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Dynamically coupled fluid-structure simulations are performed here on a 360 • fan configuration to identify the aeroelastic damping associated to the eigenmodes of the structure. Results of strongly coupled simulations in which the structure is freely evolving are compared to weakly coupled computations in which the motion is prescribed. The damping values resulting from both types of simulations are similar and the strong coupling strategy is thus validated numerically. This approach is attractive since several damping values are accessible in only one computation whereas the weak coupling strategy requires as many forced simulations as there are dampings to estimate. The computational cost can therefore be significantly reduced by such simulations.

INTRODUCTION

The prediction of the aeroelastic stability of turbomachinery blade assemblies is of great matter in the design process since structural failures can occur because of vibrations induced by the coupling between the flow and the flexibility of the structure. Stability boundaries are well described by the aeroelastic damping values which should be positive to make the vibration of the structure vanish.

Coupled fluid-structure simulations are thus performed to estimate this damping but the computational cost is prohibitive since the "weak coupling" strategy usually employed relies on a mode-by-mode harmonic excitation [START_REF] Dugeai | Nonlinear numerical aeroelasticity with the ONERA elsA solver[END_REF]. The simulations do not only have to be performed for each type of structural mode (bending, torsion,...) and each nodal diameter, but also for other parameters like the rotation speed, the pressure ratios,... in order to cover the whole operating range of the system.

The reduction of the problem on only one sector of the repetitive structure using cyclic symmetry boundary conditions decreases the number of degrees of freedom. However, a longer time interval has to be simulated since the convergence is more difficult to reach when only one sector is modeled than when all the blade passages are modeled [START_REF] Dugeai | Nonlinear numerical aeroelasticity with the ONERA elsA solver[END_REF][START_REF] Ji | Flutter computation of turbomachinery cascades using a parallel unsteady Navier-Stokes code[END_REF][START_REF] Tran | Methods of fluid-structure coupling in frequency and time domains using linearized aerodynamics for turbomachinery[END_REF]. Besides, the mode-by-mode excitation process still leads to many batch computations.

Impulse response simulations are therefore performed here on a whole 24 blades fan. Several modes can be taken into account in the projection basis with this "strong coupling" strategy. The time history therefore contains information about all the modes considered [START_REF] Carstens | Coupled simulation of flowstructure interaction in turbomachinery[END_REF][START_REF] Sayma | An integrated nonlinear approach for turbomachinery forced response prediction. Part I: Formulation[END_REF]. These coupled dynamic analyses are conducted with different kinematical initial conditions corresponding to forward, backward or mixed traveling waves, from which the system is freely evolving. This leads to drastic computational cost reduction since the response to several modes is obtained in only one shot. The CPU cost is reduced further by the use of wall laws and high level parallelization.

Damping values are identified from the time responses of the generalized coordinates. The identification process is based on the Levenberg-Marquardt algorithm [START_REF] Fletcher | Practical Methods of Optimization[END_REF] which minimizes the difference between the Fourier transform of the time response and an analytical function defined by the sum of damped sinusoids. Estimated aeroelastic dampings have been successfully compared to those coming from weakly coupled analyses or strongly coupled simulations with only one mode. The present method of identification has been compared successfully to the Ibrahim Time Method [START_REF] Ibrahim | Time domain modal parameter identification and modeling of structures[END_REF][START_REF] Mohanty | A modified Ibrahim time domain algorithm for operational modal analysis including harmonic excitation[END_REF] stemming from operational modal analysis but other techniques could also be investigated (see [START_REF] Hounjet | Analysis of computational aeroelastic simulations by fitting time signals[END_REF][START_REF] Silva | Identification of nonlinear aeroelastic systems based on the Volterra theory: Progress and opportunities[END_REF][START_REF] Won | Non-linear impulse methods for aeroelastic simulations[END_REF][START_REF] Maia | Modal analysis identification techniques[END_REF]).

Strongly coupled analyses are first and foremost attractive since several damping values are accessible with only one multi-modal computation. Furthermore this strategy relies on fewer hypotheses than forced motion analyses and mode coupling is possible. Finally such simulations could be used in the future to introduce dissymmetry or mistuning effects since the whole structure is modeled.

FLUID FLOW MODEL

Governing equations and numerical resolution

The flow is contained in the deformable domain Ω F (t) ⊂ R 3 which is uniformly rotating at the speed Ω around the axis O -→ x . The equations are solved in the relative frame of reference associated to the rigid body rotation. The fluid flow is described by the Reynolds averaged Navier-Stokes equations (RANS) using the ALE framework to take into account the deformation of the domain at each time step. The equations read

                                   d dt Ω F ρ dv + ∂Ω F ρ (v -s d ) • n ds = 0 d dt Ω F ρv dv + ∂Ω F [ρv ⊗ (v -s d ) + p I] n ds = ∂Ω F τ n ds + Ω F ρ (f Cor + f cen ) dv d dt Ω F ρE r dv + ∂Ω F [ρE r (v -s d ) + p v] • n ds = ∂Ω F [τ v -q ] • n ds + Ω F ρ v • f cen dv . (1) 
The fluid is described by the density ρ, the momentum ρv and the total energy ρE r both defined in the relative frame. The convective and diffusive fluxes are integrated on the domain boundary ∂Ω F where the normal n is defined on each point. The deformation of the domain is taken into account by the velocity s d , whereas the rigid body motion induces the gyroscopic centrifugal and Coriolis forces f cen = -∂s rb /∂t -ω ∧ s rb and f Cor = -2 ω ∧ v. These forces involve the angular velocity vector ω = [Ω, 0, 0] T and the rigid body velocity of the moving frame s rb = ω ∧ x r where x r is the relative position.

The starred quantities p = p + 2/3 k, E r = E r + k = e + v /2 + k, τ = (1 + µ t /µ)τ and q = (1 + µ t /µ Pr/Pr t )q designate turbulent variables. The heat flux is given by the Fourier law q = -k T ∇T based on the heat conductivity k T . The stress tensor for a Newtonian fluid is τ = -2/3µ (div v) I + µ(∇v + ∇ T v) with the Stokes hypothesis.

For a perfect gas, the internal energy and the pressure are given by e = c v T and p = ρR s T where R s is the specific constant and the specific heat ratio γ = c p /c v is constant. The viscosity µ is governed by the Sutherland law and the heat conductivity is k T = c p µ/Pr.

The turbulence is modeled here in the framework of the Boussinesq hypothesis. Consequently only three scalar variables (k, µ t and Pr t ) have to be determined. Three different turbulence models are investigated in this paper: the Spalart-Allmaras model [START_REF] Spalart | A one equation turbulence model for aerodynamic flows[END_REF], the k -ω SST model with Menter's correction [START_REF] Menter | Zonal two equation (k -ω) turbulence models for aerodynamic flows[END_REF] and the k -ε Launder-Sharma model [START_REF] Launder | Application of energy-dissipation model of turbulence to the calculation of flow near a spinning disc[END_REF].

The fluxes are discretized with the Jameson centered scheme [START_REF] Jameson | Time dependent calculations using multigrid, with application to unsteady flows past airfoils and wings[END_REF]. An artificial dissipation operator is introduced to stabilize the numerical scheme. The unsteady simulations are performed with the dual time step technique and a backward Euler scheme is adopted.

The solution of the Navier-Stokes equations is computed with Onera's solver elsA [START_REF] Gazaix | The elsA object-oriented computational tool for industrial applications[END_REF].

Four types of boundary conditions are used in the model: (i) adiabatic wall boundary conditions are defined at the fluid-structure interface, (ii) an injection condition is prescribed on the upstream plane, (iii) a radial equilibrium condition is defined on the downstream plane according to the pressure ratio Π or the massflow ṁ specifying the operating point and (iv) matching boundary conditions are introduced between the different blocks. Besides, wall laws are employed to increase the cell size in the boundary layer and thus to decrease the computational costs.

The rotating speed Ω used for the computations amounts to 80% of the nominal speed. The operating point is defined by the ratio Π of the stagnation pressures measured before and after the fan. A unique value of the massflow ṁ is associated to Ω and Π.

Geometry of the fan

The fan model considered in this paper has been provided by Snecma. The reference sector and the 360 • configuration made up of N s = 24 identical sectors are represented on figure 1 which exhibits the multi-block mesh strategy. Each sector is split into 7 blocks comprising 119 808 control cells. The whole configuration has about 3 millions of cells.

Sequential simulations are performed with the model of the reference sector to compare the results. However when the whole fan is meshed, parallel simulations using 36 processors are carried out so that the number of control cells per processor drops to 79 872.

Steady simulations

Steady simulations are performed to check the validity of the 360 • configuration. The model of the reference sector is first selected and the three turbulence models and two discretization schemes (Jameson and Roe) are investigated for several values of the prescribed pressure ratio in the interval 0.61 ≤ Π 0,p ≤ 0.71 with Π 0,p = Π p /Π 0 where Π p is based on a local reference pressure specified on the hub and Π 0 is a normalization factor. The Mach number in the fluid domain is represented on figure 3. Three supersonic areas are visible at Π 0,p = 0.64, but only one remains close to the leading edge at Π 0,p = 0.70.

A recirculation zone appears behind this shock. The y + value is mostly lower than 50 but increases near the leading edge. The mesh is therefore adequate for the use of wall laws. The operating line of the fan for the rotation speed Ω is plotted on figure 4. A reference curve has been computed with the model containing only one sector with Roe fluxes and the k -ε Launder-Sharma model without wall laws. The other operating lines have all been computed with wall laws and different turbulence models and/or discretization scheme. The same combination (Roe / k -ε) produces slightly over-estimated pressure ratios compared to the model without wall laws. On the contrary, the combination of the k -ω SST model with Menter's correction and Jameson fluxes leads to under-estimated pressure ratios and the curve seems to be translated downwards. The two last combi-nations investigated here (Jameson fluxes with the k -ε Launder-Sharma model or the Spalart-Allmaras model) are rather accurate. However, the simulations for high pressure ratios (Π 0,p > 0.70) are not well converged and the shape of the curve is not exactly reproduced. Finally, these two last combinations have also been used with the 360 • configuration to check the validity of the model. The black symbols on figure 4 indicate that this configuration produces exactly the same results and the steady aerodynamic field will be used to initialize unsteady aeroelastic computations. The speedup factor for the parallel computations with 36 processors is about 30.

STRUCTURAL MODEL

Cyclic symmetry and modal representation on the reference sector

The structural domain Ω S = Ns-1 k=0 S k ⊂ R 3 is split into N s identical sectors S k which are similar to the reference sector S 0 through the rotation angle α = 2π/N s . The physical displacements u(r, θ, z, t) of the spatially periodic structure can be decomposed according to the Floquet theory into the sum of N s components such that u(r, θ, z, t) = Ns-1 n=0 u n (r, θ, z, t) [START_REF] Tran | Methods of fluid-structure coupling in frequency and time domains using linearized aerodynamics for turbomachinery[END_REF][START_REF] Valid | Théorie et calcul statique et dynamique des structures à symétries cycliques[END_REF]. These components are called the traveling wave coordinates and satisfy the cyclic symmetry condition

u n (r, θ + kα, z, t) = u n (r, θ, z, t) e i kσn with σ n = n α = n 2π N s , (2) 
where σ n is the interblade phase angle (IBPA). The displacements on the sector S k therefore write u(S k ) = Ns-1 n=0 u n (S 0 )e i kσn . Assuming a linear structure subjected to small deformations, the displacements are governed by only N s equations for the traveling wave coordinates. The Finite Elements discretization leads to

M ün (t) + C un (t) + K u n (t) = f a,n (u n , un ) u n | l (t) = u n | r (t) e i σn (3) 
where the vector u n is the discrete representation of the continuous displacement u n on the reference sector S 0 [START_REF] Tran | Methods of fluid-structure coupling in frequency and time domains using linearized aerodynamics for turbomachinery[END_REF][START_REF] Valid | Théorie et calcul statique et dynamique des structures à symétries cycliques[END_REF]. The first equation in (3) describes the linear elastic vibrations of the structure by means of the mass matrix M, the structural damping matrix C which will be omitted in the sequel and the stiffness matrix K. The external forces f a,n = 1/N s Ns-1 k=0 f a (S k ) e -i kσn are only due to the aerodynamic force f a = Γ F p n ds produced by the pressure on the fluid-structure interface Γ F . The second equation in (3) is a particular case of the cyclic symmetry condition (2) for θ = 0 and k = 1 since u n (r, α, z, t) is the left frontier of the reference sector and u n (r, 0, z, t) is the right one.

The equations (3) formulated for each coordinate u n have to be solved N s times and involve N S 0 degrees of freedom instead of N s × N S 0 for the whole structure. However the resolution is still costly and a modal representation is needed. The eigenmodes are the solution of the conservative part of equation ( 3) with the additional constraint of cyclic symmetry. The eigenproblem to be solved is thus

K ϕ (i) n -ω 2 n,i M ϕ (i) n = 0 ϕ (i) n l = ϕ (i) n r e i σn (4) 
for each n = 0, . . . , N s -1 and each i = 0, . . . , n m where n m ≤ N S 0 is the number of modes kept for the approximation of the displacements. The eigenproblem is complex because of the cyclic symmetry boundary condition and the modes are complex conjugates except for n = 0 and N s /2 since the eigenproblem becomes real. The complex problem (4) is therefore solved just N s /2 times. The remaining modes referred to by the index -n are deduced by ϕ

(i) -n = ϕ (i)
n and the eigenvalues are the same : ω -n,i = ω n,i .

The displacements on the reference sector are approximated by u(S 0 , t) = Φ(S 0 ) q(t) with the complex modal basis

Φ(S 0 ) = [Φ 0 (S 0 ) • • • Φ n (S 0 ) Φ -n (S 0 ) • • • Φ Ns/2 (S 0 )] where Φ n (S 0 ) = [ϕ (1) 
n (S 0 ) • • • ϕ (nm) n (S 0 )].
The vector of modal coordinates q = [q 0 , . . . , q n , q -n , . . . , q Ns/2 ] with q n = [q n,1 , . . . , q n,nm ] contains the time modulations of each mode and is the unknown of the reduced equation of motion. The displacements on the other sectors S k are easily deduced from equation ( 2) since the complex modes satisfy the cyclic symmetry boundary condition such that Φ n (S k ) = Φ n (S 0 ) e i k σn for each k = 0, . . . , N s -1. Finally, the discrete physical displacement of the complete structure writes u(t) = Φ q(t) since the components of Φ are the matrix Φ n (S k ).

Real modal representation of the complete structure

The previous complex framework is not well suited for aeroelastic computations in which real modes are preferably handled to solve the equations of motion at each time step. An equivalent real basis is therefore introduced to deal with real quantities. For that purpose, it should be stressed that the real displacement u n = Φ n q n (t) is the complex conjugate of the displacement u -n = Φ -n q -n (t) produced by the modulation q -n = q n . The total displacement u = Φ q = Φ 0 q 0 + Ns/2-1 n=1 (Φ n q n + Φ -n q -n ) + Φ Ns/2 q Ns/2 can be rearranged so that real components appear. Indeed, Φ n q n + Φ -n q -n = 2 (Φ R n q R n -Φ I n q I n ) when the modes and modulations are decomposed into real and imaginary parts such that Φ n = Φ R n + iΦ I n and q n = q R n + iq I n . The new modal basis is defined by the vectors Φ n = 2 Φ R n and Φ n = -2 Φ I n for n = 0 and N s /2 and by Φ n = Φ R n and Φ n = 0 for n = 0 and N s /2. The following expressions can be derived from the expressions of the modes on the reference sector using the cyclic symmetry condition [START_REF] Tran | Methods of fluid-structure coupling in frequency and time domains using linearized aerodynamics for turbomachinery[END_REF]:

Φ n (S k ) = 2 Φ R n (S 0 ) cos kσ n -Φ I n (S 0 ) sin kσ n Φ n (S k ) = -2 Φ R n (S 0 ) sin kσ n + Φ I n (S 0 ) cos kσ n (5) 
except for n = 0 and N s /2 in which case Φ 0 (S k ) = Φ 0 (S 0 ) and

Φ Ns/2 (S k ) = (-1) k Φ Ns/2 (S 0 ). The new basis Ψ = [Φ 0 • • • Φ n Φ n • • • Φ Ns/2
] is real and the displacements are approximated by u = Ψ r(t) with the new vector of modal coordinates r = [q 0 , . . . , q n , q n , . . . , q Ns/2 ]. The basis is composed of two single modes Φ 0 and Φ Ns/2 and N s /2 -1 doubles modes Φ n and Φ n which share the same eigenfrequency.

Since the two bases span the same space, the following change of basis matrix can be defined

R n = 1 2 I I -iI iI and R -1 n = 2 R H n = I iI I -iI (6) such that [Φ Φ ] = [Φ n Φ -n ]R -1 n and [q n q n ] T = R n [q n q n ] T .
A global change of basis matrix R is constructed by assembling identity matrices for single modes and the block matrices R n for double modes, hence the relations Ψ = Φ R -1 and r(t) = R q(t).

The first two bending modes and the first torsion mode have been selected here for the nodal diameters n = 0, ±1, ±2. The modes have been computed with a structural model whose mesh is different from the one used for aerodynamic simulations. A smoothing procedure using 3D volume splines is employed to transfer the modal shape defined on the structural mesh skin to the aerodynamic mesh. The resulting modes are represented in the table 1. 1: Norm of the modal deflections of the first two bending and first torsion modes on the 360 • configuration for the nodal diameters n = 0, 1 and 2. The reduced eigenfrequencies κ n,i = f n,i L 0 /U 0 with f n,i = 2 π ω n,i are specified under the modes.

n = 0 n = 1 n = 2 ϕ (i)R n ϕ (i)R n ϕ (i)I n ϕ (i)R n ϕ (i)I n Mode 1F (i =

Structural reduced-order model

The bases defined previously lead to a reduced set of equations when the equations of the complete structure M tot ü(t) + K tot u(t) = f a (u, u) governing the motion are projected. The mass matrix M tot is block diagonal since the structure is made up of N s identical sectors. Each matrix of the diagonal is equal to M(S 0 ) because of the cyclic symmetry. Introducing the approximation u(t) = Φ q(t) into the structural equation and projecting onto Φ H leads to the reduced mass matrix µ C = Φ H M tot Φ where the superscript • C stand for "complex" because of the modes used for the projection. Using the cyclic symmetry condition for the modes, the general term of the reduced matrix write

µ C nm = (Φ H m (S 0 ) M(S 0 ) Φ n (S 0 )) Ns-1 k=0 exp[ik(σ n -σ m )] = δ nm N s µ C,S 0 nm with µ C,S 0 nm = Φ H m (S 0 ) M(S 0 ) Φ n (S 0
). The complex modes Φ n (S 0 ) have been defined on the reference sector such that they diagonalize the mass and stiffness matrices since they are solution of (4). The matrices µ C,S 0 nm , which can also be noted µ C,S 0 n since the terms vanish if n = m, are therefore diagonal. The reduced mass and stiffness matrices of the complete structure are thus defined by

µ C = diag µ C 0 , . . . , µ C n , µ C -n , . . . , µ C Ns/2 and γ C = diag γ C 0 , . . . , γ C n , γ C -n , . . . , γ C Ns/2 (7) with µ C n = µ C -n = N s µ C,S 0 n and γ C n = γ C -n = N s γ C,S 0 n .
The reduced mass matrix µ associated to the real modes derives from the relation

µ C = Φ H M tot Φ = (R H Ψ H ) M tot (Ψ R) = R H µ R with the definition µ = Ψ T M tot Ψ.
The previous relation written for a double mode yields

µ C n 0 0 µ C -n = R H n µ n 0 0 µ n R n = 1 4 µ n + µ n µ n -µ n µ n -µ n µ n + µ n (8)
and the identification of the term leads to

µ n = µ n = 2 µ C n = 2 µ C -n if n = 0 and n = N s /2, µ n = µ C n and µ n = µ C -n = 0 if n = 0 or n = N s /2. (9) 
Finally, the reduced mass and stiffness matrices defined from the real modes are given by µ = diag µ 0 , . . . , µ n , µ n , . . . , µ Ns/2 and γ = diag γ 0 , . . . , γ n , γ n , . . . , γ Ns/2 . (10)

The reduced-order equations governing the modal coordinates r(t) associated to the real modes Ψ of the structure are finally given by µ r(t) + γ r(t) = g ag (Ψ q, Ψq)

where the generalized aerodynamic forces vector is defined by g ag = Ψ T f a . Using the change of basis matrix R, the equivalent equation derived from the projection on the complex modes is easily obtained and writes µ C q(t) + γ C q(t) = f ag (Φ q, Φq) with f ag = Φ H f a ( u, u).

Mode combinations for traveling and standing waves

The weak coupling strategy consists in prescribing a harmonic motion to a selected mode. The time modulation of a single mode i for the diameter n is therefore q n,i (t) = q * cos(ω * t + φ * ) with q * the amplitude of the motion, ω * the pulsation which is in practice the eigenfrequency ω n,i = 2 πf n,i of the excited mode, and φ * the initial phase. When double modes are considered, the complex harmonic modulation q n,i (t) = q * e i(ω * t+φ * ) (or the conjugate) suits well to the complex mode ϕ

(n)

i . The modulations associated to the real modes ϕ (n) i and ϕ

(n) i are therefore q n,i (t) = q * cos(ω * t + φ * ) and q n,i (t) = ±q * sin(ω * t + φ * ). The following general expressions are therefore introduced to define the modulations for the real double modes:

q n,i (t) = q * cos(ω * t + φ * ) q n,i (t) = q * cos(ω * t + φ * + ψ) . ( 12 
)
The phase shift ψ between the time modulations of the modal coordinates defines the type of motion produced. If ψ = ±π/2, a forward or backward rotating wave is produced since the deflections of the double modes are similar with a spatial phase shift β n = π/(2 n).

If ψ = 0 or ψ = π the time modulation of the pair of modes are in phase or in phase opposition and a mixed standing wave1 is produced (in the rotating frame of reference).

The generalized aerodynamic forces matrix is decomposed into F ag (Φ, p) = A + pB and if no coupling between the modes occurs, the flutter equation for each single mode reduces to p 2 µ C n,i -B n,i p + γ C n,i -A n,i = 0. If the added stiffness and damping terms are small, the solutions are p = (B n,i ± i 4 µ C n,i γ n,i )/(2µ C n,i ). The identification with the expression p = iω a (1 + i α) yields ω a = ω n,i and the following relation for the damping:

α = - B n,i 2 µ C n,i ω C n,i = - B n,i ω n,i 2 γ C n,i . ( 17 
)
The expressions of the matrix A and B are easily obtained by a Fourier decomposition of the generalized aerodynamic forces in which the first harmonic only has been kept. A similar procedure is used for the real double modes used for the excitation.

(c 1 [p]) intrados (c 1 [p]) intrados (c 1 [p]) extrados (c 1 [p]) extrados
(a) Π 0,p = 0.64

(c 1 [p]) intrados (c 1 [p]) intrados (c 1 [p]) extrados (c 1 [p]) extrados
(b) Π 0,p = 0.70 Figure 5: Real and imaginary parts of the first harmonic appearing in the Fourier decomposition of the unsteady pressure field produced by the forward rotating wave prescribed to the first bending mode for Π 0,p = 0.64 and 0.70.

The comparison between simulations performed with the model using only one sector with periodicity conditions and 24 sectors yields identical results for n = 0 for example. The discrepancy for the damping α 0,1 of the first bending mode computed with both models is indeed less than 0.8% for Π 0,p = 0.64 and 0.2% for Π 0,p = 0.70. This validates the 360 • configuration for weak coupling computations. Figure 5 presents the real and imaginary parts of the first harmonic appearing in the Fourier decomposition of the unsteady pressure field. The fields have been computed for the first bending mode with a time modulation corresponding to a forward rotating wave.

On figure 6, the evolution of the damping is plotted for the first bending mode forced with a forward or backward rotating wave to get the nodal diameters ±n. The two red curves give the damping values computed for two pressure ratios with a time discretization based on N it/per = 32 points per oscillation period which are split into smaller intervals with the dual time step technique. The black symbols represent the same results when the time discretization is smaller. The damping values are slightly different since the time integration scheme used here introduces some artificial dissipation which decreases with the time step. The smallest values of the damping are encountered for n = 0 at Π 0,p = 0.64 and n = 1 at Π 0,p = 0.70. The same type of curves could be plotted for the second bending mode and the first torsion mode. 
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Strong coupling strategy: multi-modal free motion

In this case the simulations are performed simultaneously with different mode types and/or diameters. Mode coupling can occur and the generalized coordinates are assumed to write

s(t) = C + N f k=1 s k (t) = C + N f k=1 A k sin (ω k t + φ k ) e -α k ω k t . (18) 
The analyzed signal s(t) is either q n,i (t) or q n,i (t). Two separate sets of parameters are identified for the generalized coordinates of a pair of double modes. The generic set of parameters

X = {C, A k , ω k , φ k , α k } N f
k=1 may therefore be different for q n,i (t) or q n,i (t) and will be noted X or X . The set of parameters X is estimated by a fitting procedure making use of the Levenberg-Marquardt algorithm [START_REF] Fletcher | Practical Methods of Optimization[END_REF] since the following nonlinear leastsquares problem has to be solved:

X opt = arg min X ∈R np Q(ω) -S(ω, X ) L 2 . ( 19 
)
The functions Q(ω) and S(ω, X ) are respectively the Fourier transform of the generalized coordinate analyzed and of the approximation given at Eq. [START_REF] Valid | Théorie et calcul statique et dynamique des structures à symétries cycliques[END_REF]. The optimal set of parameters X opt is defined as the solution of the optimization process when a convergence criterion has been reached. The number of parameters to determine is n p = 4 N f + 1.

Since the number N f of components is a priori unknown, a first attempt to solve the optimization problem is performed with a maximal number of N max f = n s m + 2 n d m where n s m (resp. n d m ) is the number of single (resp. double) modes. Then a selection step has been introduced to discard insignificant or unphysical components which could have been detected. Finally the problem is solved a second time with the best number N opt f of components detected. A windowing procedure has also been introduced to check the dispersion of the parameter values identified from several time intervals. It must be stressed that even if the least-squares problem solved is nonlinear, the aeroelastic system is still assumed to be linear since the damped generalized coordinates are defined by a sum of damped sinusoids.

Simulations with the 360 • configuration are performed with different types of modal bases and initial conditions. Firstly, a basis composed of the first double bending modes ϕ is used. The initial conditions prescribed correspond to a forward or backward rotating wave with ψ = ±π/2 and φ * = 0 in Eq. ( 13). The time series of the generalized coordinates and forces are plotted on figure 7. 

).

In this case, no coupling between the modes occurs and the wave, which is always rotating forward in time, is slightly damped. The analysis of the coordinates q 1,1 and q 1,1 with the previously described signal processing tool indicates that each signal contains only one component (N f = N f = 1). The damping values estimated from each coordinate differ only from about 0.6% and the value is very close to the one computed with the weak coupling strategy for the same mode. The same comparison can be done if the initial conditions for a backward rotating wave are prescribed. The strong coupling strategy is able to reproduce the same results as those obtained with the weak coupling when the right initial conditions are specified. However the strong coupling strategy used in this way is not interesting since each simulation yields only one value of the damping.

The same basis Ψ = [ϕ

1 , ϕ

1 ] is therefore used but with different initial conditions in order to generate initially a mixed (ψ = 0 in Eq. ( 13)) or purely standing wave (q 1,1 (t = 0) = q 1,1 (t = 0) = 0). The time series of the generalized coordinates and forces are represented on figures 8(a) and 8(b).

The analysis of the generalized coordinates detects this times N f = N f = 2 components in the time series. Each coordinate is made up of the sum of two damped sinusoids noted s k in Eq. ( 18) with slightly different reduced frequencies at about 0.286 and 0.289. The damping values corresponding to these two components are respectively the dampings of the forward and backward rotating waves. This is due to the initial conditions prescribed: indeed, the initial wave is a combination of the two rotating waves (see Eqs. ( 14) and ( 15)), whose effects are exhibited during the time evolution of the free system. With such initializations, the coupling between the two modes is clearly visible and makes it possible Finally the total CPU time in hours appears in the last column. The total time is the product of the number of periods n per to simulate by the number of modes n m = 3 considered here by the ±N s /2 modal diameters for each mode.

CONCLUSION

The weak coupling strategy usually used to evaluate the aeroelastic damping of cyclic structures like turbomachinery blade assemblies has been successfully compared here to a new strategy based on a strong coupling. This strategy relies on the free response of the coupled system to initial conditions which have been suitably chosen so that the damping values of interest can be identified from the time series of the generalized coordinates. Different types of modal bases have been investigated and significant CPU cost reduction can be reached with this strategy (about a factor 10). Indeed, the dampings of a given mode for all diameters can be estimated in only one computation whereas the weak coupling strategy requires individual simulations for each mode and each diameter.

The strategy has to be further studied since the coupling effects which appear when the basis contains different types of modes for a same diameter prevent currently the accurate evaluation of the damping values. Future work will also concern the investigation of a multi-modal weak coupling strategy such that a prescribed motion composed of the combination of several harmonic modal motions is applied to the blades. The advantage of this procedure is that there is no decrease in the amplitude of the generalized coordinates and forces. Consequently the contribution of each mode does not vanish potentially quickly. The difficulty lies in the adaptation of the identification procedure for the damping values which is based on the Fourier decomposition in the case of the usual mono-modal weak coupling strategy.

  (a) Reference sector (b) Whole fan Figure 1: Mesh of the reference sector and of the 360 • configuration with N s = 24 sectors.

Figure 2

 2 Figure 2 presents the evolution of the residuals for ρ, ρv x and ρE r for two pressure ratios and different combinations of turbulence models and discretization schemes. At Π 0,p = 0.64, the residuals decrease faster with the Spalart-Allmaras model and the k -ω SST model with Menter's correction associated to the Jameson fluxes. The k -ε Launder-Sharma model does not seem to converge well. At Π 0,p = 0.70 the system approaches the surge line and the residuals decrease less even with the Spalart-Allmaras model. The k -ω SST model with Menter's correction leads this time to the highest residuals. Other turbulence models perform almost equally. The use of Roe fluxes does not help to decrease further the residual. The combination of the Spalart-Allmaras model with the Jameson fluxes is selected from now and the pressure ratios investigated will be less than Π 0,p = 0.70.

Figure 4 :

 4 Figure 4: Comparison of operating lines at 80% of the nominal speed computed with different combinations of turbulence models and discretization schemes with the configuration with 1 or 24 sector(s). The pressure ratio and the massflow have been made dimensionless.

Figure 6 :

 6 Figure 6: Damping of the mode versus the nodal diameters n for two pressure ratios Π 0,p . The black symbols are the values computed with a smaller time step to reduce the artificial dissipation introduced by the numerical scheme.

Figure 7 :

 7 Figure 7: Time series of the generalized coordinates and forces coming from an initial condition for a forward wave applied to the couple of modes (ϕ

Table

  

	1)			
	Red. freq.	0.286	0.292	0.296
	Mode 2F			
	(i = 2)			
	Red. freq.	0.645	0.615	0.654
	Mode 1T			
	(i = 3)			
	Red. freq.	0.946	0.860	0.949

Table 2 :

 2 Comparison of the damping values of the mode 1F for the nodal diameters n = 0, . . . , N s /2 computed with the strong coupling strategy with the values obtained with the weak coupling strategy for n = 0, ±1, ±2 and two different time discretizations.because the chorochronic boundary conditions are replaced by simple matching boundary conditions between the blocks. The CPU cost is still high since this strategy is based on a single mode excitation which has to be repeated for each type of mode and each diameter. Finally, the strong coupling strategy provide significant CPU cost reduction since the damping values of all the diameters of a same type of mode can be obtained in a single computation. The extraction of several damping values compensates for the increase in CPU time due to the greater number of simulated periods. The strong coupling strategy is however only interesting if several modes are analyzed simultaneously. Otherwise the quantity τ CPU /n per /n m /N s = 65 s given in the second column of the last line has to be multiplied by n m × N s = 72 if the computation is performed for a given mode at a given diameter. In this case only one damping value is accessible and the strong coupling strategy loses all interest. of simulationn per [-] τ CPU /n per /n m /N s [s] τ CPU [h]Comparison of the CPU cost reduction obtained with the strong coupling strategy. The second column indicates the minimum number of cycles to simulate in order to get accurate damping values. The next column gives the CPU time for one cycle and one mode at a given diameter.

	n

The denomination "mixed" is employed to stress that these standing waves are composed of the contribution of two modes. On the contrary a "purely" standing wave is made up of only one mode of a pair of double modes.

ACKNOWLEDGMENT

This work has been funded by the DGAC in the framework of a collaborative partnership between SAFRAN and Onera. The author would like to thank SAFRAN for its cooperation and the permission to publish results concerning the fan studied in this paper.

To reproduce -at least initially -the same type of waves with a strongly coupled simulation, the following kinematical initial conditions have to be used: q n,i (t = 0) = q * cos φ * q n,i (t = 0) = -q * ω * sin φ * q n,i (t = 0) = q * cos(φ * + ψ) q n,i (t = 0) = -q * ω * sin(φ * + ψ) .

The motion induced by the complex modulation q n,i (t) = q * e i(ω * t+φ * ) applied to the mode ϕ

. The real part of this motion which is only considered for the weak coupling strategy writes in terms of the real double modes

The previous motion defined with the modulations given at Eq. ( 12) produces initially rotating waves if ψ = ±π/2 or mixed standing waves if ψ = 0 or ψ = π. A purely standing wave can also be obtained by combining the forward and backward rotating waves. In this case, the motion comes down to

Since the modes ϕ

n and ϕ

are similar to within the spatial phase shift β n , the motions u and u are equivalent and we just consider u def = u in the sequel. The prescribed modulations for the purely standing wave are therefore q n,i (t) = q * cos(ω * t + φ * ) and q n,i (t) = 0. The associated initial conditions for q n,i (t) are the same as those given at Eq. ( 13) and are trivial for q n,i (t). These different types of waves will be investigated later to compare the results of aeroelastic simulations performed with a weak or strong coupling strategy.

AEROELASTIC DAMPING PREDICTIONS

Weak coupling strategy: mono-modal prescribed motion

Unsteady simulations are first performed with the weak coupling strategy with which the motion is prescribed. Each real single mode ϕ

for n = 0 is forced with the time modulation q n,i (t) = q * cos(ω n,i t); similarly, each pair (ϕ

) of double mode is forced with the modulations q n,i (t) = q * cos(ω n,i t) and q n,i (t) = ±q * sin(ω n,i t) such that a forward or backward rotating wave is generated. In this way, fifteen separate unsteady simulations have to be performed to get the aeroelastic dampings of the n m = 3 different types of modes (1F, 2F and 1T) for the nodal diameters n = 0, ±1, ±2.

The solutions of the complex reduced equations of the structure are assumed to be such that q(t) = q * e pt with the complex pulsation p = iω a (1 + i α) in which ω a is the pulsation of the damped system and α is the aeroelastic damping. The evaluation of α relies on the linearity assumption of the generalized aerodynamic forces [START_REF] Tran | Methods of fluid-structure coupling in frequency and time domains using linearized aerodynamics for turbomachinery[END_REF]. In this case, the generalized forces write f ag = F ag (Φ, p) q * e pt and the linearization of the forces leads to the flutter equation

to identify in only one simulation the dampings of the two rotating waves corresponding to the nodal diameters n = ±1. 

1 , ϕ

).

The next step is to perform the same simulation with more modes. We consider then the basis Ψ = [ϕ

0 , ϕ

0 ] containing the single modes for n = 0. A standing wave is generated for each mode with q 0,i (t = 0) = q * 0,i +q s 0,i where q s 0,i is the generalized coordinate which is the solution of the static aeroelastic problem. The generalized coordinates are plotted on figure 9(a). The Fourier transform of each analyzed coordinate q 0,i exhibits one main peak at the eigenfrequency f 0,i and two other peaks at about f 0,j with j = i. The signal processing tool detects N f = 3 components for each coordinate. This means that coupling effects are present and can be evaluated. The damping values α 0,i identified from q 0,i are close to the values previously computed with the weak coupling strategy. The dampings α 0,j for j = i describe the coupling effects between the modes.

The same type of simulation with the basis

1 ] for the nodal diameter n = 1 is more complicated to analyze since N f = N f = 6 components have to be identified. The identification procedure provides less satisfying values of the damping for the modes 2F and 1T and only one of the two rotating waves of each mode is sometimes detected. Several initial conditions have been investigated to produce purely or mixed standing waves for example but the results were not improved.

The estimation of the dampings with bases containing the different modes of a given diameter works well only for n = 0, since single modes with weak coupling are encountered. When double modes at a given diameter are considered, the coupling effects seems to be more important and the signal processing tool fails to correctly identify the parameters. 

Figure 9: Time series of the generalized coordinates obtained from a strong coupling computation with two bases containing the different modes for n = 0 and the mode 1F for n = 0, ±1, ±2.

The last basis considered here contains the same mode for different nodal diameters:

. The generalized coordinates are plotted on figure 9(b). Since there is no coupling between the modes of different diameters [START_REF] Tran | Methods of fluid-structure coupling in frequency and time domains using linearized aerodynamics for turbomachinery[END_REF], the signal is easily analyzed. Indeed, the identification procedure has just to identify N f = 1 component for q 0,1 and N f = N f = 2 components when n = 0. In this way, the five damping values for the mode 1F can be estimated accurately from only one simulation.

Finally, the potential of the method is demonstrated using the whole basis for the mode 1F:

n , ϕ

n , . . . , ϕ

12 ]. The modes for n > 2 are built from the modes (ϕ

2 (S 0 )) known on the reference sector by applying the cyclic symmetry boundary condition given at Eq. ( 5). Since the coupling effects are weak, the identification of the damping values works well and the dampings associated to each mode can be estimated from only one computation. The result is plotted on figure 10 and the comparison with the damping values computed at n = 0, ±1, ±2 by the usual weak coupling strategy with two different time discretizations clearly demonstrates the accuracy of the values predicted with the proposed strong coupling strategy.

To sum up, table 2 presents the potential CPU cost reduction provided by the strong coupling strategy used in this paper for the determination of the damping values. The first line provides the CPU time for the weak coupling simulation performed on the reference sector with chorochronic boundary conditions. The CPU time is great in this case because the simulations have to be performed separately for each type of mode and diameter. Besides, the chorochronic boundary conditions requires the simulation of a longer time interval (hence a greater number of periods n per ) to reach an acceptable convergence. Finally the simulations have been performed on only one processor because the splitting of the domain in seven blocks is not well suited to a parallel computation with a satisfying load balance. The CPU cost is reduced if the weak coupling is performed on the whole fan (see the second line in table 2). Indeed, the number of simulated periods is reduced