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Abstract 

 

Craving is a core feature of substance use disorders. It is a strong predictor of substance 

use and relapse, and linked to overeating, gambling, and other maladaptive behaviors. 

Craving is measured via self-report, which is limited by introspective access and 

sociocultural contexts. Neurobiological markers of craving are both needed and lacking, 

and it remains unclear whether craving for drugs and food involve similar mechanisms. 

Across three fMRI studies (N=99), we identified a cross-validated neuromarker that 

predicts self-reported intensity of cue-induced drug and food craving (p<0.0002). This 

pattern, the Neurobiological Craving Signature (NCS), includes ventromedial prefrontal 

and cingulate cortices, ventral striatum, temporal/parietal association areas, mediodorsal 

thalamus, and cerebellum. NCS responses to drug versus food cues discriminate drug 

users versus non-users with 82% accuracy. The NCS is also modulated by a self-

regulation strategy. Transfer between separate neuromarkers for drug and food craving 

suggests shared neurobiological mechanisms. Future studies can assess the discriminant 

and convergent validity of the NCS, and test whether it responds to clinical interventions 

and predicts long-term clinical outcomes. 
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Introduction 

 

Craving—a strong desire to use drugs or to eat—has long been considered a core 

factor driving overeating and substance use1, thereby contributing to the top three 

preventable causes of disease and death2. In 2013, it was added as a diagnostic criterion 

for substance use disorders (SUDs) in the DSM-53, underscoring its clinical significance. 

Importantly, cue-induced craving – which arises in response to drug- or food-related 

stimuli – is known to prospectively predict eating unhealthy foods (i.e., ultra-processed 

foods high in sugar and saturated fat), weight gain, drug use, and relapse (for meta-

analyses, see4–6). Because it is a common predictor across multiple conditions (including 

SUDS, obesity, eating disorders) and maladaptive behaviors, it may constitute a 

transdiagnostic risk factor.  

While self-reported craving has been useful clinically as well as experimentally, 

there is growing recognition of the need to understand its biological basis. Human 

neuroimaging studies have identified circuits related to substance use risk, incidence, and 

sequelae7,8. Some circuits, including ventromedial prefrontal cortex (vmPFC), ventral 

striatal/nucleus accumbens (VS/NAc), and insula, have been identified across SUDs, 

outcomes, and risky behaviors, and have been identified as key regions underlying 

addiction in animal models9–13. Alongside homeostatic circuits in hypothalamus and 

brainstem, these regions have been identified in studies of food valuation and dietary 

decision-making14,15, and appear to be functionally related to weight gain and obesity16,17. 

These circuits can be targeted by neurostimulation, pharmacological, psychological, and 

behavioral interventions18, providing new avenues for therapeutic intervention.  

Nevertheless, although great strides have been made in our understanding of 

substance misuse, overeating, and related phenomena, our understanding of the neural 

basis of craving is still incomplete, and neural targets for monitoring craving and SUDs 

and for examining the efficacy of interventions are lacking. While the neuroimaging 

literature on craving is growing, craving cannot be directly measured in nonhumans19. In 

addition, understanding that any specific brain region is involved in craving or other 

outcomes does not imply that we can decode craving from the brain, or that we have a 

sufficiently precise measurement model to allow for monitoring of individual people or  

testing whether treatments engage their intended craving-related neural targets20. It is 

increasingly apparent that many mental states and related outcomes have a highly 

distributed brain basis, including emotion21,22, pain23, perception24, object recognition25, 
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memory retrieval26, sustained attention27, semantics28, and autonomic responses29. 

Accordingly, measures that integrate across brain systems can provide sensitive, specific, 

and generalizable characterizations of the neurophysiological underpinnings of 

behavior30. They can also predict health-related outcomes with larger effect sizes than 

measures based on single regions in many cases31.   

Such predictive models—also called ‘neuromarkers’ or ‘signatures’—have multiple 

potential uses32–34. They can predict risk for future disorders, identify subtypes (or 

biotypes) that predict who will respond to a treatment, and perhaps most importantly serve 

as mechanistic targets for interventions. They can also outperform subjective measures 

in predicting human choices35, and can be linked with systems and cellular neuroscience 

to develop new biological treatments in ‘reverse translation’ approaches36. Accordingly, 

there is increasing recognition of the need to develop biomarkers based on human 

systems that can be compared with animal models33,34,37. However, such an approach has 

rarely been applied in addiction38, and has not yet been applied to craving. 

Here, we take a first step towards a neuromarker that predicts the intensity of drug 

and food craving in clinical and matched control samples. We integrated data from 5 

different cohorts in 3 fMRI studies across different types of drug users (cigarettes, alcohol, 

cocaine), and non-users (total of 469 contrast images from N=99 participants). Across 

studies, participants were presented with visual cues of drugs and highly palatable food 

items. We then used machine-learning to identify a distributed functional brain activity 

pattern that predicted the intensity of craving.  

We term the resulting pattern the Neurobiological Craving Signature (NCS), and 

we hope that this name would reduce ambiguity and provide a reference point for the 

pattern’s future reuse and testing in new samples. Analyses related to the NCS allow us 

to address scientific questions related to the organization of craving-related brain systems 

across drugs and food (or other rewarding stimuli), and their susceptibility to cognitive, 

pharmacological, and other interventions. Further, recent perspectives have proposed a 

common neurophysiology for SUDs and obesity, and of drug and food craving more 

specifically39–41, but this view has been challenged42. The NCS allows us to test whether 

craving for several types of drugs, including stimulants (nicotine, cocaine) and sedatives 

(alcohol), and for highly palatable foods are based on different or shared 

neurophysiological patterns. We further assess whether the brain systems involved in cue-

induced craving are affected by cognitive regulation strategies, highlighting the malleability 
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of craving-related brain patterns to interventions and thus opening avenues for developing 

further interventions and improving existing ones.  

 

Results 

Data overview 

A total of 469 contrast images from 99 participants and 5 independent cohorts were 

used for training and testing the pattern to predict drug and food craving (two drug using 

cohorts, two of their matched controls, and another sample of drug users with no matched 

controls). All participants viewed images of drugs and food under two instructions 

conditions: a craving instruction and an instruction to use a cognitive strategy to reduce 

craving (see Methods). Contrast images were computed for the onset of the visual drug 

and food cues (see Figure 1a), separately for each level of craving (1-5 Likert scale) for 

every participant (see Suppl. Figure 1) and were rescaled by the image-wise L2-norm to 

remove any differences in scale between participants and scanners.  

 

fMRI results 

 Description of the Neurophysiological Craving Signature (NCS). Parallel to 

previous studies on fMRI-based prediction of pain and emotion21,23, LASSO-PCR and 

study-stratified 10-fold cross-validation was used to predict the level of craving based on 

fMRI contrast images. The advantage of this approach is that it does not require a similar 

level of craving across food and drugs (or across participants and studies), because it 

predicts continuous, dimensional craving intensity ratings. Variance in self-reported 

craving, both within and between participants, is beneficial for the LASSO-PCR algorithm. 

Model training identifies a pattern of weights across voxels such that the weighted average 

activity is optimized to predict craving in a training sample of participants, and its predictive 

accuracy is validated in independent participants. The NCS is a model that consists of the 

weights (plus an overall intercept), which can be applied to any brain image to obtain a 

weighted average over brain voxels, yielding a single score per test image. If weights in a 

brain area are positive, more activity indicates higher predicted craving. If they are 

negative, more activity indicates lower predicted craving. Figure 2 presents a thresholded 

display of the resulting weight map based on bootstrapping. While the unthresholded map 

(see Suppl. Figure 2) is used for prediction, the thresholded map illustrates the brain areas 

that most robustly contribute positive or negative weights to the predictive pattern. Areas 

with positive weights included ventromedial prefrontal cortex, dorsal anterior cingulate 
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cortex, subgenual cingulate/ventral striatum, retrosplenial cortex, parietal and temporal 

areas, cerebellum, and amygdala. Negative weights were found in visual areas, lateral 

prefrontal, parietal and somatomotor areas, among others (see Table 1 for a list of FDR-

corrected coordinates). Of note, many areas, including somatomotor cortex, parietal, 

temporal, and bilateral insula included clusters of both positive and negative weights.  

 

 
Figure 1. Study design and analytic approach. (a) In the Regulation of Craving (ROC) task, participants 
were presented with a series of photographs depicting either drugs (cigarettes, alcoholic drinks, or cocaine) 
or highly palatable food items. Before presentation of the cues, participants were instructed (2s written cue) 
to either consider the immediate consequences of consumption of the items (‘NOW’ condition), or their 
negative (typically long-term) consequences (‘LATER’ condition). At the end of each trial, participants rated 
their craving (‘How much do you want this?’), using a 1-5 Likert scale. (b) The present study employed the 
pooled data from 3 previous studies (5 groups of participants). Study 1 tested the ROC task (displaying 
cigarette and food cues) in 21 heavy smokers (Study 1a) and 22 non-smokers (Study 1b; see details in 
methods). Study 2 tested the ROC task (displaying alcohol and food cues) in participants fulfilling diagnostic 
criteria of alcohol use disorder (N=17, see details in methods). Study 3 tested the ROC task (displaying 
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cocaine and food cues) in 21 individuals with cocaine use disorder (Study 3a) and 18 matched non-users 
(Study 3b; see details in methods). (c) For each participant from all five studies, we computed brain activation 
images (β-estimates) for each level of craving (1-5). These images were then used in a LASSO-PCR (least 
absolute shrinkage and selection operator – principal component regression) machine-learning algorithm to 
predict level of craving (1-5) based on brain activity. Cross-validation (ten folds stratified for studies and 
participants population) allowed assessment of (1) predictive accuracy of the pattern for craving; (2) whether 
it was differentially activated for drug versus food cues; (3) whether it was differentially activated for the two 
regulation conditions (NOW vs. LATER); and (4) whether the pattern can differentiate drug users from non-
users. (d) Permutation test results. Null distributions are plotted in blue bars, observed accuracy measures as 
red lines. For all measures, none of the permutation samples performed as well as the observed results (all 
p’s < 0.0002). MSE = mean squared error; RMSE = root mean squared error; MAE = mean absolute error. 

 

Predictive performance of the NCS. The trained pattern resulted in a cross-

validated prediction-outcome correlation of r = 0.53 (S.D. +-0.46) within-person and 

r = 0.34 across all data points, with a mean absolute error of 1.30 points on the 1-5 Likert 

scale. A multi-level general linear model (GLM) confirmed a strong relationship between 

out-of-sample predicted and actual level of craving with a large effect size (! = 0.38, 

STE = 0.04, t(98) = 9.21, p < 0.0001, Cohen’s d = 0.93, see Figure 3). The strength of the 

predictive performance varied across datasets, but was significant in all 5 cohorts, with 

effect sizes (Cohen’s d) ranging from 0.55-1.48 (see Table 2). Statistically controlling for 

white matter and ventricle signal did not alter these results (i.e., the relationship between 

craving ratings and NCS remained significant, β = 0.35, STE = 0.05, t(97) = 6.81, 

p < 0.0001, while the relationship of WM and ventricle signals with craving was not, 

β = 2.53, STE = 1.77, t(97) = 1.43, p = 0.16). Adding scanner site, group (drug users 

versus controls), sex, age, education, BMI, and average head motion as 2nd-level 

covariates also did not alter the relationship between craving and NCS (β = 0.38, 

STE = 0.04, t(79) = 9.17, p < 0.0001). Though the NCS predicts craving in both users and 

non-users, users versus non-users had significantly higher overall NCS responses 

(β = 0.38, STE = 0.18, t(79) = 2.13, p = 0.036) and smaller effect of craving ratings on out-

of-sample NCS-predicted responses (i.e., a smaller slope, β = -0.14, STE = 0.05, t(79) = -

2.97, p = 0.004), potentially because users may report ratings less reliably or have less 

neurotypical brains. None of the other covariates significantly affected the NCS or 

interacted with ratings to affect NCS responses. NCS responses did not significantly 

change over time during the experiment (see Suppl. Figure 3). 

 

 Classification of high versus low craving. We next assessed the accuracy of 

the NCS to differentiate between high versus low levels of craving. Forced-choice binary 

classification of highest versus lowest levels of craving per participant was achieved with 
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a cross-validated accuracy of 81% +-4.0%STE, binomial test p < 0.0001 

(sensitivity = 81%, specificity = 81%, area under the curve [AUC] = 0.91, see Figure 3). 

Even across subjects (single-interval classification), this pattern separated brain 

responses to the highest versus lowest individual levels of craving with 72% cross-

validated accuracy (+-3.4%STE, binomial test p < 0.0001, sensitivity = 64%, 

specificity = 80%, AUC = 0.76). While this level of predictive accuracy does not provide 

perfect separation of high versus low craving, it is remarkable, since all stimuli were drugs 

or highly palatable food items, thus differences in classification performance were not 

driven by external stimulus characteristics but by the personal history and internal 

motivational states of the participants.  

 
Figure 2. Thresholded display of the NCS. Note that unthresholded patterns are used for prediction; this 
thresholded pattern is shown for illustration at p < 0.005 uncorrected. (a) Medial, lateral, and insula displays 
of the most consistent pattern weights. (b) Pop-out rectangles show the multivariate pattern for selected 
clusters of interest. Warm (yellow-red) color indicates positive weights, cold (cyan-purple) color indicates 
negative weights in predicting drug and food craving. P-values are based on bootstrapping and indicate the 
areas that contribute most consistently with positive or negative weights. See Table 1 for a list of FDR 
corrected weights. The NCS weight map and code to apply it to new data are available for download at 
https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Multivariate_signature_patterns/2022_
Koban_NCS_Craving. 
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Our studies did not include in-scanner ratings other than craving ratings. We 

therefore assessed whether the NCS does indeed predict something specific to craving 

that is not predicted by other brain signatures, which are trained to predict other types of 

affect ratings. For this purpose, we applied five recently developed brain signatures43—

trained to predict four different types of negative affect (mechanical pain, thermal pain, 

aversive sounds, and unpleasant pictures) and domain-general negative affect—to the 

data from Studies 1-3 and tested whether these other brain signatures would predict high 

versus low craving with comparable accuracy as the NCS. The results of this control 

analysis confirmed that other signatures trained to predict affective ratings did not 

significantly predict high versus low cravings but were at chance level (46%-52% 

accuracy, see Suppl. Figure 4). 

 
Figure 3. Predictive performance of the NCS. (a) Receiver-operating characteristic (ROC) plot for the 
prediction of highest versus lowest levels of craving (forced-choice discrimination, N=99). (b) Individual 
datapoints and slopes for the relationship between craving levels and NCS for all five datasets (significant 
positive association in each study see Table 2). (c) Average levels of craving ratings (on the x-axis) and NCS 
responses (on the y-axis) for each of the four experimental conditions (drug versus food cues, NOW versus 
LATER instruction) and within each dataset. Gray lines show individual slopes across the four conditions. Dots 
indicate individual data points for each condition and participant. Horizontal and vertical error bars indicate 
standard errors of the mean (SEM) for ratings and NCS pattern expression, respectively (Study 1a: n=21, 
Study 1b: n=22, Study 2: n=17, Study 3a: n=21, Study 3b: n=18).  
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Differentiating drug users from non-users. We next tested whether individual 

craving-pattern responses to drug and food cues could be used to predict whether a 

participant was a drug user or non-user (see Figure 4a for group averages, Figure 4b for 

individual effects, and Figure 4c for ROC plots). While pattern expression in brain 

responses to food cues did not significantly differentiate drug users from non-users (60% 

accuracy +-4.9% STE, P = 1.00, AUC = 0.40), NCS pattern responses to drug cues 

significantly classified drug users from non-users, with 75% accuracy (+-4.4% STE, 

P = 0.002311, sensitivity = 86%, specificity = 57%, AUC = 0.76). When testing the pattern 

response to the drug>food contrast, the response in the NCS separated drug users from 

non-users with 82% accuracy (+-3.9% STE, P < 0.001, sensitivity = 97%, 

specificity = 60%, AUC = 0.87, see Figure 4c). 

 

 
Figure 4. Classification of drug users versus non-users based on NCS responses to drugs and food. 
(a) Out-of-sample responses of the NCS to drug and food cues, in drug users (N=59) and non-users (N=40). 
Data are presented as mean values +/- SEM, dots show individual data points. (b) Differences in NCS 
responses to drug minus food cues, in drug users versus non-users. (c) Response-operating characteristic 
(ROC) plots for NCS-based prediction of drug use. Whereas NCS responses to food cues did not significantly 
separate users from non-users (in blue), NCS responses to drug cues were able to significantly separate users 
from non-users (in red). Differential NCS responses to drug-food cues (in purple) had the highest classification 
accuracy (82%, see text for details).  
 

Given slight but significant differences in years of education between users and 

non-users, we used a general linear model to control for years of education, other basic 

demographic variables (age and biological sex) in predicting individual differences in NCS 

response. This showed that drug users had stronger NCS responses to drug cues than 

non-users (t(94) = 4.22, p < 0.001, 96%-CI: [0.57, 1.55], Cohen’s d = 0.87) and stronger 

NCS responses to drug>food cues (t(94) = 7.04, p < 0.001, 96%-CI: [0.90, 1.60], Cohen’s 

d = 1.45), while education, age, and sex were not associated with NCS responses to drugs 

or drug>food cues (all p’s > 0.20).  
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In addition, we tested whether the classification of drug users versus non-users 

could be driven by any single study (or user group) alone or whether they are significant 

in each study independently. We performed the classification analysis separately on 

Studies 1 and 3 (note that Study 2 did not include non-users). The results showed that 

NCS responses to drug cues and drug>food cues (but not food cues) significantly 

separated users from non-users in both Study 1 and Study 3, separately (see Suppl. 

Figure 5 for ROC plots and full results). Average craving ratings and NCS responses for 

each study and cue type are also shown in Suppl. Figure 6. 

 

Drug and food craving are predicted by shared brain patterns. An important 

debate concerns the question whether drug and food craving are based on similar brain 

processes40,42. If drug and food craving are driven by shared brain processes, then drug 

craving should be predictable based on a pattern that is trained to predict food craving, 

and food craving should be predictable based on a pattern that is trained to predict drug 

craving – at least in drug users. Conversely, if drug and food craving are based on 

dissociable brain processes, then better predictive accuracy would be gained by training 

drug- and food-specific (compared to craving-general) brain patterns. 

 We therefore repeated the procedures described above and tested whether 

training on drug and food data separately would improve prediction of craving, and 

whether food craving could be predicted based on a pattern trained on drug data only, and 

vice versa (Figure 5). Food craving was predicted similarly well by the overall pattern 

(76% out-of-sample accuracy +-4.3% STE, P < 0.001, AUC = 0.82) as by a craving 

pattern trained on food cues only (79% +-4.1% STE, P < 0.001, AUC = 0.88). Food 

craving was also significantly predicted by a pattern trained on drug cues only, but with 

somewhat lower accuracy across both drug-using and non-using participants (65% +-

4.8% STE, P = 0.005, AUC = 0.68). For the prediction of drug craving, the results 

indicated no substantial improvements for training only on modality-specific (drug) cue 

trials (69% +-4.9% STE, P < 0.001, AUC = 0.75) compared to all cues (70% +-4.9% STE, 

P < 0.001, AUC = 0.78). Drug craving was also significantly predicted by a pattern that 

was trained only on food trials (66% +-5.1% STE, P = 0.004, AUC = 0.74). Thus, we did 

not find evidence for a double dissociation between drug and food craving, but rather 

significant cross-prediction of drug and food craving. Most importantly, the NCS performed 

as well as the two cue-specific patterns. Together, this supports the hypothesis of shared 

representations between drug and food craving – and across drug types. 
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Figure 5. Cross-prediction of a) drug and b) food craving based on drug- and food-based brain 
patterns. Compared to the NCS (trained across all conditions, red ROC plots), training on drug or food cues 
separately (gray ROC plots) does not improve accuracy, suggesting shared predictive patterns for cue-
induced drug and food craving. Numbers indicate prediction accuracy for each brain classifier (all were 
significant, as indicated by stars).  

 

Modulation by cognitive regulation strategies. Finally, we used a general linear 

model to assess how craving ratings and responses of the NCS were modulated by the 

cognitive regulation of craving task that was employed in all five studies. Across all 

participants, craving ratings were influenced by cue type (drug vs. food, F(1,388) = 95.5, 

p < 0.001, 95% CI: [-0.44, -0.29]) and regulation instruction (NOW vs LATER, F(1, 388) = 

97.6, p < 0.001, 95% CI: [0.32, 0.49]). Drug users reported greater overall craving (F(1, 388) 

= 74.2, p < 0.001, 95% CI: [0.36, 0.58]) and this group effect interacted with both regulation 

instruction (F(1, 388) = 4.51, p = 0.034, 95% CI: [0.01, 0.17]) and cue type (F(1, 388) = 191.5, 

p < 0.001, 95% CI: [0.44, 0.59]), such that drug users craved drugs (t(97) = 14.5, p < 0.001, 

95% CI: [1.69, 2.23], Cohen’s d = 2.94) but not food (t(97) = -0.67, p = 0.50, 95% CI: [-0.34, 

0.17], Cohen’s d = 0.14) more than non-users, and that they showed slightly higher 

regulation effects than non-users. Importantly, these effects were qualified further by a 

significant three-way interaction between group, cue type, and regulation condition (F(1,388) 

= 21.7, p < 0.001, 95% CI: [0.05, 0.12], see Figure 3c). While the regulation effect was 

significant for both drug and food cues in both users and non-users, the difference 

between NOW and LATER condition was significantly smaller in the drug condition 

compared to the food condition in non-users (t(37) = -4.22, p < 0.001, 95% CI: [-0.77, -0.27], 

Cohen’s d = 0.67), who reported low craving for drugs overall. Consistently, drug users 

had a somewhat larger regulation effect (difference between NOW and LATER condition) 

for drug compared to food cues (t(58) = 2.14, p = 0.037, 95% CI: [0.01, 0.35], Cohen’s 

d = 0.28).  

Similar to craving ratings, responses of the NCS were influenced by cue type 

(drug vs. food, F(1, 388) = 70.4, p < 0.001, 95%-CI: [-0.51, -0.83]) and by regulation 

instruction (NOW vs LATER, F(1, 388) = 35.5, p < 0.001, 95%-CI: [0.28, 0.55]), suggesting 
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that cognitive regulation strategies modify NCS responses. Drug users versus non-users 

had marginally greater NCS responses overall (F(1, 388) = 3.0, p = 0.085, 95%-CI: [-0.05, 

0.75]). Drug users’ versus non-users’ signature response differed with respect to cue type 

(F(1, 388) = 57.5, p < 0.001, 95%-CI: [0.90, 1.53]), such that drug users had higher NCS 

responses to drug cues than non-users (t(97) = 4.39, p < 0.001, 95%-CI: [0.56, 1.49], 

Cohen’s d = 0.90), whereas NCS responses to food cues did not significantly differ (t(97) = 

-1.13). Further, drug users’ versus non-users’ signature response differed with respect to 

regulation condition (F(1, 388) = 9.15, p = 0.003, 95%-CI: [0.15, 0.69]), such that users had 

larger NCS responses than non-users in the NOW condition (t(97) = 2.53, p = 0.013, 95%-

CI: [0.12, 1.00], Cohen’s d = 0.52), but not in the LATER condition (t(97) = 0.71), see Figure 

3c), which was likely driven by more room to down-regulate craving in users compared to 

non-users. The three-way-interaction between group, regulation and cue type was not 

significant for NCS responses (F(1,388) = 0.0). 

 

Affective stimulus characteristics. We next explored how self-reported craving 

and the NCS were related to intrinsic craving-related image features of the different food 

and drug cues. For this purpose, we employed a deep-learning neural network that has 

been previously trained to detect 20 different affective states, including craving, in visual 

images (“Emonet”44). This allowed us to test whether single-trial craving ratings and NCS 

responses were associated with the Emonet visual ‘craving’ output unit on a stimulus-by-

stimulus basis. Emonet ‘craving’ output is a probability score indicating the predicted 

probability that humans will label an image as ‘craving’ related and reflects a high-level 

abstraction of visual input. A multilevel GLM confirmed that both stimulus-to-stimulus 

craving ratings (β = 0.04, STE = 0.00, t(95) = 10.5, p < 0.001) and NCS responses 

(β = 0.02, STE = 0.00, t(95) = 6.80, p < 0.001) were strongly and positively associated 

with the automatic Emonet ‘craving’ scores for the stimuli (see Supplementary Figure 7 

for additional results). Importantly, the association between craving ratings and NCS 

remained highly significant when controlling for ‘craving’ stimulus features (β = 0.18, STE 

= 0.02, t(95) = 8.60, p < 0.001), ruling out stimulus features as the main or only source of 

NCS variability. Instead, the NCS significantly mediated the effects of Emonet’s ‘craving’ 

output on self-reported craving (p = 0.011, see Figure 6). 
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Figure 6. The NCS partially mediates the effects of intrinsic visual craving features on craving ratings. 
(a) A deep convolutional neural network (Emonet44, on the left) was used to extract visual craving-related 
features from the drug and food cue stimuli. We were most interested in the Emonet ‘craving’ output, shaded 
in orange. (b) A mediation analysis confirmed that (1) higher Emonet ‘craving’ output was associated with 
higher NCS responses (path a, β = 0.01, STE = 0.00, p < 0.001); (2) NCS responses significantly predicted 
craving ratings when controlling for visual features (path b, β = 0.11, STE = 0.01, p < 0.001); and (3) the NCS 
partially mediated the effect of visual craving features on ratings (path ab, β = 0.0009, STE = 0.0003, 
p = 0.011). Note that the direct path remained significant as well (path c’, β = 0.03, STE=0.00, p < 0.001). 
 

Discussion 

Craving contributes to multiple behaviors that are detrimental to physical and 

mental health in the long term, including smoking, alcohol drinking, overeating, and 

gambling4,5, and is arguably one of the most central processes in SUDs6. Like other key 

transdiagnostic processes – and human behavior more broadly – craving results from 

brain function. However, it is typically assessed using subjective measures that require 

introspection and are sensitive to context6; thus, there is a strong need for biomarkers, 

and particularly neuromarkers based on brain function37,38,45–47. Such biomarkers can 

identify mechanistic targets that can aid in monitoring disease progression (monitoring 

biomarkers according to the FDA), identifying individuals at risk for SUDs and future 

weight gain (prognostic biomarkers), predicting treatment response (predictive 

biomarkers), and serving as targets for neuromodulatory and behavioral interventions34.  

Here we used machine learning to identify a distributed brain pattern – which we 

term the NCS as a reference for future use – that tracks the degree of craving when 

applied to new individuals, across different diagnostic groups, scanners, and scanning 
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parameters. Importantly, this pattern separated drug users from non-users based on brain 

responses to drug cues, but not food cues. Thus, it is an important step towards a 

diagnostic neuromarker of substance use. Further, given the role of self-reported craving 

in predicting outcomes4,5, this brain-based pattern may function as both a diagnostic and 

predictive biomarker with potential utility in predicting clinically-relevant individual 

differences and future outcomes. Future studies could build on these findings to test 

whether the NCS responds to therapeutic interventions that reduce craving and/or drug 

use and whether it has predictive value for long-term clinical outcomes such as drug 

relapse or weight gain. Further, we found that the NCS is sensitive to cognitive regulation 

strategies, indicating that it may be psychologically modifiable. This is important because 

psychological and behavioral interventions can be effective for SUDs, but their 

mechanisms are poorly understood. Furthermore, current interventions are associated 

with high rates of relapse and could be improved48. Future models could also be developed 

based on other data types (e.g., resting-state fMRI, imaging in animals) or their 

combination38,46. 

Our results also offer new insight into a long-standing debate concerning the 

question whether craving of drugs of abuse and food share common underlying brain 

processes, especially in motivation-related circuits40. We show that craving of various 

types of drugs and food can be predicted by largely shared whole-brain activity patterns. 

Indeed, the results demonstrate that craving-related responses to cues for legal and illegal 

drugs and for highly palatable food items are surprisingly similar and not dissociable at the 

fMRI pattern level in both drug users and non-drug using adults. This is noteworthy, 

especially as most of the non-users in the present studies were not obese or “food 

addicted,” but rather healthy controls. Importantly, this overlap is consistent with models 

suggesting that drug craving depends on systems evolved for seeking highly palatable 

food and other primary rewards40. Future research could test whether the NCS also 

responds to less palatable or healthy food items, and to other types of primary and 

secondary rewards. 

Some areas in the NCS, including the vmPFC and ventral striatum/accumbens, 

have been broadly implicated in reward and valuation49,50, and have long been associated 

with craving and substance use across species. Several prior studies and meta-

analyses51,41,39 have demonstrated a central role of vmPFC, VS, amygdala, insula, and 

posterior cingulate cortex in drug and food cue reactivity and craving (although findings 

across meta-analyses are inconsistent). The vmPFC has been targeted in rTMS studies 
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to successfully reduce drug craving52. The positive peaks of the NCS in this area could 

thus serve as a more precise target for neurostimulation. Future studies can test whether 

successful neurostimulation of vmPFC also reduces NCS expression and alters 

connectivity of the vmPFC with other NCS core areas such as the ventral striatum.  

The insula is connected to many regions of the NCS and has been previously 

associated with craving53. Lesions in various insular locations have been shown to reduce 

the urge to use drugs and facilitate smoking cessation54, which could reflect the role of the 

insula in the interoceptive component of drug craving55,56. The NCS has positive weights 

(at uncorrected thresholds) in the mid and posterior insula, in line with these previous 

reports. However, the anterior insula also displayed negative weights in the NCS (at 

uncorrected thresholds), revealing a potentially more complex role of different insula 

subregions in craving. Further, the insula might be more prominent to bodily cues of 

withdrawal, craving, and negative affect53, as well as for nutrient-related reward signals57, 

whereas areas such as amygdala or vmPFC (which are more prominent in the NCS) are 

related to craving evoked by external cues53 such as those employed in the present 

datasets.  

The NCS’s weights were largely negative in lateral prefrontal cortex, lateral parietal 

areas, somatosensory cortex, and precuneus, indicating that activity in these areas is 

associated with reduced craving. Lateral prefrontal cortex particularly is known to be 

involved in cognitive control and emotion regulation58, including the cognitive regulation of 

craving (e.g., as shown previously in the same data sets59,60) and by others61–64. This area 

is also involved in the regulation of dietary decision-making, such as when focusing more 

on health aspects and long-term consequences of foods65. The negative weights of the 

NCS in these areas are thus consistent with these previous findings and recent simulation 

studies66 that suggest a causal role for lateral PFC in the regulation of drug and food 

craving. 

Finally, predictive NCS features were also found in occipital and parietal brain 

areas associated with visual processing and attention allocation. Our control analyses 

demonstrated that those effects may not be due to differences in low-level visual stimulus 

features. The application of a deep neural network44 showed that both behavioral craving 

ratings and NCS responses were partially driven by complex, craving-related stimulus 

features, as captured by Emonet’s ‘Craving’ output. However, the NCS was associated 

with craving ratings above and beyond elementary and craving-related image features, 

and partially mediated their effects on ratings, ruling out that this association was driven 
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purely or primarily by low-level or complex image features or content. We also note that 

NCS weights in visual and attentional areas may reflect the effects of recurrent 

connections and top-down (content- and meaning-related) effects on visual processing. 

In sum, the NCS further extends prior work in several ways: First, it includes strong 

positive and negative weights in brain areas not previously associated with craving, such 

as the cerebellum, lateral temporal, and parietal areas. These areas are connected to 

regions more traditionally associated with craving and might constitute new targets for 

investigation and intervention. Second, the NCS is a precise and replicable pattern, 

including relative activity levels across voxels within key regions and relative activity 

across networks. Thus, it constitutes a reproducible brain model30,67 of craving that can be 

empirically quantified and validated in any new brain imaging study or dataset.  

The present findings have some limitations that could be addressed in future 

studies. The included studies used a limited set of highly appetitive cues. Future studies 

could use a larger range of stimuli, including less palatable (and healthier) food items or 

non-craving related (neutral) cues. Greater variation in craving ratings should – in principle 

– lead to increased discrimination accuracy between low and high craving. We also note 

that hunger ratings were available in Study 2, and did not correlate with NCS responses. 

Nevertheless, future work is needed to characterize how hunger or food deprivation 

modulates NCS responses to food (and other) cues, or how NCS responses might differ 

in overweight or obese participants. Future studies could also test other modalities of drug 

and food cues (such as cigarette smoke or food smells, videos). The present study used 

craving ratings as the predicted outcome and did not have a non-craving control condition 

in the same group of participants. While our supplemental analyses show that the NCS is 

distinct from other signatures that predict other types of affect ratings, the discriminant 

validity of the NCS should be further evaluated in future studies. Another important future 

direction will be to validate whether the NCS predicts other correlates of craving such as 

psychophysiological responses to drug cues, event-related potentials68, and other types 

of behavioral measures69. In addition, fMRI has an inherently limited spatial resolution that 

cannot pinpoint the cellular or microstructural processes associated with craving, or 

different types of craving. However, craving cannot be directly assessed in animals, and 

this work fills a crucial gap across species and brain systems, which is important for 

translating neuroscientific findings for human clinical use. It is also important for future 

translational applications of MRI-based neuromarkers, which will inevitably use different 

scanners, hardware, and processes that evolve over time—thus requiring a focus on 
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large-scale patterns that are generalizable across studies, scanners, groups, different 

preprocessing protocols, and other factors. 

In both Western and Eastern philosophy, craving has been considered a source of 

suffering and unhappiness. While craving is an important feature of SUDs, eating 

disorders, and other psychiatric conditions, it is also a general aspect of human 

experience. Identifying the neurobiological basis of this important driver of human behavior 

is thus an important step in mapping brain circuits to basic affective and mental processes. 

In this paper we introduce the NCS — the first fMRI-based neuromarker of drug and food 

craving, which classifies drug users from non-users based on responses to drug, but not 

food cues. As such, it offers a promising target for future research and clinical 

interventions. 
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Tables 

 

Table 1. Clusters of FDR-corrected bootstrapped weights of the NCS. 
 

Region name 
Vol 

(mm3) X Y Z max(Z) 
Atlas region 
(see note) 

Large-scale network 
/ structure (see note) 

Positive weights 
Postcentral gyrus / 
somatosensory cortex 405 -42 -27 60 4.7279 3b_L SomatomotorA 

Inferior temporal gyrus 189 57 -48 -15 4.6653 TE1p_R Fronto_ParietalB 

Cerebellum 297 -48 -63 -39 4.659 Cblm_CrusI_L Cerebellum 
Subcallosal gyrus / ventral 
striatum 135 12 6 -21 4.5203 pOFC_R Limbic 
Superior frontal gyrus / 
dlPFC 270 -24 33 54 4.4567 8BL_L Default_ModeB 

Rostral gyrus / vmPFC 162 -6 51 3 4.3707 a24_L Default_ModeA 

Retrosplenial cortex 27 -3 -54 15 4.2439 v23ab_L Default_ModeA 

Inferior parietal lobule 108 30 -63 45 4.235 IP1_R Dorsal_AttentionA 

Supramarginal gyrus 54 57 -33 45 4.2191 PF_R Ventral_AttentionA 

Supraparietal lobule 27 -12 -60 60 4.0332 7Am_L Dorsal_AttentionB 

Thalamus 108 0 -9 6 4.0137 Thal_MD Diencephalon 

Angular gyrus 27 57 -36 21 3.9646 PSL_R Temporal_Parietal 

Middle frontal gyrus 27 -42 39 18 3.8987 46_L Ventral_AttentionB 

Lateral occipital 27 51 -72 -18 3.8826 PH_R Dorsal_AttentionA 

Negative weights 
Postcentral gyrus / 
somatosensory cortex 2025 -51 -21 51 -7.5193 1_L SomatomotorA 

Middle temporal gyrus 243 54 -63 6 -4.8288 TPOJ2_R Dorsal_AttentionA 

Superior occipital gyrus 108 18 -84 45 -4.5147 V6A_R Visual_Peripheral 

Angular gyrus 162 42 -60 33 -4.5105 Pgi_R Default_ModeC 

Visual cortex 81 39 -72 -18 -4.4118 PIT_R Visual_Central 

Superior temporal gyrus 27 54 -3 0 -4.187 Pbelt_R SomatomotorB 

Precuneus 27 9 -63 33 -4.052 POS2_R Fronto_ParietalC 

Superior parietal lobule 27 -12 -57 75 -3.9052 7AL_L Dorsal_AttentionB 

Visual cortex 27 0 -84 6 -3.8653 V1_R Visual_Peripheral 

Angular gyrus 27 -51 -60 54 -3.8516 PFm_L Fronto_ParietalB 
 
Note. Significant positive and negative weights contributing to the NCS (FDR corrected q < 0.05 across the 
whole brain gray-matter mask). Cortical atlas regions are labeled based on a combination of parcellations 
available on Github (see Methods for details):   
https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Atlases_and_parcellations/2018_Wager_combine
d_atlas. This repository includes multiple atlases and other meta-analytic and multivariate maps. Tools for 
manipulating and analyzing this and other atlases are in the CANlab Core Tools repository: 
https://github.com/canlab/CanlabCore  
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Table 2. Predictive performance of the NCS and effect sizes for each study sample.  

Dataset Cues Sample N Prediction-outcome 
(glmfit_multilevel) 

Effect size 
Cohen’s d 

Study 1a Cigarette and 
food cues 

Cigarette 
smokers 21 β=0.22, STE=0.09,  

t(20)=2.45, p = 0.024 d = 0.55 

Study 1b Cigarette and 
food cues Non-smokers 22 β=0.46, STE=0.07,  

t(21)=6.77, p < 0.001 d = 1.48 

Study 2 
Alcoholic 
drinks and 
food cues 

Alcohol users 17 β=0.32, STE=0.11,  
t(16)=2.76, p = 0.014 d = 0.69 

Study 3a Cocaine and 
food cues Cocaine users 21 β=0.36, STE=0.09 ,  

t(20)=3.87, p = 0.001 d = 0.87 

Study 3b Cocaine and 
food cues Non-users 18 β=0.58, STE=0.09, 

 t(17)=6.11, p < 0.001 d = 1.48 

All Studies  99 β=0.38, STE=0.04, 
 t(98)=9.21, p < 0.001 d = 0.93 
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Methods 

 

Participants 
The present analysis used the pooled data from N=99 participants (33 female, MAGE=34.1 

years, SDAGE=10.8) collected across three independent neuroimaging studies (five 

different participant groups, three scanners, see Figure 1 and Supplementary Table 1). 

Two additional participants in Study 1 were excluded in the original study and for the 

present analyses due to vomiting and not following task instructions. In Study 2, four 

additional participants were excluded in the original study and for the present analysis due 

to unanticipated claustrophobia and non-completion of the task, one due to providing false 

information during the screening, one due to no responses in some runs of the task, two 

due to having been scanned in the morning, and one due to excessive movement 

artefacts. In Study 3, three participants in the user group were excluded due to not 

understanding or not completing the task, one due to high anxiety and large movement 

artefacts, one due to being a past but not current cocaine user, and one control participant 

due to high cocaine craving. Other details regarding the methods and procedures as well 

as other results from these data sets, focusing on the effects of regulation on behavior 

and univariate brain responses, are59,60 or will be (Schafer, Potenza, & Kober, unpublished 

data) reported elsewhere.  

Analyses reported here were not reported previously, and the three studies have 

not been previously combined. Across studies, participants were recruited using flyers and 

ads (in newspapers, online bulleting boards, etc.) from communities around Yale and 

Columbia Universities. Participants were included in drug using groups (N=59, MAGE=34.6 

years, SDAGE=11.2, 18 female) based on verified clinical measures (e.g., structured clinical 

interviews for diagnosis and/or Fagerström test of nicotine dependence). Information on 

the severity and duration of use is presented in Supplementary Table 1. Individuals were 

included in “healthy control” groups (N=40, MAGE=33.4 years, SDAGE=10.5, 15 female) if 

they were (1) age-, sex-, and race-matched to the SUD group in each respective study, 

(2) did not qualify for any SUD diagnosis or primary psychiatric diagnoses, and (3) did not 

regularly consume the substance of the SUD group in each respective study (i.e., matched 

healthy controls for the cigarette-smoking group did not regularly smoke). Participants in 

the drug use group in Study 1 were heavy daily smokers who smoked an average of 15.7 

cigarettes every day. Participants in the drug use groups in Studies 2 and 3 completed 

diagnostic interviews and fulfilled DSM-IV criteria for substance use disorder (alcohol and 
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cocaine, respectively). None of the participants were recruited for a treatment study. In 

Studies 2 and 3, participants were excluded if they were seeking treatment for their drug 

use. Drug users did not significantly differ from non-users in age, sex, or racial/ethnic 

background. Compared to non-users, drug (especially cocaine) users had significantly 

lower years of education (see Supplementary Table 1, 15.5 vs. 14.0 years, p < 0.001). We 

therefore checked that the resulting NCS was not related to education level above and 

beyond drug use status. 

To avoid alterations in brain responses and to ensure craving, we made sure that 

participants (drug users or controls) were not intoxicated and drug-negative at the time of 

scanning. In Study 1 (cigarette smokers and their matched controls), participants were 

asked not to smoke, eat, or drink for at least two hours prior to their study appointment 

(resulting in a 3–4-hour abstinence at the time of scanning). We then used a breathalyzer 

to measure exhaled carbon monoxide to verify that participants indeed abstained from 

smoking, as instructed. Questions were used to verify their abstinence from eating and 

drinking in the absence of suitable biological verification methods. In addition, participants 

completed a standard urine toxicology test prior to the scan to verify abstinence from other 

drugs (opioids, amphetamines, methamphetamines, cocaine, barbiturates, 

benzodiazepines, PCP [phencyclidine], and THC [the primary psychoactive ingredient in 

marijuana]). Participants whose test results indicated recent drug or alcohol use were not 

scanned. In Study 2 (individuals with alcohol use disorder), participants were told to not 

drink alcohol since the night before, and not to eat or drink anything for at least two hours 

prior to their study appointment. We then used a breathalyzer to measure exhaled alcohol 

(the most common proxy for blood alcohol level) to verify that participants indeed 

abstained from drinking alcohol, as instructed (questions were used to verify their 

abstinence from eating and non-alcohol drinking). In addition, participants completed a 

standard urine toxicology test prior to the scan to verify abstinence from other drugs. 

Again, participants whose test results indicated drug or alcohol use were not scanned. In 

Study 3 (individuals with cocaine use disorder and their matched controls), participants 

were part of a larger study, and had spent the prior several nights on an inpatient research 

unit, where they did not have any access to drugs or alcohol. Drug (and alcohol) 

abstinence at the time of scan was thus verified by observation. They were also asked not 

to eat or drink for at least two hours prior to the study participation and were accompanied 

to the scan directly from the clinical research unit by a research assistant. Thus, no 

participant was intoxicated during the experiment.  
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All participants provided informed consent and were paid for their participation in 

the study. The studies have been approved by the institutional review boards of Columbia 

and Yale universities and were conducted in compliance with all relevant ethical 

regulations.  

 
Regulation of Craving task 
The Regulation of Craving task is designed to evoke cue-induced craving of drug and food 

stimuli and test participants’ ability to regulate craving59. Participants were shown images 

of drugs and food that were known to induce craving (see Supplementary Tables 2-4, 

each image was only shown once and order was randomized across and within 

participants). Additional analyses showed that luminance (β = 0.08, STE = 0.02, 

t(95) = 4.39, p < 0.001, Cohen’s d = 0.45), but not stimulus entropy (β = 0.01, STE = 0.02, 

t(95) = 0.52, p = 0.60), was significantly associated with NCS responses. However, when 

controlling for low-level visual features (stimulus luminance and entropy), single trial NCS 

responses were still significantly associated with craving ratings (β = 0.19, STE = 0.02, 

t(95) = 9.44, p < 0.001, Cohen’s d = 0.97), suggesting that the NCS does not 

opportunistically rely on these features for prediction of craving ratings. 

On each trial, participants were instructed to observe these images in one of two 

ways. The NOW condition served as a craving baseline, whereby participants were 

instructed to consider the immediate positive consequences of consuming the pictured 

drug or food. In the LATER condition, participants were instructed to employ a cognitive 

strategy drawn from cognitive-behavioral treatments for substance use and obesity, and 

to consider the negative consequences of repeated consumption of the drug or food.  

On each of 100 trials (50 drug, 50 food trials, presented in random order using E-

Prime software), participants were presented with a 2-second instructional cue (NOW or 

LATER) followed by a 6-second presentation of the drug or food image. After a jittered 

delay period (around 3 second), participants indicated how much they craved the drug or 

food at that moment (”How much do you want this?”) on a 1-5 Likert scale, on which 1 

indicated the lowest (“not at all”) and 5 the highest (“very much”) level of craving. Trials 

were separated by jittered intervals that followed an exponential distribution, during which 

a fixation cross was displayed. Prior work70–72 including the results from the pooled 

datasets59,60 have confirmed that participants report less craving for food and drugs in the 

regulation (LATER) compared to the craving (NOW) condition. 
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fMRI data acquisition and preprocessing 
Data were collected on three different scanners at Columbia and Yale Universities using 

different acquisition parameters. Data underwent standard preprocessing in SPM 

(versions 5, 8, 12) including slice time correction, realignment, motion correction, warping, 

and smoothing with a 6mm FWHM kernel. No data censoring was used. Differences in 

acquisition and preprocessing across datasets are in fact helpful in the current context as 

they ensure that our pooled findings are not dependent on such details30,73.  

 

fMRI single trial models 
For each participant, we first computed a first level general linear model (GLM) using 

SPM8 and custom scripts (canlab.github.org). These models contained separate 

regressors for trials in the same condition and rating level (1-5), per run (modeled at 8s 

duration each). One additional regressor was added to model activity related to ratings 

(3s) across all trials. Further, 24 movement regressors (estimates for displacement and 

rotation in three dimensions, their derivatives, squared movement estimates, and 

derivatives of squared movement estimates) and spike regressors (based on the 

identification of global outliers, coded as 1 for the outlier time point and zero for all other 

time points) were added as regressor of no interest to control for motion artifacts. 

Next, we averaged the resulting beta-images for each participant within each rating 

level. This resulted in up to five beta images per participant that reflected craving levels 

from 1 to 5, respectively. If a participant did not have any ratings at a given level, a map 

for that level was not created for that participant (18 participants had one missing craving 

level, and four participants had two missing levels). To bring all images to the same scale 

(thus increasing comparability across studies and scanners) and reduce the impact of 

potential outliers, each trial-averaged beta image was scaled (divided) by the L2-norm. An 

inclusive gray-matter-mask was applied to exclude voxels that likely contain white matter 

or cerebrospinal fluid only.  

 

Training and cross-validation of the NCS 
The resulting images for all five levels of craving for each training participant were then 

used for linear prediction of craving using LASSO-PCR (least absolute shrinkage and 

selection operator-principal component regression)74 and default parameters (to avoid 

overfitting). LASSO-PCR is a machine-learning algorithm that is well suited for prediction 

of continuous outcomes based on large feature sets such as whole brain imaging data, 
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which is characterized by substantially higher number of potential predictive features (i.e., 

voxels) than outcome data points (e.g., rating levels by subjects), and by a non-

independence of these features (i.e., voxel activity is strongly covaried across regions and 

functional networks). LASSO-PCR avoids overfitting by first performing data reduction 

using principal component regression, thereby identifying brain networks that are 

characterized by high covariation of voxels. It then performs the LASSO algorithm, which 

reduces the contribution of less important or more unstable components by shrinking their 

regression weights towards zero. Voxel weights can be reconstructed based on their 

scores for the different components, thus rendering the resulting classifier interpretable 

and applicable to new datasets.  

We used a 10-fold cross-validation procedure to evaluate the predictive accuracy 

of the classifier. Thus, we divided the data into 10 folds that were stratified by studies.  

Beta images of any given participant (corresponding to all levels of craving) were always 

held out in the same fold. In each iteration, the classifier was trained on the remaining data 

and then tested on the hold out data by calculating predicted level of craving (or “NCS 

response”) as the dot product of the trained NCS and each held out beta-image. This out-

of-sample predicted level of craving was used to assess differences in NCS responses 

between low and high craving ratings, experimental conditions (instruction, cue type), and 

drug users versus controls. Since NCS responses reflect predicted ratings, they are in 

principle on the same scale as craving ratings, but not restricted to whole numbers 

between 1-5. For training and testing of drug- and food-craving patterns separately, the 

same procedure was repeated, but only using either drug or food contrast images, 

respectively.  

 
Bootstrapping and thresholding 
To assess the voxels with the most reliable positive or negative weights, we performed a 

bootstrap test. 10,000 samples with replacements were taken from the paired brain and 

outcome data and the LASSO-PCR was repeated for each bootstrap sample. Two-tailed, 

uncorrected p-values were calculated for each voxel based on the proportion of weights 

above or below zero23,75. False Discovery Rate (FDR) correction was applied to p-values 

to correct for multiple comparisons across the whole brain. Significant cortical clusters 

(see Table 1) were automatically labeled using a multimodal cortical parcellation76, basal 

ganglia regions are based on77, cerebellar regions based on78, and brainstem regions 
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based on a combination of studies. Large-scale network names are based on an 

established resting-state parcellation79.  

 
Permutation tests 
Statistical significance of the cross-validated prediction accuracy was assessed using 

permutation tests. In each of 5000 iterations, craving ratings within each cohort were 

randomly permuted and training and cross-validation was performed on the permuted data 

to establish a null-distribution for performance measures (mean square error, root mean 

square error, mean absolute error, prediction-outcome correlation). Observed 

performance measures were compared to these permutation-based null-distributions in 

order to obtain non-parametric p-values. 

 
Classification analyses 
We used binary receiver operating characteristic (ROC) plots to illustrate the ability of the 

NCS to separate high versus low levels of craving using forced-choice tests (Figure 2), 

where pattern-expression values (the dot-product of the hold-out beta-images with the 

classifier weights) were compared for each participant’s highest and lowest level of craving 

and the higher value was chosen as highest level of craving. To separate drug users from 

non-users (Figure 4b and Suppl. Figure 5), pattern-expression values (separately for 

drug, food, or drug>food contrasts) or each participant were submitted to a single-interval 

test, thresholded for optimal overall accuracy. Area under the curve (AUC) is provided as 

a thresholded-independent measure of classification performance. Binomial tests were 

used to assess the statistical significance of classification accuracy. 

 

Other statistical analyses 
Data collection and analysis were not performed blind to the conditions of the experiments. 

General linear models and t-tests were used to assess NCS effects while statistically 

controlling for potential confounds such as age, sex, education, head motion, and signals 

from white matter and ventricles. General linear models and ANOVA were used to test the 

effects of regulation and cue type on behavioral ratings and NCS responses. Data 

distribution was assumed to be normal but this was not formally tested. No statistical 

methods were used to pre-determine sample sizes but our sample sizes are similar to 

those reported in previous publications23. 
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Data Availability  

Data, meta-data, and NCS weight maps are available for non-commercial aims at: 

https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Multivariate_signat

ure_patterns/2022_Koban_NCS_Craving and at: 

https://doi.org/10.6084/m9.figshare.21174256. 

 

 

Code Availability  

Matlab code for analyses is available at: https://github.com/canlab. Custom code to train 

and apply the NCS is available at: 

https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Multivariate_signat

ure_patterns/2022_Koban_NCS_Craving. 
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Supplementary Figure 1. Number of contrast images by cohort and rating level (1-5). A similar number 
of images was available for each level of craving and all studies contributed similarly to all rating levels. 
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Supplementary Figure 2. The unthresholded weight map of the NCS. Yellow indicates positive and blue 
indicates negative weights for predicting craving. The NCS weight map and code to apply it to new data is 
available for download at: 
https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Multivariate_signature_patterns/2022_K
oban_NCS_Craving. 

 
 

 
  



  
Supplementary Figure 3. Average single trial NCS responses over the time course of the experiment 

(trials). Data is shown as mean +/- SEM. There was no significant effect of time on NCS responses (multilevel 
GLM, p = 0.19 two-sided, over a total of n=99 participants from five different cohorts), showing that the NCS 
does not substantially habituate or sensitize over time.  
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Suppl. Fig. 4. Predicting craving ratings with the NCS compared to other affect-related brain signatures 

predict craving ratings (control analysis). We used five patterns trained to predict the intensity ratings of 
mechanical pain, thermal pain, aversive sound, unpleasant pictures, and negative affect across all four 
modalities (brain signatures obtained from Ceko et al (2022)1, openly available at 
https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Multivariate_signature_patterns/2021_
Ceko_MPA2_multiaversive). These patterns were applied to the current fMRI data (n=99 participants) to test 
whether they would predict high versus low craving ratings as well as the NCS. None of the other patterns 
positively and significantly predicted craving, showing that the NCS is tracking a specific pattern, which these 
other patterns do not track. 
  



 
 

Suppl. Fig. 5. Classification of drug users versus non-users by study, separately by study and drug 

type, paralleling the overall classification results. (a) Significant separation of smokers (n=21) versus non-
smokers (n=22) in Study 1 based on NCS responses to drug (cigarette) cues (70% accuracy +-7.0% STE, 
P = 0.021, sensitivity = 90%, specificity = 50%, AUC = 0.76) and to drug>food cues (81% accuracy +-
5.9% STE, P = 0.00008 , sensitivity = 95%, specificity = 68%, AUC = 0.85) but not based on NCS responses 
to food cues (60% accuracy +-7.5% STE, P = 0.285, AUC = 0.48) (b) Significant separation of cocaine users 
(n=21) versus non-users (n=18) in Study 3 based on NCS responses to drug (cocaine/crack) cues (79% 
accuracy (+-6.5% STE, P = 0.002, sensitivity = 86%, specificity = 72%, AUC = 0.77) and to drug>food cues 
(85% accuracy +- 5.8% STE, P = 0.0001, sensitivity = 90%, specificity = 78%, AUC = 0.89) but not based on 
NCS responses to food cues (56% accuracy +-7.9% STE, P = 0.876, AUC = 0.31). Note that Study 2 (alcohol 
users) did not include a non-user control group and is therefore not included in this study-wise analysis. P-
values were derived from binomial tests (two-sided, not adjusted for multiple comparisons). 
 
  



 

 
 
 

Suppl. Fig. 6. Average NCS responses and craving ratings by cohort and cue type. (a) Out-of-sample 
NCS responses to drug cues and (b) food cues, by cohort. Drug users (cohorts 1a, 2, and 3a, total n=59 
participants) had higher NCS responses to drug cues than non-users (cohorts 1b and 3b, total n=40 
participants). Note that cohorts of the same study (e.g., 1a and 1b, 3a and 3b) were acquired on the same 
scanner and acquisition parameters. (c) Average craving ratings for drug and (d) food cues, by cohort. 



 
 
Suppl. Fig. 7. Additional associations of affective stimulus features with craving ratings and NCS 

responses (trial-by-trial analysis). For each food or drug cue (stimuli used in the three studies), 20 visually 
embedded affective stimulus characteristics were predicted by a deep convoluted neural network trained to 
detect affective states in visual material (Emonet2, available at 
https://sites.google.com/colorado.edu/emonet/home). (a) The Emonet visual feature ‘craving’ was higher for food 
than drug cues in all three studies (Study 1: 50 drug cue pictures, 50 food cue pictures; Study 2: 40 drug cue 
pictures, 40 food cue pictures; Study 3: 50 drug cue pictures, 50 food cue pictures). (b) While we were most 
interested in the ‘craving’ feature (highlighted using yellow frames), here we also used a multilevel GLM to 
explore the associations with the 19 other features (all 20 features were added to the same multilevel GLM, 
results uncorrected for multiple comparisons). Besides the Emonet ‘craving’ feature, trial-by-trial craving 
ratings were also significantly and positively associated with trial-by-trial stimulus Emonet features for ‘awe’ (p 
= 0.023) and ‘confusion’ (p = 0.016). Negative associations with craving ratings were found for the Emonet 
features ‘aesthetic appreciation’ (p = 0.00002) and ’sexual desire’ (p = 0.035). (c) Besides the Emonet ‘craving’ 
feature, single trial-by-trial (out-of-sample) NCS responses were significantly and positively associated with 
the Emonet features ‘awe’ (p = 0.007), ‘entrancement’ (p = 0.0002), and ‘sadness’ (p = 0.023), and negatively 
with the Emonet feature ‘romance’ (p = 0.003). Stars indicate significance level: * = p<0.05 uncorrected for 
multiple comparisons, ** = p<0.01 uncorrected for multiple comparisons, *** = q<0.05 FDR corrected for 
multiple comparisons across variables tested per plot. All p-values are based on two-sided tests.  



Supplementary Table 1. Participant demographics by group and study cohort. 
 

Study   Substance users Non-users Statistics (p-value) 
1 n 21 22 

 

  Mean age 26.8 26.4 0.867 
  Male 13 13 

 

  Female 8 9 0.850 
  White  11 12 

 

  Black 1 2 
 

  Asian 5 5 
 

  Native American 1 0 
 

 
Other 3 3 0.852  
Education (mean years) 15.2 15.6 0.420  
Body mass index* 23.3 23.1 0.798  
Cigarettes/day 15.0 0.0 

 

    
   

2 n 17 - 
 

  Mean age 33.4 
  

  Male 10 
  

  Female 7 
  

  White  8 
  

  Black 8 
  

 
Asian 1 

  
 

Education (mean years) 14.3 
  

 
Body mass index 27.0 

  
 

DSM-Iv criteria fulfilled (max 7) 
   

 
Drinks past week 56.6 

  
 

TLFB drinks/day 9.6 
  

 
Cigarettes/day 3.2 

  

    
   

3 n 21 18 
 

  Mean age 43.5 42.1 0.441 
  Male 18 12 

 

  Female 3 6 0.159 
  White  6 7 

 

  Black 15 11 0.496 
  Education (mean years) 12.6 15.3 0.000 
  Body mass index** 29.7 29.6 0.947 
  Years of cocaine use 19.1 

  

  Use days/month 18.6 
  

  DSM-IV criteria fulfilled (max 7) 5.6 
  

  Cigarettes/day 5.7 
  

    
   

Summary n 59 40 
 

 
Mean age 34.6 33.4 0.589  
Male 41 25 

 
 

Female 18 15 0.469  
White  25 19 

 
 

Black 23 13 
 

 
Asian 6 5 

 
 

Native American 1 0 
 

 
Other 3 3 0.837  
Education (mean years) 14.0 15.5 0.00015 

  BMI 26.6 26.0 0.804 
 
Note. Participants were matched for age, sex, BMI, and race. P-values are based on two-sample t-tests (two-sided), except 
for sex and ethnic background, for which chi2-test were used (two-sided). Cocaine users had significantly lower educational 
attainment. * Missing data from five participants. **Missing data from six participants. 
 

  



Supplementary Table 2. Food stimuli characteristics in Study 1. Data were obtained from an independent 
sample of n=103 adult participants (61 male, 41 female, 1 other; mean age = 40.3 years; mean BMI = 27.0) in 
an online study (using Qualtrics), who rated all food stimuli regarding healthiness, tastiness, how much fat it 
contained, how much sugar it contained (all scales from 1-10), and whether it should be classified as healthy 
or unhealthy.  
 

Consensus label 
Health rating Taste rating Fat rating Sugar rating Unhealthy 
M  STD M STD M STD M STD (in %) 

cake 1.07 1.84 8.14 2.19 6.83 2.48 8.96 1.60 94.2 
doughnut 1.10 1.91 8.20 1.98 7.23 2.31 8.96 1.59 96.1 
pasta 4.46 2.45 7.36 2.15 5.79 2.07 2.23 2.29 55.3 
pie 2.26 2.29 7.46 2.41 5.73 2.53 7.83 2.09 87.4 
cookie 1.41 2.08 8.46 1.96 6.50 2.46 8.75 1.67 94.2 
meat 5.03 2.50 7.02 1.99 4.90 2.13 2.92 2.62 44.7 
cookie 1.65 2.22 7.50 2.33 5.82 2.31 8.17 1.92 91.3 
ice cream 1.50 2.08 8.39 1.77 6.55 2.49 8.80 1.69 93.2 
pastry 2.79 2.43 7.13 2.25 4.89 2.45 7.35 2.30 77.7 
ice cream 1.87 2.13 7.40 2.58 5.81 2.66 8.34 1.93 89.3 
pasta 4.50 2.52 6.80 2.19 3.94 2.55 2.27 2.61 50.5 
meat 4.09 2.64 7.57 2.26 5.97 2.36 1.64 1.93 59.2 
cookie 1.50 2.31 8.51 1.93 6.26 2.40 8.66 1.61 92.2 
cake 1.02 1.67 8.13 2.43 6.96 2.36 9.03 1.49 94.2 
assortment 7.13 1.95 7.43 2.17 4.47 2.06 1.64 2.02 11.7 
sandwich 4.69 2.41 7.87 1.90 5.63 2.28 1.65 1.83 45.6 
burrito 5.29 2.42 7.27 2.39 5.22 2.05 1.76 2.03 37.9 
pasta 5.61 2.13 6.31 2.62 4.45 2.15 2.01 2.23 31.1 
assortment 5.03 2.45 7.73 2.03 6.17 2.18 1.68 2.10 43.7 
pot pie 5.03 2.46 7.03 2.45 5.40 2.04 2.05 2.10 39.8 
crab cake 4.45 2.37 6.38 2.39 5.51 2.27 2.02 1.99 49.5 
brownie 1.28 1.94 7.96 2.27 6.40 2.41 8.63 1.85 93.2 
chocolate 4.25 2.14 7.59 2.22 3.50 2.40 6.98 2.31 55.3 
assortment 6.04 2.30 7.80 1.98 5.54 2.25 1.36 1.81 27.2 
crepes 1.80 1.95 7.05 2.31 5.53 2.62 7.68 2.05 89.3 
ice cream 1.20 1.94 8.22 2.10 7.03 2.37 9.04 1.49 93.2 
chocolate 2.50 2.53 7.76 2.09 5.14 2.63 8.40 1.86 79.6 
cake 1.59 1.92 7.46 2.37 6.30 2.27 8.46 1.67 94.2 
ice cream 1.60 2.18 7.73 2.23 6.44 2.37 8.43 1.80 91.3 
cake 1.33 2.17 7.68 2.13 6.78 2.28 9.06 1.27 93.2 
ice cream 1.18 1.80 8.09 2.17 6.88 2.39 8.91 1.54 93.2 
ice cream 1.03 1.89 7.71 2.37 6.87 2.37 8.91 1.46 95.1 
tacos 5.36 2.57 7.80 2.06 5.21 2.09 1.92 2.23 32.0 
doughnut 1.06 1.79 7.94 2.35 7.03 2.46 8.72 1.97 90.3 
chocolate 1.08 1.80 7.48 2.57 6.14 2.66 9.04 1.48 96.1 
chocolate 1.83 2.20 6.98 2.46 5.38 2.81 8.15 1.98 91.3 
cake 1.41 1.92 7.17 2.39 6.05 2.33 8.20 2.15 96.1 
cake 1.30 2.02 8.03 2.00 6.67 2.30 8.88 1.31 93.2 
nachos 2.31 2.33 7.50 2.22 6.82 2.12 2.02 2.24 85.4 
assortment 3.73 2.41 7.37 2.16 5.99 2.39 2.93 2.49 70.9 
pizza 2.08 2.20 8.26 2.13 7.37 2.19 1.99 2.23 90.3 
shrimp 4.03 2.65 7.04 2.30 5.86 2.39 2.45 2.34 65.0 
assortment 3.53 2.55 7.96 2.06 6.69 2.16 1.95 2.07 68.0 
assortment 2.53 2.21 7.40 2.13 7.17 2.14 2.35 2.39 83.5 
nachos 1.98 2.15 7.96 2.22 7.47 2.08 2.06 2.18 87.4 
pie 1.75 2.17 7.50 2.31 6.50 2.21 8.07 2.24 90.3 
assortment 2.39 2.27 7.92 2.07 6.15 2.45 7.52 2.40 83.5 
pizza 2.07 2.24 8.10 2.29 7.86 1.93 2.10 2.41 90.3 
pizza 2.18 2.34 8.36 2.10 7.51 2.16 2.23 2.41 87.4 
pizza 2.18 2.19 7.84 2.34 7.04 2.24 2.13 2.42 87.4 

  



Supplementary Table 3. Food stimuli characteristics in Study 2. Ratings were obtained as above. 
 

Consensus label 
Health rating Taste rating Fat rating Sugar rating Unhealthy 

M  STD M STD M STD M STD  (%) 
pasta 4.89 2.36 7.08 2.17 4.19 2.49 1.75 2.09 39.8 
mashed potatoes 4.58 2.49 7.18 2.34 5.16 2.35 2.00 2.24 50.5 
pizza 5.89 2.23 6.13 2.52 4.34 2.05 1.73 1.99 22.3 
meat 6.36 2.33 7.77 2.14 4.27 2.30 1.32 1.73 17.5 
cookie 1.01 1.84 7.73 2.46 7.10 2.26 9.10 1.43 94.2 
meat 6.88 2.11 7.22 2.09 4.01 2.16 1.44 1.68 13.6 
pizza 2.17 2.02 7.70 2.43 7.72 1.91 2.10 2.43 89.3 
pasta 3.77 2.61 7.97 2.07 6.80 2.02 2.36 2.59 66.0 
cupcake 1.17 1.85 8.02 2.31 6.51 2.34 8.86 1.71 93.2 
cake 1.09 1.74 8.17 2.18 6.78 2.31 8.99 1.49 95.1 
cake 2.94 2.21 7.14 2.38 5.33 2.31 7.48 2.15 80.6 
meat 3.41 2.51 7.08 2.40 6.18 2.38 2.03 2.22 72.8 
pizza 2.40 2.24 7.22 2.23 6.70 2.02 2.32 2.37 85.4 
pizza 2.13 2.35 8.64 1.91 7.79 2.01 2.22 2.44 92.2 
eggs 6.94 2.02 7.03 2.34 4.27 2.17 1.15 1.77 10.7 
baked potato 4.34 2.49 7.29 2.20 5.71 2.16 2.06 2.27 53.4 
soup 7.03 1.95 6.79 2.27 3.10 2.07 1.32 2.00 9.7 
crepes 1.80 1.95 7.05 2.31 5.53 2.62 7.68 2.05 89.3 
brownie 1.66 2.44 7.83 2.06 6.39 2.36 8.56 1.83 92.2 
pancake 1.83 1.86 7.89 2.14 5.97 2.42 7.98 1.81 90.3 
doughnut 1.07 1.97 8.19 2.00 7.43 2.29 8.95 1.66 94.2 
cake 1.43 1.75 8.34 2.14 7.21 2.30 8.59 1.55 94.2 
pizza 5.28 2.22 5.92 2.53 4.04 2.14 1.98 2.10 28.2 
assortment 5.23 2.46 7.49 2.02 5.49 2.27 2.01 2.15 38.8 
onion rings 1.77 2.09 7.90 2.15 7.36 2.31 2.01 2.48 92.2 
assortment 6.31 2.11 6.75 2.15 3.99 2.14 1.78 2.12 17.5 
mac n cheese 2.98 2.33 7.50 2.12 6.70 2.34 2.16 2.39 77.7 
assortment 1.59 2.00 7.93 2.24 8.05 2.13 2.25 2.49 95.1 
pizza 2.12 2.29 8.54 1.94 7.67 2.12 2.35 2.50 90.3 
ice cream 1.34 2.02 8.20 1.93 6.93 2.15 8.85 1.46 94.2 
doughnut 1.10 1.91 8.20 1.98 7.23 2.31 8.96 1.59 96.1 
stuffed mushrooms 5.65 2.42 6.67 2.40 4.78 2.13 1.50 1.92 30.1 
meat 4.57 2.72 8.37 1.77 6.62 2.21 1.25 2.12 48.5 
fries 1.36 2.06 7.87 2.20 7.87 2.03 2.22 2.63 92.2 
brownie 1.27 1.95 8.19 2.25 6.83 2.29 8.96 1.50 95.1 
onion rings 1.63 2.16 7.50 2.42 7.50 2.43 1.94 2.39 93.2 
mozzarella sticks 1.93 2.15 7.57 2.36 7.48 2.42 2.08 2.40 92.2 
popsicle 2.43 2.37 6.83 2.27 2.11 2.65 7.88 2.22 80.6 
curly fries 1.61 2.22 8.33 1.71 7.65 2.14 1.99 2.43 92.2 
potstickers 4.06 2.48 6.84 2.62 5.49 2.33 2.32 2.37 54.4 

 
  



Supplementary Table 4. Food stimuli characteristics in Study 3. Ratings were obtained as above. 
 

Consensus label 
Health rating Taste rating Fat rating Sugar rating Unhealthy 
M  STD M STD M STD M STD  (%) 

doughnut 1.10 1.91 8.20 1.98 7.23 2.31 8.96 1.59 96.1 
cookie 1.41 2.08 8.46 1.96 6.50 2.46 8.75 1.67 94.2 
pastry 2.79 2.43 7.13 2.25 4.89 2.45 7.35 2.30 77.7 
cookie 1.50 2.31 8.51 1.93 6.26 2.40 8.66 1.61 92.2 
cake 1.02 1.67 8.13 2.43 6.96 2.36 9.03 1.49 94.2 
ice cream 1.60 2.18 7.73 2.23 6.44 2.37 8.43 1.80 91.3 
ice cream 1.18 1.80 8.09 2.17 6.88 2.39 8.91 1.54 93.2 
ice cream 1.03 1.89 7.71 2.37 6.87 2.37 8.91 1.46 95.1 
cake 1.30 2.02 8.03 2.00 6.67 2.30 8.88 1.31 93.2 
pie 1.75 2.17 7.50 2.31 6.50 2.21 8.07 2.24 90.3 
assortment 2.39 2.27 7.92 2.07 6.15 2.45 7.52 2.40 83.5 
ice cream 1.20 1.94 8.22 2.10 7.03 2.37 9.04 1.49 93.2 
chocolate 1.83 2.20 6.98 2.46 5.38 2.81 8.15 1.98 91.3 
cake 1.41 1.92 7.17 2.39 6.05 2.33 8.20 2.15 96.1 
crab cake 4.45 2.37 6.38 2.39 5.51 2.27 2.02 1.99 49.5 
ice cream 1.23 1.97 8.35 1.98 7.24 2.28 9.04 1.39 95.1 
ice cream 1.51 1.96 8.41 1.97 6.83 2.32 8.82 1.53 93.2 
pizza 5.28 2.22 5.92 2.53 4.04 2.14 1.98 2.10 28.2 
cookie 2.24 2.27 6.20 2.18 5.49 2.39 6.22 2.93 92.2 
chocolate 1.26 2.04 7.75 2.24 6.52 2.30 8.85 1.48 93.2 
pancake 2.26 2.28 7.94 1.80 5.34 2.49 8.16 1.89 84.5 
assortment 5.38 2.62 6.95 2.36 5.87 2.25 1.63 1.83 41.7 
pasta 5.08 2.11 5.76 2.27 4.78 2.01 1.97 2.08 40.8 
assortment 1.67 2.30 7.21 2.21 5.93 2.37 8.42 1.83 97.1 
brownie 1.66 2.44 7.83 2.06 6.39 2.36 8.56 1.83 92.2 
pastry 3.65 2.69 6.15 2.41 4.29 2.48 6.63 2.33 66.0 
popsicle 2.70 2.55 6.85 2.30 2.20 2.68 8.04 1.80 79.6 
cake 1.54 1.84 6.86 2.35 6.25 2.30 8.19 2.04 95.1 
chocolate 4.25 2.14 7.59 2.22 3.50 2.40 6.98 2.31 55.3 
assortment 7.13 1.95 7.43 2.17 4.47 2.06 1.64 2.02 11.7 
assortment 5.03 2.45 7.73 2.03 6.17 2.18 1.68 2.10 43.7 
chocolate 2.50 2.53 7.76 2.09 5.14 2.63 8.40 1.86 79.6 
cake 1.59 1.92 7.46 2.37 6.30 2.27 8.46 1.67 94.2 
cake 1.33 2.17 7.68 2.13 6.78 2.28 9.06 1.27 93.2 
chocolate 1.08 1.80 7.48 2.57 6.14 2.66 9.04 1.48 96.1 
chocolate 1.02 1.74 8.21 2.06 6.50 2.45 8.96 1.51 97.1 
ice cream 1.34 2.02 8.20 1.93 6.93 2.15 8.85 1.46 94.2 
parfait 2.29 2.32 7.57 2.46 5.97 2.19 8.24 1.87 87.4 
cake 1.96 2.17 7.21 2.32 5.53 2.44 8.26 1.63 90.3 
cupcake 1.37 1.85 7.28 2.35 6.29 2.41 8.71 1.73 92.2 
pancake 1.83 1.86 7.89 2.14 5.97 2.42 7.98 1.81 90.3 
pancake 2.24 2.38 6.59 2.41 5.78 2.34 7.03 2.42 88.3 
cake 1.29 2.13 8.13 2.10 6.62 2.34 8.83 1.84 91.3 
assortment 5.23 2.46 7.49 2.02 5.49 2.27 2.01 2.15 38.8 
cake 1.24 1.88 7.51 2.27 6.32 2.47 8.57 1.76 95.1 
cookie 1.93 2.44 7.51 1.85 5.25 2.45 8.22 1.78 83.5 
burger 3.50 2.60 6.44 2.64 6.25 2.17 2.23 2.22 72.8 
burger 3.15 2.48 8.24 1.75 7.51 1.75 2.13 2.29 79.6 
cake 2.12 2.20 7.14 2.31 5.81 2.35 7.77 2.03 91.3 
ice cream 2.22 2.31 7.60 2.34 6.06 2.60 8.13 2.09 93.2 
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