkR
ky. (38)

In order to find an optimal filter pH “
řK

k“0 θ̂kR
k, we propose to minimize the expected

quadratic reconstruction error:

θ̂ “ argmin
θ“tθkuKk“0PRK`1

E
›

›

›
f 0 ´

K
ÿ

k“0

θkR
ky
›

›

›

2

µ
, (39)

Finally, we only consider sampling strategies where samples in y are selected inde-
pendently according to a given distribution δ, that is yj “ f0pvjq with probability δj and
yj “ 0 otherwise. The random variables yj, j “ 1, . . . , N can be expressed as yj “ εjf0pvjq,
where the εj are independent and Bernoulli distributed with parameters δj: εj „ Berpδjq.
The random variable ε̄ defined as

p “
1

N

N
ÿ

i“1

εi, (40)

is the proportion of known values of f 0 collected in y.

6.2.2. Solution in closed form
The solution of the problem (39) is the following

pθ “ Z´1MQJf 0, (41)

where M “ diagtµpv1q, ¨ ¨ ¨ , µpvNqu is the diagonal matrix of the associated measure µ, Z
the matrix where each entry Zkℓ P Z is expressed as

Zkℓ “ Tr
`

rRk
s

JMRℓEtyyJ
u
˘

, @tk, ℓu P v0, Kw
2,

and Q “ rq0, ¨ ¨ ¨ , qKs P RNˆpK`1q where each vector qj is

qj “ RjEtyu, @j P v0, Kw.

Finally, according to the definition of y, we have Etyju “ δjf0pvjq, Ety2j u “ δjf
2
0 pvjq

and Etyiyju “ δiδjf0pviqf0pvjq for i ‰ j, which would allow us to replace the above terms
Etyu and EtyyJu with their values. For the experiments below, we will assume that the
sampling strategy is unknown and estimate Epyq, EpyyJq empirically.
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6.2.3. An exploration of modeling accuracy with different graph operators
The reconstruction quality using the previous approach depends on several factors: the

choice of reference operator R, the order of the filter K and the random sampling strategy
defined by the Bernoulli parameters δk. Here, we evaluate primarily the influence of R and
compare two possible sampling strategies. As an example, we also consider the dataset of
the political blogs of the 2004 US presidential campaign [92] described in Section 6.1.5.

As before, we will use the largest strongly connected directed subgraph G 1, represented
by its adjacency matrix W. On G 1, we consider the following operators

• Wnorm the normalized version of the adjacency matrix W whose spectral norm is
equal to one.

• The random walk operator P associated with an ergodic random walk X with unique
stationary distribution π.

• P̄ the additive reversibilization of P.

• T “ Π1{2PΠ´1{2 the operator similar to P.

• T̄ “ Π1{2P̄Π´1{2 the operator similar to P̄.

• P̄α P P̄ with P̄ “
␣

P̄α : P̄α “ p1 ´ αqP ` αP˚
ˇ

ˇα P r0, 1s
(

• T̄α P T̄ with T̄ “
␣

T̄α : T̄α “ p1 ´ αqΠ1{2PΠ´1{2
` αΠ1{2P˚Π´1{2

ˇ

ˇα P r0, 1s
(

We also consider G 1
sym, the symmetrized version of G 1. The undirected graph G 1

sym

is represented by its adjacency matrix Wsym “ pW ` WJq{2. On G 1
sym, we define the

following operators

• Wnorm
sym the normalized version of the adjacency matrix Wsym whose spectral norm

is equal to one.

• The random walk operator Psym corresponding to the ergodic random walk Xsym

with stationary distribution πsym.

• Tsym “ Π1{2
symPsymΠ

´1{2
sym the operator similar to Psym.

Finally, we consider G, the full graph that is not strongly connected. Consequently, we
can not build directly a random walk operator on G unless we transform G into a strongly
connected graph, as required by our framework. We thus consider two classic approaches
that make the graph strongly connected and the associated random walk ergodic:

Approach 1: Rank-one perturbation: from the original adjacency matrix W, we construct a new
adjacency matrix Wϵ as follows

Wϵ “ W ` ϵJ,

where J “ 11J{N is a rank-one matrix and ϵ is small. The weak perturbation of the
adjacency matrix W by the matrix J ensures that the random walk on G is ergodic
with stationary measure πϵ and its associated transition matrix Pϵ is well-defined.
For our experiments, we choose ϵ “ 10´4 to have }W ´ Wϵ}F small enough.
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Approach 2: Construction of the Google matrix of G [73, 93]. This is achieved in two steps.
Firstly, we construct an adjacency matrix W̃ from W by adding a weight one from
all dangling nodes, that is nodes with no out-edges towards all the nodes in the
graph. From W̃ we can construct the transition matrix S. Secondly, we define the
Google matrix PG as

PG “ γS ` p1 ´ γqJ.

where γ “ 0.85 [73, 93].

We will compare the reconstruction accuracy using a proportion of correctly recon-
structed labels obtained via

f̂ “ sgnppHyq.

Subproblem 1. We solve the problem (39) by learning a polynomial graph filter with K “

10 on G 1 and G 1
sym with each of the reference operators listed above. In this subproblem,

the random variables yj, j “ 1, . . . , N 1 are distributed according to one of the two following
cases

• uniform sampling: yj “ εjf
1
0pvjq where εj „ Berppq with p the proportion of known

labels.

• π-weighted sampling: yj “ εjf
1
0pvjq where εj „ Berpαπjq, such that

ř

j Etεju “ pN 1

with p the proportion of known labels.

The proportions of correctly reconstructed labels are measured for various p values
using 500 realizations of y to estimate its mean and covariance used in the solution (41).

We summarize the different cases in table 2.

Case Distribution y Reference operators

Case 1 yj “ εjf
1
0pvjq, εj „ Berppq Wnorm,P, P̄,T, T̄, Wnorm

sym ,Psym,Tsym

Case 2 yj “ εjf
1
0pvjq, εj „ Berpαπjq,

ř

j Etεju “ pN 1 Wnorm,P, P̄,T, T̄,Wnorm
sym ,Psym,Tsym

Table 2: Summary table of the different cases of the subproblem 1.
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Figure 5: (Subproblem 1, Case 1) Left: Reconstruction of the graph signal f 1
0 on G1. Right: Reconstruc-

tion of the graph signal f 1
0 on G1

sym.The notation Pbar (resp. Tbar) correspond to P̄ (resp.T̄).

Numerical simulations: Case 1. We evaluate the reconstruction performance of the graph
signal f 1

0 in figure 5. For all proportions p of known labels, the average rate of correctly
reconstructed labels using a graph filter baseed on P or P̄ is significantly better than when
using a graph filter based on Wnorm. This holds on the subgraph G 1 ands its symmetrized
version G 1

sym. Furthermore, the reconstruction performance using a filter based on P is
slightly better than using a filter based on P̄. The reconstruction performance using a
filter based on T is the best overall. For small proportions p of known labels, the average
rate of correctly reconstructed labels from filter based on T̄ is slightly better. We also
notice that the reconstruction performance using a filter based on Tsym is identical to
using a filter based on Psym for all proportions p of known labels.
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Figure 6: (Subproblem 1, Case 2) Left: Reconstruction of the graph signal f 1
0 on the subgraph G1.

Right: Reconstruction of the graph signal f 1
0 on G1

sym. The notation Pbar (resp. Tbar) correspond to P̄

(resp.T̄).

Numerical simulations: Case 2. The reconstruction performance is shown in figure 6.
Filters based on Wnorm perform significantly worse than any other choice both on the
subgraph G 1 or its symmetrized version G 1

sym. Also, the reconstruction accuracy when
using Wnorm has a much larger variability and the average performance even decreases
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for larger p. Among other methods, the differences are not significant except for filters
based on T̄ which perform slightly worse than others for large p.

Case 1 vs. Case 2. The reconstruction performance using a filter based on P or P̄ is
slightly better when the samples in y are selected according to a distribution propor-
tional to the stationary distribution π (case 2) than when the distribution is uniform
(case 1). It is also the case when using a filter based on T or T̄. This is expected as ver-
tices with larger πk values correspond to better-connected blogs, which are likely to have
an influence on a larger number of other blogs. Although the reconstruction performance
using a filter based on Wnorm is better in case 2 than in case 1, the large variability and
the poorer performance at large p in case 2 suggest that these filters provide generally
poorer models of the signal. The better reconstruction performance using a filter based
on T or T̄ with respect to using a filter based on P or P̄ suggests that for this application
it seems more suitable for the graph signal to live in ℓ2pVq than ℓ2pV , πq.

Subproblem 2. Here we consider the same problem (39) as in the previous section but
now compare the performance using reference operators P̄α P P̄ and their equivalents
T̄α “ Π1{2P̄αΠ

´1{2. The random variables yj, j “ 1, . . . , N 1 are distributed according to
one of the two following cases:

• uniform sampling: yj “ εjf
1
0pvjq where εj „ Berppq with p the proportion of known

labels.

• π-weighted sampling: yj “ εjf
1
0pvjq where εj „ Berpαπjq, such that

ř

j Etεju “ pN 1

with p the proportion of known labels.

We summarize the different cases in table 3.

Case Distribution y Reference operators

Case 1 yj “ εjf
1
0pvjq, εj „ Berppq P̄α P P̄ , T̄α P T̄

Case 2 yj “ εjf
1
0pvjq, εj „ Berpαπjq,

ř

j Etεju “ pN 1 P̄α P P̄ , T̄α P T̄

Table 3: Summary table of the different cases of the subproblem 2.

Numerical simulations: Case 1. We evaluate the reconstruction performance of f 1
0 using

filters either based on P̄α, α P r0, 1s at the top of fig. 7 or either based on T̄α, α P r0, 1s at
the bottom of fig. 7. We first consider the top of fig. 7. For small proportions p of known
labels, we notice that the best reconstruction performance using a filter based on P̄α is
obtained for α » 0.2 while for higher proportions p, the best performance is obtained
for α » 0.3. We notice poorer performance overall when α increases from α “ 0.5 to
α “ 1. At the bottom of fig. 7, the reconstruction performances using a filter based on
T̄α, α » 0.2 are the best except for the rate p “ 0.01. We also notice poorer performance
overall when α increases from α “ 0.5 to α “ 1.
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Figure 7: (Subproblem 2, Case 1) Up: Reconstruction of the graph signal f 1
0 on G1, P̄α P P̄. Down:

Reconstruction of the graph signal f 1
0 on G1, T̄α P T̄ .
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Figure 8: (Subproblem 2, case 2) Up: Reconstruction of the graph signal f 1
0 on G1, P̄α P P̄. Down:

Reconstruction of the graph signal f 1
0 on G1, T̄α P T̄ .

For all proportions p of known labels, filters based on T̄α appear to perform slightly
better than filters based on P̄α. This again suggests that this graph signal f 1

0 is better
represented as living in ℓ2pVq than ℓ2pV , πq. Furthermore, the better performance when
α P p0, 0.5q suggests that, for this signal, graph filters P̄α perform better when the convex
combination of P and P˚ involves more the random walk P, i.e. α P p0, 0.5q, than the
time-reversed random walk P˚.

Numerical simulations: Case 2. We evaluate the reconstruction performance of f 1
0 using

filters either based on P̄α, α P r0, 1s at the top of fig. 8 or based on T̄α, α P r0, 1s at the
bottom of fig. 8. Let us consider the top of fig. 8. We notice that the reconstruction
performances using a filter based on P̄α, α » 0.3 are the best except for the rates p “

t0.01, 0.02u. We notice poorer performance overall when α increases from α “ 0.5 to
α “ 1. This suggests that, for this signal, graph filters based on P̄α perform better
when the convex combination of P and P˚ involves more the forward random walk P,
i.e. α P p0, 0.5q, than the backward random walk P˚, i.e. α P p0.5, 1q. At the bottom
of fig. 8, the reconstruction performances using a filter based on T̄α, α » 0.3 are the best
for all proportions p of known labels. Similarly to the previous cases, we notice poorer
performance overall when α increases from α “ 0.5 to α “ 1.

On this example, the reconstruction performance is better using filters based on P̄α

than T̄α. This suggests that the graph signal f 1
0 is best viewed as living in ℓ2pV , πq com-

pared to ℓ2pVq when the samples in y are selected from a distribution proportional to π.
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Case Distribution y Reference operators

Case 1 yj “ εjf
1
0pvjq, εj „ Berppq Wnorm,Pϵ,PG, P̄ϵ, P̄G,Tϵ,TG, T̄ϵ, T̄G

Table 4: Summary table of the case of the subproblem 3.

Previously, we observed that it is more suitable for the graph signal f 1
0 to belong to ℓ2pVq

than ℓ2pV , πq when the distribution in y is uniform. This suggests that it may be a good
idea in practice to use the measure of the Hilbert space to the sampling distribution if it
is known.

Subproblem 3. We now consider the same problem (39) on the whole graph G. In this
subproblem, the random variables yj, j “ 1 . . . , N are distributed as yj “ εjf0pvjq, εj „

Berppq. For each proportion of known labels p, the correct reconstruction rates are ob-
tained by averaging over 500 realizations of y. We summarize the following case in table 4.

Numerical simulations. The reconstruction performance is shown in fig. 9. For all p values,
the reconstruction performance using filters based on Wnorm is significantly worse than
with all other reference operators. Compared to the other reference operators, Wnorm is
the only one that can be used without modifying the graph to make it strongly connected.
Still, its performance is always worse.

Among the other reference operators, we notice a better performance generally when
using the reversibilizations P̄ϵ and P̄G compared to the non-reversible random walks Pϵ

and PG. Furthermore, the best reconstruction performance is obtained using a filter based
on T̄G and the reconstruction performance using a filter based on T̄ϵ is identical to T̄G

for higher proportions of known labels. This differs from the results on G 1 where both
would perform similarly.

Finally, the reconstruction performance does not depend as much on the approach we
use to make the graph strongly connected. It seems though that the Google approach
slightly outperforms the rank-one approach, both for the non-reversible random walks
and their reversibilizations.

Subproblem 4. Here we consider the same problem (39) as in the previous section but
now compare the performance using reference operators P̄α P P̄ and their respective
equivalents T̄α “ Π1{2P̄αΠ

´1{2. The random walk operator is built from the Google
matrix approach (Approach 1). The random variables yj, j “ 1 . . . , N are distributed as
yj “ εjf0pvjq, εj „ Berppq. We summarize the case in the table 5.
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Figure 9: (Subproblem 3, Case 1) Reconstruction of the graph signal f0 on G.The notation Pbar
ϵ (resp.

Pbar
G , Tbar

G , Tbar
ϵ ) corresponds to P̄ϵ (resp. P̄G, T̄G, T̄ϵ).

Case Distribution y Reference operators

Case 1 yj “ εjf0pvjq, εj „ Berppq P̄α P P̄ , T̄α P T̄

Table 5: Table of the case of the subproblem 4.

Numerical simulations: Case 1. We evaluate the reconstruction performance of f 1
0 using

filters either based on P̄α, α P r0, 1s at the top of fig. 10 or either based on T̄α, α P r0, 1s

at the bottom of fig. 10. For all proportions p of known labels, the best reconstruction
performance using a filter based on P̄α is obtained for α » 0.6. We also notice that the
reconstruction performance using a filter with α P t0.7, 0.8u is better than with α » 0.5.
This suggests that, for this signal, graph filters based on P̄α perform better when the
convex combination of P and P˚ involves more the time-reversed random walk P˚ than
the random walk P (i.e. when α ą 0.5). At the bottom of fig. 10, the best performance
is obtained for a filter T̄α with α » 0.5 overall. The performance is worse when α
increases from α “ 0.5 to α “ 1. For all proportions p of known labels, the reconstruction
performance are better overall if the graph signal f 0 is in ℓ2pVq than in ℓ2pV , πq. In other
words, the reconstruction performance using filters based on T̄α is better than using filters
based on P̄α.

6.2.4. Key takeaways
The subproblems investigated and the numerical simulations allow us to note the

following important points:

1. Both the Hilbert space where we choose for the graph signal and the sampling dis-
tribution impact the performance. For the example presented here, we obtain better
performance when we consider the Hilbert space with inner product associated with
a given measure corresponds to the sampling probability.

2. Graph filters based on the random walk operator yield better performance than
those based on the adjacency matrix.
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Figure 10: (Subproblem 4, case 1) Up: Reconstruction of the graph signal f0 on G, P̄α P P̄. Down:
Reconstruction of the graph signal f0 on G, T̄α P T̄ .
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Figure 11: Orthogonal and biorthogonal scaling functions on the directed cycle graph C256.

3. The choice of the parameter α in the convex combination between P and P˚ has an
influence on the performance. For the example presented here, the optimal convex
combination of P and P˚ (resp. T and T˚) always involves more the forward random
walk (P) than the backward random walk P˚, except in one case. The message is
that varying α should be considered and useful. A limitation of the present work
is that we don’t provide a way to choose it and one will have to rely classically on
grid search or cross-validation. The optimal parameter is expected to depend upon
the type of data studied (whether the information, hence the structure, flows more
in the direction of the arrow, or the reverse). Let us remark that, in a specific case,
it can be possible to include the estimation of α in the optimisation process, as it
has been done in [94].

6.3. Multiresolution analyses applications
This section is devoted to illustrate our multiresolution analysis framework through

the visualization of wavelets and scaling functions on regular-type structures and semi-
supervised learning on digraphs. The application framework will be the same as in sec-
tion 6.

6.3.1. Diffusion wavelets on the directed cycle graph
We show an example of multi-resolution analysis on the directed cycle graph CN with

N “ 256. We use the same assumptions made in Section 4.5.1. We construct both
orthogonal and biorthogonal multi-resolution analyses on CN through the framework of
the diffusion wavelets applied on the dyadic powers of T, i.e. tT2juJj“1. We set the number
of scales at J “ 6.

Figure 11 shows the orthogonal and biorthogonal scaling functions at scales 1,3 and
5. At each scale, we represent 3 or 4 scaling functions. Figure 12 shows the orthogonal
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Figure 12: Orthogonal and biorthogonal wavelet functions on the directed cycle graph C256.

and biorthogonal wavelet functions also at scales 1,3 and 5.
We note at each scale that the support of the orthogonal scaling functions is larger

than the support of the biorthogonal scaling functions. We also note on scales 3 and
5 that biorthogonal wavelet functions have support slightly smaller than the orthogonal
wavelet functions. Furthermore, we note that orthogonal scaling functions, as well as or-
thogonal wavelet functions, have more oscillations than their biorthogonal counterparts.
That means that orthogonal scaling and wavelet functions have poorer frequency localiza-
tion. The conclusions about the spatial localization of the scaling functions are identical
to the conclusions in [28]. The novelty here is we work on the directed circle graph and
we show the orthogonal and biorthogonal wavelets functions in addition to the orthog-
onal and biorthogonal scaling functions. Finally, the scaling and wavelets functions are
not centered around the vertex where they have been selected. They instead propagate
along with the graph towards the parent vertices of the selected vertex. We can also note
that the orthogonal wavelet transform is more robust with respect to perturbations than
the biorthogonal wavelet transform. Let Wortho “ rΨ1, . . . ,Ψ5,Φ5s be the inverse wavelet
transform and Wbiorth its biorthogonal counterpart. The condition numbers on this exam-
ple are κpWorthoq « 33 and κpWbiorthoq « 2ˆ 104. Consequently, the biorthogonal wavelet
transform is much more sensitive to perturbations than its orthogonal counterpart.

6.3.2. Spectral wavelets on the directed Watts-Strogatz graph
In this section, we show examples of multi-resolution analyses on the directed version

of a graph from the Watts-Strogatz model based on the spectral wavelets construction
describes at Section 5.1. The Watts-Strogatz model [95] is an undirected random graph
model exhibiting small world properties including short average path lengths and high
clustering [96]. The construction of a digraph from the Watts-Strogatz model starts with
a directed cycle graph with N vertices. Each node is connected to its k next nodes
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following the direction of the directed cycle graph. For the sake of simplicity, we consider
the k next nodes connected to a given node i following the direction of the directed cycle
graph as its “closest” neighbors. Starting from an arbitrary vertex, we apply the following
procedure to each vertex in a clockwise manner. At vertex i, the edge that connects i
to each of its next nodes is randomly rewired with probability p or remains untouched
with probability 1 ´ p. This procedure is repeated cyclically for each successive vertex
until the vertex i is selected again. We denote by G „ DWSpN,K, βq a graph constructed
following a directed Watts-Strogatz model with N vertices, K nearest neighbors and
rewiring probability β.

In a first instance, we analyze the scaling functions built from low-pass filters based on
T̄α at a given scale of G1 „ DWSp64, 2, 0q. That is a special case of the directed Watts-
Strogatz model with no rewiring. In a second instance, we analyze some scaling functions
built from low-pass filters based on T̄α at a given scale of G2 „ DWSp64, 2, 0.02q. Lastly,
we show both orthogonal and biorthogonal scaling and wavelets functions built following
the construction in Section 5.2. We summarize the following cases in table 6.

Case Graph Reference operators

Case 1 : Scaling functions built wrt. sect. 5.1 G1 „ DWSp64, 2, 0q T̄α P T̄

Case 2: Scaling functions built wrt. sect. 5.1 G2 „ DWSp64, 2, 0.02q T̄α P T̄

Case 3: Scaling functions built wrt. sect. 5.2 G2 „ DWSp64, 2, 0.02q T̄

Table 6: Table of the different cases for the directed Watts-Strogatz graph.

Case 1. In this case, we analyze some scaling functions built from low-pass filters based
on P̄α at scale t “ 24 of a directed Watts-Strogatz graph G2 „ DWSp64, 2, 0q. We consider
the following low-pass filters

T̄α “ Π1{2P̄αΠ
´1{2, @α P r0, 1s. (42)

and we construct a collection of low-pass graph filters at a given scale following the
construction presented in Section 5.1. More precisely, we build the filters Hα as follows

Hα “
ÿ

ωPω

hptωqSω,α,

with t “ 24 and hpxq “ expp´xq.
Figure 13 represents the 50th scaling function hα,50 “ Hαδ50 at scale t “ 24 built

from low-pass filters Tα, for all α P r0, 1s according to the construction Section 5.1 on
the directed Watts-Strogatz graph G „ DWSp64, 2, 0q. The particularity of this case is
that the following graph has no rewiring. Consequently, the associated adjacency matrix
is circulant. All the low-pass filters Tα admit the same discrete Fourier basis, and all
corresponding frequencies are the same. Hence the associated scaling functions hα,50 are
the same. We observe that the scaling function is centered around node 50 and has a
symmetric shape. In this case, for nonsymmetric graph filters Hα, the scaling functions
have symmetric shapes and are centered around their given node.
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Figure 13: (Case 1) 50th scaling function at scale t=16 on the graph G „ DWSp64, 2, 0q, for all α P r0, 1s.

Case 2. In this case, we analyze some scaling functions built from low-pass filters based
on P̄α at scale 10 of G2 „ DWSp64, 2, 0.02q. We also consider the following low-pass filters

T̄α “ Π1{2P̄αΠ
´1{2, @α P t0, 0.5, 1u. (43)

and we construct a collection of low-pass graph filters at a given scale following the
construction presented in section 5.1. More precisely, we build the filters Hα as follows

Hα “
ÿ

ωPω

hptωqSω,α

with t “ 24 and hpxq “ expp´xq. We observe the 50th scaling functions at scale t “ 24,
that is hα,50 “ Hαδ50.

The 50th scaling function at the scale t “ 24, for different α, hα,50, are represented in
fig. 14. The graph G2 admits a directed edge from node 50 to node 11 and a directed edge
from node 30 to node 50. As α increases towards 1, we observe that the scaling function
hα,50 propagates around the child node 11. This means that the more α increases, the
more the influence of the backward random walk P˚ is important. For α “ 0.5, the scaling
function hα,50 diffuses both ways and is centered around the child node 11 and the parent
node 30. Finally, as α goes to 0, we observe that hα,50 mostly propagates towards the
parent node 30.

Case 3. Here, we consider orthogonal and biorthogonal scaling functions on a graph G „

DWSp64, 2, 0.02q used on the Case 2. These orthogonal and biorthogonal scaling functions
are built from the diffusion wavelets procedure. We start the procedure with the low-pass
filter H “ T2 and we look at the dyadic powers of H i.e. tH2juJj“1. We set the number
of scales at J “ 5. We observe the orthogonal and biorthogonal scaling functions at node
49 at scale 3 obtained by the diffusion wavelets procedure and we compare them to the
scaling function at node 49 built from a graph filter based on T̄ at the scale t “ 16.

Figure 15 shows the orthogonal and bi-orthogonal scaling functions at node 49 built
using the diffusion wavelets framework and the scaling function at node 49 built using the
spectral graph wavelets framework. We note that the biorthogonal scaling function and
the scaling function built by the spectral graph wavelet framework are similar, i.e. well
localized around nodes 11 and 30 and localized around 49 with large size support. By
contrast, the orthogonal scaling function has poor spatial localization around the nodes
11 and 30.
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Figure 14: 50th scaling function at scale 4 on a graph G „ DWSp64, 2, 0.02q, α P t0, 0.5, 1u, eq. (42).
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Figure 15: Orthogonal and bi-orthogonal scaling functions built w.r.t the diffusion wavelet framework
versus scaling function built w.r.t spectral wavelets framework.
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6.3.3. Semi-supervised learning on directed graphs with ℓ1-regularization
We discuss the semi-supervised learning approach in the case of functions over digraphs

with ℓ1 regularization on the wavelet coefficients. We aim to show that the performance
of the semi-supervised learning problem with ℓ1 regularization is competitive compared to
the existing approaches, e.g. the semi-supervised learning problem studied in section 6.
We use the same notations as in section 6 and work on the subgraph G 1. The ℓ1-regularized
solution for the semi-supervised learning problem is

w˚
“ argmin

w
}ỹ ´ MKw}

2
2 ` λ}w}1, λ P R`. (44)

The graph signal ỹ “ My is the partially labeled graph signal with M “ tmijut1ďi,jďNu

is the mask operator, i.e. the diagonal matrix where mii “ 1viPO where O Ă V is the
subset of known labels.

The matrix K “ pHJ ,G1, ¨ ¨ ¨ ,GJq is the synthesis filter bank. If we set X “ MK,
the equation (44) can be rewritten as

w˚
“ argmin

w
}ỹ ´ Xw}

2
2 ` λ}w}1, λ P R.

The formulation (44) is identical to the formulation of the problem of signal restora-
tion with redundant wavelet transforms in [97], except that K is the synthesis wavelet
transform for functions defined over digraphs. Furthermore, previous approaches of semi-
supervised learning on undirected graphs have been investigated using overcomplete graph
wavelets [98] or critically sampled spline graph wavelets [99]. The ℓ1-regularized synthesis
semi-supervised learning problem is convex and can be solved efficiently using e.g. proxi-
mal splitting methods [100–102]. From the solution w˚ of eq. (44), we define the restored
signal f˚ as

f˚
“ signpKw˚

q.

We compare the performance of formulations (44) and (26). Formulation (44) requires
a synthesis filter bank K. We choose a two scales synthesis graph filter bank K “

pH2,G1,G2q based on a heat kernel construction [103]

Hj “ e´Ltj , tj “ 2j, j “ 1, 2.

with L the directed Laplacian defined at (9) and the graph bandpass filters G1,G2 as

G2 “ H1 ´ H2, G1 “ I ´ H1.

Semi-supervised learning on directed stochastic block model. We use the same parametriza-
tion setting used in Section 6.1.4 for the generation of the directed SBM graphs G1 and
G2. Figure 16 shows the performance of the semi-supervised learning formulation (44) on
instances generated by directed SBM graphs G1 and G2. The performance is obtained by
averaging 200 realizations and the parameters λ (the ℓ1 penalization) and γ (the ℓ2 regu-
larization) are selected following a grid search on a controlled example (with ground-truth)
that give the best performances with λ P r0, 100s and γ P r0, 100s. In figure Section 6.1.4,
the performance based on the ℓ1 penalization of the spectral graph wavelets coefficients
on digraphs is better than the ℓ1 penalization based on the spectral graph wavelets coeffi-
cients build from the symmetrized normalized Laplacian and for both instances of graphs
and for all proportions of known labels. Consequently, taking into account the direction
of edges for the semi-supervised learning problem based on ℓ1 penalization of the spectral
graphs coefficients is useful, and the proposed construction allows it.
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Figure 16: Semi-supervised learning on G1(left) and G2(right).
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Figure 17: SSL on the largest connected graph of US political blogs.

Semi-supervised learning on political blogs. Figure 17 shows the performance of semi-
supervised learning formulation (44) on the largest strongly connected graph obtained
from US political blogs. The performance is obtained by averaging 200 realizations and
choosing the parameters λ and γ that maximize the performance. In Figure 17, the per-
formance based on the ℓ1 penalization of spectral graph wavelets coefficients on digraphs
is better than the ℓ1 penalization of the spectral graph wavelets coefficients built from
the symmetrized normalized Laplacian from all percentage of known labels. As the re-
sult, the semi-supervised approach based on the ℓ1 penalization of the spectral wavelets
coefficients on digraphs is more effective than the ℓ1 penalization of the spectral graph
wavelets coefficients built from the symmetrized normalized Laplacian on this dataset.

7. Conclusion

We introduced a novel harmonic analysis on directed graphs. First, we proposed a
frequency analysis for functions defined on directed graphs based on the eigenvectors
of the random walk operator on a directed graph. From this Fourier-type frequency
interpretation, we showed how to construct redundant wavelets on directed graphs as well
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as critically sampled wavelets by generalizing the diffusion wavelets framework. Finally,
we illustrated our harmonic analysis through examples of semi-supervised learning and
graph signal modeling on directed graphs and showed the relevance of our framework
compared to existing approaches.
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