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In this paper we investigate the unsteady aeroelastic response of a contrafan using nonlinear time-integrated RANS equations and multichorochronic boundary conditions which are able to propagate multiple periodic perturbations with uncorrelated frequencies. The objective is to model a single passage in each blade row to reduce the computational cost and to take into account both unsteady phenomena relative to the blade passage of the neighboring blade row and to the vibration induced by the blade deformations. Numerical comparisons are performed between a full annulus reference computation of a radial slice and the present multichorochronic simulations on a single passage to check the quality of the approximation. The influence of several parameters like the number of harmonics or spinning modes is investigated. Particular attention is finally paid to the approximation of the generalized aerodynamic forces from which the aeroelastic stability can be assessed.

INTRODUCTION

Aeroelastic stability computations are usually performed on isolated turbomachinery blade rows, meaning that the effects induced by the neighboring blade rows (like wake interaction, potential effects, shock wave propagation,...) are neglected. Recent work has however pointed out the importance of modeling adjacent blade rows on stator / rotor configurations for example [START_REF] Li | Blade aerodynamic damping variation with rotor-stator gap: a computational study using single-passage approach[END_REF][START_REF] Huang | Influence of upstream stator on rotor flutter stability in a low pressure steam turbine stage[END_REF].

Multistage simulations on the full 360 • annulus remain however extremely costly because of the very large number of degrees of freedom involved when the blade count is large. Numerical methods have therefore been developed since the end of the 70's to reduce the size of the computational domain. An exact reduction is possible if the blade counts of each blade row share a common multiple. This latter is however often small or even equal to one, preventing an exact reduction. Blade count reduction methods have however been developed using approximate blade counts and a rescaling of the geometry [START_REF] Arnone | Rotor-Stator Interaction Analysis Using the Navier-Stokes Equations and a Multigrid Method[END_REF] or a modification of the boundary condition dealing with the pitch mismatch if the blade counts are not modified but only few blades are considered in each blade rows [START_REF] Fourmaux | Assessment of a low storage technique for multi-stage turbomachinery Navier-Stokes computations[END_REF]. These methods either modify the main flow characteristics like the mass flow because of the modification of the geometry or imply contraction/dilatation effects which may modify the frequencies.

The unsteady phenomena involved in multistage configurations are mainly due to the blade passage of the neighboring blade rows or the vibration of some structural modes which are related to the notion of spinning modes described in [START_REF] Kemp | Aerodynamic interference between moving blade-rows[END_REF][START_REF] Tyler | Axial flow compressor noise studies[END_REF][START_REF] Smith | Discrete Frequency sound generation in axial flow turbomachines[END_REF]. More ad-vanced boundary conditions have later been introduced by Erdos et al. [START_REF] Erdos | Numerical Solution of Periodic Transonic Flow through a Fan Stage[END_REF] and Giles [START_REF] Giles | Calculation of unsteady wake/rotor interaction[END_REF] for single stages using phase-lagged or "chorochronic" relations to link the flow field on azimuthal boundaries of a single passage without changing the blade count. Many improvements have then been brought to the initial formulation by He [START_REF] He | Method of simulating unsteady turbomachinery flows with multiple perturbations[END_REF][START_REF] He | Fourier methods for turbomachinery applications[END_REF] and Gerolymos et al. [START_REF] Gerolymos | Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations[END_REF][START_REF] Gerolymos | Expression généralisée de la périodicité chrorochronique dans l'interaction entre aubages de turbomachines[END_REF] among others and the use of a spectral approximation (Fourier decomposition) of the flow field has become popular to avoid the storage of the flow field at many time instants. A moving-average technique has finally been proposed [START_REF] Gerolymos | Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations[END_REF] to compute the Fourier coefficients and recently Rahmati et al. [START_REF] Rahmati | Time and frequency domain methods for multi-row aeromechanical analysis, Part 1: Methodology[END_REF] have improved the method to avoid leakage problems.

Such boundary conditions have also been used to perform aeroelastic computations on isolated blade rows since the prescribed pattern of vibration associated to the structural eigenmodes is a traveling wave which satisfies the phase-lagged boundary conditions. These boundary conditions however deal only with single periodic phenomena at a given frequency and are appropriate to compute the flow field in a rigid single stage to handle the blade passage phenomena or in an isolated vibrating blade row.

He [START_REF] He | Method of simulating unsteady turbomachinery flows with multiple perturbations[END_REF] and Neubauer [START_REF] Neubauer | Aérodynamique 3-D instationnaire des turbomachines axiales multiétages[END_REF] have finally extended the usual chorochronic boundary conditions to deal with several periodic phenomena (like in multistage / single vibrating stage configurations) leading to the so-called multichorochronic boundary conditions which have recently been implemented in Onera's CFD software elsA and validated on multistage rigid configurations [START_REF] Castillon | Evaluation of a multiple frequency phase-lagged method for unsteady numerical simulations of multistage turbomachinery[END_REF].

Few attempts have been reported in the literature to model the influence of neighboring blade rows on the aeroelastic stability on a single passage using multichorochronic boundary conditions with a time-accurate flow solver. Buffum [START_REF] Buffum | Blade row interaction effects on flutter and forced response[END_REF] and Silkowski and Hall [START_REF] Silkowski | A Coupled Mode Analysis of Unsteady Multistage Flows in Turbomachinery[END_REF] used rather simplified aerodynamic models to describe these interactions and to highlight the influence of adjacent blade rows. More recently, Hall and Ekici [START_REF] Hall | Multistage Coupling for Unsteady Flows in Turbomachinery[END_REF] and Ekici and Hall [START_REF] Ekici | Nonlinear analysis of unsteady flows in multistage turbomachines using harmonic balance[END_REF] used the linearized Euler equations and the HBT for Navier-Stokes equations with multichorochronic boundary conditions to model the flow field in multistage configurations by taking into account the main spinning modes. Time-accurate simulations with multichorochronic boundary conditions have only been reported by Li and He [START_REF] Li | Blade aerodynamic damping variation with rotor-stator gap: a computational study using single-passage approach[END_REF] and Huang et al. [START_REF] Huang | Influence of upstream stator on rotor flutter stability in a low pressure steam turbine stage[END_REF]. We focus in this paper on the same type of simulation with an application to a vibrating contrafan and we investigate the influence of several parameters of the multichorochronic approximation.

NUMERICAL MODEL

Flow model

The flow in turbomachinery is very complex because of the relative motion of the different blade rows and their interactions. Viscous and turbulent effects play a significant role and have to be taken into account. Besides the rigid body motion of the blade rows, the deformation of the structure is also considered for the present aeroelastic application.

The fluid flow is therefore governed by the unsteady Reynolds averaged Navier-Stokes (RANS) equations using the arbitrary Lagrangian-Eulerian framework to take into account the deformation of the spatial domain D F (t) ⊂ R 3 which is rotating at the speed Ω around the axis O -→ x . The equations written in the relative frame of reference associated to the rigid body rotation of each blade row read

                               d dt D F ρ dv + ∂ D F ρ (v -s d ) • n ds = 0, d dt D F ρv dv + ∂ D F [ρv ⊗ (v -s d ) + p I] n ds = ∂ D F τ n ds + Ω F ρ (f Cor + f cen ) dv, d dt D F ρE r dv + ∂ D F [ρE r (v -s d ) + p v] • n ds = ∂ D F [τ v -q ] • n ds + D F ρ v • f cen dv . ( 1 
)
The fluid is described by the density ρ, the momentum ρv and the total energy ρE r both defined in the relative frame of each blade row. The convective and diffusive fluxes are integrated on the domain boundary ∂ D F where the normal n is defined on each point. The deformation of the domain is taken into account by the velocity s d , whereas the rigid body motion induces the gyroscopic centrifugal and Coriolis forces f cen = -∂ s rb /∂tω ∧ s rb and f Cor = -2 ω ∧ v. For a rotating blade row, the angular velocity vector is ω = Ωi x and the rigid body velocity is s rb = ω ∧ ri r (θ ) = Ωri θ (θ ) with (r, θ ) the cylindrical coordinates in the relative frame. The centrifugal force finally reduces to f cen = Ω 2 ri r (θ ).

The starred quantities p = p+2/3 k, E r = E r + k = e + v /2 + k, τ = (1 + µ t /µ)τ and q = (1 + µ t /µ Pr/Pr t )q designate turbulent variables. The heat flux is given by the Fourier law q = -k T ∇T based on the heat conductivity k T . The stress tensor for a Newtonian fluid is τ = -2/3µ (div v) I + µ(∇v + ∇ T v) with the Stokes hypothesis. For a perfect gas, the internal energy and the pressure are given by e = c v T and p = ρR s T where R s is the specific constant and the specific heat ratio γ = c p /c v is constant. The viscosity is governed by the Sutherland law µ(T ) = µ S T /T S (1 + C S /T S )/(1 + C S /T ) and the heat conductivity is k T = c p µ/Pr. Using Boussinesq's hypothesis, the turbulence is modeled by the three scalar variables k, µ t and Pr t = 0.9. The one-equation Spalart-Allmaras model is considered in this paper and the vector of flow variables is therefore

w = ρ [1, v, E r , ν] T with ν = ν t = µ t /
ρ far from the walls. The turbulent kinetic energy is thus neglected in the approximation of p * and E * r .

The flow equations are discretized with a Finite Volume technique and the fluxes are approximated using Roe's scheme with Van Albada's limiter and Harten entropic correction. The time integration is performed with an implicit backward Euler scheme and Gear's algorithm. Further details about the CFD code elsA can be found in [START_REF] Cambier | The Onera elsA CFD software: Input from research and feedback from industry[END_REF].

Structural model

The structural domain D S = N b -1 k=0 B k is made up of N b identical blades B k which are similar to the reference blade B 0 through the pitch angle β = 2π/N b . The physical displacements of the structure on any blade B k are decomposed into the sum of N b traveling wave coordinates defined on the reference blade such that

u(B k ,t) = ℜ N b -1 ∑ n d =0 u n d (B 0 ,t) e i kσ n d (2)
with the following definition of the interblade phase angle (IBPA) σ n d which characterizes the spatial phase shift between the displacements of the different blades

σ n d = n d β = n d 2π N b (3) 
such that each traveling wave coordinate satisfies the so-called cyclic symmetry boundary condition:

u n d (B k ,t) = u n d (B 0 ,t) e i kσ n d . (4) 
Assuming a linear elastic structure, the displacements are governed by N b equations for each traveling wave coordinate. The Finite Elements discretization, together with the cyclic symmetry boundary condition applied between the left and right sides of the reference blade B 0 , leads to [START_REF] Tran | Methods of Fluid-Structure Coupling in Frequency and Time Domains using Linearized Aerodynamics for Turbomachinery[END_REF] 

M ün d (t) + K u n d (t) = f a,n d (u n d , un d ) u n d | l (t) = u n d | r (t) e i σ n d
(5) without structural damping. The aerodynamic forces f a,n d = Γ 0 p(u n d , un d ) n ds in the right-hand size originates from the pressure on the fluid-structure interface Γ 0 of the reference blade B 0 with the assumption of cyclic symmetry.

The vibratory behavior of the structure is approximated by the first eigenmodes which are the solution of the conservative part of equation [START_REF] Kemp | Aerodynamic interference between moving blade-rows[END_REF] with the additional constraint of cyclic symmetry:

   K ϕ (i) n d -ω 2 n d ,i M ϕ (i) n d = 0 ϕ (i) n d l = ϕ (i) n d r e i σ n d . (6) 
Each mode type ϕ 

-n d = ϕ (i)
n d and the eigenvalues are identical :

ω (i) -n d = ω (i)
n d . In the present case, only n m = 1 torsion mode will be considered for different IBPA values.

MULTICHOROCHRONIC BOUND-ARY CONDITIONS

3.1 Chorochronic boundary conditions for blade interaction or aeroelasticity Chorochronic boundary conditions are used for single passage models to approximate flow perturbations induced by blade rows interactions in the case of a stage or aeroelastic effects due to the vibration of an isolated blade row. The boundary condition assumes that the flow field vector w on the azimuthal boundaries of the passage can be related by chorochronic relations such that w(x, r, θβ ,t) = w(x, r, θ ,tτ) [START_REF] Smith | Discrete Frequency sound generation in axial flow turbomachines[END_REF] with β = 2π/N b the pitch angle of the current blade and τ the time phase-lag which are linked by

σ = κ β = ω τ ( 8 
)
where κ is the spatial wave number and ω is the pulsation of the unsteady phenomenon.

Aeroelastic excitation

The eigenmodes of the structure are obtained for different nodal diameters n d which define the spatial periodicity of the vibration. Since the perturbations of the flow field are generated by this vibration, the unsteady phenomenon is therefore described by the wave number κ = n d and the quantity σ introduced in (8) is the IBPA defined in (2) to decompose the displacement field of the structural part.

A harmonic excitation is usually prescribed to the structural mode ϕ (i)

n d at its eigenfrequency ω (i)
n d , denoted ω 0 in the following. The time phase-lag τ is consequently given by

τ n d = n d β ω 0 . (9) 
The chorochronic boundary condition for aeroelasticity can be used for an isolated blade row and for a single nodal diameter only. The structural motion is therefore reduced to a single modal shape for which the stability is evaluated.

Blade interaction

In the case of a single (rigid) stage, the flow field is excited by the unsteady passage of the neighboring blade row. The pulsation of the unsteady phenomenon seen by the current row with N cur b blades now depends on the blade count N adj b of the adjacent row and is given by

ω adj > cur = N adj b ∆Ω (10) 
with ∆Ω = |Ω adj -Ω cur | the relative velocity between the blade rows. The wave number of the perturbation seen by the current row is κ = N adj b . From the previous definitions, the time phase-lag is

τ adj > cur = N adj b β cur ω adj > cur = β cur ∆Ω . ( 11 
)
The pulsation is zero if ∆Ω = 0, that is if the two blade rows have the same velocity. The flow is therefore steady for a single stage and chorochronic boundary conditions are unnecessary since there is no relative unsteady motion. For multistage configurations (like a stator/rotor/stator configuration) this steady contribution cannot be propagated correctly using chorochronic boundary conditions since the time phase-lag relating the flow field on azimuthal boundaries would be infinite. This clocking effect described for example in [START_REF] Castillon | Evaluation of a multiple frequency phase-lagged method for unsteady numerical simulations of multistage turbomachinery[END_REF] can lead to continuity and conservation losses.

Table 1 summarizes the different quantities involved in the definition of the chorochronic boundary conditions for aeroelastic and (rigid) blade rows interactions. Table 1: Summary of the parameters for the chorochronic boundary condition.

Multichorochronic boundary conditions for multiple perturbations

When multiple sources of perturbations are experienced by a blade row, the chorochronic boundary condition has to be extended to deal with several frequencies and time phase-lags. We assume that the flow field on the azimuthal boundaries of the passage only can be decomposed as the sum of several perturbations according to the spinning mode theory of Tyler and Soffrin [START_REF] Tyler | Axial flow compressor noise studies[END_REF]. Each perturbation, or spinning mode, is a harmonic oscillation at a given frequency ω p and a given wave number κ p such that [START_REF] He | Method of simulating unsteady turbomachinery flows with multiple perturbations[END_REF] w(x, r, θ ,t) = w 0 (x, r, θ ) + N sp ∑ p=1 w p (x, r, θ ,t) [START_REF] Gerolymos | Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations[END_REF] with the following Fourier decomposition of the spinning mode

w p (x, r, θ ,t) = N h,p ∑ k=1 a p,k (x, r) cos [k(ω p t + κ p θ )] +b p,k (x, r) sin [k(ω p t + κ p θ )] (13) 
using N h,p harmonics for each spinning mode. The chorochronic boundary condition is now satisfied by each spinning mode for a given time-phase lag τ p associated to the interblade phase angle σ p :

w p (x, r, θ -β ,t) = w p (x, r, θ ,t -τ p ) (14) with σ p = κ p β = ω p τ p . (15) 
In this way, different unsteady phenomena like the aeroelastic vibration and blade row interaction described previously can be taken into account in the approximation. Frequency combinations due to the interaction between the phenomena can easily be included as additional spinning modes contributing to the response. In practice the first low harmonics only contribute significantly to the response.

The pairs of Fourier coefficients

(a U p,k , b U p,k ) and (a L p,k , b L p,k
) are computed on upper and lower azimuthal boundaries, i. e. for a given value of the angle θ U and θ L distant from β . The flow field on each boundary is then updated by means of characteristics relations which determine the boundary to update with respect to the opposite one. Assuming without loss of generality that the lower boundary has to be updated, the flow field is easily deduced from the Fourier coefficients (a U p,k , b U p,k ) computed on the upper boundary by applying the appropriate spatial phase-shift such that

w L (x, r, θ L ,t) = w 0 (x, r, θ U )+ N sp ∑ p=1 N f ,p ∑ k=1 a U p,k (x, r) cos k ω p t + κ p θ U -κ p β +b U p,k (x, r) sin k ω p t + κ p θ U -κ p β = w U (x, r, θ U ,t -τ p ) (16) 
since

ω p t -κ p β = ω p (t -κ p β /ω p ) = ω p (t - τ p )
with the definition [START_REF] Rahmati | Time and frequency domain methods for multi-row aeromechanical analysis, Part 1: Methodology[END_REF]. The mean field w 0 (x, r, θ ) has a spatial periodicity associated to the current blade count and can be written w 0 (x, r, θ ) = w 0 (x, r) + w 0 (x, r)e iN b θ with the first spatial harmonic only. The mean flow field is consequently equal for θ U and θ L since w 0 (x, r, θ L ) = w 0 (x, r) + w 0 (x, r)e iN b θ U e iN b 2π/N b = w 0 (x, r, θ U ). Another way to handle the mean field is to consider a zeroth harmonic for each spinning mode in the relation [START_REF] Gerolymos | Expression généralisée de la périodicité chrorochronique dans l'interaction entre aubages de turbomachines[END_REF] so that the sum is from k = 0 to N h,p and to drop the term w 0 (x, r, θ ) in [START_REF] Gerolymos | Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations[END_REF]. The mean field is now computed as the sum of N sp contributions for k = 0 and can be written w 0 (x, r, θ ) = ∑ N sp p=1 a p,0 (x, r). This expression is only valid to connect the fields separated by an angle β such that w 0 (x, r, θ L ) = w 0 (x, r, θ U ) but would not be true if the value had to be computed for any value of θ since the mean field does depend on the azimuth unlike the expression given here. This last formulation has however the advantage of treating the harmonics and the steady part in the same way.

The Fourier coefficients are computed with the moving average technique adapted from [START_REF] He | Method of simulating unsteady turbomachinery flows with multiple perturbations[END_REF][START_REF] Gerolymos | Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations[END_REF] to handle multiple frequencies. The coefficients are updated at each time step until they reach a converged value. The stability of the computation strongly depends on the update of the coefficients and an under relaxation a t+1 p,k = (1α)a t p,k + α a t+1 p,k is necessary [START_REF] He | Analysis of Rotor-Rotor and Stator-Stator Interferences in Multi-Stage Turbomachines[END_REF]. A low value of the relaxation parameter α = 0.1 is set by default to ensure a robust convergence.

Spinning modes in a vibrating contrafan

Besides the frequencies mentioned in section 3.1, the flow field can exhibit frequency combinations due to the interaction of the different phenomena. A particular frequency shift has to be considered for aeroelastic application. Indeed the perturbation produced by the vibration acts as a source rotating in a relative frame at a frequency which is not related to the rotation. This induces a Doppler effect which shifts the aeroelastic frequency of the perturbations observed in the other frames. This mechanism of interaction has been explained by Silkowski and Hall [START_REF] Silkowski | A Coupled Mode Analysis of Unsteady Multistage Flows in Turbomachinery[END_REF] for aeroelastic applications. The decomposition of the flow field as the sum of a perturbation due to the blade row interaction and the vibration of a blade produces frequency combinations of the following type:

ω = | ω 0 + mω adj > cur |, ( , m) ∈ Z × Z (17)
with the shifted vibration frequency

ω 0 = |ω 0 + n d ∆Ω| (18) 
if the vibrating blade is the adjacent one. The frequencies seen in the relative frame of the vibration blade are on the contrary given by

ω = | ω 0 -mω adj > cur |, ( , n) ∈ Z × Z. ( 19 
)
Unlike Eq. ( 17), the previous relation is simply a linear combination of the frequencies given in table 1 and the frequency due to the blade vibration is not altered. The wave number of the perturbation is

κ = m N adj b + n d . (20) 
The spinning modes w p introduced in the previous section and characterized by their pulsation ω p and their wave numbers κ p are consequently defined in each frame by the relations [START_REF] Buffum | Blade row interaction effects on flutter and forced response[END_REF] to [START_REF] Ekici | Nonlinear analysis of unsteady flows in multistage turbomachines using harmonic balance[END_REF]. They are finally completely described by the pair ( , m) and the number of harmonics N h,p considered for each of them. In practice the first harmonics only ( , m, n) ∈ {0, ±1, ±2} are considered [START_REF] Silkowski | A Coupled Mode Analysis of Unsteady Multistage Flows in Turbomachinery[END_REF][START_REF] Hall | Multistage Coupling for Unsteady Flows in Turbomachinery[END_REF].

RESULTS

Configuration for 3D and 2.5D models

Numerical results are presented for the VITAL ("enVIronmenTALly friendly aeroengine") contrafan designed as new engine architecture for noise and emission reduction [START_REF] Mari | Collaborative european aero-engine environmental research projects led by Snecma and Rolls-Royce[END_REF]. The configuration is made up of two contra-rotating fans with N b,0 = 10 and N b,1 = 14 blades behind which the splitter is modeled. The geometrical details of the configuration are given in table Since the computations with the 3D model containing 4.4 millions of control cells are time consuming, a radial slice is extracted to work initially with a lighter 2.5D model. The extracted mesh represented on the figure 1(1) inside the whole 3D domain has only 3 cells along the radial direction in the first row and 2 in the second row. The mesh does indeed not match on the interrow plane and the sliding boundary condition at the interface has to perform some 2D interpolations both in the radial and azimuthal directions.

The flow field computed with the 3D and 2.5D models is slightly different because the streamlines are artificially confined in the 2.5D model but the general agreement is good (see Figure 2). Besides the main purpose of the 2.5D model is not to predict very accurately the physics but to compare computations on a single passage with multichorochronic boundary conditions and full annulus computations which can be performed in a reasonable time. Indeed, the full annulus 2.5D model contains less than 1 millions of cells, that is barely a quarter of the size of the 3D model on a single passage.

Several monitoring points inside the fluid domain (14 points) and on the blades surfaces (8 points) are selected to check the time histories. Their location is represented by the orange and blue dots on figure 1(2). For each blade two probes are located in the fluid domain near the leading and trailing edges; additional probes are also selected in the blocks on both sides of the interrow and in the wake of the second row. Wall pressure probes are distributed as follows for each blade: two probes at the leading and trailing edges, two additional probes near the leading / trailing edges and two other probes near the middle of the blades. (2) Flexible isolated blade row The flexibility of blade row R 1 is described by the 1 st torsion mode for the nodal diameters n d ∈ {0, ±1, ±2, ±3, ±4}. The eigenfrequency, which slightly depends on the nodal diameter, is about ω 0 = 545 Hz. Pictures of figure 3 show the amplified real and imaginary parts of the deflections for the 3D model and the slices corresponding to the 2.5D model.

Preliminary simulations have been performed on the contrafan stage with rigid blades to check that the 2.5D model captures well the blade passing frequencies given in section 3.1.2 with simple chorochronic boundary conditions. Aeroelastic computations have also been performed with simple chorochronic boundary conditions on the isolated blade row R 1 . In both cases, the use of multichorochronic boundary conditions with only one spinning mode reproduces exactly the same time histories extracted on the different probes after the transient has vanished. The convergence with multichorochronic boundary conditions is longer (2) Flexible isolated blade row because of the relaxation parameter α used to update the Fourier coefficients. Figures 4(1) and 4 [START_REF] Huang | Influence of upstream stator on rotor flutter stability in a low pressure steam turbine stage[END_REF] show the agreement between the different types of simulations. It is clearly visible that the convergence of the simulation for the rigid stage performed with α = 0.1 is far longer compared to the simple chorochronic computation whereas the aeroelastic simulation for the isolated blade performed with α = 0.9 converges almost as quickly as the simple chorochronic computation. The spectral analysis of the times histories is compared on figures 5(1) and 5 [START_REF] Huang | Influence of upstream stator on rotor flutter stability in a low pressure steam turbine stage[END_REF] for the two probes. The same peaks are identified from the computations with chorochronic or multichorochronic boundary conditions. For the rigid stage the main frequencies are the blade passing frequency and its first harmonics: the perturbations seen by the probes in R 0 (like the point 02 e. g.) oscillate at kω R 1 >R 0 = kN b,1 ∆Ω = k × 2668 Hz with k ∈ N whereas the perturbations seen by the probes in R 1 (like the point 07 e. g.) oscillate at kω R 0 >R 1 = kN b,0 ∆Ω = k × 1906 Hz with k ∈ N. For the flexible isolated row, the perturbations seen by the probes oscillate at kω 0 = k × 545 Hz. Aeroelastic computations performed on the isolated blade row have shown from the analysis of the generalized aerodynamic force that the contrafan is the least stable for the nodal diameter n d = -2.

Full annulus computations

Full annulus computations are then performed on the stage configuration with a prescribed vibration on the second blade row for the nodal diameter n d = 0. The objective is to check if the main spinning modes match up the first low harmonics of the combinations of frequencies described in section 3.3.

The time history of the probe 02 plotted on figure 6(1) is quite regular and is mainly governed by the vibration frequency ω 0 . The blade passing frequency ω R 1 >R 0 (and its harmonics) induced by the neighboring blade row R 1 modulates the response with a lower magnitude.

On the right of figure 6(1), the spectral analysis computed for each probe in R 0 highlights the different frequencies involved in the response and allows the identification of the main spinning modes defined by the pair ( , m) as in section 3.3. In view of the expressions [START_REF] Buffum | Blade row interaction effects on flutter and forced response[END_REF] for the nodal diameter n d = 0 considered here, the main spinning mode (1, 0) is indeed due to the vibration and the following modes, about two orders of magnitude lower, correspond the blade passing frequency (0, 1) and low harmonics frequency combinations (±1, 1), (±2, 1) or (±1, 2). The spectral content experienced in the blade row R 0 is therefore made up of frequency combinations of the form ω 0 + mω R 1 >R 0 with ( , m) ∈ {0, ±1, ±2} with n d = 0.

The time history of the probe 05 in R 1 plotted on figure 6(2) seems to be more irregular and several frequencies with a similar magnitude should contribute to the response. The curve plotted in orange for comparison is the aeroelastic response of the isolated row dominated by the sole vibration frequency. The forcing effect due to the first blade row in the stage configuration clearly increases the pressure fluctuations, the envelope of the oscillations being almost doubled.

The main spinning modes identified from the spectral analysis plotted on the right of 6( 2) are associated to the vibration (and the first harmonics ω 0 ), the blade passing frequency ω R 0 >R 1 and some frequency combinations of the same kind as those found by the spectral analysis of probes in R 0 . The frequencies associated to the main spinning modes finally write ω 0mω R 0 >R 1 with ( , m) ∈ {0, ±1, ±2} as expected from the relations [START_REF] Hall | Multistage Coupling for Unsteady Flows in Turbomachinery[END_REF].

The spectral content is also coherent with the expressions ( 17) and ( 19) for non zero nodal diameters. The spectral content of the different probes in each blade row is plotted on Figures 7 and8 for n d = ±2. The main frequencies in the blade row R 1 remain unchanged for the different nodal diameters but the relative magnitude of the peaks changes. However the frequencies in blade row R 0 depend on the nodal diameter since the vibration frequency is shifted by the Doppler effect. For n d = -2, the shifted vibration frequency denoted ω 0 for simplicity on the graphs becomes very low ω 0 = ω 0 -2∆Ω = 164 Hz and the frequency combinations mω R 1 >R 0 ± ω 0 close to the blade passing frequency harmonics are numerous and with a high magnitude. The frequency content is organized by wave packets centered on the blade passing frequency harmonics. On the contrary for n d = 2, the shifted vibration frequency is large ω 0 = ω 0 + 2∆Ω = 927 Hz and the spectral density is less significant since the frequency combinations are well spaced between the main frequencies (vibration and blade passing frequency). The organization by packets does therefore no longer appear for n d = 2. For n d = -3 the spectral (2) Time histories and spectra of probes R 1 density around the blade passing frequency and its harmonics is extremely high since the shifted frequency is ω 0 = |ω 0 -3∆Ω| = 26 Hz. The peaks around the blade passing frequency therefore seem to be large but a detailed analysis with a sufficiently small frequency resolution reveal the same organization with very close peaks due to frequency combinations of the form mω R 1 >R 0 ± ω 0 .

Computations have also been performed for different amplitudes of vibration and reveal the same type of phenomena. The contribution of the vibration is obviously decreasing when the amplitude of the prescribed vibration decreases and the limit case of very small amplitude of vibration leads to the response obtained in the case of a perfectly rigid configuration (see Figure 5(1)).

It should finally be pointed out that a small set of spinning modes are dominant, the main ones being in general those associated to the vibration and blade passing frequencies. However, in some cases frequency combinations due to some interactions are significant and should also be considered. Pressure module Pressure module Pressure module 
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Single passage computations with multichorochronic boundary conditions

Computations are now performed on a single passage with multichorochronic boundary conditions for which several spinning modes have to be given a priori to approximate the flow field on the azimuthal boundaries. The spectral analyses performed previously on the full annulus configuration have confirmed that few spinning modes are dominant and should provide an accurate approximation of the flow. The influence of different parameters related to the multichorochronic approximation is first investigated. Then the single stage computations are compared to the full annulus computations for different nodal diameters and finally 3D computations are performed for demonstration.

Simulations with the 2.5D slice model

The influence of the number of harmonics N h,p considered for each spinning mode (see Eq. ( 13)) is investigated here for the nodal diameter n d = 0 and a given number N sp = 2 of spinning modes corresponding to (1, 0) and (0, 1), i. e. the vibration frequency and the blade passing frequency. A focus on the last period of the time histories and a spectral analysis are plotted on figure 9 for two probes in R 0 and R 1 .

The agreement with respect to the full annulus simulation is satisfactory even if small differences are still visible. The spectral content is well captured but the magnitude of the peaks are often either over-or underestimated, hence the differences observed in the time histories. Beyond N h,p = 8 harmonics, the multichorochronic approximation is no longer improved since low harmonics only contribute significantly as expected from the spectral analysis of section 4.2.

It should be pointed out that even when prescribing only the two spinning modes relative to the vibration and blade passage as previously, the frequency combinations are also captured in the spectral analysis performed for the probes inside the spatial domain. The frequency combinations are however filtered at the multichorochronic boundaries unless they are explicitly prescribed as additional spinning modes for the multichorochronic boundary condition. Compli-cated linear frequency combinations of the form (ω 0 +n d ∆Ω)+mω R 0 >R 1 +nω R 1 >R 0 indicated by gray boxes on the spectra also appear, especially in R 0 . These modes are characterized by a triplet ( , m, n) involving the blade passing frequency of the current blade; the associated wave number is κ = mN adj b + nN cur b + n d . The physical existence of these modes is questionable since their magnitude seems to be amplified when the multichorochronic approximation is used.

Additional modes corresponding to the main peaks identified from full annulus computations are now introduced to enrich the spectral content for the approximation. The last period of the time histories and spectral analyses are compared on figure 10 for two probes. The time response is slightly improved with N sp = 4 spinning modes (with the additional modes (1, 1) and (2, 1) in R 0 and (1, 1) and (1, 2) in R 1 ). As expected in view of the spectral analyses plotted on figure 6, there is only little change when increasing the number of spinning modes from N sp = 4 to 8 since the magnitudes of the secondary peaks are much smaller. Here again the complicated linear frequency combinations (ω 0 + n d ∆Ω) + mω R 0 >R 1 + nω R 1 >R 0 are amplified as the number of spinning modes is increased. As a conclusion, a small number of spinning modes N sp = 2 and harmonics N h,p ≤ 8 is preferably used to avoid the introduction of artificial spectral content.

The same conclusions can be drawn with the analysis of the wall pressure probes. There is consequently also a good agreement for the generalized aerodynamic force computed from the wall pressure with the multichorochronic approximation as shown on Figure 11. Since the multichorochronic simulations are performed on a single sector, the spectrum of the generalized aerodynamic force contains frequencies associated to the blade passage. However the generalized aerodynamic force computed on the whole blade row as the sum of contributions from each blade is dominated by the vibration frequency ω 0 (see Figure 12). Indeed, Simulations are finally performed for the nodal diameters n d = ±2. The time histories and spectra are compared on figure 13 for n d = -2 only with respect to the full annulus computation. The agreement is satisfactory except for the point 02 whose time history is less accurate. In this case, the very low frequency ω 0 induces a lot of significant peaks centered around the blade passing frequency harmonics whose magnitudes are difficult to capture precisely. This is however not a major concern for aeroelasticity purposes since the generalized aerodynamic force is computed from the wall pressure points in the relative frame of the vibrating blade where the spectral content is better captured. The generalized aerodynamic force compared on figure 14 for both nodal diameters are indeed accurately approximated with the multichorochronic approximation, even in the more difficult case n d = -2.

Simulations with the 3D model

Simulations with the 3D model are very time consuming because of the long time history necessary to reach a converged quasiperiodic state from which an accurate Fourier transform can be performed for spectral anal- With α = 0.1, the CPU time is about 30 days with 8 processors to obtain a sufficiently long converged time history for a spectral analysis. Reducing the relaxation parameter to α = 0.9 would lead to a division by 9 of the CPU time. However a large number of iterations is still computed so that the spectral resolution for the Fourier transform remains low. In practice, the number of iterations (and thus the CPU time) is reduced by 2.5.

Finally it should be noted that the simulations may diverge when more spinning modes are introduced. This can be avoided by tuning the relaxation parameters such that those associated to the vibration and blade passing frequencies are weakly relaxed (α = 0.9 or 0.75) whereas those relative to frequency combinations are strongly relaxed (α = 0.1). In this case the number of simulated iterations has however to be large.

CONCLUSION

In this paper a multichorochronic approximation for turbomachinery configurations has been investigated in the time domain using RANS equations. A good agreement with respect to full annulus simulations has been obtained and CPU time (and memory) can be saved with a proper parallelization of the model. The influence of the number of harmonics and spinning modes, as well as the relaxation parameters has been investigated and an accurate approximation of the generalized aerodynamic force is obtained with few spinning modes. Aeroelastic stability can then be assessed with the inclusion of stage effects on single sector configurations.

  i = 1, . . . , n m has N b different spatial patterns corresponding to the nodal diameter n d = 0, . . . , N b -1. Because of the cyclic symmetry boundary condition, the modes are complex conjugates (except for n d = 0 and N b /2) and the problem (6) is therefore solved just N b /2 times. The remaining modes referred to by the index -n d are deduced by ϕ (i)
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 11 Figure 1: Geometry of the contrafan and monitoring points for pressure time histories.
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 2 Figure 2: Comparison of steady pressure fields computed with the 2.5D and 3D models.
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 3 Figure 3: Modal deformations of the first torsion mode for the nodal diameters n d ∈ {0, ±1, ±2, ±3, ±4}.
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 4 Figure 4: Comparison of pressure time histories computed with the 2.5D model on the full annulus and on a single passage using simple chorochronic boundary conditions or multichorochronic boundary conditions with only one spinning mode.
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 5 Figure 5: Comparison of pressure spectra for two probes computed with the 2.5D model on a single passage using a simple chorochronic boundary condition or multichorochronic boundary conditions with only one spinning mode.
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 1 Time histories and spectra of probes in R 0
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 6 Figure 6: Comparison of pressure time and spectra computed with the 2.5D model on the full annulus.

Figure 7 :

 7 Figure 7: Spectra computed with the 2.5D model the full annulus for n d = 2.
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 8 Figure 8: Spectra computed with the 2.5D model on the full annulus for n d = -2.
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 9 Figure 9: Influence of the number of harmonics N h,p for the multichorochronic approximation with N sp = 2 spinning modes.
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 10 Figure 10: Influence of the number of spinning modes for the multichorochronic approximation.
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 11 Figure 11: Comparison of the generalized aerodynamic force for several numbers of spinning modes.
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 12 Comparison of the generalized aerodynamic force computed on 1 sector or N b,1 sectors.
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 13 Figure 13: Times series and spectra with the multichorochronic approximation for n d =
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 1415 Figure 14: Generalized aerodynamic forces with the multichorochronic approximation for n d = ±2.ysis. The CPU requirements could be reduced by a better parallelization of the model but the tuning of the relaxation parameter can also be considered to speed up the convergence. An illustration of the generalized aerodynamic force transients is given on figure 15 for α = 0.1, 0.5, 0.75 and 0.9. The spectra plotted on the right show a good agreement whatever the value of α.

Table 2 :

 2 2. Computations are performed at 70% of the nominal speed for an intermediate throttling. Geometrical parameters of the contrafan.

	Parameter	R 0	R 1
	Blade count [-]	10	14
	Chord [mm]	118 105
	Gap-to-chord ratio [%]	0.36 0.31
	Stagger angle [ • ]	-47	47
	Rotation speed [rpm]	Ω 0	Ω 1
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