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Added-mass force in dry granular matter

A. Seguin and P. Gondret
Université Paris-Saclay, CNRS, Laboratoire FAST, F-91405, Orsay, France

From 2D numerical simulations of the motion of a circular intruder into a dry granular packing,
we make evidence for a specific force term in the case of unsteady motion in addition to the
force corresponding to a steady motion. We show that this additional term is proportional to
the acceleration of the intruder relative to the grains as the added-mass force known for simple
fluids. This force term corresponds to a variation in the kinetic energy of the surrounding flow and
is characterized by a coefficient CAM which is intrinsically linked to the nature of the granular
media. An analytical calculation of the added-mass coefficient CAM is developed based on the
specific velocity field known for 2D granular flow around a cylinder. The theoretical value is shown
to depend on the grain-cylinder size ratio, in good agreement with the measurements from our
unsteady simulations.

PACS numbers: 45.70.-n 83.80.Fg

Introduction. – Granular flow around obstacles has re-
ceived much attention in recent years [1–12] and the drag
force on moving objects is a key physical ingredient to be
considered in numerous situations such as bio-inspired
locomotion [13] or anchoring problems [14]. The rheolo-
gical characteristics of flowing materials have a strong
influence on the drag force, which can thus be very dif-
ferent for complex fluids, such as polymers, suspensions,
foams or granular materials with shear-thinning or shear-
thickening behavior, when compared to simple Newto-
nian fluids [15]. The concept of added-mass, which was
introduced by Bessel to describe the motion of a pen-
dulum in a fluid [16], is related to the work necessary
to modify the kinetic energy of the surrounding fluid in
the case of an unsteady motion with a velocity U(t) va-
rying with the time t. The pressure field is modified and
induces an additional force term proportional to the ac-
celeration dU/dt and to the mass ρV of fluid of density
ρ which is displaced by the object of volume V , with a
numerical prefactor CAM that can be calculated analy-
tically for simple shapes as for spheres (CAM = 1/2) or
cylinders (CAM = 1) in perfect fluids [15, 17]. These va-
lues are for isolated objects in a infinite fluid but may be
slightly modified by close boundaries [18].

In granular matter, even if unsteady flows arise in
many situations such as for impacts [5, 6, 19], locomotion
[13] or anchoring [14] in sands, the models developed are
in general based on a steady drag force only, except in
situations where the surrounding fluid is not negligible
such as sediment transport [20] and fluidized beds [21].
The steady drag force in granular matter has been
investigated in many experiments and numerical studies
for objects of simple shapes as cylinders [1, 4, 7–9], or
spheres [11, 12] or even more complex shapes [3]. At
high velocity, the drag force scales as U2 [4, 10–12], as
in the inertial hydrodynamic regime corresponding to
large Reynolds number Re = ρUD/η for Newtonian
fluids of viscosity η. But at low velocity, the drag force
is generally independent of the velocity U [1] in contrast
with Newtonian fluids [15]. This is due to the fact that

Figure 1. Snapshot of the flow configuration : A large disk
of diameter D is moved horizontally at an imposed velocity
U along the x-direction at the depth h of a two-dimensional
layer of small grains of diameter d within the vertical gravity
field g. The simulation parameters are here U = 0.5 m/s,
D = 15d and h = 15.5d (Fr = U/(gh)1/2 = 1.3) with d = 1
mm grains colored according to their velocity u from blue at
u = 0 to dark red at u/U = 2.5.

the effective “viscosity” of the grain assembly is decreased
close to the object by the shear with a larger “granular
temperature” [7]. In the case where external vibrations
are applied to the granular matter, the drag force may
display a linear dependence with the velocity U [22] as
in viscous fluids at low Re [15]. As the “viscosity” is hard
to define for granular matter and depends on pressure
[23], the Froude number Fr is often used instead of the
Reynolds number to separate the different flow regimes.
In the case of a granular layer of vertical height h in the
gravity field g, Fr = U/(gh)1/2 is indeed the pertinent
parameter for the steady force regimes [24]. In granular
matter, the added-mass force is sometimes mentioned
to explain striking experimental results [25] but still
unknown. This force is expected to be different from
Newtonian fluids due to its complex rheological behavior
which is still the aim of an intense research activities
with jamming, yield stress and shear thinning [26].

We show in this Letter that an added-mass force arises
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Figure 2. (a) Dimensionless drag force F/(ρghDd) as a function of the dimensionless time tU/D = x/D for a disk of diameter
D = 15d moving with U = 0.5 m/s ≃ 1.3(gh)1/2 at the depth h = 15.5d of a packing of grains of density ρ = 103 kg.m−3. (—)
instantaneous force (in gray) and force averaged over 105 successive points (time step) corresponding here to ∆x/D = 0.2 (in
black). (- - -) mean value FS/(ρghDd) = 3.3 over the entire time window (∆x/D = 6). (b) Dimensionless steady drag force
FS/(ρghDd) as a function of the Froude number Fr = U/

√
gh in a log-log plot for the whole range of Fr and (inset) in a

lin-lin plot for a narrow range of Fr around 4. (◦) Data from numerical simulations for an intruder disk of diameter D = 15d

moving at different constant velocities U and thus different Froude numbers Fr = U/(gh)1/2, (- - -) asymptotic behaviors with
a constant plateau value FS/(ρghDd) = 1 at Fr ≪ 1 or a quadratic law FS/(ρghDd) = 0.4Fr2 at Fr ≫ 1, and (—) best linear
fit FS/(ρghDd) = 3.2Fr − 3.3 in the range 2 ⩽ Fr ⩽ 6.

for unsteady motion in granular matter. To put in light
this force term, we consider a simple flow configuration
where an intruder is moved within a granular layer as
sketched in Fig. 1. We perform two-dimensional (2D)
simulations using a discrete element method (DEM)
based on molecular dynamics, and calculate the ins-
tantaneous force exerted by the grains of diameter d
on the circular intruder of diameter D. We show that
a force peak arises when the intruder is accelerated
and that this peak is proportional to the acceleration.
This force peak corresponds to an added-mass force
term characterized by a coefficient CAM which varies
with the grain/cylinder size ratio d/D : CAM is close
to 1 for vanishing d/D but can be much larger than 1
for d/D ≳ 0.1. Using known velocity fields specific to
granular matter, CAM can be calculated analytically and
is found in good agreement with the measurements from
the unsteady simulations, showing the same variation
with the size ratio D/d.

Numerics – A molecular dynamic method is used
to perform 2D simulations in a flow configuration
illustrated in Fig. 1 : a large disk of diameter D is
moved at an imposed velocity U along the horizontal
x-direction at the depth h of a planar layer of smaller
grains of diameter d. Such a technique has been already
used to well reproduce unsteady situations like impacts
[5]. Most of our simulations have been performed with
D = 15d and a few with different disk diameter in the
range 1 ⩽ D/d ⩽ 100. The granular medium consists
of spherical beads with an uniform size distribution
between 0.8d and 1.2d where d = 1 mm is the mean
diameter, to avoid any crystallization. Each grain has
the same Young’s modulus E = 1 GPa and the same

mass m so that the grain density is distributed between
0.6ρg and 2ρg around its mean value ρg ≃ 6.5m/πd3.
The grain interactions fij between two grains come into
play when the distance rij between two grains is smaller
than (di + dj)/2, with only normal component and no
tangential component. The normal force is a dissipative

Hertzian force of the form fij = kζ3/2 − λ
dζ

dt
where

ζ = (di+dj)/2−rij is the interpenetration of the grains,
k the stiffness of the contact and λ a damping coefficient.
The stiffness k is directly related to the mechanical
property and size of the grains through the relationship
k = E

√
d/2. The damping coefficient λ is adjusted to

reproduce a restitution coefficient en = 0.5 defined as
the ratio of the normal velocities before and after a
binary collision. The absence of tangential component in
the force contact model corresponds to no microscopic
friction. However, a macroscopic friction arises from
steric hindrance in the granular packing [27].

To prepare the initial state, the intruder was first
fixed at a given initial position (x0, y0)=(37.5d, 30d),
where y = 0 corresponds to the bottom wall and x = 0
and x = L correspond to the lateral walls of a container
of length L. Then, a dilute granular medium of N
grains of diameter d is placed above and let fall under
the action of gravity (g = 10 m.s−2 parallel to the
y-direction) which leads to a loose random packing up
to a mean height H ≃ 60d, with a surface fraction
ϕ = Nπd2/4HL ≃ 0.83 less than the critical value
ϕJ = 0.85 [28, 29]. The effective density of the grain
assembly is given by ρ = 2ϕρg/3 as the grains are sphe-
rical. Once the initial configuration has been prepared,
the intruder is moved horizontally at a velocity U along
the x-direction from x = 0.1L to x = 0.9L. During the
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Figure 3. Time evolution of the force F (t)/FSi for a disk of
diameter D = 15d accelerating from Ui = 1 m/s ≃ 2.6(gh)1/2

to Uf = 2 m/s ≃ 5.1(gh)1/2, with Γ = 0.9g (blue line), 12.5g
(yellow line) and 25g (red line). The force signal is averaged
over 105 successive points corresponding to τ/10. (- - -) Ex-
pected initial and final steady forces FSi and FSf = 2.6FSi .

intruder motion, we record the drag force F exerted by
the granular medium on the intruder in the x-direction.
The time step is small enough to ensure numerical
convergence and the length L of the container is large
enough (375d ⩽ L ⩽ 750d ) to avoid any influence of
the lateral walls on the drag force [30]. Before looking
at unsteady motions, we first check the different force
steady regimes depending on the Froude number, that
will be necessary to understand well the unsteady results.

Steady motion. – A typical instantaneous force signal
F (t) is shown in Fig. 2(a) for an imposed constant
velocity U = 0.5 m/s corresponding to the Froude
number Fr = U/(gh)1/2 ≃ 1.3. The drag force F (t)
exhibits strong and rapid fluctuations which may be
associated to the formation/breakage of force chains
[31, 32]. When averaged over 105 successive points (time
steps) corresponding to the displacement ∆x/D ≃ 0.2,
the drag force does not vary so much around the steady
value FS ≃ 3.3ρghDd obtained by averaging over the
entire time window corresponding the large relative
displacement ∆x/D ≃ 6. These observations are in
agreement with experiments [33]. For different velocities
U and thus different Froude number, the steady force
FS is different as reported in Fig. 2(b). A plateau is
observed at low Froude number corresponding to the
quasi-static regime where the force does not depend on
velocity : FS = CDqsρghDd with a quasi-static drag
coefficient CDqs ≃ 1 for Fr ≪ 1 (horizontal dashed
line). The inertial regime at high Froude number is also
observed where the force increases with the square of
the velocity : FS/(ρghDd) = 0.4Fr2 (dashed line of
slope 2 in Fig. 2b) so that FS = CDiρDdU2/2 with
an inertial drag coefficient CDi ≃ 0.8. The crossover
between these two limit regimes is expected around
Frc = (2CDqs/CDi)

1/2 ≃ 1.6. Close to this crossover,

the increase of F with Fr is approximately linear :
FS/(ρghDd) ≃ 3.2Fr − 3.3 in the range 2 ⩽ Fr ⩽ 6 as
shown in the inset of Fig. 2b.

Unsteady motion – We now consider an unsteady
motion with a phase of constant acceleration Γ between
two phases of constant velocities Ui and Uf > Ui. This
acceleration is applied at the time t = ta during the
time interval τ so that the acceleration Γ = dU/dt is
Γ = (Uf − Ui)/τ . In the following, we change only
the time interval τ for changing the acceleration Γ.
We choose the initial and final velocities in the range
where the steady drag force increases linearly with
velocity : Ui = 1 m/s and Uf = 2 m/s corresponding
to the Froude numbers Fri ≃ 2.6 and Frf = 5.1,
respectively, and to the steady forces FSi ≃ 5ρghDd
and FSf

≃ 13ρghDd ≃ 2.6FSi , respectively. During
the unsteady motion the force F is thus expected to
increase linearly with time at low acceleration where
no significant unsteady force term is expected, and an
extra unsteady term FAM is expected to arise at high
acceleration. The time evolution of the force measured
in the simulations is reported in Fig. 3 for three typical
acceleration Γ from 8.3 m/s2 (0.9g) to 250 m/s2 (25g)
with filtered signals so that the unsteady force term
is expected to display a bell shape. For the smallest
acceleration value (Γ = 0.9g), the force increases about
linearly during the acceleration phase from FSi

to FSf

so that no extra unsteady force term can be clearly seen.
For the largest acceleration value (Γ = 25g), we observe
a large force peak during the acceleration phase which
indicates undoubtedly an extra unsteady force term.
For the intermediate acceleration value (Γ = 12.5g),
a smaller force peak can be seen during the unsteady
motion. The calculation of the unsteady force is made
by averaging the force signal F (t) over the time interval
τ corresponding to the constant acceleration Γ. The
extra unsteady force term FAM is then computed by
withdrawing the steady force term (FSi

+ FSf
)/2 to the

mean force < F >τ calculated from the instantaneous
signal F (t) : FAM =< F >τ −(FSi + FSf

)/2. This extra
unsteady term FAM is reported in the inset of Fig. 4
as a function of ρV Γ, both normalized by the initial
steady force FSi . The data points made by varying the
acceleration align well along a straight line of slope 1 in
the log-log plot of Fig. 4 which means that the unsteady
extra-force term FAM is proportional to the acceleration
of the intruder Γ. Note that the point obtained at the
lowest Γ is not significant since the added mass force
is very small, only about 3% of the initial steady force
FSi

. Other points made by varying the grain density
fall on the same master curve, meaning that FAM is
also proportional to the mass of grains displaced by
the intruder of volume V = πD2/4. All these findings
demonstrate that FAM corresponds to an added-mass
force. A good linear fit of the data of Fig. 4 is obtained
for FAM = (0.8± 0.1)ρV Γ. This corresponds thus to the
added-mass coefficient CAM = FAM/ρV Γ = 0.8 ± 0.1
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Figure 4. Added-mass coefficient CAM as a function of the
grain-cylinder size ratio d/D. (⋄) simulations results and (—,-
- -) theoretical prediction from Eq. (1) with α = 1/4+ 2d/D.
Inset : Dimensionless unsteady force FAM/FSi as a function
of ρV Γ/FSi for 4 < Γ ⩽ 500 m.s−2, D = 15d and ρ = 103

kg.m−3 (□), and for ρ = 102 kg.m−3 and 104 kg.m−3 (×). (-
- -) Best linear fit FAM = 0.8ρV Γ.

close to the value 1 known for Newtonian fluids. Making
simulations with other cylinder diameter D in the
range 1 ⩽ D/d ⩽ 100, we observe that the added-mass
coefficient CAM increases with d/D with a value slightly
smaller than 1 for d/D ≲ 0.1 but that becomes much
larger than 1 above 0.1.

Theoretical modeling – The rheology of granular me-
dia is quite different from Newtonian fluids [23, 34, 35]
so that the flow of grains around an obstacle is quite
specific. Several experimental studies have measured the
velocity field of a stationary flow of grains around a
cylinder in vertical penetration [7, 8, 36, 37] and the
unsteady grain velocity field in impact situations was
found similar to the stationary case [38]. According to
these studies, the velocity field u of the grain flow
around the cylinder can be modeled approximately as
u(r, θ)/U = Ar(r) cos θer + Aθ(r) sin θeθ where r is the
distance from the cylinder center and θ is the angle from
the direction of motion. The radial functions Ar and
Aθ for the radial and azimuthal velocities can be ap-
proximated by Ar(r) = exp [−(r −D/2)/λ] and Aθ(r) =
(r/λ − 1) exp [−(r −D/2)/λ], respectively [8]. The cha-
racteristic length λ for the radial variation of the velocity
field has been shown to scale with the cylinder size with
some effect of the grain size : λ ≃ D/4 + 2d from mea-
surements performed for d/D ≲ 0.1 [8]. The exponential
variation of the velocity field in granular matter is quite
different from that in Newtonian fluids which displays
power law variations. The added mass coefficient CAM

which corresponds to a variation in the kinetic energy of
the surrounding fluid can be calculated in the case of the

2D granular flow around a cylinder of diameter D as [39]

CAM =
4

πD2

∫ +∞

r=D/2

∫ 2π

θ=0

[
u(r, θ)

U

]2
rdrdθ

=
1− α+ 6α2 + 6α3

4α
,

(1)

where α = λ/D. The added-mass coefficient CAM

is a function of α only, whose value depends on the
grain/cylinder size ratio d/D. With α = 1/4 + 2d/D
taken from [8], eq. (1) leads to CAM = 39/32 ≃ 1.2
at vanishing d/D, which is close to the value 1 corres-
ponding to Newtonian fluids even if the velocity field
is quite different for granular matter. For increasing
d/D, the CAM value predicted by eq. (1) increases
and may be much larger for d/D ≳ 0.1 as shown in
Figure 4. These theoretical predictions are not far from
the values given by the numerical simulations, and in
particular they do explain the increase of CAM with the
grain/cylinder ratio by the increase of the characteristic
length λ of the velocity field. Note that the theoretical
CAM values estimated here may be slightly modi-
fied by the precise flow configuration, as the near free
surface parallel to the cylinder motion in the simulations.

Conclusion – We report force measurements from 2D
numerical simulations of an intruder disk moving in
granular matter with different acceleration. We highlight
that an extra force term arises during the unsteady
motion and is proportional to the acceleration Γ and
to the mass of grains ρV displaced by the intruder of
volume V . This demonstrated that this extra force term
corresponds to an added-mass force. The added-mass
coefficient CAM depends on the specific velocity field of
the granular flow around the cylindrical disk, which is
known to display exponential variation with a characte-
ristic length that increases with the grain/cylinder size
ratio d/D [8]. The added-mass coefficient CAM is close
to one at low d/D but increases with d/D and may
be much larger than one for d/D ≳ 0.1. This can have
important technical consequences with non-negligible
extra force term in unsteady regimes to be taken into
account in dimensioning equipments. With our findings,
the added-mass force is expected to be larger than the
steady drag force when Γ > (4CDqs/πCAM )gh/D in the
quasi-static regime or when Γ > (2CDi/πCAM )U2/D
in the inertial regime. With the coefficients CDqs,
CDi and CAM all of order 1, this leads to the simple
criteria Γ ≳ gh/D or Γ ≳ U2/D. Added-mass could
thus be important especially at low depth or in low
gravity environments, and at low velocity. This poses a
milestone for forthcoming experimental investigations
and 3D numerical simulations to be developed.
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