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ABSTRACT 

Characterizing cerebral contributions to individual variability in pain processing is crucial for 

personalized pain medicine but has yet to be done. Here, we address this problem by identifying 

brain regions with high versus low inter-individual variability in their relationship with pain. We 

trained idiographic pain-predictive models with 13 single-trial fMRI datasets (n = 404, discovery 

set) and quantified voxel-level importance for individualized pain prediction. With 21 regions 

identified as important pain predictors, we examined the inter-individual variability of local pain-

predictive weights in these regions. Higher-order transmodal regions, such as ventromedial and 

ventrolateral prefrontal cortices, showed larger individual variability, whereas unimodal regions, 

such as somatomotor cortices, showed more stable pain representations across individuals. We 

replicated this result in an independent dataset (n = 124). Overall, our study identifies cerebral 

sources of individual differences in pain processing, providing potential targets for personalized 

assessment and treatment of pain.  
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INTRODUCTION 

The multidimensional experience of pain arises in the brain from highly distributed 

processes, including both serial and parallel processing of nociceptive input that ascends to the 

cerebral cortex via multiple pathways1-3. The distributed nature of pain processing is reflected in 

the fact that some brain regions have been reported consistently across pain studies (e.g., primary 

and secondary somatosensory cortices [S1, S2], midcingulate cortex [MCC], thalamus, and 

insula), while some have been reported less consistently (e.g., prefrontal regions, cerebellum, 

basal ganglia)3,4. These regions likely play different, complex functional roles in pain2. 

Therefore, viewing a set of brain regions as one fixed core pain system is an oversimplification5. 

For example, lesions of brain areas known to be important for pain processing, such as the S2, 

anterior and posterior insula, or anterior cingulate cortex (ACC), often do not affect the ability to 

perceive pain6,7, suggesting that pain processing in the brain has the feature of degeneracy: Pain 

may arise as a function of activity in multiple pathways, which may differ across individuals. If 

so, different combinations of brain systems and pathways can be involved in constructing and 

processing individual’s experience of pain1. Furthermore, pain can be modulated by multiple 

factors, including attention8, emotional state9, social context10, past experiences11, sex12, and 

others13. Such external and internal factors—along with individual differences in personality, 

self-regulation and coping ability, and more—may render some brain systems differentially 

important for pain in different individuals, and thus contribute to the inter-individual variability 

in pain processing and variable effects of treatment. Understanding this variation is critical for 

understanding the causes and implications of pain at the individual-person level. 

Although it is important to understand the individual variability of the brain 

representations of pain for both basic and clinical science, it remains unclear which brain regions 

have more consistent versus more variable representations of pain across individuals. There is a 

growing interest in personalized (or idiographic) brain mapping—previous studies have revealed 

individuals’ distinct brain features that may be lost in group-level analyses14,15. This personalized 

mapping approach is particularly important for pain research because it will not only help 

understand the neural mechanisms of pain perception and regulation, but also help identify 

personalized targets for intervention and make better decisions about treatment planning and 

selection16. However, most of the existing neuroimaging-based biomarkers of pain have 
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employed a population-level predictive modeling approach that relies heavily on multivariate 

pattern information well-conserved across individuals17,18. Although these brain markers are also 

useful for understanding pain on an individual basis, e.g., as part of multidimensional pain 

assessments, they are not sufficient by themselves to capture the complexity of the neural 

mechanisms and representations of pain for each person1. For example, a population-level brain 

measure related to pain may capture pain in some individuals better than others or respond in the 

same way to two different brain maps from two individuals, but the underlying reasons for the 

response could be different.  

The current study encompasses two main objectives. First, we aimed to take a step 

toward personalized brain mapping of pain by employing idiographic predictive modeling. We 

trained a pain-predictive model for each individual from functional Magnetic Resonance 

Imaging (fMRI) data of 404 individuals from 13 single-trial thermal pain datasets collected by 

two independent laboratories. Among these, 11 datasets have been used in previous publications, 

and two datasets are unpublished (Supplementary Table 1). The second objective was to 

identify pain-predictive brain regions that show high versus low inter-individual variability in 

their pain representations. Previous studies mainly focused on brain regions that showed 

activation or deactivation patterns consistent across individuals. These studies, by design, could 

not identify brain regions that are important for pain processing but have idiosyncratic patterns 

(i.e., the “A” category in Fig. 1a). Thus, they provide an incomplete picture. To overcome this 

issue, we first identified pain-predictive brain regions based on their importance for within-

individual pain prediction regardless of the between-individual consistency of the predictive 

weights (both “A” and “B” categories in Fig. 1a). We then quantified the inter-individual 

variability in regional weight patterns. We replicated our findings in an independent dataset (n = 

124) and showed that they were not driven by variation in study-level task or acquisition 

parameters or varying signal quality across brain regions.  

Together, we provide a comprehensive list of important pain-predictive brain regions 

and characterize them in terms of their inter-individual variability, elucidating which brain 

systems contribute to the inter-individual variability in pain processing. This study paves a path 

toward personalized brain mapping of pain and clinical interventions.  

RESULTS 
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Identifying brain regions important for pain prediction 

To find important pain-predictive brain regions (Analyses 1-3 in Fig. 1a), we fitted 

linear Support Vector Regression (SVR) models to data from each of the 404 participants in our 

dataset, creating 404 individualized pain-predictive maps (prediction-outcome correlation = 0.34 

± 0.01 [mean ± standard error of the mean] with 5-fold cross-validation), and identified 

important predictive features using bootstrap tests with 5,000 iterations for each predictive map. 

Unlike the population-level (or group-level) predictive modeling approach, which can identify 

only brain regions with multivariate pattern information consistent across individuals, our 

approach allows us to identify brain regions important for pain prediction within each individual 

even if the brain regions have distinct patterns across individuals. With the p-values from the 

bootstrap tests, we computed the mean –log(p) values for the whole brain across all 

individualized maps, and for further analyses we selected the top 10% voxels, of which the 

threshold was the mean –log(p) = 1.549. The selected voxels are displayed in Fig. 1b. We then 

parcellated the voxels into regions based on multiple anatomical atlases, identifying 21 regions 

as important for pain prediction (Fig. 1c). For further reference to other commonly used 

parcellations and brain signatures of pain, we calculated the overlap of the Neurologic Pain 

Signature17 (NPS), Stimulus Intensity Independent Pain Signature-119 (SIIPS1), and large-scale 

resting-state functional networks20 with the selected voxels. We found larger overlap with our 

regions in SIIPS1, NPS, ventral attention and somatomotor networks than other networks 

(Extended Data Fig. 1a). Additionally, a preliminary analysis, in which we compared the 

prediction performance of individualized models and group-based models on three-session data 

from a single individual and data from Study 14, suggested that individualized models achieve 

higher prediction accuracy than group-based models (Supplementary Fig. 1). 

The 21 pain-predictive regions included (in alphabetical order), the 1) anterior 

midcingulate cortex (aMCC), 2) anterior middle insula (AMIns), 3) anterior middle operculum 

(AMOp), 4) basal ganglia (BG), 5) dorsal lateral prefrontal cortex (dlPFC), 6) dorsal posterior 

insula (dpIns), 7) left cerebellum (leftCERB), 8) lateral thalamus (LThal), 9) middle temporal 

area (MT), 10) middle thalamus (MThal), 11) precuneus (PCun), 12) posterior midcingulate 

cortex (pMCC), 13) right cerebellum (rightCERB), 14) secondary somatosensory cortex (S2), 

15) supplementary motor area (SMA), 16) sensorimotor cortex (SMC), 17) upper brainstem 
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(upperBS), 18) vermis, 19) visual cortex (visual), 20) ventrolateral prefrontal cortex (vlPFC), and 

21) ventromedial prefrontal cortex (vmPFC). We applied masks of these regions to the 

individualized predictive maps and used only the masked voxel data for further analyses. The 

individualized maps and region masks are available at 

https://github.com/cocoanlab/individual_var_pain.  

Univariate analysis of the individual variability  

 We first examined the voxel-wise individual variability of the predictive weights for the 

important pain-predictive regions using variance across all individualized maps (Analysis 4). 

Before calculating the voxel-wise variance, we normalized each predictive map by dividing the 

weights by the spatial standard deviation across the whole brain, rendering their scales 

comparable across images. The variance of the individual voxel weights is visualized in Fig. 2a. 

The region-level summary shown in Fig. 2c indicates that the vmPFC and MThal showed 

relatively high weight variance, while the MT, dpIns, and pMCC showed low weight variance. 

For additional reference, we examined the voxel-wise variance in the large-scale resting-state 

functional networks20, NPS17, and SIIPS119, finding the highest variance in the limbic network 

and the lowest variance in the dorsal attention network (Extended Data Fig. 1d). 

The signs of averaged voxel weights were largely consistent with those in previous 

literature. For example, brain regions such as the insula, S2, MCC, and thalamus were, on 

average, positively predictive of pain, while the prefrontal cortices and PCun were negatively 

predictive (Fig. 2b,c)17,19. This result may seem to suggest that the brain regions have consistent 

roles in pain prediction across people. However, when examining the signs of median voxel 

weights in individuals, we found a large individual variability as the proportion of positive 

versus negative signs across people, indicating that regions were not strictly positive or negative 

in all subjects (Extended Data Fig. 2a). For example, the vmPFC consisted of negative weights 

on average, but 36.1% of the subject median weights were positive, indicating variability in the 

sign of the multivariate pattern. Similarly, the dlPFC, MT, PCun, and vlPFC showed negative 

average weights, but their median weights were positive in 40.8%, 44.8%, 35.4%, and 48.5% of 

individuals, respectively. The most variable weight sign appeared in the visual cortex with 49% 

positive and 51% negative median weights (Extended Data Fig. 2b). This indicates substantial 

individual variability in the functional role and/or functional topography in relation to pain in 



INDIVIDUAL VARIABILITY OF PAIN REPRESENTATION  7 

these areas. Fig. 2d depicts the relationship between the region-level variance and region 

importance. 

Multivariate analysis of the individual variability 

Although the univariate approach can provide useful voxel-level information about the 

individual variability of predictive weights, the multivariate patterns may convey more critical 

information about neural population codes of pain processing for each individual17,21. 

Additionally, multivariate analyses have been shown to be more stable and less influenced by 

noise than univariate approaches22. Therefore, as a next step, we assessed the variability of the 

regional multivariate patterns across individuals using representational similarity analysis23, 

which allowed us to quantify the similarity between the spatial patterns of corresponding regions 

across different individuals (Analysis 5). 

As shown in Fig. 3a, we first calculated the inter-individual representational 

dissimilarity matrices (RDMs) as a measure of the inter-individual distance for the 21 pain-

predictive regions using regional multivariate pattern information extracted from the 404 

individualized pain-predictive maps (from 404 participants), resulting in 21 404-by-404 RDMs. 

To ensure fair comparisons among different regions that have different locations and sizes, we 

normalized the RDMs (i.e., obtained z-scores) using null RDM baselines for each region 

resulting from a permutation test (see Methods for more details).  

Fig. 3b displays the averages of the lower triangles of the normalized RMDs (i.e., mean 

z-scores) against the number of voxels of the pain-predictive regions, suggesting a strong 

negative linear relationship between the mean representational distance and region size even 

after the permutation-based normalization (Pearson’s r = –0.537, p = 0.012). Thus, to further 

account for the effects of region size, we regressed out the effects from the mean representational 

distances. The residualized mean representational distance for each region is displayed in Fig. 

3c, indicating that the vlPFC, vermis, and vmPFC showed the highest individual variability while 

the pMCC, SMA and SMC appeared to be the most stable across individuals. Additional results 

without residualizing the region size are shown in Supplementary Fig. 2. For further reference, 

we performed the analysis in the NPS17, SIIPS119, and large-scale functional networks20. The 

limbic and visual networks manifested the highest inter-individual variability, whereas the 
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somatomotor and ventral attention networks and NPS showed the lowest variability (Extended 

Data Fig. 1e). Lastly, Fig. 3d shows the relationship between the residualized mean distance and 

mean importance (the mean –log(p) values) of each region with Pearson’s r = –0.542, p = 0.011, 

suggesting that highly important regions for individualized pain prediction also have more stable 

multivariate patterns across people. 

We performed several analyses to assess the robustness of the results. Results from 

analyses run on a reduced dataset of individualized models with significant prediction 

performance only were significantly correlated with the results based on the full dataset at 

Spearman’s ρ = 0.96, p = 0.00001. (Extended Data Fig. 3). We additionally tested whether each 

study had a significant effect on the final results (i.e., the variability ranking among 21 regions) 

by removing one study from all analyses at a time (i.e., a study-level jackknife), repeating this 

whole analysis for all 13 studies, and comparing the results of a reduced set of studies with the 

original results of the full set of studies. Both the univariate and multivariate analyses showed 

stable results even after removing each study. Spearman’s correlation coefficient ranged from 

0.86 to 0.98 for the univariate results and from 0.98 to 0.99 for the multivariate results 

(Extended Data Fig. 4), suggesting that each study and study-specific parameters had minimal 

effects on the results. We also tested the effects of context manipulations present in some studies 

in our dataset, such as placebo or cognitive regulation. To assess the impact of these 

manipulations, we performed the representational similarity analysis separately on subsets of 

studies with and without context manipulations. Results from studies with and without context 

manipulation were significantly correlated with the results based on the whole dataset with 

Spearman’s ρ = 0.92, p = 4.2 × 10-6, and ρ = 0.83, p = 4.3 × 10-7, respectively (Extended Data 

Fig. 5). Additionally, we investigated the effects of study-related variables on the inter-

individual variability within regions. We performed a multiple regression analysis with 

independent variables (x-variables) being study-related factors such as the field strength of the 

scanner, data collection site, stimulated body site, stimulus duration, number of trials available 

for the participant, and presence of pain predictive cues, with the dependent variable (y-variable) 

being the mean inter-individual distance in each region of interest (Supplementary Table 2). 

Although some regression models showed sensible significant effects of some variables, the 

main findings presented here were not affected after controlling for these effects (Spearman’s ρ = 

1.0) as the analysis was conducted within each region and our main findings compared the inter-



INDIVIDUAL VARIABILITY OF PAIN REPRESENTATION  9 

individual variability across regions. Finally, we tested whether the pattern of results was 

influenced by excluding studies with low within-study prediction performance. We performed 

the analyses excluding three studies with the lowest average prediction performance and found 

that the overall pattern of results presented here was preserved (Extended Data Fig. 6). Thus, in 

sum, the results are robust across studies that vary in psychological context and not driven by 

individual studies or studies with poorer overall prediction performance. 

Replication in a large-scale independent dataset 

 To further validate and show that our findings are not a mere consequence of different 

experimental designs across multiple studies and varying signal quality across brain regions, we 

replicated our findings with a large-scale independent dataset (n = 124) acquired at one location 

with a single experimental design. As in the discovery dataset, we fitted an SVR model to the 

single-trial data and obtained 124 individualized predictive maps (prediction-outcome correlation 

= 0.68 ± 0.02, mean squared error = 0.014 ± 0.001 with 5-fold cross-validation). We then applied 

the region masks, performed a multivariate representational similarity analysis on the masked 

regional data, and regressed out the effects of region size on the mean representational distance. 

Fig. 4a shows the residualized distance indicating that the highest inter-individual variability was 

found in the dlPFC, visual areas, and vmPFC, while the pMCC, leftCERB and SMC manifested 

the lowest variability. To compare this result with the result from the discovery dataset, we 

assigned a rank to each region based on the residualized distance in both datasets and measured 

the rank correlation between them. The rank correlation coefficient, Spearman’s ρ, was 

significant at a value of 0.57, p = 0.008 (Fig. 4b). We also evaluated whether the important pain-

predictive voxels identified in the discovery dataset also replicate in this replication dataset. We 

found a significant phi correlation, ɸ = 0.502, p < 2.2 × 10−16, suggesting high similarity between 

the two binarized voxel importance maps (Supplementary Fig. 3). Additionally, we performed a 

preliminary test of within-individual reliability of the predictive patterns by splitting the data for 

each individual into two folds (i.e., the first four and the last four runs), training models on both 

folds and evaluating the similarity of the whole-brain and regional predictive patterns. The 

pattern similarity showed mostly medium to large correlations, providing preliminary evidence 

of within-individual reliability of the predictive patterns (Supplementary Fig. 4a). We also 
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performed the same analysis on a preliminary four-session dataset from a single participant, 

obtaining further support for within-individual reliability (Supplementary Fig. 4d). 

Since the signal quality in the fMRI data may vary across brain regions, which in turn 

may affect the regional variability, we examined whether the temporal signal-to-noise ratio 

(tSNR) of our data is correlated with our results. To this end, we first calculated the tSNR for 

each participant as the mean of images acquired at each repetition time (TR) divided by the 

standard deviation. Subsequently, we obtained a group-average tSNR map (Extended Data Fig. 

7) and calculated the mean tSNR for each region. We then assigned ranks to regions based on the 

tSNR and compared them with the ranks based on the residualized representational distance 

using rank correlation. The comparison suggested that the regional variability cannot be 

explained by varying tSNR across regions (Spearman’s ρ = 0.21, p = 0.36; Fig. 4c). 

Clustering pain-predictive brain regions 

Next, we compared the regional inter-individual variability profiles using non-

parametric rank correlation Kendall’s 𝜏A to identify clusters of brain regions that exhibited 

similar patterns of the representational distance across individuals (Analysis 6). This correlation 

matrix provides the representational connectivity (as termed by Kriegeskorte et al.23) among 21 

pain-predictive regions, which quantifies the representational information shared across regions. 

This approach can be regarded as a type of multivariate connectivity that allows us to group 

multivariate pattern representations using clustering analysis. The Kendall’s 𝜏A values ranged 

from –0.005 to 0.17 (Fig. 5a), with higher values indicating higher similarity in the individual 

variability patterns for a pair of regions. For example, relatively high similarity was found 

between the AMOp and AMins with Kendall’s 𝜏A of 0.17, between the SMA and pMCC with the 

value of 0.155, or between the MThal and LThal with the value equal to 0.112.  

To cluster the 21 pain-predictive regions based on the patterns of inter-individual 

representational similarity, we first transformed the Kendall’s 𝜏A into a distance matrix and 

performed nonmetric multidimensional scaling (NMDS). NMDS scores were then used as input 

features for hierarchical clustering. To select the optimal number of clusters (k), we compared 

the clustering quality scores (silhouette values) against the null-hypothesis baseline obtained 

from a permutation test for k = 2 to 15 solutions (see Methods for details). The optimal k was 10 
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clusters, which performed at the mean silhouette score of 0.59 (from the range of 0 to 1, where 1 

indicates perfect separability of clusters) with z = 3.72, p = 0.0002 over the null baseline 

clustering quality (for more details, see Extended Data Fig. 8). The identified clusters of regions 

included the aMCC, pMCC, SMA, and SMC for cluster 1; the leftCERB, rightCERB, vermis, 

and visual cortex for cluster 2; the dpIns, and S2 for cluster 3; the AMIns, and AMOp for cluster 

4; the vlPFC and dlPFC for cluster 5; and the MThal, LThal, and upperBS for cluster 6. Also, the 

BG, MT, PCun and vmPFC each constituted a standalone cluster.  

For display, we performed t-distributed Stochastic Neighborhood Embedding (t-SNE) on 

the NMDS scores and plotted it with Kendall’s 𝜏A values transformed into weights connecting 

the regions in color-coded region clusters (Fig. 5b). With thresholding to show only the top 25% 

of connection weights, the vmPFC was not connected to any other region, suggesting that the 

vmPFC showed a unique pattern of individual variability of predictive weights distinct from 

other brain regions (bottom panel of Fig. 5b). After computing the mean residualized 

representational distance of the clusters, the vmPFC and d/vlPFC clusters showed the highest 

distance among the region clusters, and the aMCC/pMCC/SMA/SMC and S2/dpIns clusters 

showed the lowest distance among the clusters (Fig. 5b). For further illustration of the inter-

individual variability in the region clusters, we applied the predictive patterns of the region 

clusters from each individual to the activation maps of all other individuals to predict the 

corresponding pain ratings (Extended Data Fig. 9). The results show that the cross-individual 

prediction performance is correlated with the inter-individual variability of the clusters, with the 

cross-individual prediction being more reliable in the less variable clusters. In other words, along 

with our results in Supplementary Fig. 4 where we showed that predictive weights are reliable 

within individuals, these results support the idea that the inter-individual variability of the 

regional predictive weight patterns is driven by individual variability in brain representations of 

pain, not by mere degeneracy properties common in high-dimensional data modelling or noise.  

We also explored the relationship between these clusters and cortical hierarchy levels 

identified using unimodal-to-transmodal connectivity gradients24. Here, the principal 

connectivity gradient captures the diversity of functional connectivity patterns on a spectrum 

ranging from unimodal to higher-order transmodal brain structures24. We calculated the mean 

principal gradient in our region clusters based on a principal gradient map derived from an 
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independent resting-state fMRI dataset (N = 59). The results showed that the mean residualized 

distances were significantly correlated with the mean principal gradients (Spearman’s ρ = 0.68, p 

= 0.04; Extended Data Fig. 10), suggesting that the areas in which pain representations are more 

variable across individuals are higher-order transmodal regions located at the top of the principal 

gradient, while those that are stable across individuals are unimodal sensory regions located at 

the bottom of the cortical hierarchy. 

DISCUSSION 

Our study investigated the heterogeneity of individualized brain representations of pain 

based on fMRI data from a large sample of n = 404 for discovery and n = 124 for replication 

(total N = 528). Across all individualized pain-predictive maps, we first identified 21 predictive 

regions. Among these, the prefrontal and cerebellar regions, including the vmPFC, vlPFC, 

dlPFC, vermis, and leftCERB, showed high inter-individual variability in both univariate and 

multivariate analyses. In contrast, the cingulate, somatomotor, and insular cortices, including the 

a/pMCC, SMA, SMC, and dpINS, showed lower inter-individual variability. Importantly, this 

finding was successfully replicated in an independent dataset of n = 124, demonstrating (along 

with multiple supplementary analyses) that the pattern heterogeneity was not a mere effect of 

various experimental settings or noise. Clustering regions based on inter-personal 

representational distance in multivariate predictive patterns revealed 10 groups of regions, with 

more inter-personally variable groups lying on the transmodal end of the spectrum of the 

principal gradient of cortical organization and more stable groups on the unimodal end. Overall, 

the current study aims to step toward individualized pain brain mapping by providing brain 

targets that hold the potential to be a basis for further development of individualized clinical 

interventions and brain-based subtyping of individuals in pain representations. 

Most of the important pain-predictive brain regions identified here have also been 

reported in previous studies (see refs.3,4). Additionally, the signs of group-level predictive 

weights (i.e., whether a brain region is positively or negatively correlated with pain ratings) were 

largely consistent with previous studies that used experimental acute pain stimuli25,26. However, 

we also found large individual variability in the predictive weight signs of the individualized 

pain-predictive maps (e.g., Extended Data Fig. 2), suggesting that each region’s functional role 

in pain processing varies across individuals. Therefore, our findings indicate that the 
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individualized functional relationships between brain regions and pain perception are more 

complicated than how they are usually summarized at the group level. Although group-level 

summaries certainly have their own merits and strengths, such as canceling out noise and 

identifying findings that are most reproducible across individuals, the idiosyncratic patterns of 

pain-predictive weights that will be crucial to understanding the personal pain experience are 

often ignored. However, our approach allowed each individualized pain-predictive map to have 

different signs and patterns of weights by focusing on group-level averages of the “importance” 

measure. For example, the visual cortex regions might not often appear in pain neuroimaging 

studies, perhaps because of its mixed relationship with pain perception, as shown in Extended 

Data Fig. 2. However, our results suggest that the visual cortex is also an important contributor 

to pain prediction consistently across people. The functional role of the visual cortex could be 

manifold, for example, multisensory integration27, task-related28, or enhanced attentional state as 

a consequence of a salient event29.  

Combining results from both the univariate and multivariate analyses, we found that the 

brain regions that showed stable patterns across individuals were mostly those receiving direct 

inputs from the spinothalamic pathways, including the MCC (aMCC and pMCC), SMC, SMA, 

and insula (dpIns and AMIns)30,31. In contrast, the brain regions that showed variable patterns 

across individuals were the prefrontal and cerebellar regions, including the vlPFC, vmPFC, 

vermis, and rightCERB. Among these regions, the MCC appeared to have the most stable 

predictive weights in both the univariate and multivariate analysis results. The MCC is known to 

work as a hub for processing of the affective-motivational components of pain and behavioral 

control of pain-related responses32,33. In particular, the MCC receives direct inputs from the 

medial thalamus30, and it has been recognized as a part of the medial pain pathway, which has 

been associated with processing of the affective-motivational component of pain34. However, 

whether the medial pathway is specialized in processing this particular pain component has been 

challenged33. It has also been shown that the MCC contains neurons responding specifically to 

nociception35, and exhibits generalizable multivariate pain-specific representations36. Another 

brain region with a stable representation across individuals was the dpIns, which is among the 

regions that best track the perceived intensity of pain37 and are most consistently reported in pain 

neuroimaging studies38. Supporting the role of the dpIns in nociception, research in monkeys has 
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revealed direct nociceptive-specific projections from the spinothalamic system to the posterior 

part of the insula encoding modality, location, and intensity of the incoming stimulus39. 

On the other hand, the vlPFC and vmPFC had the most variable representations across 

individuals. These brain regions are known to be important for cognitive pain modulation, such 

as reappraisal and placebo40,41 and pain catastrophizing42. In particular, the vmPFC is important 

for autobiographical memory representations, valuation43, and endogenous cognitive and 

affective processes44,45, supporting the possibility that these prefrontal regions subserve 

individually unique representations of pain. High between-study variability in frontal areas, 

likely stemming from different study contexts, was also reported in a recent meta-analysis on 

placebo analgesia46. In addition to the prefrontal regions, striatal and cerebellar regions also 

showed variable representations across individuals. Given that the cerebellar contributions to 

pain have only recently become of interest47, further research will be required to fully understand 

our findings in the cerebellum.  

Importantly, these findings were replicated using an independent dataset. Unlike the 

discovery dataset, the replication dataset was collected under a single experimental setting; thus, 

it provided an appropriate basis to test whether the idiosyncrasy is a mere effect of the 

heterogeneity of the discovery dataset or reflects actual characteristics of the regions. Along with 

the evidence that the regional tSNR is not related to individual variability, study-level jackknife, 

and other supplementary analyses, the replication results provide supporting evidence for our 

findings in the discovery set.  

There was also a slight discrepancy between the results of the univariate and 

multivariate analyses. In particular, the MThal had the most variable representation in the 

univariate analysis, whereas it was below the median (i.e., less variable) in the multivariate 

analysis. Additionally, the MT was stable in the univariate analysis, but more variable in the 

multivariate analysis. These discrepancies may stem from the different nature of the analyses. 

The univariate analysis considers individual voxels separately and, therefore, becomes more 

vulnerable to outliers. However, the multivariate analysis considers the whole pattern of voxel 

activations and thus should be more stable than the univariate analysis and capture 

representational features lost in the univariate analysis. 
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 We also identified 10 region clusters based on the patterns of inter-individual variability. 

The region clusters were mostly composed of regions that are anatomically and functionally 

adjacent, e.g., S2 and dpIns, thalamus and brainstem. However, the vmPFC, PCun, MT and BG 

each constituted a standalone cluster, which may reflect their high individual variability and 

unique representations of pain. Interestingly, we also observed a relationship between the inter-

individual variability of the clusters and the principal gradient of cortical organization based on 

functional connectivity patterns24. The gradient spans from unimodal sensory cortical regions 

that process concrete direct percepts to higher-level transmodal regions that integrate and process 

abstract information48. Along with this notion, region clusters with lower inter-individual 

variability were found in the unimodal end of the gradient spectrum, including dpIns/S2 and 

aMCC/pMCC/SMA/SMC clusters that receive direct spinothalamic nociceptive inputs. Many of 

these (particularly dpIns and S2) are unimodal in that they are highly selective for somatosensory 

input or even nociceptive input (as with dpIns) more specifically. On the other hand, region 

clusters that showed higher variability, such as vmPFC, dlPFC/vlPFC, or PCun clusters, were in 

the transmodal end of the spectrum, suggesting that regions in the higher end of the cortical 

hierarchy show more individual-specific representations. Interestingly, this finding is consistent 

with Finn et al.49 in which the higher-level transmodal regions including the frontoparietal and 

default mode networks were best performing at identifying functional connectivity fingerprints.  

The region clusters provided here hold a potential to be, ultimately, used as targets for 

brain-based biotyping for pain or personalized clinical interventions. Interest in precision 

medicine and individualized brain mapping has recently increased14,15,49 because such 

individualized approaches could potentially improve the effects of treatment by tailoring it to the 

needs of each individual and provide evidence for disease subtypes. Therefore, as an example 

benefit of our approach, knowing which brain regions are important for pain processing and 

whether their pain representations are variable or consistent across individuals could help in 

making decisions about the deep brain stimulation or transcranial magnetic stimulation locations 

for chronic pain treatment50,51. The knowledge of which regions show high or low inter-

individual variability could also be useful for biomarker development and decoded 

neurofeedback1,52. As the outcomes of regions with different levels of inter-individual variability 

could vary, these strategies could be informed of which brain regions could be more reliable 

targets across a population and which are better suited for personalized approaches. Moreover, a 
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preliminary analysis suggested that there may not be one universal set of biotypes across the 

whole brain, but, in fact, different brain regions may provide different individual biotyping 

(Supplementary Fig. 5). Thus, it is imperative to understand the complex relationship between 

the regional (or network-level) brain representations and individual differences. Furthermore, the 

source of idiosyncrasy in these regional pain representations remains an intriguing and important 

question. There could be numerous underlying causes such as genetic factors53, individual 

differences in pain coping strategies54 or pain sensitivity55, and personality traits56 among others. 

However, to probe all possible explanations of the inter-individual variability, large amounts of 

data, including detailed phenotypic data, genetic variants, and other psychophysical and 

psychological measures, will be necessary.  

This study has several limitations. First, although we performed nonlinear spatial 

normalization, there are substantial inter-individual differences in functional topography even 

when brains are anatomically aligned. Such variability could contribute to the higher level of 

individual variability we observed in prefrontal and other regions. To further address this issue, 

future studies could use functional alignment methods such as hyperalignment57. Additionally, 

the amount of data per subject is relatively small and varies across studies, which could 

potentially negatively affect the robustness and reliability of the individualized models. Although 

our preliminary results suggest that most of the important pain-predictive regions showed 

reliable weights within individuals across multiple sessions, it is also possible that some regions 

show ‘state-like’ variability over a short period of time, if they are highly context-sensitive. 

Disentangling which regions capture inter-session variability (“states”) versus which regions 

manifest high stability across sessions (“traits”) is an important research question, which should 

be addressed in the future. Future studies with a dense sampling design (i.e., small-n, many 

repetitions within-person) may be able to help provide additional answers to the questions raised 

here. Also, this study concerns only one dimension of pain experience, which is pain intensity. 

Although pain intensity usually shows high correlations with other dimensions, such as 

unpleasantness58, the current study did not explicitly consider other dimensions of pain. 

Therefore, caution is needed when applying the current findings to other dimensions of pain 

experience. Furthermore, due to the relatively low temporal resolution of fMRI some processes 

such as, for example, anticipation of the stimulus may not be well resolved, and thus they may 

influence inter-individual variability. Therefore, future studies may benefit from using other 
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modalities, such as electroencephalography (EEG), electro-cortico-encephalography (ECoG), or 

magnetoencephalography (MEG). Finally, due to a lack of more comprehensive phenotypic and 

genetic data, we could not fully test the origin and meaning of the inter-subject variability 

observed here. This poses an important question that should be addressed in future studies by 

gathering a large amount of detailed phenotypic data and other measures that could be related to 

individual variability.  

In conclusion, our study characterized the cerebral contributions to individual variability 

in pain processing by identifying brain regions that show high versus low inter-individual 

variability in pain representations. Our results shed light on the personalized mechanisms of pain 

processing and could be potentially used in further classification and biotyping of individuals in 

pain processing, creating a path toward personalized pain medicine.  
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FIGURE LEGENDS 

 

Figure 1. Analysis overview and important pain-predictive regions. (a) In this study, we 

aimed to identify brain regions that were important for pain prediction and examine whether they 

showed variable or stable pattern representations across individuals (“A” and “B” categories; top 

left). To this end, we conducted a series of analyses that can be divided into six steps. Detailed 

explanations about the analysis steps can be found in the Results and Methods sections. (b) In 

the Step 2 analysis, we selected voxels that were important for pain prediction. We 
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operationalized the importance in terms of mean –log(p), where the two-tailed p-values were 

calculated from the bootstrap tests performed in each individualized predictive map. The selected 

voxels had mean –log(p) values higher than the top 10% mean –log(p) value (= 1.549). (c) The 

important voxels were parcellated into 21 regions based on the cortical and cerebellar atlases (see 

Methods for more details).aMCC, anterior midcingulate cortex; AMIns, anterior middle insula; 

AMOp, anterior middle operculum; BG, basal ganglia; dlPFC, dorsal lateral prefrontal cortex; 

dpIns, dorsal posterior insula; leftCERB, left cerebellum; LThal, lateral thalamus; MT, middle 

temporal area; MThal, middle thalamus; PCun, precuneus; pMCC, posterior midcingulate cortex; 

rightCERB, right cerebellum; S2, secondary somatosensory cortex; SMA, supplementary motor 

area; SMC, sensorimotor cortex; upperBS, upper brainstem; visual, visual cortex; vlPFC, 

ventrolateral prefrontal cortex; vmPFC, ventromedial prefrontal cortex. 
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Figure 2. Univariate analysis of the individual variability of predictive weights. (a) We first 

examined the voxel-wise variance of voxel weights across all individualized pain-predictive 

maps. (b) We also examined the voxel-level mean predictive weights across the individualized 

maps. The positive weights were shown in warm colors (i.e., positively predictive of pain), and 

the negative weights (i.e., negatively predictive of pain) were shown in cool colors. (c) The 

scatter plot shows the region-level summary with the mean predictive weights on the x-axis and 

mean weight variance on the y-axis. (d) The scatter plot displays the mean weight variance 

against the mean importance as –log(p) (based on two-tailed p-values). 
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Figure 3. Multivariate analysis of the individual variability of predictive weights using a 

representational similarity analysis. (a) To assess the inter-individual variability of the 

regional multivariate patterns, we performed a representational similarity analysis23. A detailed 

description of the analysis can be found in the Methods section, Multivariate representational 

similarity analysis. (b) The scatter plot shows the relationship between the mean representational 

distance based on the permutation tests (y-axis) and region size (displayed in the logarithmic 

scale on the x-axis). The two variables showed strong negative correlation, r = -0.537, p = 0.012, 

two-tailed. Higher representational distance values indicate higher pattern-level variability across 

people. (c) To account for the effects of region size on the representational distance, we 

regressed out the region size effects from the representational distance. The plot shows the 
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residualized representational distance, sorted from the highest distance, and the standard error of 

the mean across all pair comparisons of individuals, i.e., C(404, 2) = 81406. (d) The scatter plot 

shows the relationship between the residualized representational distance and the mean 

importance measured by mean -log(p) with Pearson’s r = –0.542, p = 0.011, two-tailed. 
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Figure 4. Replication of the multivariate representational similarity analysis in an 

independent dataset and tSNR in the dataset. To validate the previous results, we employed 

an independent replication dataset acquired under the same experimental settings in the same 

location. (a) In the replication dataset, we performed a representational similarity analysis and 

regressed out the effects of region size on the mean representational distance. The plot depicts 

the residualized representational distance (a measure of inter-individual variability in neural 

patterns) in each region, with higher values representing higher regional variability. (b) Based on 

the residualized distance, we assigned ranks to all regions in both the discovery and replication 

datasets. The scatterplot visualizes the statistically significant relationship between the results in 

the two datasets. (c) To further inspect whether our results in the replication dataset are 

influenced by a different tSNR in different regions, we calculated the mean tSNR in all regions. 

The scatter plot compares the region ranks based on the tSNR and residualized representational 

distance suggesting that the regional variability in the replication dataset cannot be explained by 

varying tSNR in regions. 
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Figure 5. Clustering of the pain-predictive brain regions based on the patterns of 

representational distance. (a) The heat map shows the representational connectivity matrix 

(Kendall’s 𝜏A) among 21 pain-predictive regions. Higher Kendall’s 𝜏A values (shown in darker 

red) indicate higher similarity between regions. (b) We conducted a hierarchical clustering 

analysis of brain regions using the 10-dimensional NMDS scores based on the representational 

connectivity matrix, resulting in 10 region clusters. The plot shows the t-distributed stochastic 

neighborhood embedding (t-SNE) map based on the 10-dimensional NMDS scores, and the 10 

region clusters are shown with different colors. The line widths indicate the relative connectivity 

strengths among the brain regions. The top panel shows all the connections, while the bottom 

panel shows only the top 25 % of the connections. The upper bottom right chart displays the 

mean residualized representational distance of the region clusters (color-coded). Furthermore, in 

the region clusters we calculated the mean principal gradient that ranges from unimodal to 
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higher-order transmodal areas as suggested by ref.24. The lower chart, then, shows the mean 

principal gradient in the region clusters suggesting that more variable clusters are located at the 

top of the principal gradient spectrum, while more stable clusters are located at the bottom of the 

principal gradient. The bottom cortex map visualizes the principal gradient map obtained from an 

independent dataset (N = 59). (c) The region clusters are visualized on a brain underlay. 
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METHODS 

Datasets 

In this study, we employed datasets from a total of 14 previous thermal pain studies 

using fMRI of which Study 1 to Study 13 were used as a discovery dataset with a total n = 404 

and Study 14 as a large-scale independent replication dataset of n = 124. Detailed information on 

the datasets is provided in Supplementary Tables 1, 2 and 3. Among these, 11 datasets have 

been used in previous publications, and three datasets (Studies 7, 12, and 14) are unpublished 

(Supplementary Table 1). The institutional review board of Columbia University, the 

University of Colorado Boulder and Sungkyunkwan University, and the Ethics Committee of the 

Medical Chamber Hamburg approved all the studies. All participants provided written informed 

consent and were financially compensated for their participation. 

Participants  

This study included a total of 528 healthy, right-handed, participants from 13 

independent studies, with sample sizes ranging from n = 17 to n = 124 per study. Descriptive 

statistics on age, sex and other details of the studies are provided in Supplementary Table 1. 

Participants were recruited from New York City and Boulder/Denver Metro Areas in the United 

States, Hamburg in Germany, and Suwon in South Korea. The preliminary eligibility of the 

participants was determined through an online questionnaire, pain safety screening form, or an 

MRI safety screening form. Participants with psychiatric, physiological or pain disorders, 

neurological conditions, and MRI contraindications were excluded before enrollment. 

Statistics & Reproducibility 

 The analyses were performed on 14 previous studies and no statistical method was used 

to determine the sample size. In one study 4 participants were excluded due to the unsuccessful 

extraction of the single-trial data. In all studies, the stimuli were fully randomized within 

subjects. The investigators were not blinded to allocation during experiments and outcome 

assessment. All relevant statistics are reported. Data distributions were assumed to be normal 

though they were not formally tested.     

Procedures 
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In each study, participants experienced a series of contact heat stimuli and rated their 

pain experience after each stimulus. The stimulation sites, number of intensity levels and 

corresponding temperature, stimulus duration, rating scales, and number of trials used for 

analyses are provided in Supplementary Table 3. Each study also included psychological 

manipulation, such as predictive cues or placebo manipulation. However, here we focus only on 

within-subject pain prediction across all trials regardless of any study-specific psychological 

manipulation.  

Thermal stimulation  

In all studies, thermal stimulation was delivered to multiple skin sites using a TSA-II 

Neurosensory Analyzer or Pathways system (Medoc Ltd., Chapel Hill, NC) with a 16-mm Peltier 

thermode endplate (32 mm only in Study 10). In every trial, after the offset of stimulation, 

participants rated the magnitude of their sensation of warmth or pain on a visual analog scale or a 

labeled magnitude scale. Other thermal stimulation parameters varied across studies, with 

temperatures ranging from 40.8 °C to 49.3 °C and the duration of the stimulation ranging from 

1.85 s to 20.16 s. The stimulation parameters of all studies are provided in Supplementary 

Table 3.  

Preprocessing of fMRI data  

Preprocessing of functional images was performed using Statistical Parametric Mapping 

(SPM) software (http://www.fil.ion.ucl.ac.uk/spm/). In addition to SPM, Study 14 also used 

FMRIB Software Library (FSL) (https://fsl.fmrib.ox.ac.uk) and Independent Component 

Analysis-based strategy for Automatic Removal Of Motion Artifacts (ICA-AROMA)59 software 

(https://github.com/maartenmennes/ICA-AROMA) for distortion correction and removal of 

motion-related artifacts, respectively. Except for Studies 3, 5, and 7, which used SPM5 version 

and Study 14, which used SPM12, all other studies used SPM8 version (see Supplementary 

Table 4). In SPM, structural T1-weighted images were co-registered to the mean functional 

image for each subject using the iterative mutual information-based co-registration method and 

then normalized to the Montreal Neurological Institute (MNI) space. In Studies 3 and 5, 

additional normalization to the group mean was performed after the SPM normalization using a 

genetic algorithm-based normalization60-62. To stabilize the image intensity, multiple initial 
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volumes were removed in every functional dataset (see Supplementary Table 4 for the number 

removed in each study). Then, volumes that contained outlying signal values within the time 

series were removed. To identify the outliers in the signal, we computed the Mahalanobis 

distances for the matrix of the concatenated slice-wise mean and standard deviation of the 

intensity values by functional volumes (over time). Values with a significant chi-square value 

(after correction for multiple comparisons with either false discovery rate or Bonferroni 

correction) were considered outliers. In practice, less than 1% of the volumes were outliers. The 

outlying time points were later used as nuisance covariates in the first-level models. Functional 

images were then corrected for differences in slice timing and motion (realignment). Finally, the 

images were warped into the SPM’s normative atlas, interpolated to 2 ✕ 2 ✕ 2 mm3 voxels, and 

smoothed with an 8-mm full width at half maximum (FWHM) Gaussian kernel in Studies 1 to 

13, and 5-mm FWHM in Study 14. 

Single trial analysis: Studies except for Studies 2 and 5 

In each study, we modeled the data using a single trial, or “single-epoch”, design and 

analysis approach. The single-trial response magnitude for each voxel was estimated using a 

general linear model design matrix with separate regressors for each trial, as in the “beta series” 

approach. First, boxcar regressors convolved with the canonical hemodynamic response function 

(HRF) were constructed to model the cue, pain, and rating periods in each study. Then, a 

regressor for each trial and nuisance covariates, such as head motion parameters x, y, z, roll, 

pitch, and yaw, were included. In Study 14, motion-related artifacts were removed using ICA-

AROMA; thus, only nuisance covariates, such as the top five principal components of white 

matter and cerebrospinal fluid signals and linear trend, were included. Since trial estimates could 

be strongly affected by acquisition artifacts that occur during the trial, trial-by-trial variance 

inflation factors (VIFs) were calculated, and trials with VIFs over 2.5 were excluded from further 

analyses. In Study 3, we also excluded global outliers, i.e., trials exceeding three standard 

deviations above the mean, and used a principal component-based denoising step.  

Single trial analysis: Studies 2 and 5 

In case of Studies 2 and 5, fitting a set of three basis functions was used instead of the 

standard HRF. This procedure allowed for flexible variation of the shape of the HRF across trials 
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and voxels. This is also consistent with the procedures used in the original publication60. The 

pain period basis set was comprised of three curves shifted in time, and it was customized for 

thermal pain responses based on previous studies60,63. To estimate responses evoked by cues in 

Study 5, the pain-anticipation period was fitted with a canonical HRF. The period was then 

truncated at 8 s to ensure that modeled anticipatory responses were not affected by the activity 

evoked by the noxious stimuli. As in other studies, a regressor for nuisance covariates was 

included, and trials with VIFs > 2.5 were excluded. In addition, in Study 5, global outliers were 

excluded. In order to estimate trial-level pain period activity, the fitted basis functions from the 

flexible single trial approach were reconstructed to compute the area under the curve (AUC). The 

trial-by-trial AUC values were then used as estimates of the trial-level pain period activity. 

Model building, importance calculation, and parcellation  

Using the discovery dataset, we first built individualized support vector regression 

(SVR) models on the whole-brain single-trial pain data of each participant, resulting in 404 

individualized predictive maps (Fig. 1a). For each model, we ran the bootstrap tests with 5,000 

samples (resampling with replacement) to obtain the two-tailed uncorrected p-values for each 

voxel for each individual based on the sampling distribution (i.e., converting z-scores to p-values 

calculated from the mean and standard deviation of the sampling distribution). We then 

calculated the mean negative logarithmic p-values (mean[-log(p)]) and selected voxels 

corresponding to the top 10 % of the mean[-log(p)] values for further analyses (Fig. 1b). We 

then parcellated the selected voxels into anatomical sub-regions using a combination of cerebral 

and cerebellar atlases64,65, which together provided a reliable brain parcellation with a sufficient 

number of brain structures for our purpose, and additionally divided the thalamus into medial 

and right lateral regions (Fig. 1c). Nonetheless, it is also important to note that multiple choices 

of parcellation exist. The impact of the selected parcellation could be explored in future studies. 

Some of the region masks, namely BG, dlPFC, MT, pMCC, PCun, visual, vlPFC and vmPFC, 

were smoothed with a 1 mm FWHM Gaussian kernel to make the region smooth and large 

enough for the following pattern-based analyses. After normalizing the individualized predictive 

maps by dividing each voxel weight by the standard deviation of the weights across the whole-

brain map, we applied the region masks to each map and used the masked data for further 

analyses.  
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Univariate voxel-wise analysis 

To examine the individual variability of predictive weights at the voxel level, we 

calculated the variance of each voxel weight across all individualized maps. We also computed 

the mean weights across all predictive maps and summarized the values in each region as the 

mean regional weight and weight variance (Fig. 2). Additionally, we inspected how variable the 

sign of weights was across subjects in individual regions (Extended Data Fig. 2). We first 

determined the median weight for each subject and for each region. We then calculated the 

proportion of positive and negative median weights across the subjects for each region.  

Multivariate representational similarity analysis 

To compare the regional multivariate pattern representations across subjects, we 

performed a representational similarity analysis23. We first calculated the inter-individual 

representational dissimilarity matrix (RDM) for each brain region between the individualized 

multivariate patterns using 1 – correlation as a measure of inter-individual distance. To take 

possible region-specific effects into consideration, such as the region sizes and spatial locations, 

we normalized the distance measures based on the null distance distribution generated with 

permutation tests with 1,000 iterations. More specifically, in each iteration, we permuted the trial 

labels (i.e., pain ratings) for each subject’s data, and fitted a predictive model using the permuted 

data. We then computed the z-scores (normalized representational distance) with the observed 

inter-individual distance (𝑑!"#!"#) and the permuted distance data (𝑑!"#$%&&) using the following 

equation: 

𝑍!"#' =
𝑑!"#!"# −	�̅�!"#$%&&

(∑ *𝑑!"#$%&& − �̅�!"#$%&&+
$%

&
𝑁 − 1

 

where i is the region index, and N is the number of iterations. This procedure is illustrated in Fig. 

3a. We summarized the normalized RDMs by taking the mean of the lower triangles of the 

matrices.  

 To remove the effects of region size on the mean representational distance, we applied 

linear regression to residualize the mean representational distance. In order to calculate the 
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standard error of the mean for the mean residualized distance, we first used the parameters of the 

linear regression for residualizing all elements of the lower triangle of each RDM. We then 

calculated the standard error of the mean as the standard deviation of the matrix divided by the 

number of elements.  

Replication using Study 14 

 For further validation of our results, we employed Study 14 as an independent large-

scale replication dataset. As in the discovery dataset, we fitted SVR models to the data of each of 

the 124 participants in the study, creating 124 individualized pain-predictive maps. We applied 

region masks defined in the discovery dataset to each map and used only the masked region data 

for further analyses. We performed a representational similarity analysis in the replication 

dataset in the same manner as described above in the discovery dataset. Briefly, we calculated 

the inter-individual RDMs based on the predictive patterns in all regions and compared the 

matrices to the null RDMs obtained from the permutation tests. This process resulted in 

normalized regional RDMs. We calculated the mean of the lower triangles of the matrices and 

regressed out the effects of the region size to obtain the residualized distance in the regions. In 

order to compare the results with those obtained in the discovery dataset, we assigned ranks to 

the regions in both the discovery and replication datasets according to the residualized distance 

values. We then compared the two vectors of ranks using Spearman’s rank correlation 

coefficient.  

tSNR calculation 

To examine the quality of the signal across the functional scans, we calculated the 

temporal signal-to-noise ratio (tSNR) of the fMRI images in the replication dataset. For each run, 

we computed the run-level tSNR map as the voxel-wise mean divided by the standard deviation 

of the signal. Subsequently, we obtained an individual tSNR map for each participant by 

averaging the run-level tSNR maps. Finally, the group-level tSNR map was obtained as the mean 

of all individual tSNR maps.  

Multidimensional scaling and region clustering  
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To cluster pain-predictive brain regions based on the patterns of the representational 

distance across individuals, we first vectorized the normalized RDMs acquired in the 

multivariate analysis of the discovery dataset and used them as inputs for the representational 

connectivity analysis23. By calculating Kendall’s 𝜏A among the brain regions, we obtained a 21 × 

21 representational connectivity matrix, which was used as the basis for the region clustering. 

For clustering, we transformed the Kendall’s 𝜏A matrix into a distance matrix by calculating (1 – 

Kendall’s 𝜏A )/2, where values ranged from 0 to 1, with 0 indicating identity and 1 indicating the 

maximum distance. Then, we applied the nonmetric multidimensional scaling (NMDS) to the 

Kendall’s 𝜏A distance matrix. To select the appropriate number of NMDS dimensions, we 

evaluated the stress metric of the NMDS solutions ranging from 1 to 20 dimensions and selected 

the final number of dimensions, which was 10, based on the scree test (Extended Data Fig. 8a). 

Finally, we performed hierarchical clustering with average linkage on the selected NMDS results 

and used permutation tests to choose the number of clusters k. In particular, for each possible 

solution ranging from 2 to 15 clusters, we first evaluated the mean clustering quality q in the 

observed data using the silhouette values computed as  

𝑞 =
1
𝑖 0

𝑑'$$ − 𝑑'(
max(𝑑'! , 𝑑'(()'

 

where i denotes the region number,	𝑑'$$ is the distance from a region to the nearest neighboring 

cluster, and 𝑑'( is the Euclidean distance from a region to the center of its own cluster. Then, 

we permuted the NMDS scores, applied the same clustering algorithm, and evaluated q of the 

clustering solutions based on the permuted data. We ran 1,000 iterations of the process to create 

a null-hypothesis distribution for the clustering quality q, which allowed us to assess the z-scores 

for q of each clustering solution of the observed data as follows  

𝑍) =
𝑞"*+ −	𝑞7(,--

8∑ (𝑞(,-- − 𝑞7(,--)$%
&

𝑁 − 1

 

where k denotes the cluster number, 𝑞"*+ is the clustering quality of the original data, 𝑞(,-- is 

the clustering quality of the permuted data, and N is the number of iterations (Extended Data 

Fig. 8d). See refs. 66,67 for other example use of the analysis. 
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Principal gradient analysis 

 To examine where our region clusters were on the spectrum of the principal gradient of 

the cortical organization that ranges from unimodal to transmodal areas, as suggested by a 

previous study24, we calculated the mean principal gradient in the clusters. We first masked a 

principal gradient map derived from an independent resting-state fMRI dataset (N = 59) with the 

region clusters. Then, we calculated the mean value in each cluster. For comparison with the 

mean residualized representational distance, we assigned ranks to the region clusters based on 

the principal gradient values and mean representational distance and calculated the rank 

correlation between them. 

DATA AVAILABILITY 

The individualized pain-predictive maps from the discovery dataset and region masks are 

available at https://github.com/cocoanlab/individual_var_pain. The cerebral and cerebellar 

atlases used in this study are included in the code repository available at 

https://github.com/canlab/CanlabCore. The data from the replication dataset are available upon 

request. 

CODE AVAILABILITY 

In-house Matlab codes for fMRI data analyses used in this study are available at 

https://github.com/canlab/CanlabCore. 
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