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EFFICIENT COUPLING STRATEGIES FOR THE NUMERICAL PREDICTION OF THE AEROELASTIC STABILITY OF BLADED DISKS

Different strategies of nonlinear dynamically coupled fluid-structure simulations are considered in this paper to predict the aeroelastic stability of bladed disks assemblies. We focus on the feasibility of multimodal weakly coupled simulations in which a prescribed motion made up of several structural mode shapes governs the structural displacements. Such computations provide indeed several damping values at once whereas usual weakly coupled simulations are performed separately for each mode and require numerous batch simulations. The aeroelastic damping describing the system's stability is evaluated from a linear approximation of the generalized aerodynamic forces time histories. This approximation is based on the first harmonic Fourier decomposition which has been extended in this paper to the case of a time history comprising several frequencies.

INTRODUCTION

During the design of bladed disks subjected to an air flow (as turbomachinery), the aeroelastic stability must be taken into account, especially to detect the flutter conditions which correspond to an aeroelastic instability potentially fatal for the structure. In order to predict unstable operating points, we consider in this paper the aeroelastic damping value, whose evaluation requires the resolution of a coupled fluid-structure problem using time-integrated methods. for a transonic flow. On one hand, the fluid is approximated by the nonlinear Reynolds averaged Navier-Stokes equations because of the accurate modelization required for a transonic flow. On the other hand, the structure is approximated by a small set of eigenmodes, each of them having a nodal diameter pattern, i.e. an azimuthal periodicity. There are as many nodal diameter modes as there are blades in row because of the cyclic symmetry [START_REF] Tran | Methods of fluid-structure coupling in frequency and time domains using linearized aerodynamics for turbomachinery[END_REF][START_REF] Valid | Théorie et calcul statique et dynamique des structures à symétries cycliques[END_REF].

Aeroelastic stability computations still require large CPU times. Several reasons are behind this: on one hand, at each time step the resolution of the fluid equations, the update of the mesh deformation and the resolution of the structural equations have to be computed; on the other hand the computations must be done for each mode of the modal basis and for several values of parameters like the rotation speed or the pressure ratio in order to cover the whole operating range.

The aim of the methods proposed here is to decrease the CPU times by computing the damping of all modes in a unique computation, because existing methods for bladed disks do not allow computing several damping at the same time. We therefore focus on two computational strategies: the weak coupling which consists of prescribing a displacement to the structure and the strong coupling which consists of letting the structure moving freely with a possible initial displacement.

The most widespread method used to predict aeroelastic damping nowadays is the weak coupling where the prescribed displacement is an harmonic motion of a single structural mode vibrating at its eigenfrequency [START_REF] Dugeai | Nonlinear numerical aeroelasticity with the ONERA elsA solver, AVT-152 Limit-Cycle Oscillations and Other Amplitude-Limited, Self-Excited Vibrations[END_REF][START_REF] Placzek | Numerical prediction of the aeroelastic damping using multimodal dynamically coupled simulations on a 360° fan configuration[END_REF][START_REF] Tran | Methods of fluid-structure coupling in frequency and time domains using linearized aerodynamics for turbomachinery[END_REF] (this method is here called "monomodal weak coupling"). The purpose of this paper is to prescribe an harmonic motion made up of several modes and frequencies (this method is therefore called "multimodal weak coupling") in order to extract several damping values from only one simulation. Finally, the strong coupling already investigated [START_REF] Carstens | Coupled simulation of flow-structure interaction in turbomachinery[END_REF][START_REF] Placzek | Numerical prediction of the aeroelastic damping using multimodal dynamically coupled simulations on a 360° fan configuration[END_REF][START_REF] Wu | Whole-annulus aeroelasticity analysis of a 17-bladerow WRF compressor using an unstructured Navier-Stokes solver[END_REF] will be briefly compared to the weak coupling. 

Fluid flow model

The compressible, viscous and turbulent flow is described by the nonlinear Reynolds averaged Navier-Stokes equations written in a relative frame of reference rotating around the x O r

axis. An ALE formulation introduced to take into account the mesh deformation induced by the structural vibrations modifies the convective fluxes. The equations solved by Onera's solver elsA [START_REF] Gazaix | The elsA object-oriented computational tool for industrial applications[END_REF] in the fluid domain are given by
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where the unknowns ] , , , [ The fluxes are discretized with the Jameson centered scheme [START_REF] Jameson | Time dependent calculations using multigrid, with application to unsteady flows past airfoils and wings[END_REF] making use of a scalar artificial viscosity with Martinelli correction to stabilize the numerical scheme. Unsteady simulations are performed with the dual time step technique and an implicit backward Euler scheme is adopted.
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For a given rotating speed Ω, the operating point of the bladed disk is defined by a unique couple of pressure ratio П and massflow m & for which unsteady aeroelastic computations are performed. The N S = 24 blades fan model considered in this paper is shown on Figure 1 for Ω at 80 % of the nominal speed. Each sector around the blades contains 119 808 control cells so the whole configuration has about 3 millions of cells.

Structural model with cyclic symmetry

The structural domain U The Finite Elements discretization, together with the cyclic symmetry boundary condition applied between the left and right sides of the reference sector, leads to [START_REF] Tran | Methods of fluid-structure coupling in frequency and time domains using linearized aerodynamics for turbomachinery[END_REF][START_REF] Valid | Théorie et calcul statique et dynamique des structures à symétries cycliques[END_REF] ) , ( 
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The displacements on the reference sector are approximated by
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. The displacements on the other sectors k S are easily deduced from equation ( 2) since the complex modes satisfy the cyclic symmetry boundary condition such that 2). The equation of motion ( 3) is finally projected onto the complex modal basis Φ to get the following reduced order model of the structure [START_REF] Placzek | Numerical prediction of the aeroelastic damping using multimodal dynamically coupled simulations on a 360° fan configuration[END_REF] )
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involving the generalized mass and stiffness matrices µ and γ. In the right-hand size the generalized aerodynamic forces
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on the structural displacements and velocities.

COMPUTATIONAL STRATEGIES

Simulation parameters

Five types of simulations based on the following parameters have been performed:

• Strong or weak coupling.

• Mesh with one or all sectors.

• Modal basis with one or several modes. † An equivalent real basis with double modes given by the real and imaginary parts of the complex modes is also considered in [START_REF] Placzek | Numerical prediction of the aeroelastic damping using multimodal dynamically coupled simulations on a 360° fan configuration[END_REF].

These five simulations are: the weak coupling with several modes in the modal basis and all sectors (i), the weak coupling with one mode in modal basis and one (ii) or all sectors (iii) and the strong coupling with all sectors and one (iv) or several modes (v) in the modal basis. Indeed, using only one sector for the simulation induces the assumption of spatial periodicity of the flow field which requires phase-lagged boundary conditions based on the IBPA and a given frequency ω which is not known a priori in the strong coupling. Therefore the strong coupling simulation with one sector has not been performed. In addition, the weak coupling simulation with one sector and several modes has not been considered, because current phase-lagged boundary conditions rely on only one frequency.

This paper focuses on the weak coupling with several modes; for more details on strong coupling see [START_REF] Placzek | Numerical prediction of the aeroelastic damping using multimodal dynamically coupled simulations on a 360° fan configuration[END_REF]. The prescribed motion is governed by the generalized coordinate vector
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, b n is the number of modes used, * q is the vector of maximal amplitudes of the excitation and ⋅ is the inner product. Then the structural motion is ) ( q u Φ ℜ =

. To sum up, the fluid-structure interface is deformed with the prescribed motion, the fluid mesh is deformed accordingly, the flow field is computed for the current position and the simulation goes on to the next time step.

Damping estimation

To assess the stability of the coupled system, the aeroelastic damping has to be computed. Therefore, an important hypothesis is made on the generalized aerodynamic forces, which are supposed to be linear within the framework of small amplitudes of oscillation. These forces are supposed to depend linearly on q and q & to have a damping term; this yields
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Putting Eq. ( 6) in Eq. ( 5), we have
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The general solutions of Eq. 7 with the generalized aerodynamic forces can be looked for under the following form for the generalized coordinates
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where α is the vector of damping and ω ael is the vector of pulsations of the fluid-structure coupled system, which can be different from the eigenpulsations of the structure. Replacing ) (t q with its new expression in the homogeneous part of Eq. ( 7 
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Generalized aerodynamic forces identification

We need now to compute the matrix B to estimate the vector of damping α . For that purpose, the generalized coordinates ) (t q are assimilated to their Fourier decomposition such as
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and the same is done for the generalized aerodynamic forces.

) 10 ( ) sin( ) cos( ) ( t t t f f ag ω B ω A K f + + =
where K is a b n vector, 
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matrices. The accuracy of the identification strongly depends on the condition number of the matrix G. Once analytical terms of G have been calculated, it follows that the condition number depends on the gap between the frequencies used (the larger this gap the better the condition number) and on the size of [ ] 2 1 ;T T (the larger this interval, the better the condition number). Indeed, diagonal terms of G are
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and one part of the anti-diagonal term of G are
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The efficiency of this method is emphasized with several numerical examples. The aim is to identify a signal f such as
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where ω i are the pulsations, n is the pulsation number, a i and b i are the unknown coefficients to be identified. Each case has been tested with several signals f built with coefficients a i and b i randomly chosen and in sufficient number in order to have coherent results. The errors collected in Table 2 lead to the following conclusions: the number of iterations per period and the number of periods have quite the same influence on the identification accuracy (errors on a i and b i between case 1 and 2 are quite close and in case 2 the number of iterations per period is twice as great as in case 1 and the number of periods is half as great as in case 1). Besides the more frequencies the signal f is composed the more the identification is sensitive to the gap between frequencies (in case 5 the error on a i and b i is much more considerable than in case 4 and in case 3 the error on b i is comparable to the case 4). 1 Iterations per period 2 Periods number 3 Frequencies number 4 Gap between frequencies

Several cases listed in

Complex modes

Particular attention has to be paid when dealing with the usual complex modes describing bladed disks vibrations. Indeed, the link between the matrix B (used to estimate the aerodynamic damping) and the coefficients identified from ) (t ag f with Eq. 10 is less trivial than with real modes. As ) (t q is harmonic Eq. 6 reads ( ) 
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. After development and for a harmonic motion, Eq. 6 reads
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this equation proves that A and B from Eq.11 are real. Thus, one can write
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We are now looking to the link between f A , f B and B . Therefore, the aerodynamic force is approximated by its linear form )

( ) ( t t Fu K f a + =
where K is a N vector, F is a N N × real matrix and ) (t u is a N dimensional complex vector. Noting that ( ) ( )
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As before, one writes Φ as follows
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. After the development of Eq. 13 with previous notations and using Eq. 12 one gets
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The damping value is finally deduced from Eq. 9 and Eq. 14:
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The matrix RI F and IR F correspond to the identification of generalized aerodynamic forces. In practice, the motion prescribed to the structure is 
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. The simulated generalized aerodynamic forces are consequently
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Thanks to the method proposed in the previous section "Generalized aerodynamic forces identification", one extract RI F and IR F , which are necessary to compute α as in Eq. 15 from

        * Φ - ℜ q K f ag H ) (t and         * Φ - ℑ q K f ag H ) (t
, where

) (t ag f
is given by Eq. 16.

NUMERICAL RESULTS

Monomodal weak coupling

Monomodal weak coupling simulations are performed to compare with multimodal weak coupling and strong coupling computations. Modes used in the simulations are the first bending mode, the second bending mode and the first torsion mode for nodal diameter 0, ±1 and ±2 (see Table 4), the aeroelastic damping values are plotted in Figure 2. Simulations have been done for a dimensionless pressure ratio Π=0.98 and a rotational speed equal to 80% of the nominal speed. Regarding the time discretization, there are 96 iterations per period. Indeed the numerical computation adds artificial damping and the less the number of points per period the higher the artificial damping. 

Multimodal weak coupling

The summary of the procedure which leads to estimate the aerodynamic damping value is sketched below Thus, one can chose the modal basis, the time parameters, which are the parameters listed in Table 1, the amplitude * q and the way of building the displacement u .

The purpose of this paper is in particular to decrease the CPU cost of damping estimation, therefore one uses all the available modes in Φ. The modal basis content used to prescribe the displacement will be detailed below. Concerning the time parameters, we have concluded in section "Generalized aerodynamic forces identification" that having too close frequencies in the signal to identify was detrimental for the identification quality. This is particularly true when the number of frequencies is substantial and using enough distant frequencies for the excitation is recommended. As said in section "Monomodal weak coupling", the more the number of iterations per period, the less artificial damping is introduced. Therefore, a tradeoff between the number of iterations per period and the number of simulated periods (which governs the size of the interval [ ] 2 1 ;T T ) has to be found. The vector of modal amplitudes * q depends on the modal basis content. Indeed the modal basis is not handled in the same way when multimodal weak coupling or monomodal weak coupling is performed. The main difference is the manner of exciting the nonzero nodal diameter modes. Instead of exciting real and imaginary parts of the mode Φ n to generate "rotating wave" (see Figure 3), only the real part of Φ n is excited to produce "standing wave" (see Figure 4). In this way, both damping values for positive and negative nodal diameters can be obtained in only one computation, because the modes are conjugate; thus exciting Φ n and Φ -n or ( )

n Φ ℜ
is the same. Table 3 summarizes the damping values computed with generalized aerodynamic forces resulting from (i) a simulation with a rotating wave built from the first bending mode with the nodal diameter ±1, where the displacement is ) sin( ) cos( To sum up, in our case, the modal basis used is ...
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where j i ω is the pulsation of the j th mode at the i th nodal diameter. Then the prescribed displacement is ... ) cos( q ) cos( q
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The generalized aerodynamic forces obtained from this displacement are represented in Figure 5. As we have seen before, the generalized aerodynamic forces identification requires a time integration, but on one hand the aeroelastic simulation begins with an unusable transient (see Figure 6) and on other hand the identification requires the longest time interval to perform efficiently. To address this issue one computes damping values with several time windows and only the converged damping values are conserved (see Figure 7). 

Converged damping computation

The simulation whose results are below in Figure 8 was made with the whole modal basis and the following frequencies: 100 Hz for the first bending mode at all nodal diameters, 218 Hz for the second bending mode at all nodal diameters, 324.5 Hz for the first torsion mode at diameter 0 and ±2, 294.6 Hz for the first torsion mode at diameter ±1. The monomodal weak coupling simulations performed with two time discretizations (32 and 96 iterations per period) delimit the grey domain of damping values. One compares these results with a simulation where all modes are excited exactly at their eigenfrequency (see Figure 9).

One states from this simulation that the damping estimation of the first bending mode is not good (especially for the nodal diameter -2). Indeed the frequencies of the first bending mode are very close (average gap between frequencies at 1.5 %). On the contrary, simulations with grouped frequencies give a good estimation of damping values. The retained strategy is consequently to group together the close frequencies. 

Strong coupling

The results of multimodal weak coupling and strong coupling are now compared. In Figure 10, damping values of the 1 st and 2 nd bending modes and the 1 st torsion mode for the nodal diameter 0, ±1 and ±2 computed with multimodal weak coupling, strong coupling and monomodal weak coupling strategies are plotted. The multimodal weak coupling was made with a displacement built with the whole modal basis. The strong coupling simulation was made for each mode with all the nodal diameters. For the first bending, strong coupling and multimodal weak coupling give close damping values. But for the second bending and the first torsion, the identification of the damping from the computation made with the strong coupling is less accurate for some nodal diameters. Thus the multimodal weak coupling is currently more interesting for the CPU cost reduction and the robustness than the strong coupling. This section is concluded with a simulation made with all the nodal diameters of the bladed disk for the first bending mode (Figure 11). Indeed the identification of damping values from a strong coupling simulation with different mode types and nodal diameters still faces some difficulties because of very close frequencies and large discrepancies in damping values. However when the modal basis is limited to one mode type (1 st bending here), the multimodal strong and weak coupling strategies give similar damping values even with a lot of nodal diameters in the modal basis.

CONCLUSION

This study has presented the interest of the multimodal weak coupling strategy against the strong coupling and the monomodal weak coupling strategies usually employed. First of all, several damping values can be estimated in one simulation contrary to the monomodal weak coupling strategy. Furthermore, the identification method used in monomodal weak coupling requires a smaller time interval and is more robust than the identification method used to analyze the results coming from a strong coupling strategy. Consequently the CPU time can be reduced by almost a factor 10 in the present case as shown in Table 5. 

  are the conservative variables supplemented by one turbulent variable, Fc and Fd are the convective and diffusive fluxes and T is a source term. The convective flux a function of the structural displacement and velocity. The source term depends on the rigid body velocity velocity vector and r x is the relative position. The turbulent energy, as well as the turbulent heat flux, stress tensor and pressure involved in the fluxes are functions of the turbulent kinetic energy k and turbulent viscosity t µ . Assuming a constant turbulent Prandtl number Prt the viscosity is governed by the last transport equation in (1) according to the Spalart-Allmaras model [7] which solves for ρ µ υ / ~t ≈ (far from the walls). Finally, the turbulent energy is determined by an additional equation which is decoupled from the Navier-Stokes equation.

  The last relation in Eq. (2) is the cyclic symmetry boundary condition based on the interblade phase angle (IBPA) n σ which features the spatial phase shift between the displacements of different sectors. Assuming a linear elastic structure, the displacements are governed by S N equations for the traveling wave coordinates.
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 1 Figure 1 : Mesh of the reference sector and the 360 ° configuration with NS = 24 sectors

  right-hand size are only due to the aerodynamic force ∫ = Γ ds p a n f produced by the pressure on the fluid-structure interface. The vibratory behavior of the structure is approximated by a modal basis containing only the first 3 = m n modes (1 st and 2 nd bending and 1 st torsion). The eigenmodes are the solution of the conservative part of equation (3) with the additional constraint of cyclic symmetry:
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  and K are computed one deduces easily C , A and B from Eq. 6 and Eq. 10. The coefficients of f A , f B and K are identified using an approach similar to[START_REF] Zhao | Multifrequency identification method in signal processing[END_REF]. First of all, let us introduce the
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 2 Figure 2 : Damping of first bending, second bending and first torsion modes

  Figure 3 : Rotating wave Figure 4 : Standing wave N. D. Wave type Damping value +1 1.949e-03 -1 Rotating wave 7.077e-03 +1 2.006e-03 -1 Standing wave 7.082e-03

Figure 5 :

 5 Figure 5 : Generalized aerodynamic forces computed with the whole modal basis

Figure 8 :

 8 Figure 8: Comparison between damping computation in monomodal and multimodal weak coupling when the frequencies are grouped together. (a) is the first bending, (b) the second bending and (c) the first torsion.

Figure 9

 9 Figure 9 Comparison between damping computation in monomodal and multimodal weak coupling when the frequencies are not grouped together. (a) is the first bending, (b) the second bending and (c) the first torsion.

Figure 10 :Table 5 :

 105 Figure 10 : Comparison between strong coupling, multimodal weak coupling and monomodal weak coupling

Figure 11 :

 11 Figure 11 : Damping values of the first flexion for all nodal diameters

Table 1 : Test cases for the identification method

 1 Table 1 are dealt with.

	Case	It/per 1	Per/nb 2 Fq/nb 3 Gap/b/fq 4
	1	8	10	5	5 %
	2	16	5	5	5 %
	3	16	10	3	0.1 %
	4	16	10	8	5 %
	5	16	10	8	3 %
	Case	Relative error on a i	Relative error on b i
	1	1.5 %		1.4 %
	2	2.2 %		1.7 %
	3	17.6 %		1.2 %
	4	3.5 %		3.7 %
	5	68.5 %		73.1 %

Table 2 : Test cases for identification method results

 2 

Table 3 : Damping values computed with rotating wave and standing wave for the 1 st bending mode

 3 

Figure 7 : Damping estimation depending on the time window
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	Several simulations have been done with different
	types of excitation. The number of frequencies
	making up the generalized coordinates has been
	changed for a given number of modes in the basis
	to avoid having very close frequencies, which
	worsen the identification. The eigenfrequencies
	associated to the modes are listed in Table 4.
	Mode	N. D. †			0			±1				±2
	1 st Bending		97.92 Hz	100.15 Hz 101.07 Hz
	2 nd Bending	220.77 Hz	210.45 Hz 224.07 Hz
	1 st Torsion	324.07 Hz	294.60 Hz 324.98 Hz

Table 4 : Eigenfrequencies of the whole modal basis retained

 4 

† N. D. = Nodal Diameter Transient signal
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