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Highlights 17 

 18 

• Automated behavioural analysis is a major challenge for precision farming. 19 

• We developed automated detection of lactating sow postures with radars and deep 20 

learning. 21 

• We identified five postures, including transitions risky for the piglets. 22 

• Our method is accurate, fast and requires less memory than computer vision. 23 

• Radars thus hold considerable promises for high through-put recording of livestock 24 

activity. 25 

 26 

  27 
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Abstract 28 

 29 

Automated behavioural monitoring is increasingly required for animal welfare and precision 30 

agriculture. In pig farming, detailed analyses of sow activity are essential to identify and reduce 31 

the risks of piglets being crushed during postural changes of their mothers. Here we introduce a 32 

new, non-invasive, fast and accurate method for monitoring sow behaviour based on millimeter-33 

wave radars and deep learning analysis. We used our method to predict postural changes in 34 

crated sows and distinguish the dangerous one that lie down abruptly from those that lie down 35 

carefully using transient postures. Two radars were placed on a metal backing above the head 36 

and the upper part of the back of each of ten sows to monitor their activity during 5 hours. We 37 

analysed the radar data with a convolutional neural network and identified five postures. The 38 

average sensitivity was 96.9% for standing, 90.8% for lying, 91.4% for nursing, 87.6% for 39 

sitting, but only 11.9% for kneeling. However, the average specificity and accuracy were greater 40 

than 92% for the five postures. Interestingly, two of the ten sows occasionally moved directly 41 

from standing to lying, without using the transient postures sitting and kneeling, thereby 42 

displaying risky behaviours for their piglets. Our radar-based classifier is more accurate, faster 43 

and require less memory than current computer vision approaches. Using more sows will 44 

improve the algorithm performance and facilitate future applications for large scale deployment 45 

in animal farming.  46 

 47 

Key-words: animal welfare, lactating sow, radar sensor, convolutional neural network, 48 

behavioural classification  49 

 50 

  51 
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Introduction 52 

 53 

An animal’s behaviour can inform about its stress level (von Borel et al. 2007) and personality 54 

(O’Malley et al., 2019). In the case of livestock, detailed behavioural are increasingly used to 55 

address key economic, ethical and societal issues related to animal health and welfare. In pig 56 

farming, for instance, sows are often confined in crates during the lactation period in order to 57 

limit their movements and slow down postural changes that can be dangerous for the piglets 58 

(Edwards and Fraser, 1997; Edwards et al. 2002). However, these rearing conditions are not 59 

ethically acceptable anymore. Long-term detailed behavioural monitoring of sow activity has 60 

thus become essential to move towards freer housing conditions during the lactation period (e.g. 61 

Chidgey et al., 2015; see Baxter et al. 2012 for a review). Ultimately, selecting sows that are 62 

calm, careful towards their piglets, and do not suffer from leg problems as future breeders would 63 

promote the use of more welfare-friendly systems. 64 

The study of sow behaviour over extended periods of time is a fairly recent approach and 65 

technological solutions combining sensors and signal analyses for automated monitoring are 66 

being developed at a tremendous speed (Fernandes et al., 2020). Two broad categories of 67 

approaches have been used. Invasive technologies include sensors attached to the animals, such 68 

as accelerometers that record the acceleration and orientation of the sow across time. These 69 

sensors are typically embedded in an ear tag (Traulsen et al. 2018, Oczak et al 2020), a collar 70 

(Cornou et al., 2011), a harness (Canario et al., 2018), or fastened to one leg (Ringenbberg et al 71 

2010). However, as piglets grow, they increasingly explore their environment and are likely to 72 

chew the device insistently, which may lead the sow to change posture and activity if the 73 

discomfort is significant.  74 

Non-invasive technologies include remote sensors, such as infrared cells or video 75 

cameras. When positioned above a sow, infrared sensors enable the discrimination of lying, 76 

sitting and standing postures (Mainau et al. 2009). Cameras have been used to identify different 77 

postures when combined with machine or deep learning for data analysis (Zheng et al. 2018). 78 

Several image processing methods have proved effective in estimating the posture of sows kept 79 

in a crate (Bonneau et al. 2021, Nasirahmadi et al. 2019, Okinda et al. 2018). For instance, 80 

convolutional neural networks have been used to estimate the posture of a sow with its litter in 81 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.13.488188doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.13.488188
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

an individual pen (Nasirahmadi et al. 2019). The rate of good classification for these methods is 82 

close to or above 90% for several classes of postures (e.g. sitting, standing, lying down). This 83 

suggest further development of algorithms for these non-invasive technologies can lead to the 84 

automatic monitoring of livestock behaviour at large scale in a near future. Pigs are good models 85 

to develop and crash test these approaches since sows are isolated from conspecifics during the 86 

lactation period. However, this seems out of reach with current computer vision approaches as 87 

the require large memories and computational power to be functional. 88 

Here we introduce a non-invasive method for the automated detection of sow posture 89 

based on Frequency-Modulated Continuous-Wave (FMCW) millimeter-wave radars and 90 

illustrate its efficiency to identify postural changes of the sow that are risky for the piglets, when 91 

sows are maintained in crates. The ability of FMCW radars to monitor animal behaviour was 92 

recently demonstrated in insects (e.g. bees: Dore et al. 2020) and mammals (e.g. sheep: Henry et 93 

al. 2019; Dore et al. 2021). The main advantage of radars is that data collection and processing is 94 

fast and requires less memory than computer vision (the memory used for each measure is 1Mb 95 

and 5Gb for one image without compression). Manteuffel (2019) used Doppler radars to analyse 96 

sow activity, but limited their investigation to the detection of movements, since this kind of 97 

radars only gives the speed of the sow across time. In our study, we first compared the efficiency 98 

of the radar tracking system to state of art video tracking. We then applied a Convolutional 99 

Neural Network (CNN) to the data in order to classify the postures and measure the quality of 100 

posture prediction.  101 

 102 

Materials and Methods 103 

 104 

Sows and ground-truth measurements 105 

Measurements were made on ten lactating sows from the Large White breed, on the GenESI 106 

INRAE experimental farm of Le Magneraud (France; doi: 10.15454/1.5572415481185847E12). 107 

Sows were studied up to two weeks after farrowing. Their behaviour was monitored with FMCW 108 

radars for a minimum of five hours. Video recordings were made in parallel to assess the 109 

reliability of the radar measurements. Postures were annotated manually from these recordings 110 

frame by frame every 100ms. The synchronisation between the radar and the video 111 
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measurements was performed a posteriori by detecting manually the kneeling posture. This 112 

posture was chosen as reference because it was easily distinguished on the radar signal and was 113 

observed on all sows. We used five hours of annotated data per sow and considered five postures 114 

(Figure 1): standing; sitting; lying (i.e. ventrally); nursing (i.e. lying laterally with udder 115 

exposed), and kneeling.  116 

 117 

Experimental Setup 118 

Two millimeter-wave FMCW radars (EasyRadar) manufactured by Silicon Radar (Franckfurt, 119 

Germany) were used. The radars were attached on a metal structure in the middle axis of the 120 

crate (Figure 1). One radar was placed above the sow's head (i.e.1.40m above ground). The other 121 

radar was located at the same height in the upper part of the sow's back, at a distance of 55cm 122 

from the first radar. Each radar transmitted a frequency-modulated electromagnetic signal (chirp) 123 

every 5ms with the carrier frequency of 122GHz, a modulation bandwidth B of 6.9GHz, and a 124 

transmitted power of 4mW. The radars were used as altimeters with the theoretical depth 125 

resolution d=c/(2B), where c=3e8m/s is the speed of light in vacuum. A resolution of 2.1cm was 126 

sufficient to estimate the posture of the sow. Radars were small enough (100 x 70mm2) to be 127 

easily mounted above the crate without affecting the behaviour of the sows. A dielectric lens was 128 

mounted in front of each radar antenna to obtain a half-power beam width of 8°. In this way, the 129 

radars illuminated the sow, but not the top metallic bars of the crate. 130 

 131 

Radar signal analysis and electromagnetic clutter mitigation 132 

The raw data (radar signal) are available upon request to the corresponding author. To estimate 133 

the posture of the sows, we analysed the signal delivered by the two radars over time. We 134 

computed the beat frequency spectrum (i.e., echo level magnitude as a function of the distance) 135 

by applying a Fourier transform (Stove et al. 1992) on the time signal. The result was a 2D raw 136 

data image of echo levels from which the posture of the sow could be estimated (Figure 2A). 137 

However, potential electromagnetic clutter, for instance due to the electromagnetic 138 

backscattering from the crate or from the piglets close to the sow, may alter the estimation 139 

accuracy of the posture. In order to mitigate this clutter, we used time-gating and spatial filtering. 140 

First, we applied a mean filter on the data across the slow time axis (Figure 2B). The mean was 141 
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estimated over 1s, which corresponds to 20 consecutive radar measurements. Next, we applied 142 

Gabor filters to reduce the impact of uncorrelated data over time (Feichtinger and Strohmer 143 

2012; see Figure 2C). Finally, we used an average filter (Figure 2D). The main advantage of 144 

using these filters is that they are simple to implement and suitable to real-time applications. In 145 

the final filtered 2D radar image (Figure 2D), some distinguishable behaviours of the sow could 146 

be detected at the distance of 1m, such as the transition to the standing posture around 1300s, 147 

2700s and 3400s. These images obtained from two radars were used as input data for the posture 148 

classifier (see below). 149 

 150 

Classification of sow postures using a Convolutional Neural Network analysis 151 

To extract the postures of the sows, we used a CNN-based classifier. This approach has 152 

previously proved efficient for optical image classification (Simonyan and Zisserman 2015). 153 

Here the number of convolution layers as well as the number of filters per layer were chosen to 154 

speed up the training step of the model. A total of 16 filters were used for the first convolutional 155 

layers and the number of filters was doubled after each reduction phase (as proposed in 156 

Simonyan and Zisserman 2015). An illustration of the different layers of the network, including 157 

phases of convolution, activation, batch normalisation, pooling, dense, and dropout, is given in 158 

Figure 3. 159 

CNN models were applied individually on each sow, since radar to ground distances were 160 

adjusted to the body size of each sow. To build a model, data from each sow was separated into 161 

two subsets containing respectively the first 60% and the last 40% of each posture data. The first 162 

subset was used for the training of the CNN. The second subset was used to estimate the quality 163 

of the predictions by checking that the results on the training dataset were not due to overfitting. 164 

During the training phase, we used 32 annotated data between two adaptations of the neural 165 

network weights. The CNN weights were adjusted following the method described by (Kingma 166 

and Ba 2014) which used a stochastic gradient descent and momentum estimation to optimise the 167 

neural network weights. The cost function was the standard function used by Murphy (2012) for 168 

multi-class classification. This function computes the minimal cross entropy for each output 169 

class. During the initial training, the five postures of interest were considered (Figure 1). After 170 

the training phase, each CNN was tested on the validation dataset.  171 
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The performance of the classifier in terms of the number of sow posture images that were 172 

correctly classified as well as the misclassified cases for each class was assessed with the 173 

confusion matrices. In the multi-class classification task, the evaluation metrics are computed 174 

based on these confusion matrices. We used three evaluation metrics to estimate the quality of 175 

the classifier: the specificity, the sensitivity and the accuracy (Fawcett 2006). The specificity (sp) 176 

indicates if the classifier gives negative results when the considered posture is not seen. The 177 

sensitivity (sb) indicates if the classifier gives positive results when the considered posture is 178 

seen. The accuracy (acc) indicates how often the classifier gives the true posture. Specificity, 179 

sensitivity and accuracy were calculated as follows: 180 

 181 
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 182 

Where TP is the number of times that the estimated class corresponds to the true class, TN is the 183 

number of times the class is not predicted and corresponds to another class, FP is the number of 184 

times that the class is predicted, but does not correspond to the true class, and FN is the number 185 

of times that the class is not predicted and does correspond to the considered class. 186 

 187 

Results 188 

 189 

For a detailed analysis of the quantitative results, the ten individual classification architectures 190 

were compared in the form of confusion matrices (global matrix for the ten sows, and individual 191 

matrices for each sow) shown in Figure 4. All occurrences of true/predicted postures are reported 192 

in the matrices for the 5 detected postures. The probability of false detection for each posture is 193 

derived from these first results. The specificity and sensitivity values of postures computed from 194 

the confusion matrices are reported in Table 1. Highest specificity values were obtained for 195 

sitting (99.3%) and standing (99.8%). On average, all postures had an accuracy and a specificity 196 

higher than 92%. Sensitivity was higher than 90% for all postures except kneeling that was 197 

detected in less than 10% of the time. Nursing and lying were confused by 10% on average. 198 

Kneeling had the lowest sensitivity (9.1%), but a high specificity (99.5%) and a high accuracy 199 
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(99.4%). Our method can thus detect four out of five postures with a high specificity, a high 200 

sensibility and a high accuracy. 201 

The pie charts of the ground-truth measurements and estimated measurements of sow 202 

postures obtained from the validation datasets are shown in Figure 5. The relative time spent by 203 

each sow in each posture over a 2-hours period (corresponding to the validation dataset) was 204 

correctly estimated, with an error of less than 10% for all postures except kneeling. The 205 

difficulty in correctly estimating kneeling is likely due to the lack of sufficient radar data to 206 

analyse this posture with a convolutional neural network. Kneeling lasted only a few seconds 207 

(mean: 16s, standard deviation: 7s), which is considerably less than the other postures that lasted 208 

several minutes or hours (Table 2). In addition, the kneeling posture was much more sensitive 209 

than other postures to the measurement errors induced by the observer's annotation delay (i.e. 210 

time needed to press a computer key to record the change in posture). Graphs of the probability 211 

of posture transitions indicate that the different sows lie down differently (Figure 7).  In 212 

particular, two of them occasionally moved directly from standing to lying, without using the 213 

transient postures sitting and kneeling.  214 

 215 

Discussion 216 

 217 

Automated monitoring of behaviour in farm animals is a major challenge to improve animal 218 

welfare and breeding programs for genetic selection. In the case of pig farming, sow postural 219 

activity can be used as an indicator of health problems linked to increased piglet mortality. Here 220 

we introduced a new method for automated monitoring of postures and posture changes of sows 221 

kept in crate using the FMCW radars and a CNN classification. This solution is accurate, faster 222 

and requires little memory to store the data. It is thus applicable in real time. It also provides the 223 

advantages of not being affected by lightening condition (i.e. day and night analysis is never 224 

altered by the light at the level of the crate where the sow is measured) and non-invasive (i.e. do 225 

not alter sow behaviour in any way).  226 

 227 

Comparison with existing methods 228 
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Our radar-based tracking system provides several advantages over other existing methods. For 229 

instance, the radars are more accurate and less invasive than accelerometers (Ringgenberg et al. 230 

2010; Canario et al., 2018). Although the detection sensitivity with the two approaches were 231 

similar for the three postures lying, nursing and standing, the radar data gave an estimation of the 232 

sitting posture with a much higher sensitivity than accelerometers (90% with radars, 37% with 233 

accelerometers). In addition, detecting other postures such as the sitting is meaningful for the 234 

analysis of sow behaviour related to piglet crushing, because it is included in the calculation of 235 

sow postural changes that are risky for the piglets (Melisová et al., 2014). Presumably, lying 236 

down through the transient postures sitting and kneeling indicates that sows are cautious towards 237 

their piglets when lying down.  238 

We also found that the radar data processing is much faster and requires less memory 239 

than video processing for comparable results (Leonard et al., 2019; Bonneau et al. 2021). For 240 

example, Zheng et al. (2018) obtained similar results on the same five postures with a Kinect 241 

camera and a deep learning analysis on sows kept in individual pen, i.e., with more possibility to 242 

move. Using the same experimental design as ours, Bonneau et al (2021) achieved 98% 243 

sensitivity for four postures with a conventional 2D camera. Therefore, the main advantage of 244 

our approach lies in the processing of radar signal which is faster and requires less memory than 245 

that of video signal. Indeed, the processing by successive filtering is fast enough for a real-time 246 

application and this procedure is easily parallelisable. Using an Intel Core i7 processor with 4 247 

threads makes it possible to process 12000 radar measurements per second. For a single 248 

measurement with two radars, only 800 bits are required, compared with several millions 249 

(3Mbits) for a standard definition camera. In our study the total data size of the five hours of 250 

measurements on ten sows presented was 2Go, which is compatible with the use of radars at 251 

large scale for farming applications. Additionally, by default and contrary to video image 252 

analysis, our analysis is independent of light conditions. This may be particularly relevant for 253 

future applications such as monitoring farrowing, which preferably takes place outside the 254 

working hours of the care takers, and therefore when the rooms are not lit (Canario et al., 2014).  255 

 256 

New possible analyses 257 

Beyond being non-invasive, accurate and fast, the radar approach could be used to monitor sow 258 
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carefulness when lying down (Pokorná et al., 2008). In the past, posture changes were rarely 259 

characterised by considering the passage through transient postures, i.e., kneeling and sitting (but 260 

see Pokorná et al., 2008; Wischner et al., 2010) and if so, have involved small groups of animals. 261 

Automated monitoring with radars in a farrowing crate enables such accurate recording of 262 

whether the sow lies down carefully. This feature can be linked to piglet crushing events. 263 

Our data also indicate it is possible to detect piglets with radars. Prior to this study, 264 

preliminary measurements were performed in which the sow’s postures were estimated and the 265 

standard deviation was calculated over 20min, while the sow remained in a given posture. The 266 

standard deviation obtained was of 2.5cm for the nursing posture which is slightly higher than 267 

the theoretical depth resolution. However, the electromagnetic clutter may alter the measurement 268 

accuracy in some situations. For example, part of the metal bars of the crate that are visible to the 269 

radar may generate undesirable electromagnetic backscattering and result in false detections in 270 

the CNN analyses. This negative effect can be limited by precise positioning of the radars, so 271 

that the radar main beam does not intercept the metallic bars. False detections may also occur 272 

when piglets are close to the sow, or when they ride on its back. Figure 6 illustrates this 273 

phenomenon with two 2D radar images recorded simultaneously above (a) the head and (b) the 274 

back of a sow. The posture estimated from the radar processing (indicated as red cross) 275 

sometimes varies abruptly, due to the presence of piglets in the area of interest, i.e., on the back 276 

of the sow (e.g. around 600s, 800s and 1100s). Detection of the piglets at the udder is therefore 277 

presumably possible. The radars can be effective in monitoring additional behavioural aspects of 278 

the sow-piglets relationship that are of importance for piglet survival. 279 

 280 

Conclusions and perspectives 281 

Our study demonstrates the applicability and efficiency of FMCW radars to monitor postures and 282 

postural changes of crated sows. This approach holds considerable promises for future 283 

applications since minor developments are possible to improve the system. For instance, adding 284 

radars will enable to detect new postures and consolidate the estimation of the current ones. Our 285 

method was applied to detect the postural activity of the sow from the estimation of the height of 286 

its head and its back. Consequently, it could not detect lateral movements of the sow and if the 287 

sow was lying on the right or left side. This estimation would be possible by adding a third radar 288 
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on the side of the sow for detecting lateral movements and consequently, for estimating the 289 

orientation of the sow in the crate and whether she is nursing the piglets or not. Moreover, the 290 

kneeling posture was not correctly estimated for any sow. This posture is interesting to capture, 291 

as it reflects a cautious approach of the sow to lie down, compared with sows that slide along the 292 

bars from the standing posture (Pokorná et al., 2008). Sliding is a less suitable way to lie down 293 

for sows as it induces some piglet crushing (Fraser 1990, Damm et al. 2005). The kneeling 294 

posture lasts only a few seconds, and its estimation is sensitive to potential annotation errors due 295 

to human delay between observation and pressing a computer key. However, from the 296 

monitoring of more sows and fixing the radar on the crate rather than a metallic structure above, 297 

it should be possible to improve the reliability of the measurement and the accuracy of the 298 

posture estimator.  299 

Using different types of radars can also improve piglet detection. With our method, the 300 

detection of piglets on the floor is difficult because they rarely enter the radars field of view and 301 

are small compared to the sow. The radar beam width was too small to allow detecting piglets. 302 

One solution to this problem would be to use two 2D radars instead of the current device, and 303 

position one on each side of the sow. In this way, the detection should work even if the sow 304 

hides the piglets from one of the radars beam. Access to such data on the presence of piglets 305 

around the sow would benefit the characterisation of sow carefulness to lie down (Pokorná et al., 306 

2008; Wischner et al., 2010). Adjusting radar characteristics can also increase detection 307 

distances. Until now, results were obtained in indoor environment where the sow cannot move. 308 

The radar detects the back of the sow at all times. The use of radar with sows free of movements 309 

can be more challenging. Then, it should be possible to detect the sow by using a single 3D radar 310 

with a larger beam width, including position and posture simultaneously. To do so, the radar 311 

should be placed centrally on the ceiling above the pen to cover the entire pen with the radar 312 

beam.  313 

Finally, adding data would also make it possible to define a single classifier to estimate 314 

the posture for all sows and develop more detailed behavioural analyses (Bonneau et al., 2021). 315 

So far, the relevance of radars to detect sows that are injured (e.g. excessive time spent lying) or 316 

that are not careful towards their piglets (e.g. fast transition from standing to lying) has not been 317 

studied. Data recorded for longer periods on animals contrasted on these aspects could be 318 
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collected with the radar technology. All these improvements are easily reachable, which strongly 319 

suggests that automated fine recording with radars will help to analyse the relationship between 320 

sow postural changes and risk of piglet crushing. Importantly, radar tracking has limited 321 

constraints on the size and shape of animals (Henry et al. 2018; Dore et al. 2020; Dore et al. 322 

2021), thus offering ample possibilities for tracking a wide range of animals in various 323 

environments in applied and fundamental ethology research.  324 
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Figures 438 

 439 

440 

Figure 1 – Images of sow postures as recorded by the video camera: A) nursing (lying laterally441 

with udder exposed), B) lying (ventrally), C) kneeling, D) sitting, E) standing. F) Two FMCW442 

radars were positioned above the sow to monitor head and back elevation. Radar beams are443 

highlighted in green. 444 
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447 
Figure 2 – Outputs from the successive filters applied to the radar signal. A) Raw data; B)448 

Temporal average filter; C) Gabor filter; D) Gabor filter plus average filter. Blue to yellow449 

colours show low to high echo levels.  450 
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Figure 3 – Illustration of the CNN model applied to radar images for estimating sow postures.

Each convolution layer consists of a convolution filter of size 3x3. The pooling layer reduces the

size of the data and dense layers are fully connected neurons. 
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 454 

455 

Figure 4 - Confusion matrices for the 10 sows (A-J) and postures obtained from the individual456 

CNN analyses. Vertical and horizontal axes indicate ground-truth measurement of the sow’s457 

posture and the estimated posture, respectively. 458 
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 459 

Figure 5 – Percentage of time spent in the different postures by each sow (A-J) according to460 

truth-ground measurement and estimated postures in the validation datasets. The higher the461 

similarity between the true pie chart and the estimated pie chart of a sow, the better the462 
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prediction for that sow. 463 

Figure 6 - Two-dimensional images of the two radars illuminating (a) the head and (b) the back464 

of a sow when piglets are riding on its back. Red crosses represent the computed first local465 

maxima for each slow time bin. The presence of piglets on the sow back can be observed at466 

various times. A threshold for the distance estimation can be used (around 0.6m for the two467 

radars) to determine if the sow is lying or standing. 468 
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 470 

471 

Figure 7 - Graphs of the probability of posture transitions, i.e., the probability of switching472 

between the 5 postures for the 10 sows (A-J) over a 5 hours period.  Labels A-J correspond to the473 

same sows as in Table 1.   474 
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Tables 475 

Table 1 - Specificity, sensitivity and accuracy of each of the 5 postures for the 10 sows obtained from individual CNNs. Labels 476 

A-J correspond to the same sows as in Figure 7.   477 

  sensitivity Specificity 

posture lying nursing sitting standing kneeling lying nursing sitting standing kneeling 

sow A 96.7 84.1 97.9 97.9 0.0 94.9 98.6 98.7 99.4 100.0 

sow B 95.0 100.0 95.2 98.6 0.0 99.6 97.4 99.8 99.5 100.0 

sow C 98.6 75.3 97.8 97.0 0.0 85.6 99.3 99.2 99.6 100.0 

sow D 80.5 100.0 60.4 98.7 0.0 99.8 83.8 99.7 99.7 100.0 

sow E 90.1 95.8 90.0 99.0 0.0 97.0 96.0 99.6 99.7 100.0 

sow F 62.1 43.2 66.5 98.8 0.0 50.3 67.6 99.7 99.6 100.0 

sow G 98.7 99.1 95.0 100.0 62.5 99.4 99.7 99.6 99.8 100.0 

sow H 93.4 100.0 90.9 99.1 0.0 98.7 95.9 99.8 99.8 100.0 

sow I 96.4 98.9 91.6 97.7 47.1 98.5 99.6 99.6 99.9 98.3 

sow J 97.1 98.9 52.6 98.5 0.0 97.6 97.6 99.0 99.2 100.0 

Mean 90.3 90.2 91.2 98.5 9.9 92.9 94.3 99.5 99.6 99.8 

Std 10.9 17.4 16.3 0.8 22.2 14.5 9.8 0.4 0.2 0.5 
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Table 2 – Tme spent in each of the 5 postures by the 10 sows over the 5 hours period.  480 

Posture  total time spent (h)  rate of time spent (%)  mean of duration (min)  std of duration (min) 

lying 16.66 33.56 7.19 5.99 

nursing 22.67 45.67 20.31 30.51 

sitting 3.76 7.57 1.72 2.23 

standing 6.32 12.72 7.02 10.36 

kneeling 0.24 0.48 0.29 0.14 
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