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Abstract: (1) Background: Diabetes mellitus (DM) is a chronic, metabolic disease characterized
by elevated levels of blood glucose. Recently, some studies approached the diabetes care domain
through the analysis of the modifications of cardiovascular system parameters. In fact, cardiovascular
diseases are the first leading cause of death in diabetic subjects. Thanks to their cost effectiveness
and their ease of use, electrocardiographic (ECG) and photoplethysmographic (PPG) signals have
recently been used in diabetes detection, blood glucose estimation and diabetes-related complication
detection. This review’s aim is to provide a detailed overview of all the published methods, from the
traditional (non machine learning) to the deep learning approaches, to detect and manage diabetes
using PPG and ECG signals. This review will allow researchers to compare and understand the
differences, in terms of results, amount of data and complexity that each type of approach provides
and requires. (2) Method: We performed a systematic review based on articles that focus on the
use of ECG and PPG signals in diabetes care. The search was focused on keywords related to the
topic, such as “Diabetes”, “ECG”, “PPG”, “Machine Learning”, etc. This was performed using
databases, such as PubMed, Google Scholar, Semantic Scholar and IEEE Xplore. This review’s aim
is to provide a detailed overview of all the published methods, from the traditional (non machine
learning) to the deep learning approaches, to detect and manage diabetes using PPG and ECG
signals. This review will allow researchers to compare and understand the differences, in terms
of results, amount of data and complexity that each type of approach provides and requires. (3)
Results: A total of 78 studies were included. The majority of the selected studies focused on blood
glucose estimation (41) and diabetes detection (31). Only 7 studies focused on diabetes complications
detection. We present these studies by approach: traditional, machine learning and deep learning
approaches. (4) Conclusions: ECG and PPG analysis in diabetes care showed to be very promising.
Clinical validation and data processing standardization need to be improved in order to employ these
techniques in a clinical environment.

Keywords: PPG signal; diabetes; ECG signal; machine learning; deep learning; glucose estimation

1. Introduction

Diabetes mellitus is a clinical condition that causes a high amount of glucose in the
blood with a simultaneous lack of insulin or insulin resistance. Insulin is a hormone
produced in the pancreas, which regulates the amount of blood glucose produced by the
carbohydrates in the food we intake. This condition, also known as hyperglycemia, can
damage the heart, blood vessels, eyes, kidney and nerves [1]. Diabetes can be caused either
by the incapability of the body to produce enough insulin or by the resistance of the body
to the insulin. As stated by the World Health Organization, about 422 million people have
diabetes and 1.5 million deaths are directly attributed to diabetes each year [2]. Diabetes
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can be classified into three types: type 1, type 2 and gestational diabetes [3]. Type 1 diabetes
is a chronic condition in which the pancreas produces little or no insulin. Different factors,
including genetics and some viruses, may contribute to type 1 diabetes. Although type 1
diabetes usually appears during childhood or adolescence, it can develop in adults too.
Type 2 diabetes is a chronic condition in which the pancreas does not produce enough
insulin, and cells respond poorly to insulin and use less sugar. Type 2 diabetes used to be
known as adult-onset diabetes but, as well as type 1 diabetes, it can begin during childhood
and adulthood. As a matter of fact, the increase in the number of children with obesity has
led to more cases of type 2 diabetes in younger people. Gestational diabetes is high blood
sugar that occurs during pregnancy and usually disappears automatically after giving
birth. It happens when the body cannot produce enough insulin to meet the extra needs in
pregnancy. The related risks can be reduced if the condition is detected early during the
pregnancy and well managed.

Being a chronic disease, diabetes cannot be cured. To minimize side effects and the
worsening of the disease, early prevention and treatments, such as drugs or changes in
lifestyle, are essential [4]. The development of new low-cost, non-invasive and light tech-
nologies that are able to detect the onset of diabetes could make a difference in large-scale
prevention. With the advent of machine learning and deep learning, the processing of
large amounts of data becomes easier and more effective every day. In the last years, these
methods have been successfully applied to big health care data [5] in order to accompany
the healthcare personnel through the decision process. Chaki et al. [6] propose a systematic
review of machine learning, deep learning and artificial intelligence based methods applied
to the detection and self-management of diabetes. The datasets that were used to detect
and manage diabetes are varied and diverse. Electronic health record (EHR), voice analysis,
weekly steps count, anthropometric characteristics and drug treatments, electrocardiogra-
phy and photopletysmopragraphy analysis are only a part of the used datasets. A survey
on diabetes detection with similar outcomes is proposed by Anwar et al. [7]. Zhu et al. [8]
propose a review that focuses on the deep learning approaches to detect diabetes, detect
diabetes complications and estimate blood glucose. Once again, the datasets used in the
cited papers are composed of different types of data. For diabetes detection, the used
datasets are mainly composed by EHR. Food intake, PPG signals and insulin levels have
been used to estimate blood glucose. Among the diabetic complications, they mainly
analyzed the presence of diabetic retinopathy with image classification and the intensive
unit mortality rate care with PPG signals.

As shown in the previous paragraph, there are several data that can be used to detect
and care for diabetes. Among those, photoplethysmography (PPG) and electrocardiography
(ECG) signals offer several advantages. They are non-invasive and they can be easily
embedded in wearable devices [9,10]. This offers, for example, the possibility to have 24
h analysis and real-time remote surveillance. As a result, there is an increasing number
of papers that have been recently published. They employ PPG and/or ECG alone or in
combination with other data, such as age, gender and BMI (body mass index). However,
a review paper that exhaustively covers this domain has not been published yet. Gusev
et al. [11] propose a review on machine learning and deep learning applied to heart
rate variability (HRV) to estimate blood glucose. Swapna et al. [12] propose a review on
diabetes detection with ECG signals going from traditional methods to deep learning
methods. Both reviews are focused on the HRV analysis without taking in consideration
all the other cardiovascular modifications related to diabetes. In addition, both of the
cited reviews are mainly focused on ECG. However, PPG is largely employed in diabetes
care, thanks to its cost-effectiveness and its simplicity of usage with respect to ECG. It
is often used in blood glucose estimation and diabetes detection, while the analysis of
diabetes complications is still not fully explored. Both ECG and PPG signals have been
largely analyzed with traditional, machine learning and deep learning methods in diabetes
detection and management. To our knowledge, no existing publication provides a detailed
and comprehensive review of ECG and PPG signals analysis in diabetes care (detection of
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diabetes, glucose estimation and diabetes complication). We do believe that an extensive
review on PPG and ECG signals analysis in diabetes care could be very helpful since most
of the analyses used in diabetes detection, such as HRV and HR analysis, can be computed
from both PPG and ECG signals [13–15]. In this review, we aim to provide an exhaustive
overview of all the published methods, from the traditional to the deep learning approaches,
to detect and manage diabetes using PPG and ECG signals. Particular attention will be
given to the advantages and disadvantages of each method, employed data and employed
features. This review will allow researchers to compare and understand the differences,
in terms of results, amount of data and complexity, that each type of approach provides
and requires.

The rest of the paper is organized as follows. In Section 2, we present the extraction
procedure we follow to obtain all the articles included in this review. In Section 3, we
briefly present the diabetes pathology, its complications and the conventional diagnosis
tests. Section 4 is dedicated to the introduction of ECG and PPG signals. Results and
discussion issues from the article’s review are presented in Section 5. In this section, we
present a review of the traditional, machine learning and deep learning methods applied
to PPG and ECG analysis to detect and manage diabetes and its complications. Finally, in
Section 6, we conclude and discuss future work.

2. Methods

A systematic review is defined as a review of the evidence on a clearly formulated
question that uses systematic and explicit methods to identify, select and critically appraise
relevant primary research, and to extract and analyze data from the studies that are included
in the review [16]. In this section, we present the methodology utilized to conduct this
systematic review, based on the guidelines described in the PRISMA method: preferred
reporting items for systematic reviews and meta-analysis [17]. The PRISMA 2020 guidelines
for systematic reviews [18,19] are followed in order to achieve a valid formulation in
this study.

2.1. Eligibility Criteria

The eligibility criteria for the selection of articles are listed below:

• Only papers written in English;
• Only papers with diabetes detection, glucose estimation and diabetes complications

detection as the main topic;
• Only papers dealing with the management of type 1, type 2, gestational diabetes or

diabetes complications;
• Only papers that focus on diabetes care through ECG and/or PPG analysis;
• Only papers addressing the topic with traditional methods, machine learning or deep

learning methods.

Electronic searches were performed by S.Z. No date range was used, ensuring that no
restriction was placed on the date of publication. All publications identified were screened
for inclusion. Papers were excluded if they (i) were a short conference/congress abstract,
or (ii) were not available in full text.

2.2. Data Sources and Search Strategy

We performed articles extraction on PubMed, Google Scholar and IEEE Xplore. The
search strategy combined the following terms: PPG signal, ECG signal, diabetes detection,
blood glucose estimation, diabetes complications, machine learning and deep learning
(PPG signal AND diabetes detection, PPG signal AND blood glucose estimation, PPG
signal AND diabetes complication, PPG signal AND diabetes detection AND machine
learning, PPG signal AND blood glucose estimation AND machine learning, PPG signal
AND diabetes complication AND machine learning, PPG signal AND diabetes detection
AND deep learning, PPG signal AND blood glucose estimation AND deep learning, PPG
signal AND diabetes complication AND deep learning).
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2.3. Study Selection

After querying the databases, we used the Mendeley reference management tool [20]
to log references, eliminate multiple records, and create a unique database of references. To
select articles from the initial database, we applied a three-step process: (1) evaluation of the
title; (2) evaluation of the abstract and keywords; and (3) evaluation of the full text. The aim
was to remove irrelevant searches during stages (1) and (2), and then review the remaining
documents using the above eligibility criteria during stage (3). The entire flowchart for the
selection process, including identification, screening and inclusion, is shown in Figure 1.

Figure 1. The PRISMA flow diagram. ML: machine learning approaches. Trad: traditional approaches.
DL: deep learning approaches.

2.4. Data Extraction

For each article included, the following information was also included: (i) study
objective, (ii) type of signal, (iii) length of signal, (iv) number of participants, (v) availability
of the database, (vi) approach used, (vii) extracted features, and (viii) main outcomes. The
results were discussed in order to show advantages and disadvantages of each approach as
well as future improvements.

3. Diabetes
3.1. Blood Glucose Homeostasis

Glucose concentration inside the blood is naturally regulated by our body to maintain
homeostasis (the tendency toward a relatively stable equilibrium between interdependent
elements) [21]. In normal conditions, blood glucose is kept inside a narrow range. It should
be less than 100 mg/dL after 8 h fasting and less than 140 mg/dL two hours after eating.
During the day, its level is lower and, in a non-pathological subject, it stabilizes around
80 mg/dL [22]. Insulin and glucagon are the main actors of blood glucose regulation inside
our body. They are two hormones secreted by the pancreatic islets (islets of Langerhans),
the pancreas region that contains its endocrine cells. Inside the pancreatic cells, we can
find, among other endocrine cells, the beta cells and the alpha cells that are responsible for
secreting glucagon and insulin, respectively. Insulin is the only glucose-lowering hormone
in our body. Glucagon, in contrast, has an increased-glucose effect. In physiological



Sensors 2022, 22, 4890 5 of 28

conditions, the release products of the beta cell inhibit the alpha cell function, while
the release products of the alpha cells work as a stimulus for beta cells [23]. Due to its
dimensions, glucose cannot pass through the cell membrane by simple diffusion. Insulin
is able to lower glucose inside the blood by allowing its transport from the blood to the
cells. The secretion of insulin is glucose dependent. When the blood glucose level rises
(food intakes), more insulin is secreted, allowing the cells to utilize the glucose to generate
energy. In opposition, when the blood glucose level decreases (exercises, insulin infusion,
long fasting), more glucagon is secreted. Glucagon induces the liver to release its storage
of glucose by converting the glycogen into glucose through the glycogenesis process.
Glucagon also induces the liver and some muscles to generate glucose starting from lipids.
Symptoms of diabetes are fast weight loss, abnormally high thirst, large amounts of urine
production, fatigue and weakness, mood changes and blurred vision. Figure 2 shows a
graphical representation of the glucose homeostasis.

Figure 2. Blood glucose homeostasis process.

3.2. Type 1 Diabetes

Type 1 diabetes (T1DM) is an autoimmune condition characterized by the lack of
insulin production from the pancreas. It occurs when the immune system attacks and
destroys the insulin-producing beta cells of the pancreas. In fact, beta cells loss is observable
while alpha cells are preserved. However, the alpha cells function appears to be compro-
mised too [24]. T1DM usually appears during childhood or adolescence but it can develop
in adults too. People that are affected by T1DM have to take insulin through all their life to
avoid complications.

3.3. Type 2 Diabetes

Type 2 diabetes (T2DM) is distinguished by a decreased sensibility to insulin. While in
T1DM, there is no production of insulin due to the loss of beta cells, in T2DM, the insulin is
produced but the secreted quantity is not enough to maintain homeostasis. In addition, the
muscles and liver become insulin resistant. They do not respond anymore to the produced
insulin. This condition, once again, generates high blood glucose concentrations. Type 2
diabetes is the most common around the world, and it mostly appears during adulthood [2].
It can be treated with regular physical exercises, healthy eating, weight loss and, in some
cases, insulin therapy.

3.4. Gestational Diabetes

Gestational diabetes can happen at any stage of pregnancy, but is more common in
the second or third trimester. It is not caused by a lack of insulin production but from the
impossibility of correctly using the secreted insulin due to a hormone produced by the
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placenta. Glucose is stored in the blood instead of being absorbed by the cells. Increased
thirst and more-frequent urination are possible symptoms, but most women do not notice
any. Most of the time, it does not cause birth defects, and it can be easily managed with
healthy eating and physical exercise. Women who have gestational diabetes are more likely
to develop T2DM during their life [25].

3.5. Diabetes Complications

Diabetes complications can be correlated with hyper/hypoglycemia events. Hypo-
glycemia (blood glucose below 70 mg/dL) is often caused by diabetes treatments. Even
though most of the time it is easily manageable by quickly getting the blood sugar back
to physiological values by drinking or eating, when it frequently happens, it can be dan-
gerous. Hyperglycemia is the condition in which the blood sugar concentration is above
180 to 200 mg/dL. When the body cannot take energy from glucose (due to the lack of
insulin or insulin resistance), it converts the fat into energy with the production of waste
products called ketones. Our body is not able to eliminate all the produced ketone leading
to the life-threatening condition known as ketoacidosis (diabetic coma) [26]. However, the
principal cause of death in diabetic subjects is represented by cardiovascular disease [27].
Macro-vascular manifestations include atherosclerosis and medial calcification [28,29].
Atherosclerosis is a specific type of arteriosclerosis. In atherosclerosis, the arterial walls
narrow due to the formations of fat, cholesterol and other substance plaques. Although
atherosclerosis is often considered a heart problem, it can affect arteries anywhere inside the
body. Medial calcification is a condition characterized by the presence of diffuse calcium
deposits along the medial layer of the arterial wall. Micro-vascular consequences are mainly
represented by retinopathy and nephropathy [30]. Retinopathy is the most common vision
impairment in diabetic subjects [31]. Elevated blood glucose leads to capillary occlusion,
provoking the uncontrolled increase in local growth of new vessels in the retina. The
dead capillary and the new ones can cause swellings, fluid leaks and retinal hemorrhages.
When left untreated, it can lead to blindness. Diabetic nephropathy [32] is defined as the
nephron’s inability to correctly filter impurities in the blood. This condition can lead to
kidney failure and may be treated only with lifelong dialysis. Another complication that
can appear in diabetic subjects is represented by neuropathy [33]. Peripheral nerves show
issues as deficiencies in motor and sensory function. Autonomic peripheral neuropathy
is the one type of diabetic neuropathy, and it affects the functionality of the organs inner-
vated by the autonomous system (cardiovascular system, gastrointestinal system, pupillary
system, etc.).

3.6. Conventional Tests for Diabetes Diagnosis

All the conventional methods for diabetes detection are invasive by nature. The
glucose level is analyzed starting from a blood sample. Depending on the type of exam,
the blood glucose level has to be maintained inside certain levels.

The fasting plasma glucose (FPG) blood test measures your blood glucose level at a
single point in time. For the most reliable results, it is best to have this test in the morning,
after at least 8 h fasting. A fasting blood sugar level of 99 mg/dL or lower is normal, 100 to
125 mg/dL indicates the presence of prediabetes, and 126 mg/dL or higher indicates the
presence of diabetes. The oral glucose tolerance test (OGTT) measures blood glucose after
an 8 h fast. It is used mostly to detect gestational diabetes. The blood is analyzed before
and after the intake of a liquid containing a fixed amount of sugar. The blood is analyzed
each hour following the intake, for two or three hours. High blood glucose levels at any
two or more blood test times during the test results in a diabetes diagnosis. The OGTT is
used not only with pregnant women to detect gestational diabetes, but also to detect type
2 diabetes. However, the OGTT is a more expensive and long test, and for those reasons,
it is not frequently used. The casual plasma glucose test is another method of diagnosing
diabetes. During the test, blood sugar is tested without regard to the time since the person’s
last meal. A glucose level greater than 200 mg/dL may indicate diabetes. The hemoglobin
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A1c test (also called the glycated hemoglobin test or HbA1c) provides an average of the
blood sugar control over a 6 to 12 week period. Hemoglobin is a protein contained in the
red blood cells. It becomes glycated when it combines with glucose. The HbA1c test can be
used to diagnose diabetes (if a value of equal to or greater than 6.5% is found) but also as a
control to adjust the diabetes treatment (see Table 1).

Table 1. Diabetes test values for diabetes and prediabetes.

Diabetes Test Description Pre Diabetes Diabetes

Fasting plasma glucose After 8 h fasting 100–125 mg/dL >126 mg/dL

Casual Plasma Glucose Any time None >200 mg/dL

Oral Glucose Tolerance Fasting and every hour for 2 or 3 h 140–199 mg/dL >200 mg/dL

Hemoglobin A1c Any time 5.7–6.4% >6.5%

3.7. Diabetes Treatments

Type 1 diabetes is mostly treated with manual insulin injections or insulin pumps. The
blood glucose level has to be checked frequently in order to adjust the insulin treatment.
Type 2 diabetes can be managed with changes in lifestyle, and monitoring of the blood sugar
level, along with diabetes medications, insulin or both. In order to manage the pathology,
diabetic subjects need to frequently check their glucose at home. For this purpose, several
glucose meters have been commercialized. In order to be clinically validated, they need
to comply with the medical device regulation. However, several different guidelines are
proposed by different institutions [34]. A common approach to evaluate the performances
of a glucose meter (or estimation model) is the Clarke error grid analysis. It was developed
in 1987 to quantify the clinical accuracy of patient estimates of their current blood glucose
as compared to the blood glucose value obtained in their meter [35]. The grid breaks down
a scatterplot of a reference glucose meter and an evaluated glucose meter into five regions.
Inside region A, there are those values within 20% of the reference sensor. Region B contains
points that are outside of 20% but would not lead to inappropriate treatment. Inside region
C, there are those points leading to unnecessary treatment. Points falling inside region D
are considered a potentially dangerous failure to detect hypoglycemia or hyperglycemia.
Finally, region E contains those points that would confuse the treatment of hypoglycemia
for hyperglycemia and vice versa, leading to life-threatening errors.

4. PPG and ECG
4.1. The Cardiac Cycle

The cardiac cycle is a series of pressure changes that take place within the heart.
Thanks to the presence of pacemaker cells inside the sinoatrial node, the heart is able to
pump blood inside our body. The left part of the heart receives oxygenated blood from
the lungs and pumps it inside the body. The right part receives deoxygenated blood from
the body and pumps it toward the lungs to receive oxygen, thanks to the respiration. The
cardiac cycle is mainly constituted by two different events, known as systolic and diastolic
phases. The systolic phase is determined by the highest pressure inside the heart. From a
medical point of view, it would be correct to speak about atrial systolic when the atrium
contracts and pumps the blood inside the ventricle, and ventricular systolic when the
ventricle contracts and pumps the blood either in the pulmonary circle or in the systemic
circulation. The diastolic phase corresponds to the condition in which the atrium and
ventricle are relaxed and the lowest pressure is detected inside the heart. Those pressure
changes generated from the ventricular ejection are transmitted to the periphery of the
systemic circulation, thanks to the different elasticity of the vessels, changing the volume of
the blood inside them [36].
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4.2. Electrocardiography

The electrocardiography records the electrical activity of the heart using electrodes
placed on the skin. Its electrical activity is the consequence of the cardiac muscle depo-
larization followed by re-polarization during each cardiac cycle. It is largely employed
in the medical field to investigate changes in heart dysfunction, such as arrhythmia and
conductance issues [37].

Since the registered signal is a difference of potential, the signal shows different wave
shapes according to the derivation that is used. Generally, to compute ECG analysis, the
second derivation is used. In this configuration that is registered by placing the electrodes
on the wrists and on the left leg (arms and legs are considered as zones with equal potential),
the QRS complex is observable in its well-known shape. The ECG signal is composed of a
sequence of positive and negative deflections that reflect the electrical activity of the heart.
The P wave is a small positive deflection that indicates atrial depolarization. The QRS
complex appears as a small negative deflection followed by a positive peak provoked by
the ventricular depolarization. T waves represent the repolarization of the ventricles. In
Figure 3, a QRS complex and some of the most-used ECG features are shown. The ECG
signal is often used to compute the HRV analysis. It can be implemented with several
different approaches. While the time domain analysis is based on time-related parameters,
the frequency domain analysis is focused on the parameters that can be computed based on
the spectrum of the signal. Examples of time domain HRV features are the RR parameter
(time between two adjacent R peaks), the SDRR parameter (standard deviation of RR
interval) or SDNN (standard deviation of RR corrected interval). When computing a
frequency analysis, the signal is decomposed into its components using mainly the FFT (fast
Fourier transform) analysis [38]. The frequencies of interest are ultra low frequency ULF
(<0.003 Hz), very low frequency VLF (0.0033–0.04 Hz), low frequency LF (0.04–0.15 Hz) and
high frequency HF (0.15–0.40 Hz). In addition to these analyses, it is possible to compute
the non-linear HRV analysis. Non-linear measurements index the unpredictability of a time
series, which results from the complexity of the mechanisms that regulate HRV. Examples
of non-linear analysis is the Poincaré plot from which S (area of the ellipse that best fits
the data points), SD1 (ellipse width or short term HRV) and SD2 (ellipse length or long
term HRV) result. Other parameters, such as approximate entropy (ApEn), sample entropy
(SampEn) and detrended fluctuation (DFA), can be used to compute a non-linear HRV
analysis [39].

Figure 3. QRS complex in an ECG recording. RR: time between two consecutive R peaks (heart rate).
QT: time between Q wave and T wave.

4.3. Photopletysmography

PPG is a low-cost, non-invasive and user-friendly technique used to detect blood
volume changes in the micro vascular tissue bed through the skin. In fact, because the
skin is so richly perfused, is it easy to detect the pulsatile component of the cardiac cycle
using the PPG. A photoplethysmograph is composed by a light emitting diode (LED) and a
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photodetector (PD). The light emitted from the diode is reflected (or transmitted) through
the tissues and the arteries and arterioles and then detected by the photodetector [40].
The wave is composed of two components: forward and backward waves. The forward
wave, also called systolic component or direct wave, is related to the systolic ejection.
The backward component, also called diastolic component or reflected wave, is provoked
by the return of the blood from the peripheral circulation to the center due to arterial
elasticity [41]. Traditionally, it was used in clinical fields to assess oxygen saturation.
With the growing interest in tele-home healthcare, PPG embedded in wearable sensors
have started to be used to detect multiple cardiovascular diseases (CVD) and indexes,
such as atrial fibrillation, heart rate, heart rate variability and blood glucose level. The
photoplethysmographic waveform depends on several factors such as the wavelength
emitted light, on the anatomical recorded site, on tissue reflectance, on blood volume,
cardiac cycle phase, aging and the possible presence of pathologies [42–44]. The finger,
earlobe and wrist appear to be the best measurement sites with, respectively, 95%, 81% and
86% analyzable waveforms due to the rich arterial supply [45]. Thanks to their convenience
to affix sensors, the earlobe and finger became the most used anatomical sites for PPG clinic
measurements. However, lately, several studies proposed innovative solutions with wrist
PPG, thanks to the innovation of the wrist device technology [46]. An example of PPG
signal and the most common extracted features is shown in Figure 4. Some parameters
that characterize the HRV analysis can also be computed using PPG signals by using the
systolic peak as the R peak in the ECG signal.

Figure 4. PPG signal and its first and second derivatives. Green points show the fiducial points
identified through the first derivative analysis. Blue points show the fiducial points identified through
the second derivative analysis. CT: Crest time. dT12: time between systolic and diastolic peaks.
Dyast: diastolic peak amplitude. Syst: systolic peak amplitude. a, b, c, d, e: first five maxima and
minima of the second derivative.
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5. Results and Discussion

A total of 227 articles were downloaded. We also completed a search of the already
published reviews on this topic. Only two reviews about diabetes care and ECG/PPG
signals were found. Eighty articles were excluded because they are out of context. We fully
analyzed 147 articles in total. Sixty-nine articles were further excluded due to the presence
of duplicates or lack of information. The articles were finally classified into three main
categories: diabetes detection, blood glucose estimation and diabetes complications. A
total of 31 articles for the diabetes detection, 41 articles about blood glucose detection and 7
about diabetes complications were found. We classified the included studies into subclasses
based on the proposed approach: traditional, machine learning and deep learning. The
articles found concerning diabetes detection are composed of 10 traditional approaches,
15 machine learning and 6 deep learning approaches. A total of 5 traditional approaches
articles, 21 machine learning and 15 deep learning articles were found for the blood glucose
estimation. Concerning the diabetes complications, we found and included five traditional,
one machine learning and one deep learning approach. Figure 5 shows the number of
included articles published per year.

Figure 5. The number of included articles published per year.

As described in Section 3, diabetes can affect the cardiovascular system in many
ways. Even though the directionality of the relation between diabetes and cardiovascular
diseases is still unknown, it is well accepted that diabetes and increased arterial stiffness
are linked [47]. It is also confirmed that blood viscosity increases with blood glucose [48].
HRV showed to be lower, in all age groups, in diabetic patients with respect to healthy
subjects [49]. In addition, modification in ECG recordings was observed in the presence
of diabetes [50]. Arterial walls stiffness, blood viscosity and modifications of the heart
polarization/depolarization directly affect PPG wave shapes. Thanks to all these factors,
diabetes can be potentially detected by analyzing the PPG and ECG signals.

In this section, we present a summary of the published studies about diabetes detection,
blood glucose estimation and diabetes related complications detection through the analysis
of PPG and ECG signals. First we present the traditional approaches, then the machine
learning ones. Finally, we cover the deep learning approaches. The studies are collected into
separated tables based on their main objective (diabetes detection, blood glucose estimation
and diabetes complication). The most significant ones are equally presented in the text.
Figure 6 shows a graphical representation of the organization of this section.
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Figure 6. Graphic representation of this section organization.

5.1. Traditional Methods

In the traditional methods category, we inserted statistical analysis and mathematical
models that do not belong to the machine or deep learning domain. While very few
mathematical models have been implemented in diabetes care with PPG and ECG, several
articles assess the PPG and/or ECG based feature significance among diabetic and non
diabetic subjects. In this section, we present the traditional approaches to detect diabetes,
estimate blood glucose and detect diabetes complications through PPG and ECG analyses.

5.1.1. Diabetes Detection with Traditional Methods

The presented studies detect diabetes mostly by computing the HRV analysis or by
assessing differences among ECG and/or ECG features. Faust et al. [51] compare linear
and non-linear HRV ECG methods applied to 15 diabetic and 15 non-diabetic subjects.
Non-linear parameters were found to be clinically and statistically significant among the
two groups. Mean values for SD2, CD, ApEn and SampEn are higher in normal with
respect to diabetic subjects. Higher values for normal subjects indicate that normal subjects
have higher HRV. These findings are in line with current medical understanding, because
a diabetic subject is, at least in a statistical sense, less active than a healthy person. This
result was confirmed also in the study presented by Seyd et al. [52]. They computed time
and frequency HRV ECG analyses between 16 diabetic and 16 normal subjects. LF %
power and HF power are shown to be statistically higher in healthy subjects with respect to
diabetic. Another interesting approach was presented by Haryadi et al. [53]. They applied
the multiscale Poincarè analysis to the PPG amplitude to differentiate healthy subjects,
healthy diabetic subjects and unhealthy diabetic ones (16, 18 and 18, respectively).

The results highlight the feasibility of MSP (multi-scale Pointcaré) application in
diabetes detection analysis for computational time reduction and sensitivity enhancement.
Table 2 presents the available works on detecting diabetes using PPG and ECG with
traditional approaches. None of the presented studies used public datasets.
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Table 2. Traditional methods for diabetes detection.

Reference Objective Data Type a Approach Feature Main Outcome

Buchs et al. [54] Healthy
vs.
Diabetic

PPG [10 min]
68[33/35]
In-house

Right-left correlation Amplitude, baseline
variation and period

Lower correlation in diabetic
subjects

Seyd et al. [52] Healthy
vs.
Diabetic

ECG [1 h]
32[16/16]
In-house

Statistical
analysis

HRV LF % power **, HF power **
lower in diabetic subjects

Usman et al. [55] Healthy diabetic
vs.
Unhealthy diabetic

PPG [90 s]
56 [30/26]
In-house

Statistical
analysis

AUC AUC *

Faust et al. [51] Healthy
vs.
Diabetic

ECG [1h]
30 [15/15]
In-house

Linear and non linear
analysis

HRV CD ***, ApEn ***, SampEn ***
and recurrence plot proper-
ties ***

Wu et al. [56] Healthy
vs.
Diabetic

PPG - ECG [30 min]
51 [27/24]
In-house

Multi scale Cross-
approximate Entropy
analysis

HRV MC-ApEnLS **

Pilt et al. [57] Healthy
vs.
Diabetic

PPG [-]
44 [24/20]
In-house

Statistical
analysis

PPG Augmentation
Index

PPGAI ***

Haryadi et al. [58] Healthy
vs.
Diabetic
vs.
Unhealthy diabetic

PPG [1000 pulses]
52 [16/18/18]
In-house

Multi scale poincaré
analysis

Amplitude SSR **

Hsu et al. [59] Healthy
vs.
Diabetic

PPG [30 min]
14 [48/46]
In-house

Statistical
analysis

CT, CTR, PWV CTR **

Usman et al. [60] Healthy diabetic
vs.
Unhealthy diabetic

PPG [90 s]
101 [53/48]
In-house

Statistical
analysis

Signal and 2nd
derivative features

PPG slope angles **

Haryadi et al. [53] Healthy
vs.
Diabetic

PPG [1000-500-250-100 pulses]
64 [34/30]
In-house

Multi scale poincaré
analysis

Amplitude MSPI detect with higher
sensibility wtr to the multiple
temporal scale index and the
single scale index.

Traditional methods for diabetes detection. a: type of signal [signal length], total number of subjects [subjects for
each class], type of database. CD: correlation dimension. ApEn: approximate entropy. SampEn: sample entropy.
REC: recurrence plot. CF: complex fluctuation. SSR: ration between long and short variations. LF: low frequency.
HF: high frequency. MC-ApEnLS: multiscale cross-approximate entropy in large scale. CT: crest time. AUC: area
under the curve. CTR: crest time ratio. PWV: pulse wave velocity. * p < 0.05, ** p < 0.01, *** p < 0.001.

5.1.2. Blood Glucose Estimation with Traditional Methods

Table 3 presents an overview of blood glucose level estimation through ECG and PPG
signals with traditional approaches.

Table 3. Traditional methods for blood glucose estimation.

Reference Objective Data Type a Approach Feature Main Outcome

Singh et al. [61] Hypoglycemia
detection (T1DM)

ECG [2 h]
1919 [1779/140]
In-house

Linear analysis HRV SDNN, LF, HF ***
diminished LF/HF, HF **

Harris et al. [62] Hypoglycemia
detection (T1DM)

ECG [night]
52 [20/32]
In-house

Statistical
analysis

QT, QTc 4 out of 6 events correctly detected.
QTc variaed more in diabetic subjects

Laitinen et al. [63] Hypoglycemia
detection

ECG [5 min]
18
In-house

Statistical
analysis

PR, QT, QTc PR decreased **
QTc increased ***

Nguyen et al. [64] Hypoglycemia
and
hyperglycemia
detection (T1DM)

ECG [night]
5
In-house

Statistical
analysis

HR, QTc, PR, RT,
TpTe

Hypoglycemia:
increased QTc, RTc, TpTe (***)
Hyperglycemia:
increased PR ***
decreased QTc, RTc (***)

Amanipour et al. [65] Hypoglycemia
detection (T1DM)

ECG [1 h]
1
In-house

Linear analysis HRV LF/HF inversely
correlated with BG

Traditional methods for blood glucose detection. a: type of signal [signal length], total number of subjects [subjects
for each class], type of database. SDNN: standard deviation of normal intervals. LF: low frequency. HF: high
frequency. QT: ECG Q to T wave interval. QTc: corrected QT interval. PR: ECG P to T wave interval. RT: ECG
R to T wave interva. RTc: RT corrected. HR: heart rate. TpTe: ECG T wave peak-to-end interval. ** p < 0.01,
*** p < 0.001.
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The articles are mainly focused on hypo and hyperglycemia events detection. In fact,
serious hypoglycemia can lead to the variation of the ECG parameters, such as QT segment
length and HRV variations. Singh et al. [61] computed linear HRV analysis on 1919 diabetic
subjects. SDNN, LF and HF were inversely related to plasma glucose levels (p < 0.0001).
After adjusting for covariates, such as age, sex and body mass index, the LF power and
LF/HF ratio were lower in DM subjects than in those with normal fasting glucose (p < 0.005).
However not only hypoglycemia modifies ECG parameters. Ngyuen et al. [64] showed that
ECG significant modifications are observable also during hyperglycemia events. The study
involved five subjects, who experienced both hyperglycemia and hypoglycemia events. The
hypoglycemic state had significant increase in heart rate, QTc (corrected ECG QT interval),
RTc (corrected ECG RT interval) and TpTeC (ECG T wave peak-to-end interval) (all with
p < 0.0001). During hyperglycemic states, there were significant increases in PR (p < 0.0001),
decreases in QTc (p < 0.0001), RTC (p = 0.001) and TpTeC (p = 0.004). In all the three groups,
HR (r = −0.466) was moderately related to BGLs (blood glucose levels), while QTc, PR, RTc,
TpTeC had strong relations with BGLs (r = −0.712, 0.783, −0.781, −0.586, respectively, all
with p < 0.0001). None of the presented studies employed PPG signals. To our knowledge,
there are no published articles on estimating blood glucose level from PPG uniquely with
traditional approaches.

5.1.3. Diabetes Complications with Traditional Methods

An overview of the published studies on detection diabetes complications with ECG
and/or PPG signals with traditional approaches is shown in Table 4.

Table 4. Traditional methods for diabetes complications.

Reference Objective Data Type a Approach Feature Main Outcome

Kim et al. [66] Healthy
vs.
Diabetic with DPN

PPG [30 s]
114 [64/50]
In-house

Statistical
analysis

Finger to toe ratio Sensitivity: 98%
Specificity: 92.2%

Wei et al. [67] Healthy
vs.
Diabetic without
DPN

PPG,ECG
[1000 pulses]
122 [37/85]
In-house

Percussion Entropy Analysis PEI, MEI, LHR PEI *** as indicator of future
neuropathy

Al-Hazimi [68] Healthy
vs.
Diabetic without
DPN
vs.
Diabetic with DPN

ECG [24 h]
30 [10/10/10]
In-house

Linear analysis HRV No significant difference found in
detecting neuropathy

Cornforth et al. [69] Diabetic
vs.
Diabetic with CAN

ECG [20 min]
149 [71/78]
In-house

Multi scale
Renyi entropy

Renyi Entropy Renyi entropy ***

Imam et al. [70] Diabetic
vs.
Diabetic with CAN

ECG [20 min]
80 [40/40]
In-house

Bivariate and trivariate ARMA
models

QT, RR, EDR EDR model based was able to
detect among the groups

Traditional methods for diabetes complications detection. a: type of signal [signal length], total number of subjects
[subjects for each class], type of database. PEI: percussion entropy index. MEI: multiscale entropy index. LHR:
low high frequency ratio. QT: ECG Q to T wave interval. RR: ECG R to R wave interval. EDR: ECG derived
respiration. *** p < 0.001.

The presented studies are focused on diabetic peripheral neuropathy (DPN) [71] and
on cardiac autonomic neuropathy (CAN) [72]. Al-Hazimi et al. [68] used ECG signals to
compute linear HRV analysis in order to assess differences between 10 healthy subjects,
10 diabetic and 10 diabetic with DPN. While linear HRV analysis is able to distinguish
between healthy and diabetic, as proven in the previous section, no significant differences
were found between diabetic subjects and diabetic subjects with DPN. However, other
types of ECG analysis seem to provide promising results. Wei et al. [67] demonstrated that
the percussion entropy index (PEI) computed from synchronized ECG and PPG signals
is a DPN predictor. In this study, 37 healthy subjects and 85 diabetic without DPN were
enrolled to collect ECG and PPG signals. The subjects were followed for 6 years after the
baseline measures. Out of 85 diabetic patients, 25 developed DPN. Among all the com-
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puted parameters, PEI showed significant differences among the three groups (p < 0.001).
Cornforth et al. [69] demonstrated that Renyi entropy shows significant differences be-
tween diabetic with and without CAN. Renyi entropy seems to be able to detect between
noCAN, early CAN and definitive CAN with high significance level (p < 0.001). The only
study that assessed diabetes complication uniquely from PPG signal is presented by Kim
et al. [66]. Since the control group is composed of healthy subjects, it is difficult to affirm if
the proposed parameters were able to detect and isolate the diabetes complication or only
succeeded in detecting diabetes.

5.1.4. Traditional Approaches: Main Outcomes

Most of the proposed studies focused on assessing significant differences in PPG
and/or ECG derived parameters among different subjects. HRV-derived parameters
demonstrated to be statistically different in subjects with diabetes with or without hy-
per/hypoglycemia events with respect to healthy subjects. However, no significant differ-
ences were found in diabetes complication detection. Most articles focused on ECG rather
than PPG analysis. No studies were found for blood glucose estimation with traditional
approaches with ECG and/or PPG signals. Overall, the traditional approaches showed
good results in detecting parameters modifications due to diabetes. One of their main
advantages is represented by the low computational complexity. However, they are hardly
applicable in real-time analysis and require a quality assessment step. In fact, when dealing
with feature extraction, poor quality waves can heavily affect the results reliability. In
addition, they are always computed from the entire dataset. This implication results in
no separated test analysis. A parameter that resulted in being significantly different in a
population could be not significant when applied to another group of subjects.

5.2. Machine Learning

Before the advent of deep learning, biosignals were mainly analyzed with machine
learning (ML) approaches. The ML approaches require less data and they are more inter-
pretable, compared to the deep learning ones. However, they require, as for traditional
approaches, the feature extraction step. In this section, we present the machine learning
approaches to detect diabetes, estimate blood glucose and detect diabetes complications
through PPG and ECG analysis.

5.2.1. Diabetes Detection with Machine Learning

An interesting article about diabetes detection was proposed by Monte-Moreno et al. [73].
In this study, the cepstral analysis was computed over PPG signals from 830 diabetic and
340 healthy subjects. In signal processing, the cepstral analysis is defined as the inverse
Fourier transform (IFT) of the logarithm of the estimated signal spectrum. Mathematically,
it deals with the problem of the deconvolution of signals in the frequency space. It can
be used to perform HRV analysis. In this study, the several parameters extracted from
the cepstral analysis were used in combination with frequency domain PPG features and
demographic data. Several machine learning models were trained to distinguish between
diabetic and healthy subjects. The best performance was obtained by a random forest
approach, scoring 64% of specificity and 65% of sensitivity. The authors stated that those
results are comparable with the hemoglobin A1c HbA1c test. Another HRV based analysis
was proposed by Chu et al. [74]. In this case, a classical frequency HRV analysis was
computed from 1228 diabetic and 1310 healthy subjects. Two different logistic regression
models were trained: one model was fitted with the HRV features and the subjects’ waist
circumference, the other was fitted only with HRV features. The models were trained
to predict over 5 diabetes risk levels. The best performance was reached from a hybrid
model composed by both previous models (with and without waist circumference). This
model scores an accuracy of 90%, a specificity of 88% and a sensitivity of 92.5%. A different
approach was proposed by Rajendra Acharya et al. [75] who performed discrete wavelet
transform (DWT) decomposition ECG signals in order to distinguish between 15 diabetic
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and 15 healthy subjects. They extracted the energy, sample entropy, approximation entropy,
kurtosis and skewness features at various detailed coefficient levels of the DWT. These
features were then used to train several methods of machine learning. Decision tree
reached an accuracy of 92.02%, sensitivity of 92.59% and specificity of 91.46%. Table 5
presents the available works on detecting diabetes using PPG and ECG with machine
learning approaches.

Table 5. Machine learning methods for diabetes detection.

Reference Objective Data Type a Approach Feature Main Outcome

Amiri et al. [76] Healthy
vs.
Diabetic

PPG [12 min]
30 [14/16]
In-house

ARMA + SVM Averaged ARMA model Accuracy: 80%
Sensitivity: 78.6%
Specificity: 81%

Keikhosravi et al. [77] Healthy
vs.
Diabetic

PPG [12 min]
46 [23/23]
In-house

Bayesian classifier SVD Accuracy: 93.5%
Sensitivity: 100%
Specificity: 87%

Acharya et al. [78] Healthy
vs.
Diabetic

ECG [2 s]
30 [15/15]
In-house

AdaBoost Signal features Accuracy: 90%
Sensitivity: 92.5%
Specificity: 88.7%

Acharya et al. [79] Healthy
vs.
Diabetic

ECG [1 h]
30 [15/15]
In-house

AdaBoost Non-linear HRV Accuracy: 86%
Sensitivity: 87.5%
Specificity: 84.6%

Jian et al. [80] Healthy
vs.
Diabetic

ECG [1 h]
30 [15/15]
In-house

SVM HRV (HOS) Accuracy: 80%
Sensitivity: 70.1%
Specificity: 89.2%

Acharya et al. [75] Healthy
vs.
Diabetic

ECG [1 h]
30 [15/15]
In-house

Decision Tree DWT features from HR
signal

Accuracy: 92%
Sensitivity: 92.6%
Specificity: 91.5%

Monte-Moreno et al. [73] Healthy
vs.
Diabetic

PPG [1 min]
1170 [340/830]
In-house

RF, Gradient Boost Signal features + physio
data

Accuracy: 70%
Sensitivity: 80%
Specificity: 48%

Pachori et al. [81] Healthy
vs.
Diabetic

ECG [1 h]
30 [15/15]
In-house

LS-SVM R-R IMFs parameters Accuracy: 95.63%
Sensitivity: 97.5%
Specificity: 93.7%

Reddy et al. [82] Healthy
vs.
Diabetic

PPG [5 min]
100 [50/50]
In-house

SVM HRV Accuracy: 82%
Sensitivity: 84%
Specificity: 80%

Nirala et al. [83] Healthy
vs.
Diabetic

PPG [pulse]
135
In-house

SVM Signal and derivatives
parameters + eigenvalues

Accuracy: 97.87%
Sensitivity: 98.78%
Specificity: 96.6%

Hettiarachchi et al. [84] Healthy
vs.
Diabetic

PPG [2, 1 s]
150 [83/52]
Public [85]

LDA Signal features + physio
data

Accuracy: 83%

Qawqzeh et al. [86] Healthy
vs.
Diabetic

PPG [-]
587 [-]
In-house

Logistic Regression Signal features + physio
data

Accuracy: 92.3%
Sensitivity: 70%
Specificity: 96%

Prabha et al. [87] Healthy
vs.
Pre diabetic
vs.
Diabetic

PPG [5 s]
217 [-]
Public [88]

Xboost MFCC + physio data Accuracy: 99.93%
Sensitivity: 99.93%
Specificity: 99.94%

Prabha et al. [87] Healthy
vs.
Pre diabetic
vs.
Diabetic

PPG [5 s]
217 [-]
Public [88]

SVM MFCC + physio data Accuracy: 92.28%
Sensitivity: 86%
Specificity: 94%

Chu et al. [74] 5 levels diabetes
risk

PPG, ECG [1 min]
2538 [1310/1228]
In-house

Logistic regression HRV + physio data Accuracy: 90%
Sensitivity: 92.5%
Specificity: 88%

Machine learning methods for diabetes detection. a: type of signal [signal length], total number of subjects
[subjects for each class], type of database. SVM: support vector machine. ARMA: autoregressive moving average.
SVD: single value decomposition. RF: random forest. LS-SVM: least-squares support vector machine. LDA: latent
dirichlet allocation. DWT: discrete wavelet transform. R-R: R to R ECG wave time interval. IMF: intrinsic mode
functions. MFCC: Mel frequency cepstral coefficients. HOS: higher order spectral.
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5.2.2. Blood Glucose Estimation with Machine Learning

Blood glucose estimation and prediction can be used to predict hypo/hyperglycemia
events but also to adjust the insulin dose to be injected in order to maintain the homeostasis.
Due to this important role, as for conventional glucose meters, blood glucose estimation
models need to satisfy some strict criteria in order to be considered clinically validated.
To this purpose, the Clarke grid error analysis is often proposed. In his study, Monte-
Moreno [89] trained several machine learning models to estimate blood glucose levels and
blood pressure from 410 subjects (339 healthy and 79 diabetics). Time and frequency PPG
features and physiological data, such as BMI and age, compose the 21 features vector used
to fit the models. A random forest based model scored the best performance in terms of
stability and R2. The results show that 87.7% of points were in region A and 10.3% of
the data went to region B. Since none of the estimated points fall into regions C, D or E,
this approach is validated according to the Clarke error grid analysis. Zhang et al. [90]
estimated three levels of blood glucose: normal, borderline and warning. The subjects
(30 diabetic subjects and 50 healthy subjects) were asked to collect video PPG. Once the PPG
signal is extracted from the video, a Gaussian fitting is applied. Two Gaussian functions are
fitted in order to model the forward and backward components of the PPG wave. A total of
28 features, composed of time and frequency PPG features and Gaussian fitted curve based
features, were used to train several machine learning models. A support vector machine
based model scored the best performance, reaching an accuracy of 81.5% (specificity 83.2%
and sensitivity 80%). While PPG signals are mostly used to estimate the exact level of
glucose, ECG signals are primarily used to detect hypoglycemic events. Cichosz et al. [91]
showed that ECG can enhance the prediction of hypoglycemia events. They compared the
performance of a general continuous glucose meter (CGM) with respect to their system
that combines CGM information with the HRV ECG analysis. Their system appeared to
have a better specificity (99% vs. 93%), higher ROC (receiver operating characteristic)
AUC (area under the curve) (0.98 vs. 0.96) and a larger lead time, 22 versus 14 min, while
the sensitivity was slightly lower (79% vs. 81%). Ling et al. [92] developed a hybrid
particle-swarm-optimization-based fuzzy reasoning to detect hypoglycemic events during
the night. ECG was recorded overnight from 16 children with T1DM. The fuzzy reasoning
model (FRM) is used to correlate HR and QTc to hypoglycemia. The model is able to
detect advanced hypoglycemic episodes (sensitivity is 85.7% and specificity is 79.87%)
and hypoglycemic episodes (sensitivity is 80% and specificity is 55.1%). Table 6 presents
the available works on blood glucose level estimation using PPG and ECG with machine
learning approaches.

Table 6. Machine learning methods for blood glucose estimation and detection.

Reference Objective Data Type a Approach Feature Main Outcome

Nuryani et al. [93] Hypoglycemia
detection (T1DM)

ECG [8 h]
5
In-house

Fuzzy SVM HR, QT, TT Sensitivity: 74.2%
Specificity: 59%

Monte-Moreno [89] Glucose level
estimation (DM)

PPG [5 s]
410 [331/79]
In-house

RF Signal features + pyhi-
sio data

r = 0.9
Clarke Error Grid
[87.7% A; 10.3% B]

Ling et al. [94] Hypoglycemia
detection (T1DM)

ECG [10 h]
16
In-house

GA-FI to HR, QT and their varia-
tions

Sensitivity: 75%
Specificity: 50%

Lipponen et al. [95] Hypoglycemia
detection (T1DM)

ECG [5 min]
22
In-house

PCA QT, RT amplitude ratio 15/22 correct detection

Nuryani et al. [96] Hypoglycemia
detection (T1DM)

ECG [8 h]
5
In-house

Swarm-based SVM Signal features Sensitivity: 70.9%
Specificity: 81.5%
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Table 6. Cont.

Reference Objective Data Type a Approach Feature Main Outcome

Ling et al. [92] Hypoglycemia
detection (T1DM)

ECG [10 h]
16
In-house

HPSOWM-based
FRM

HR, QT Sensitivity: 85.7%
Specificity: 79.8%

Ling et al. [97] Hypoglycemia
detection (T1DM)

ECG [6 h]
16
In-house

Extreme learning
algorith

Signal features Sensitivity: 78%
Specificity: 60%

Zhang et al. [98] Glucose level
estimation

PPG [-]
18
In-house

SVR with GA Signal features + physio
data

r = 0.97
RMSE = 1.58
Clarke Error Grid
[100% A]

Usman et al. [99] Glucose level
estimation

PPG [-]
71
In-house

Logisitc Regression Second derivative
feature

Accuracy: 69%
Sensitivity: 73%
Specificity: 64.7%

Zhang et al. [100] Glucose level
estimation

PPG [10 s]
18
In-house

SVR with GA Signal features + physio
data

Clarke Error Grid
[100% A]

Chowdhury et al. [101] Glucose level
estimation

PPG [60 s]
18
In-house

PCR Signal and derivative
features

SEP = 18.30 mg/dL
Clarke Error Grid
[82.6% A; 17.4% B]

Zhang et al. [90] Glucose level
estimation (3 levels)

PPG [pulse]
80 [50/30]
In-house

GSVM GMM features Accuracy: 81.49%
Sensitivity: 79.6%
Specificity: 83.2%

Gupta et al. [102] Glucose level
estimation

PPG [-]
-
In-house

RF Signal features + physio
data

r = 0.81

Hina et al. [103] Glucose level
estimation

PPG [10 s]
200
In-house

Fine Gaussian SVR Signal features RMSE = 11.28
Clarke Error Grid
[95% A]

Gupta et al. [104] Glucose level
estimation

PPG [3 s]
26
In-house

XGBoost Signal features + physio
data

r = 0.94
MAE = 8.31 mg/dL

Islam et al. [105] Glucose level
estimation

PPG [50 s]
52
In-house

PLS Signal and derivative
parameters

SEP = 17.02 mg/dL

Shamim et al. [106] Glucose level
estimation

PPG,ECG [2 min]
1
In-house

CART HRV ECG HRV scored the
best result.
RMSE = 30 mg/dL

Guzman et al. [107] Glucose level
estimation

PPG [10 min]
5
In-house

SVR HRV, BMI, fatigue, DBP MAE = 16.24 mg/dL

Susuana et al. [108] Glucose level
estimation

PPG [11 s]
4
In-house

EBTA Raw signal Accuracy: 98%

Cichosz et al. [91] Hypoglicemia
detection (T1DM)

ECG, CGM [5 min]
10
In-house

Mathematical predic-
tion model

HRV, CGM data Sensitivity: 79%
Specificity: 99%
AUC: 0.99
Lead time: 22 min
improvement

Elvebakk et al. [109] Hypoglicemia
detection (T1DM)

ECG, Activity, NIR,
bioimpedance, skin
temperature [30 min]
15
In-house

Multi parameter
model

Probability of changes Accuracy: 88%
Sensitivity: 95%
Specificity: 96%
AUC: 0.97

Machine learning methods for blood glucose estimation and detection. a: type of signal [signal length], total
number of subjects [subjects for each class], type of database. HPSOWM-based FRM: hybrid particle-swarm-
optimization with wavelet-mutation-based fuzzy reasoning model. EBTA: ensemble bagged trees algorithm. PCA:
principal component analysis. RF: random forest. SVR: support vector regression. SVM: support vector machine.
GSVM: Gaussian support vector machine. GA: genetic algorithm. GSVM: Gaussian support vector machine. GA
FIS: genetic algorithm with fuzzy inference system. CART: classification and regression trees. PLS: partial least
squares regression. BMI: body mass index. HR: heart rate. AUC: area under the curve QT: Q to T ECG wave time
interval. TT: T to T ECG wave time interval. GMM: Gaussian mixture model. DBP: diastolic blood pressure. CGM:
continuous glucose monitoring.
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5.2.3. Diabetes Complications with Machine Learning

Concerning the diabetes complications detection with machine learning approaches,
only one article was found. Jelinek et al. [110] proposed a graph-based machine learning
system (GBMLS) to detect CAN. A total of 21 subjects with CAN took part in this study. The
model was able to detect the severe neuropathy with a sensitivity of 89% and a specificity
of 98%. Since the neuropathy is not a systematic consequence of diabetes, the control group
should be composed by diabetic subjects without complications. However, the study does
not clearly report this information. In such a case, the model performance would refer
to its capability in detecting diabetes rather than its capability to differentiate between a
diabetic subject and a diabetic subject with neuropathy. Table 7 contains the details of the
cited article.

Table 7. Machine learning methods for diabetes complications.

Reference Objective Data Type a Approach Feature Main Outcome

Jelinek et al. [110] Healthy
vs.
Diabetic with CAN

ECG [20 min]
20 [-/20]
In-house

GBMLS HRV (MAF) Sensitivity: 89%
Specificity: 98%

Machine learning methods for diabetes complications. a: type of signal [signal length], total number of subjects
[subjects for each class], type of database. GBMLS: graph based machine learning system. MAF: multi scale
Allan Factor.

5.2.4. Machine Learning: Main Outcomes

Also with machine learning, as for traditional approaches, HRV-derived parameters
are often employed. Those features are fitted into a variety of machine learning methods in
order to detect diabetes or to predict blood glucose level. ECG and PPG signals are equally
employed for this purpose. Support vector machine or regression, decision tree and random
forest are the most common approaches. Regarding the detection of diabetes complications,
further studies need to be done to better investigate the topic. Overall, promising results
are shown in the presented studies. However, much attention should be put on the dataset
processing step. A rigorous separation between train test and validation is needed in
order to obtain reliable results. In some cases, once the feature extraction is completed, the
dataset is automatically split into train, validation and test. In this case, it is very likely
that features belonging to the same subject are contained in more than one partition. The
splitting process should be computed as the first step and based on the available subjects.
Another limitation that can be observed is the lack of results standardization. The variety
of available methods to analyze the performance of the proposed methods makes the
comparison challenging.

5.3. Deep Learning

Recently, deep learning methods were largely employed in biomedical signal process-
ing [111]. Their main limitations are represented by the difficulty to interpret the model
and by the amount of data that they require. However, their use grew fast thanks to
the possibility of avoiding the feature extraction process that, when working with real
signals, can be very challenging. In this section, we present the deep learning approaches
to detect diabetes, estimate blood glucose and detect diabetes complications through PPG
and ECG analyses.

5.3.1. Diabetes Detection with Deep Learning

The great advantage of deep learning is the possibility to employ raw signals without
extracting significant features. Due to this reason, convolutional neural networks (CNNs)
are largely employed in PPG and ECG analyses. In fact, their main characteristic is the
capability of auto-extracting features using the convolution filters between one layer and
the next one. The convolution process reduces the size of the input, preserving its important
characteristics. Avram et al. [112] proposed a CNN-based model to detect diabetes from raw
PPG signals. The proposed model is composed of 18 CNN layers. Their dataset is composed
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of 53,870 individuals that were asked to collect PPG signals from a smartphone camera. The
network reached a specificity of 65.4%, a sensitivity of 75% and an AUC of 0.77 on average
over three test datasets. In addition to the CNN model, they built a logistic regression
based model. The model takes as input the CNN output and some physiological data, such
as body mass index (BMI), comorbidities, age and gender. The best result was obtained
when the CNN score and comorbidities were used together (AUC = 0.83). Comparable
results, with different approaches, were presented by Wang et al. [113] and Srinivasan
et al. [114]. Wang et al. [113] utilized ECG images to train a 2D-CNN model to distinguish
between normal ECG records and prediabetic ones. The train dataset is composed of 1750
normal samples and 501 prediabetes samples. The actual number of analyzed subjects
is not clearly reported. The study shows that the model performed better when trained
and tested on datasets that contain similar BMI subjects with respect to a mixed one. The
best performance was obtained from normal-weight subjects (BMI < 25), scoring 84%,
90% and 0.83 as sensitivity, specificity and AUC, respectively. Another two-dimension
approach was proposed by Srinivasan et al. [114]. The presented model is trained over
PPG scalogram images computed from 467 normal subjects and 341 diabetic subjects PPG.
Also in this case, several combinations of inputs were tested. The best performance was
reached when the PPG scalogram was used as input in combination with age, gender and
presence of hypertension (sensitivity: 76.6%, specificity 76.1%, AUC: 0.83). Table 8 presents
an overview of the available works on detecting diabetes using PPG and ECG with deep
learning approaches. It is important to notice that a very high value of accuracy, specificity
or sensitivity could be the result of a not complete separation between train/validation and
test set.

Table 8. Deep learning methods for diabetes detection.

Reference Objective Data Type a Approach Feature Main Outcome

Swapna [115] Healthy
vs.
Diabetic

ECG [10 min]
20
In-house

CNN + LSTM + SVM Raw signal Accuracy: 95.7%

Yildirim et al. [116] Healthy
vs.
Diabetic

ECG [2 s]
30 [15/15]
In-house

CNN HR spectrogram Accuracy: 97.62%
Sensitivity: 100%
Specificity:
96.72%

Panwar et al. [117] Healthy
vs.
Diabetic

PPG [2.1 s]
217 [-]
Public [85]

CNN Raw signal Accuracy: 99.8%
Sensitivity: 99.8%
Specificity: 99.8%

Avram et al. [112] Healthy
vs.
Diabetic

PPG [21 s]
53870 [3584/50306]
In-house

CNN + Logistic Regression Raw signal+
physio data

Sensitivity: 75%
Specificity: 65.4%
AUC: 0.77

Wang et al. [113] Healthy
vs.
Diabetic

ECG [5 s]
-
In-house

CNN Raw signal+
physio data

Accuracy: 77.8%
Sensitivity: 80.8%
Specificity: 77.5%
AUC: 0.77

Srinivasan et al. [114] Healthy
vs.
Diabetic

PPG [30 s]
584 [467/341]
Public [118]

CNN Scalogram +
physio data

Accuracy: 76.34%
Sensitivity: 76.6%
Specificity: 76.1%
AUC: 0.83

Deep learning methods for diabetes detection. a: type of signal [signal length], total number of subjects [subjects
for each class], type of database. CNN: convolutional neural network. AUC: area under the curve HR: heart rate.
LSTM: long short-term memory. SVM: support vector machine.

5.3.2. Blood Glucose Estimation with Deep Learning

In the blood glucose domain, few articles fully exploited the deep learning advantages
of being capable of dealing directly with raw signals. Most of the proposed articles focused
on extracting features clinically related to blood glucose variations. Habbu et al. [119]
proposed a feature-based approach to estimate the blood glucose level. The dataset was
composed of 378 healthy subjects and 233 diabetic. In this study, the authors explored two
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approaches. Eight cepstral coefficients (CC), their standard deviation (SD) and variation
were computed on two different parts of the signal. First a frame approach was exploited
using a 1 s PPG window. In addition to that, a single pulse approach was studied too.
Two MLP (multi layer perceptron) models were trained to assess the differences in the
performance of the window-based approach with respect to the single pulse approach.
The single pulse approach overcame the window approach, obtaining a better precision
of estimation (85.2% A region, 13.6% B region, 1.2% C region with respect to 77.8% A
region, 19% B region, 1% C region, 1.6% D region and 0.6% D region). However, this
approach does not meet the requirements from the Clarke error grid analysis. Cordeiro
et al. [120] trained several machine and deep learning models to detect hypoglycemia.
He computed innovative HRV features from ECG signals belonging to 1119 subjects. In
addition to time HRV features, the authors also investigated the importance of the ECG
waves slope. The model was trained over 9 ECG feature length and slope (PQ, PR, PS, QR,
QT, RS and RT). The model that outperformed all the others is a MLP-based model. It was
able to detect hypoglycemia events with a specificity of 85% and a sensitivity of 87.5%.
This result, also taking into consideration the dataset size, overcomes the other studies’
results. As a no-features based approach, Porumb et al. [121] used raw ECG signals to
detect hypoglycemia. The dataset is composed of 5 healthy subjects, and the study aim is
to provide a personalized approach by training one model for each subject. To this purpose,
the subjects were monitored 24 h for 14 days. Also in this case, two different approaches
were tested. The first consists in training a CNN network with single ECG pulses and
activity value. The second one consists of a CNN + RNN network that takes as input 200
consecutive ECG beats and activity values. The combination of CNN and RNN overcame
the CNN performance, scoring on average 86%, 81% and 82% of sensitivity, specificity and
accuracy, respectively.

Table 9 presents the available works on blood glucose level estimation using PPG and
ECG with deep learning approaches.

Table 9. Deep learning methods for blood glucose estimation and detection.

Reference Objective Data Type a Approach Feature Main Outcome

Nguyen et al. [122] Hypoglycemia
detection (T1DM)

ECG, GSR [4 h]
21
In-house

MLP HR, QT length, skin impedance Sensitivity: 95.2%
Specificity: 41.4%

Nguyen et al. [123] Hypoglycemia
detection (T1DM)

ECG, GSR [4 h]
16
In-house

Bayesian neural
network

HR, QT length, skin impedance Sensitivity: 89.2% %

San et al. [124] Hypoglycemia
detection (T1DM)

ECG, GSR [10 h]
15
In-house

BBNN HR, QT length, skin impedance Sensitivity: 76.7%
Specificity: 50.9%

San et al. [125] Hypoglycemia
detection (T1DM)

ECG, GSR [10 h]
15
In-house

ANFIS HR, QT Sensitivity: 79%
Specificity: 51.8%

San et al. [126] Hypoglycemia
detection (T1DM)

ECG, GSR [10 h]
15
In-house

Rough BBNN HR, QT and their variations Sensitivity: 83.9%
Specificity: 51.9%

Nguyen et al. [127] Hyperglycemia
detection (T1DM)

ECG [9h]
10
In-house

LM algorithm. 16 ECG parameters Sensitivity: 70.6%
Specificity: 65.4%

San et al. [128] Hypoglycemia
detection (T1DM)

ECG [10 h]
15
In-house

DBN HR, QTc Sensitivity: 79.7%
Specificity: 50%

Manurung et al. [129] Glucose level
estimation

PPG [-]
51
In-house

MLP Amplitude MAE= 5.86 mg/dL

Hossain et al. [130] Glucose level
estimation

PPG [10 s]
30
In-house

CNN Signal and derivative features features r = 0.95
MSE = 0.15

Habbu et al. [119] Glucose level
estimation

PPG [1 min]
611
In-house

ANN Time and frequency features r = 0.84
Clarke Error Grid
[80.6% A; 17.4% B]
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Table 9. Cont.

Reference Objective Data Type a Approach Feature Main Outcome

Mahmud et al. [131] Glucose level
estimation

PPG,GSR,
temperature [-]
15
In-house

CNN Raw signal Clarke Error Grid
[80% A; 20% B]

Habbu et al. [119] Glucose level
estimation (T2DM)

PPG [1 min]
611 [378/233]
In-house

MLP CC r = 0.95
Clarke Error Grid
[85.2% A; 13.6% B]

Islam et al. [132] Glucose level
estimation (T2DM)

PPG, GSR [30 s]
25 [18/7]
In-house

CNN Raw signal Clarke Error Grid
[28% A; 43% B]

Porumb et al. [121] Hypoglycemia
detection

ECG, activity
[5 min]
5
In-house

CNN + RNN Raw signals Accuracy: 82.4%
Sensitivity: 86%
Specificity: 80.6%

Cordeiro et al. [120] Hypoglycemia
detection

ECG [1 min]
1119
In-house

MLP Signal features Sensitivity: 87.6%
Specificity: 85%
AUC: 0.94

Deep learning methods for blood glucose estimation and detection. a: type of signal [signal length], total number
of subjects [subjects for each class], type of database. MLP: multi layer perceptron. HR: heart rate. AUC: area
under the curve QT: Q to T ECG wave time interval. DBN: deep belief network. BBN: block-based neural network.
ANFIS: adaptive neural fuzzy inference system. CNN: convolutional neural network. LM: Levenberg–Marquardt.
RNN: recurrent neural network. CC: cepstral coefficients.

5.3.3. Diabetes Complications with Deep Learning

From our literature search, only one article assessed diabetes complications through
deep learning approaches. Alkhodari et al. [133] proposed a study to detect diabetes
complications. The dataset is composed of 25 healthy and 75 diabetic subjects. The diabetic
group is further composed of diabetic with different complications, such as CAN, DPN,
nephropathy and retinopathy. ECG HRV parameters (linear and nonlinear) were used to
test different combinations of datasets (i.e., healthy vs. diabetic, diabetic vs. diabetic with
complications, and diabetic vs. diabetic with CAN). Among all the tested models, CNN
scored the best results in distinguishing diabetic healthy subjects from diabetic subjects
with micro vascular complications (all of them). The sub dataset is composed of 4 diabetic
without complications and 66 subjects with complications. The model scored an accuracy
of 98.5%, sensitivity of 100% and specificity of 97%. Table 10 contains the details of the
cited article.

Table 10. Deep learning methods for diabetes complications.

Reference Objective Data Type a Approach Feature Main Outcome

Alkhodari et al. [133] Diabetic
vs.
Diabetic with complications

ECG [5 min]
95 [25/70]
In-house

CNN HRV Accuracy: 98.5%
Sensitivity: 100%
Specificity: 97%

Deep learning methods for diabetes complications. a: type of signal [signal length], total number of subjects
[subjects for each class], type of database. CNN: convolutional neural network.

5.3.4. Deep Learning: Main Outcomes

The main advantage of deep learning approaches is the possibility of avoiding the
feature extraction step that can be very challenging when real ECG and/or PPG signals
are employed. This capability is mostly employed in diabetes detection, while for blood
glucose estimation and diabetes-related complications, features-based approaches are still
preferred. Among the possible features, HRV-derived features are the most common ones.
Also in this case, as for machine learning, particular attention should be put in correctly
splitting the dataset to avoid biased results. Although it is well accepted that deep learning
requires a large amount of data to produce reliable results, the majority of the studies used
small datasets. This fact could be justified by the low complexity of the proposed models.
In fact, as shown by Brigato et al. [134], low complexity models perform comparably well or
better than high complexity models when dealing with small datasets. However, significant
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work has to be done in order to further study the models’ interpretability and clinical
validation. It is a crucial requirement that needs to be satisfied to employ deep learning
models in a clinical environment.

6. Conclusions

Diabetes is a worldwide concern. Conventional methods for diabetes testing and
managing, such as CGM and HbA1c, are invasive and can be expensive. Several studies
have been conducted to detect and manage diabetes with the help of big data. Food
intake, steps count, voice analysis and EHR are only some of the data that have been
exploited for this purpose. However, it is important to highlight that the first cause of
death in diabetic patients is cardiovascular disease [135]. Armed with this knowledge,
several researchers recently approached the diabetes care field through ECG and PPG
analyses as shown in this paper review. Several different approaches were proposed from
the traditional to the deep learning ones. As traditional approaches, many PPG and ECG
parameters were analyzed in order to detect significant variations that could define the
presence of the pathology or a certain complication within a dataset. However, sometimes,
simple approaches, such as linear correlation, cannot explain the complex relation among
the data. For this purpose, often, the very same parameters are analyzed with machine
learning approaches. Nonetheless, both traditional and machine learning approaches
require the feature extraction step to be done. The extraction of fiducial points on real-life
signals can be very challenging. Besides the difficulty of generalizing a feature extraction
algorithm that could work on the very different kinds of waveforms, there is always the
necessity of computing a quality assessment. In fact, no feature extraction algorithm can
work if the input signal is corrupted. The deep learning advent helped the researcher to
compute analysis of a very large amount of data, avoiding the feature extraction step. The
downside of deep learning approaches is that they are not easily interpretable. In a clinical
environment, this can be an issue since the knowledge of why and how a pathology was
detected is fundamental in order to validate the diagnosis. Another limitation is the lack of
standardization of the results. In fact, to this day, each study can propose any error result
analysis. This heterogeneity makes it difficult to quantify the differences among the studies
(in terms of results). In addition, the lack of information about the used dataset makes
the reproducibility of the study very hard. Excluding the case in which a personalized
model approach is proposed, much attention should be put in not using features or signals
belonging to the very same patient in both the train and test. Not separating the subjects
could lead to misleading results. In conclusion, PPG and ECG analyses to detect and
manage diabetes is very promising.

To summarize, the main areas that need to be better explored are as follows:

• Data processing standardization.

– In all the proposed approaches (traditional methods, machine learning and deep
learning ones) signal processing and features extraction is a very important step.
The authors should provide the maximum of details to allow reproducibility.

– When testing the model is necessary (as for ML and DL), the splitting process
should be performed with much attention to avoid biased results.

• Standardization of performance analysis.

– Performance is analyzed with a variety of parameters. The wide spectrum of
performance parameters allows researchers to highlight different advantages and
limitations of the proposed method. Future studies should be focused on creating
guidelines on performance analysis to allow cross analysis.

• Clinical validation.

– To our knowledge, none of the proposed methods have been clinically validated.
ECG and PPG analyses for diabetes care is still an open research topic. However,
to achieve the objective of employing these analyses in clinical environments,
clinical validation is a step that cannot be skipped.
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46. Kamiŝalić, A.; Fister, I.; Turkanović, M.; Karakatiĉ, S. Sensors and functionalities of non-invasive wrist-wearable devices: A

review. Sensors 2018, 18, 1714. [CrossRef] [PubMed]
47. Zheng, M.; Zhang, X.; Chen, S.; Song, Y.; Zhao, Q.; Gao, X.; Wu, S. Arterial Stiffness Preceding Diabetes: A Longitudinal Study.

Circ. Res. 2020, 127, 1491–1498. [CrossRef] [PubMed]
48. Irace, C.; Carallo, C.; Scavelli, F.; De Franceschi, M.S.; Esposito, T.; Gnasso, A. Blood viscosity in subjects with normoglycemia

and prediabetes. Diabetes Care 2014, 37, 488–492. [CrossRef]
49. Masaoka, S.; Lev-Ran, A.; Hill, L.R.; Vakil, G.; Hon, E.H. Heart rate variability in diabetes: Relationship to age and duration of

the disease. Diabetes Care 1985, 8, 64–68. [CrossRef] [PubMed]
50. Stern, S.; Sclarowsky, S. The ecg in diabetes mellitus. Circulation 2009, 120, 1633–1636. [CrossRef] [PubMed]
51. Faust, O.; Acharya, U.R.; Molinari, F.; Chattopadhyay, S.; Tamura, T. Linear and non-linear analysis of cardiac health in diabetic

subjects. Biomed. Signal Process. Control 2012, 7, 295–302. [CrossRef]
52. Seyd, P.; Ahamed, V. Time and frequency domain analysis of heart rate variability and their correlations in diabetes mellitus. Int.

J. Biol. Life Sci. 2008, 4, 24–27.
53. Haryadi, B.; Liou, J.J.; Wei, H.C.; Xiao, M.X.; Wu, H.T.; Sun, C.K. Application of multiscale Poincaré short-time computation

versus multiscale entropy in analyzing fingertip photoplethysmogram amplitudes to differentiate diabetic from non-diabetic
subjects. Comput. Methods Programs Biomed. 2018, 166, 115–121. [CrossRef]

54. Buchs, A.; Slovik, Y.; Rapoport, M.; Rosenfeld, C.; Khanokh, B.; Nitzan, M. Right-left correlation of the sympathetically induced
fluctuations of photoplethysmographic signal in diabetic and non-diabetic subjects. Med. Biol. Eng. Comput. 2005, 43, 252–257.
[CrossRef]

http://dx.doi.org/10.1007/s00125-020-05196-3
http://dx.doi.org/10.15277/bjdvd.2014.014
http://dx.doi.org/10.1016/j.diabet.2010.11.011
http://www.ncbi.nlm.nih.gov/pubmed/21163424
http://dx.doi.org/10.2337/diacare.3.4.543
http://dx.doi.org/10.1161/01.CIR.0000091257.27563.32
http://www.ncbi.nlm.nih.gov/pubmed/14504252
http://dx.doi.org/10.1177/2047487319878373
http://www.ncbi.nlm.nih.gov/pubmed/31722564
http://dx.doi.org/10.2174/1381612820666140212210451
http://dx.doi.org/10.2337/diacare.28.4.963
http://dx.doi.org/10.1186/s40662-015-0026-2
http://dx.doi.org/10.1186/s13098-019-0403-4
http://dx.doi.org/10.1002/ana.410150103
http://dx.doi.org/10.1177/1932296819898277
http://dx.doi.org/10.1089/dia.2005.7.776
http://www.ncbi.nlm.nih.gov/pubmed/16241881
http://dx.doi.org/10.1016/j.hfc.2007.10.004
http://www.ncbi.nlm.nih.gov/pubmed/18313620
http://dx.doi.org/10.2344/0003-3006(2006)53[53:FOEI]2.0.CO;2
http://dx.doi.org/10.1016/j.ijcard.2004.12.018
http://dx.doi.org/10.3389/fpubh.2017.00258
http://dx.doi.org/10.1016/0169-2607(89)90159-4
http://dx.doi.org/10.3390/electronics3020282
http://dx.doi.org/10.2174/157340312801215782
http://dx.doi.org/10.1016/j.sbsr.2020.100370
http://dx.doi.org/10.3389/fphys.2019.00198
http://dx.doi.org/10.3390/s18061714
http://www.ncbi.nlm.nih.gov/pubmed/29799504
http://dx.doi.org/10.1161/CIRCRESAHA.120.317950
http://www.ncbi.nlm.nih.gov/pubmed/32985370
http://dx.doi.org/10.2337/dc13-1374
http://dx.doi.org/10.2337/diacare.8.1.64
http://www.ncbi.nlm.nih.gov/pubmed/3971850
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.897496
http://www.ncbi.nlm.nih.gov/pubmed/19841309
http://dx.doi.org/10.1016/j.bspc.2011.06.002
http://dx.doi.org/10.1016/j.cmpb.2018.10.001
http://dx.doi.org/10.1007/BF02345963


Sensors 2022, 22, 4890 25 of 28

55. Usman, S.; Mohamad Rozi, R.; Reaz, M.; Mohd Ali, M. Analysis of area under curve of PPG and its relation with HbA1c. In
Proceedings of the 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, Langkawi, Malaysia, 17–19 December
2012; pp. 260–263. [CrossRef]

56. Wu, H.T.; Lee, C.Y.; Liu, C.C.; Liu, A.B. Multiscale cross-approximate entropy analysis as a measurement of complexity between
ECG R-R interval and PPG pulse amplitude series among the normal and diabetic subjects. Comput. Math. Methods Med. 2013,
2013, 231762. [CrossRef]

57. Pilt, K.; Meigas, K.; Ferenets, R.; Temitski, K.; Viigimaa, M. Photoplethysmographic signal waveform index for detection of
increased arterial stiffness. Physiol. Meas. 2014, 35, 2027–2036. [CrossRef] [PubMed]

58. Haryadi, B.; Gen-Min, L.; Chieh-Ming, Y.; Chiang, C.S.; Hsien-Tsai, W. Multiscale poincaré plots of photoplethysmographic pulse
amplitude for appraising of diabetes. In Proceedings of the 2017 5th International Conference on Instrumentation, Control, and
Automation, ICA 2017, Yogyakarta, Indonesia, 9–11 August 2017; pp. 126–129. [CrossRef]

59. Hsu, P.C.; Wu, H.T.; Sun, C.K. Assessment of Subtle Changes in Diabetes-Associated Arteriosclerosis using Photoplethysmo-
graphic Pulse Wave from Index Finger. J. Med. Syst. 2018, 42, 43. [CrossRef] [PubMed]

60. Usman, S.; Bani, N.A.; Kaidi, H.M.; Aris, S.A.M.; Jalil, S.Z.A.; Muhtazaruddin, M.N. Second derivative and contour analysis of
PPG for diabetic patients. In Proceedings of the 2018 IEEE EMBS Conference on Biomedical Engineering and Sciences, IECBES
2018, Sarawak, Malaysia, 3–6 December 2018; pp. 59–62. [CrossRef]

61. Singh, J.P.; Larson, M.G.; O’Donnell, C.J.; Wilson, P.F.; Tsuji, H.; Lloyd-Jones, D.M.; Levy, D. Association of hyperglycemia with
reduced heart rate variability (The Framingham Heart Study). Am. J. Cardiol. 2000, 86, 309–312. [CrossRef]

62. Harris, N.; Ireland, R.; Marques, J.; Hudson, S.; Davies, C.; Lee, S.; Robinson, R.; Heller, S. Can changes in QT interval be used
to predict the onset of hypoglycemia in type 1 diabetes? In Proceedings of the Computers in Cardiology 2000. Vol. 27 (Cat.
00CH37163), Cambridge, MA, USA, 24–27 September 2000; pp. 375–378. [CrossRef]

63. Laitinen, T.; Lyyra-Laitinen, T.; Huopio, H.; Vauhkonen, I.; Halonen, T.; Hartikainen, J.; Niskanen, L.; Laakso, M. Electrocardio-
graphic alterations during hyperinsulinemic hypoglycemia in healthy subjects. Ann. Noninvasive Electrocardiol. 2008, 13, 97–105.
[CrossRef] [PubMed]

64. Nguyen, L.L.; Su, S.; Nguyen, H.T. Identification of Hypoglycemia and Hyperglycemia in Type 1 Diabetic patients using ECG
parameters. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
EMBS, San Diego, CA, USA, 28 August–1 September 2012; pp. 2716–2719. [CrossRef]

65. Amanipour, R.; Nazeran, H.; Reyes, I.; Franco, M.; Haltiwanger, E. The effects of blood glucose changes on frequency-domain
measures of HRV signal in type 1 diabetes. In Proceedings of the CONIELECOMP 2012–22nd International Conference on
Electronics Communications and Computing, Cholula, Puebla, Mexico, 27–29 February 2012; pp. 50–54. [CrossRef]

66. Kim, D.W.; Kim, S.W.; Kim, S.C.; Nam, K.C.; Kang, E.S.; Im, J.J. Detection of diabetic neuropathy using blood volume ratio of
finger and toe by PPG. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and
Biology, Lyon, France, 22–26 August 2007; pp. 2211–2214. [CrossRef]

67. Wei, H.C.; Ta, N.; Hu, W.R.; Wang, S.Y.; Xiao, M.X.; Tang, X.J.; Chen, J.J.; Wu, H.T. Percussion entropy analysis of synchronized
ECG and PPG signals as a prognostic indicator for future peripheral neuropathy in type 2 diabetic subjects. Diagnostics 2020, 10,
32. [CrossRef]

68. Al-Hazimi, A.; Al-Ama, N.; Syiamic, A.; Qosti, R.; Al-Galil, K. Time-domain analysis of heart rate variability in diabetic patients
with and without autonomic neuropathy. Ann. Saudi Med. 2002, 22, 400–403. [CrossRef]

69. Cornforth, D.J.; Tarvainen, M.P.; Jelinek, H.F. Using renyi entropy to detect early cardiac autonomic neuropathy. In Proceedings
of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Osaka, Japan, 3–7 July
2013; pp. 5562–5565. [CrossRef]

70. Imam, M.H.; Karmakar, C.K.; Jelinek, H.F.; Palaniswami, M.; Khandoker, A.H. Detecting subclinical diabetic cardiac autonomic
neuropathy by analyzing ventricular repolarization dynamics. IEEE J. Biomed. Health Inform. 2016, 20, 64–72. [CrossRef]

71. Boulton, A.J. Management of diabetic peripheral neuropathy. Clin. Diabetes 2005, 23, 9–15. [CrossRef]
72. Vinik, A.I.; Ziegler, D. Diabetic cardiovascular autonomic neuropathy. Circulation 2007, 115, 387–397. [CrossRef]
73. Moreno, E.M.; Lujan, M.J.A.; Rusinol, M.T.; Fernandez, P.J.; Manrique, P.N.; Trivino, C.A.; Miquel, M.P.; Rodriguez, M.A.;

Burguillos, M.J.G. Type 2 diabetes screening test by means of a pulse oximeter. IEEE Trans. Biomed. Eng. 2017, 64, 341–351.
[CrossRef]

74. Chu, J.; Yang, W.t.; Hsieh, T.h.; Yang, F.l. One-Minute Finger Pulsation Measurement for Diabetes Rapid Screening with 1.3% to
13% False-Negative Prediction Rate. Biomed. Stat. Inform. 2021, 6, 6–13. [CrossRef]

75. Rajendra Acharya, U.; Vidya, K.S.; Ghista, D.N.; Lim, W.J.E.; Molinari, F.; Sankaranarayanan, M. Computer-aided diagnosis of
diabetic subjects by heart rate variability signals using discrete wavelet transform method. Knowl.-Based Syst. 2015, 81, 56–64.
[CrossRef]

76. Amiri, M.; Zahedi, E.; Behnia, F. Autoregressive modeling of the photoplethysmogram AC signal amplitude changes after
flow-mediated dilation in healthy and diabetic subjects. In Proceedings of the 2012 19th Iranian Conference of Biomedical
Engineering (ICBME), Tehran, Iran, 20–21 December 2012; pp. 170–173. [CrossRef]

77. Keikhosravi, A.; Aghajani, H.; Zahedi, E. Discrimination of bilateral finger photoplethysmogram responses to reactive hyperemia
in diabetic and healthy subjects using a differential vascular model framework. Physiol. Meas. 2013, 34, 513–525. [CrossRef]

http://dx.doi.org/10.1109/IECBES.2012.6498065
http://dx.doi.org/10.1155/2013/231762
http://dx.doi.org/10.1088/0967-3334/35/10/2027
http://www.ncbi.nlm.nih.gov/pubmed/25238409
http://dx.doi.org/10.1109/ICA.2017.8068426
http://dx.doi.org/10.1007/s10916-018-0901-1
http://www.ncbi.nlm.nih.gov/pubmed/29368039
http://dx.doi.org/10.1109/IECBES.2018.8626681
http://dx.doi.org/10.1016/S0002-9149(00)00920-6
http://dx.doi.org/10.1109/CIC.2000.898535
http://dx.doi.org/10.1111/j.1542-474X.2008.00208.x
http://www.ncbi.nlm.nih.gov/pubmed/18426434
http://dx.doi.org/10.1109/EMBC.2012.6346525
http://dx.doi.org/10.1109/CONIELECOMP.2012.6189880
http://dx.doi.org/10.1109/IEMBS.2007.4352763
http://dx.doi.org/10.3390/diagnostics10010032
http://dx.doi.org/10.5144/0256-4947.2002.400
http://dx.doi.org/10.1109/EMBC.2013.6610810
http://dx.doi.org/10.1109/JBHI.2015.2426206
http://dx.doi.org/10.2337/diaclin.23.1.9
http://dx.doi.org/10.1161/CIRCULATIONAHA.106.634949
http://dx.doi.org/10.1109/TBME.2016.2554661
http://dx.doi.org/10.11648/j.bsi.20210601.12
http://dx.doi.org/10.1016/j.knosys.2015.02.005
http://dx.doi.org/10.1109/ICBME.2012.6519679
http://dx.doi.org/10.1088/0967-3334/34/5/513


Sensors 2022, 22, 4890 26 of 28

78. Rajendra Acharya, U.; Faust, O.; Adib Kadri, N.; Suri, J.S.; Yu, W. Automated identification of normal and diabetes heart rate
signals using nonlinear measures. Comput. Biol. Med. 2013, 43, 1523–1529. [CrossRef] [PubMed]

79. Acharya, U.R.; Faust, O.; Sree, S.V.; Ghista, D.N.; Dua, S.; Joseph, P.; Ahamed, V.I.; Janarthanan, N.; Tamura, T. An integrated
diabetic index using heart rate variability signal features for diagnosis of diabetes. Comput. Methods Biomech. Biomed. Eng. 2013,
16, 222–234. [CrossRef] [PubMed]

80. Jian, L.W.; Lim, T.C. Automated detection of diabetes by means of higher order spectral features obtained from heart rate signals.
J. Med. Imaging Health Inform. 2013, 3, 440–447. [CrossRef]

81. Pachori, R.B.; Kumar, M.; Avinash, P.; Shashank, K.; Acharya, U.R. An improved online paradigm for screening of diabetic
patients using RR-interval signals. J. Mech. Med. Biol. 2016, 16, 1640003. [CrossRef]

82. Reddy, V.R.; Choudhury, A.D.; Jayaraman, S.; Thokala, N.K.; Deshpande, P.; Kaliaperumal, V. PerDMCS: Weighted fusion
of PPG signal features for robust and efficient diabetes mellitus classification. In Proceedings of the HEALTHINF 2017–10th
International Conference on Health Informatics; Part of 10th International Joint Conference on Biomedical Engineering Systems
and Technologies, BIOSTEC 2017, Porto, Portugal, 21–23 February 2017; Volume 5, pp. 553–560. [CrossRef]

83. Nirala, N.; Periyasamy, R.; Singh, B.K.; Kumar, A. Detection of type-2 diabetes using characteristics of toe photoplethysmogram
by applying support vector machine. Biocybern. Biomed. Eng. 2019, 39, 38–51. [CrossRef]

84. Hettiarachchi, C.; Chitraranjan, C. A machine learning approach to predict diabetes using short recorded photoplethysmography
and physiological characteristics. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics); LNAI; Springer: Cham, Switzerland, 2019; Volume 11526, pp. 322–327. [CrossRef]

85. Liang, Y.; Chen, Z.; Liu, G.; Elgendi, M. A new, short-recorded photoplethysmogram dataset for blood pressure monitoring in
China. Sci. Data 2018, 5, 180020. [CrossRef]

86. Qawqzeh, Y.K.; Bajahzar, A.S.; Jemmali, M.; Otoom, M.M.; Thaljaoui, A. Classification of Diabetes Using Photoplethysmogram
(PPG) Waveform Analysis: Logistic Regression Modeling. Biomed Res. Int. 2020, 2020, 3764653. [CrossRef]

87. Prabha, A.; Yadav, J.; Rani, A.; Singh, V. Non-invasive Diabetes Mellitus Detection System using Machine Learning Techniques.
In Proceedings of the Confluence 2021: 11th International Conference on Cloud Computing, Data Science and Engineering,
Noida, India, 28–29 January 2021; pp. 948–953. [CrossRef]

88. Salamea, C.; Narvaez, E.; Montalvo, M. Database Proposal for Correlation of Glucose and Photoplethysmography Signals.
In Proceedings of the 1st International Conference on Advances in Emerging Trends and Technologies (ICAETT 2019), Quito,
Ecuador, 29–31 May 2019; Botto-Tobar, M., León-Acurio, J., Díaz Cadena, A., Montiel Díaz, P., Eds.; Advances in Intelligent
Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2020; Volume 2, pp. 44–53. [CrossRef]

89. Monte-Moreno, E. Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine
learning techniques. Artif. Intell. Med. 2011, 53, 127–138. [CrossRef] [PubMed]

90. Zhang, G.; Mei, Z.; Zhang, Y.; Ma, X.; Lo, B.; Chen, D.; Zhang, Y. A Noninvasive Blood Glucose Monitoring System Based on
Smartphone PPG Signal Processing and Machine Learning. IEEE Trans. Ind. Inform. 2020, 16, 7209–7218. [CrossRef]

91. Cichosz, S.L.; Frystyk, J.; Hejlesen, O.K.; Tarnow, L.; Fleischer, J. A novel algorithm for prediction and detection of hypoglycemia
based on continuous glucose monitoring and heart rate variability in patients with type 1 diabetes. J. Diabetes Sci. Technol. 2014,
8, 731–737. [CrossRef] [PubMed]

92. Ling, S.H.; Nguyen, H.T. Natural occurrence of nocturnal hypoglycemia detection using hybrid particle swarm optimized fuzzy
reasoning model. Artif. Intell. Med. 2012, 55, 177–184. [CrossRef]

93. Nuryani, S.L.; Nguyen, H.T. Electrocardiographic T-wave peak-to-end interval for hypoglycaemia detection. In Proceedings
of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31
August–4 September 2010; pp. 618–621. [CrossRef]

94. Ling, S.S.; Nguyen, H.T. Genetic-algorithm-based multiple regression with fuzzy inference system for detection of nocturnal
hypoglycemic episodes. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 308–315. [CrossRef]

95. Lipponen, J.A.; Kemppainen, J.; Karjalainen, P.A.; Laitinen, T.; Mikola, H.; Kärki, T.; Tarvainen, M.P. Hypoglycemia detection
based on cardiac repolarization features. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 4697–4700. [CrossRef]

96. Nuryani, N.; Ling, S.S.; Nguyen, H.T. Electrocardiographic signals and swarm-based support vector machine for hypoglycemia
detection. Ann. Biomed. Eng. 2012, 40, 934–945. [CrossRef]

97. Ling, S.H.; San, P.P.; Nguyen, H.T. Non-invasive hypoglycemia monitoring system using extreme learning machine for Type 1
diabetes. ISA Trans. 2016, 64, 440–446. [CrossRef]

98. Zhang, Y.; Wang, Z. Non-invasive blood glucose estimation using nearinfrared spectroscopy based on SVR. In Proceedings of the
2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference, ITOEC 2017, Chongqing, China, 3–5 October
2017; pp. 594–598. [CrossRef]

99. Usman, S.; Harun, N.; Dziyauddin, R.A.; Bani, N.A. Estimation of hba1c level among diabetic patients using second derivative
of photoplethysmography. In Proceedings of the 2017 IEEE Student Conference on Research and Development: Inspiring
Technology for Humanity, SCOReD, Wilayah Persekutuan Putrajaya, Malaysia, 13–14 December 2017; pp. 89–92. [CrossRef]

100. Zhang, Y.; Wang, Z.; Xiao, Z. Non-invasive blood glucose detection using NIR based on GA and SVR. In Proceedings of the
International Conference on Biological Information and Biomedical Engineering, BIBE 2018, Shanghai, China, 6–8 June 2018;
pp. 105–108.

http://dx.doi.org/10.1016/j.compbiomed.2013.05.024
http://www.ncbi.nlm.nih.gov/pubmed/24034744
http://dx.doi.org/10.1080/10255842.2011.616945
http://www.ncbi.nlm.nih.gov/pubmed/21970360
http://dx.doi.org/10.1166/jmihi.2013.1178
http://dx.doi.org/10.1142/S0219519416400030
http://dx.doi.org/10.5220/0006297205530560
http://dx.doi.org/10.1016/j.bbe.2018.09.007
http://dx.doi.org/10.1007/978-3-030-21642-9_41
http://dx.doi.org/10.1038/sdata.2018.20
http://dx.doi.org/10.1155/2020/3764653
http://dx.doi.org/10.1109/Confluence51648.2021.9377138
http://dx.doi.org/10.1007/978-3-030-32033-1_5
http://dx.doi.org/10.1016/j.artmed.2011.05.001
http://www.ncbi.nlm.nih.gov/pubmed/21696930
http://dx.doi.org/10.1109/TII.2020.2975222
http://dx.doi.org/10.1177/1932296814528838
http://www.ncbi.nlm.nih.gov/pubmed/24876412
http://dx.doi.org/10.1016/j.artmed.2012.04.003
http://dx.doi.org/10.1109/IEMBS.2010.5627430
http://dx.doi.org/10.1109/TITB.2010.2103953
http://dx.doi.org/10.1109/IEMBS.2011.6091163
http://dx.doi.org/10.1007/s10439-011-0446-7
http://dx.doi.org/10.1016/j.isatra.2016.05.008
http://dx.doi.org/10.1109/ITOEC.2017.8122366
http://dx.doi.org/10.1109/SCORED.2017.8305415


Sensors 2022, 22, 4890 27 of 28

101. Chowdhury, T.T.; Mishma, T.; Osman, S.; Rahman, T. Estimation of blood glucose level of type-2 diabetes patients using
smartphone video through PCA-DA. In Proceedings of the 6th International Conference on Networking, Systems and Security,
Dhaka, Bangladesh, 17–19 December 2019; pp. 104–108. [CrossRef]

102. Gupta, S.S.; Hossain, S.; Haque, C.A.; Kim, K.D. In-Vivo Estimation of Glucose Level Using PPG Signal. In Proceedings of the
International Conference on ICT Convergence, Jeju, Korea, 21–23 October 2020; pp. 733–736. [CrossRef]

103. Hina, A.; Saadeh, W. A Noninvasive Glucose Monitoring SoC Based on Single Wavelength Photoplethysmography. IEEE Trans.
Biomed. Circuits Syst. 2020, 14, 504–515. [CrossRef]

104. Sen Gupta, S.; Kwon, T.H.; Hossain, S.; Kim, K.D. Towards non-invasive blood glucose measurement using machine learning: An
all-purpose PPG system design. Biomed. Signal Process. Control 2021, 68, 102706. [CrossRef]

105. Islam, T.T.; Ahmed, M.S.; Hassanuzzaman, M.; Amir, S.A.B.; Rahman, T. Blood glucose level regression for smartphone ppg
signals using machine learning. Appl. Sci. 2021, 11, 618. [CrossRef]

106. Shamim, M.Z.M.; Alotaibi, S.; Hussein, H.S.; Farrag, M.; Shiblee, M. Diagnostic Accuracy of Smartphone connected Electrophysi-
ological Biosensors for Prediction of Blood Glucose Level in a Type-2 Diabetic Patient using Machine Learning: A Pilot Study.
IEEE Embed. Syst. Lett. 2021, 14, 27–30. [CrossRef]

107. Guzman, L.; Cazares, A.M.G.; Martinez-Torteya, A. Model for Glycemic Level Detection using Heart Rate Variability in a Mexican
Sample. In Proceedings of the 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Langkawi Island,
Malaysia, 1–3 March 2021; pp. 505–510. [CrossRef]

108. Susana, E.; Ramli, K.; Murfi, H.; Apriantoro, N.H. Non-Invasive Classification of Blood Glucose Level for Early Detection
Diabetes Based on Photoplethysmography Signal. Information 2022, 13, 59. [CrossRef]

109. Elvebakk, O.; Tronstad, C.; Birkeland, K.I.; Jenssen, T.G.; Bjørgaas, M.R.; Gulseth, H.L.; Kalvøy, H.; Høgetveit, J.O.; Martinsen,
Ø.G. A multiparameter model for non-invasive detection of hypoglycemia. Physiol. Meas. 2019, 40, 085004. [CrossRef] [PubMed]

110. Jelinek, H.F.; Cornforth, D.J.; Kelarev, A.V. Machine Learning Methods for Automated Detection of Severe Diabetic Neuropathy.
J. Diabet. Complicat. Med. 2016, 1, 1–7. [CrossRef]

111. Faust, O.; Hagiwara, Y.; Hong, T.J.; Lih, O.S.; Acharya, U.R. Deep learning for healthcare applications based on physiological
signals: A review. Comput. Methods Programs Biomed. 2018, 161, 1–13. [CrossRef] [PubMed]

112. Avram, R.; Tison, G.; Kuhar, P.; Marcus, G.; Pletcher, M.; Olgin, J.E.; Aschbacher, K. Predicting Diabetes From Photoplethysmogra-
phy Using Deep Learning. J. Am. Coll. Cardiol. 2019, 73, 16. [CrossRef]

113. Wang, L.; Mu, Y.; Zhao, J.; Wang, X.; Che, H. Igrnet: A deep learning model for non-invasive, real-time diagnosis of prediabetes
through electrocardiograms. Sensors 2020, 20, 2556. [CrossRef]

114. Srinivasan, V.B.; Foroozan, F. Deep Learning based non-invasive diabetes predictor using Photoplethysmography signals. In
Proceedings of the European Signal Processing Conference, Dublin, Ireland, 23–27 August 2021; pp. 1256–1260. [CrossRef]

115. Swapna, G.; Soman, K.P.; Vinayakumar, R. Automated detection of diabetes using CNN and CNN-LSTM network and heart rate
signals. Procedia Comput. Sci. 2018, 132, 1253–1262. [CrossRef]

116. Yildirim, O.; Talo, M.; Ay, B.; Baloglu, U.B.; Aydin, G.; Acharya, U.R. Automated detection of diabetic subject using pre-trained
2D-CNN models with frequency spectrum images extracted from heart rate signals. Comput. Biol. Med. 2019, 113, 103387.
[CrossRef]

117. Panwar, M.; Gautam, A.; Dutt, R.; Acharyya, A. CardioNet: Deep Learning Framework for Prediction of CVD Risk Factors. In
Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020;
pp. 1–5. [CrossRef]

118. Johnson, A.E.; Pollard, T.J.; Shen, L.; Lehman, L.W.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Anthony Celi, L.; Mark,
R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [CrossRef]

119. Habbu, S.K.; Joshi, S.; Dale, M.; Ghongade, R.B. Noninvasive Blood Glucose Estimation Using Pulse Based Cepstral Coefficients.
In Proceedings of the 2019 2nd International Conference on Signal Processing and Information Security (ICSPIS), Dubai, United
Arab Emirates, 30–31 October 2019; pp. 2019–2022. [CrossRef]

120. Cordeiro, R.; Karimian, N.; Park, Y. Hyperglycemia identification using ecg in deep learning era. Sensors 2021, 21, 6263. [CrossRef]
121. Porumb, M.; Stranges, S.; Pescapè, A.; Pecchia, L. Precision Medicine and Artificial Intelligence: A Pilot Study on Deep Learning

for Hypoglycemic Events Detection based on ECG. Sci. Rep. 2020, 10, 170. [CrossRef] [PubMed]
122. Nguyen, H.T.; Ghevondian, N.; Nguyen, S.T.; Jones, T.W. Detection of Hypoglycemic Episodes in Children with Type 1 Diabetes

using an Optimal Bayesian Neural Network Algorithm. In Proceedings of the 2007 29th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 3140–3143. [CrossRef]

123. Nguyen, H.T.; Ghevondian, N.; Jones, T.W. Detection of nocturnal hypoglycemic episodes (natural occurrence) in children with
Type 1 diabetes using an optimal Bayesian neural network algorithm. In Proceedings of the 2008 30th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 1311–1314.

124. San, P.P.; Ling, S.H.; Nguyen, H.T. Block based neural network for hypoglycemia detection. In Proceedings of the 2011 Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September
2011; pp. 5666–5669. [CrossRef]

125. San, P.P.; Ling, S.H.; Nguyen, H.T. Intelligent detection of hypoglycemic episodes in children with type 1 diabetes using adaptive
neural-fuzzy inference system. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 6325–6328. [CrossRef]

http://dx.doi.org/10.1145/3362966.3362983
http://dx.doi.org/10.1109/ICTC49870.2020. 9289629
http://dx.doi.org/10.1109/TBCAS.2020.2979514
http://dx.doi.org/10.1016/j.bspc.2021.102706
http://dx.doi.org/10.3390/app11020618
http://dx.doi.org/10.1109/LES.2021.3096717
http://dx.doi.org/10.1109/IECBES48179.2021.9398841
http://dx.doi.org/10.3390/info13020059
http://dx.doi.org/10.1088/1361-6579/ab3676
http://www.ncbi.nlm.nih.gov/pubmed/31357185
http://dx.doi.org/10.4172/2475-3211.1000108
http://dx.doi.org/10.1016/j.cmpb.2018.04.005
http://www.ncbi.nlm.nih.gov/pubmed/29852952
http://dx.doi.org/10.1016/S0735-1097(19)33778-7
http://dx.doi.org/10.3390/s20092556
http://dx.doi.org/10.23919/EUSIPCO54536.2021.9616351
http://dx.doi.org/10.1016/j.procs.2018.05.041
http://dx.doi.org/10.1016/j.compbiomed.2019.103387
http://dx.doi.org/10.1109/ISCAS45731.2020.9180636
http://dx.doi.org/10.1038/sdata.2016.35
http://dx.doi.org/10.1109/ICSPIS48135.2019.9045897
http://dx.doi.org/10.3390/s21186263
http://dx.doi.org/10.1038/s41598-019-56927-5
http://www.ncbi.nlm.nih.gov/pubmed/31932608
http://dx.doi.org/10.1109/IEMBS.2007.4352995
http://dx.doi.org/10.1109/IEMBS.2011.6091371
http://dx.doi.org/10.1109/EMBC.2012.6347440


Sensors 2022, 22, 4890 28 of 28

126. San, P.P.; Ling, S.H.; Soe, N.N.; Nguyen, H.T. A novel extreme learning machine for hypoglycemia detection. In Proceedings of
the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30
August 2014; pp. 302–305. [CrossRef]

127. Nguyen, L.; Su, S.W.; Nguyen, H.T. Neural network approach for non-invasive detection of hyperglycemia using electrocar-
diographic signals. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 4475–4478.

128. San, P.P.; Ling, S.H.; Nguyen, H.T. Deep learning framework for detection of hypoglycemic episodes in children with type 1
diabetes. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS,
Orlando, FL, USA, 16–20 August 2016; pp. 3503–3506. [CrossRef]

129. Manurung, B.E.; Munggaran, H.R.; Ramadhan, G.F.; Koesoema, A.P. Non-Invasive Blood Glucose Monitoring using Near-Infrared
Spectroscopy based on Internet of Things using Machine Learning. In Proceedings of the 2019 IEEE R10 Humanitarian Technology
Conference (R10-HTC)(47129), Depok, West Java, Indonesia, 12–14 November 2019; pp. 5–11. [CrossRef]

130. Hossain, S.; Debnath, B.; Biswas, S.; Al-Hossain, M.J.; Anika, A.; Zaman Navid, S.K. Estimation of Blood Glucose from PPG
Signal Using Convolutional Neural Network. In Proceedings of the BECITHCON 2019–2019 IEEE International Conference on
Biomedical Engineering, Computer and Information Technology for Health, Dhaka, Bangladesh, 28–30 November 2019; pp. 53–58.
[CrossRef]

131. Mahmud, T.; Subhana, A.; Shahnaz, C.; Limon, M.H.; Ahmed, S.; Rafi, M.Z.; Ahamed, B.; Nitol, S.S.; Mia, M.Y.; Choudhury, R.E.;
et al. Non-invasive Blood Glucose Estimation Using Multi-sensor Based Portable and Wearable System. In Proceedings of the
2019 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 17–20 October 2019. [CrossRef]

132. Islam, M.M.; Maniur, S.M. Design and Implementation of a Wearable System for Non-Invasive Glucose Level Monitoring. In
Proceedings of the BECITHCON 2019–2019 IEEE International Conference on Biomedical Engineering, Computer and Information
Technology for Health, Dhaka, Bangladesh, 28–30 November 2019; pp. 29–32. [CrossRef]

133. Alkhodari, M.; Rashid, M.; Mukit, M.A.; Ahmed, K.I.; Mostafa, R.; Parveen, S.; Khandoker, A.H. Screening Cardiovascular
Autonomic Neuropathy in Diabetic Patients With Microvascular Complications Using Machine Learning: A 24-Hour Heart Rate
Variability Study. IEEE Access 2021, 9, 119171–119187. [CrossRef]

134. Brigato, L.; Iocchi, L. A close look at deep learning with small data. In Proceedings of the International Conference on Pattern
Recognition, Milan, Italy, 10–15 January 2021; pp. 2490–2497. [CrossRef]

135. Zhu, M.; Li, J.; Li, Z.; Luo, W.; Dai, D.; Weaver, S.R.; Stauber, C.; Luo, R. Mortality rates and the causes of death related to diabetes
mellitus in Shanghai Songjiang District: An 11-year retrospective analysis of death certificates. BMC Endocr. Disord. 2015, 15, 45.
[CrossRef] [PubMed]

http://dx.doi.org/10.1109/EMBC.2014.6943589
http://dx.doi.org/10.1109/EMBC.2016.7591483
http://dx.doi.org/10.1109/R10-HTC47129.2019.9042479
http://dx.doi.org/10.1109/BECITHCON48839.2019.9063187
http://dx.doi.org/10.1109/GHTC46095.2019.9033119
http://dx.doi.org/10.1109/BECITHCON48839.2019. 9063193
http://dx.doi.org/10.1109/ACCESS.2021.3107687
http://dx.doi.org/10.1109/ICPR48806.2021.9412492
http://dx.doi.org/10.1186/s12902-015-0042-1
http://www.ncbi.nlm.nih.gov/pubmed/26341126

	Introduction
	Methods
	Eligibility Criteria
	Data Sources and Search Strategy
	Study Selection
	Data Extraction

	Diabetes
	Blood Glucose Homeostasis
	Type 1 Diabetes
	Type 2 Diabetes
	Gestational Diabetes
	Diabetes Complications
	Conventional Tests for Diabetes Diagnosis
	Diabetes Treatments

	PPG and ECG
	The Cardiac Cycle
	Electrocardiography
	Photopletysmography

	Results and Discussion
	Traditional Methods
	Diabetes Detection with Traditional Methods
	Blood Glucose Estimation with Traditional Methods
	Diabetes Complications with Traditional Methods
	Traditional Approaches: Main Outcomes

	Machine Learning
	Diabetes Detection with Machine Learning
	Blood Glucose Estimation with Machine Learning
	Diabetes Complications with Machine Learning
	Machine Learning: Main Outcomes

	Deep Learning
	Diabetes Detection with Deep Learning
	Blood Glucose Estimation with Deep Learning
	Diabetes Complications with Deep Learning
	Deep Learning: Main Outcomes


	Conclusions
	References

