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Abstract

The increased recurrence of Candida albicans infections is associated with greater resis-

tance to antifungal drugs. This involves the establishment of alternative therapeutic proto-

cols, such as probiotic microorganisms whose antifungal potential has already been

demonstrated using preclinical models (cell cultures, laboratory animals). Understanding

the mechanisms of action of probiotic microorganisms has become a strategic need for the

development of new therapeutics for humans. In this study, we investigated the prophylactic

anti-C. albicans properties of Lactobacillus rhamnosus Lcr35® using the in vitro Caco-2 cell

model and the in vivo Caenorhabditis elegans model. In Caco-2 cells, we showed that the

strain Lcr35® significantly inhibited the growth (~2 log CFU.mL-1) and adhesion (150 to

6,300 times less) of the pathogen. Moreover, in addition to having a pro-longevity activity in

the nematode (+42.9%, p = 3.56.10−6), Lcr35® protects the animal from the fungal infection

(+267% of survival, p < 2.10−16) even if the yeast is still detectable in its intestine. At the

mechanistic level, we noticed the repression of genes of the p38 MAPK signalling pathway

and genes involved in the antifungal response induced by Lcr35®, suggesting that the patho-

gen no longer appears to be detected by the worm immune system. However, the DAF-16/

FOXO transcription factor, implicated in the longevity and antipathogenic response of C. ele-

gans, is activated by Lcr35®. These results suggest that the probiotic strain acts by stimulat-

ing its host via DAF-16 but also by suppressing the virulence of the pathogen.

1 Introduction

Candida albicans is a commensal yeast found in the gastrointestinal and urogenital tracts [1,2]

and is responsible for various diseases ranging from superficial infections affecting the skin to

life-threatening systemic pathologic states i.e., candidemia [3]. Its pathogenicity is based on
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several factors, such as the formation of biofilms, thigmotropism, adhesion and invasion of

host cells, secretion of hydrolytic enzymes [3] and the transition from yeast to hyphal fila-

ments, which facilitates its spread [4,5].

There is an increase in the number of fungal infections, mainly due to the increaseraise in

resistance to drugs [6,7] and to the limited number of available antifungals, some of which are

toxic [8]. In addition, it is very common that antifungal treatments destabilize, more or less

severely, the host commensal microbiota, leading to dysbiosis [9] which is favourable to the

establishment of another pathogen or recurrence. In addition, because of the presence of simi-

larities between yeasts and human cells (i.e., eukaryotic cells), the development of novel mole-

cules combining antifungal activity and host safety is particularly complicated [8]. These

different elements demonstrate the need to develop new therapeutic strategies. These aimed at

effectively treating a fungal infection while limiting the health risks for the host; in particular,

by preserving the integrity of its microbiota. The use of probiotics to cure candidiasis or fun-

gal-infection-related dysbiosis is part of these novel strategies [10–12]. The World Health

Organization (WHO) and the Food and Agriculture Organization of the United Nations

(FAO) define probiotics as “live microorganisms, which, when administered in adequate

amounts, confer a health benefit on the host” [13]. Under this appellation of probiotics, a wide

variety of microbial species, are found within both prokaryotes and eukaryotes (yeasts, such as

Saccharomyces), although these are mainly lactic bacteria, such as the genera Lactobacillus and

Bifidobacterium [14]. Currently, a new name is increasingly used to replace the term probiotic:

live biotherapeutic products (LBP). These LBP are biological products containing live biother-

apeutic microorganisms (LBM) used to prevent, treat or cure a disease or condition of human

beings, excluding vaccines [15].

In this issue, we focused on L. rhamnosus Lcr351, which is a well-known probiotic strain

whose in vitro and in vivo characteristics are widely documented [16–23]. It is a gram-positive

bacterium commercialized by biose1 as a pharmaceutical product for more than 60 years for

preventive and curative gastrointestinal and gynaecological indications. Nivoliez et al. demon-

strated the probiotic properties of the native strain such as resistance to gastric acidity and bile

stress and lactic acid production. Under its commercial formulations, the Lcr351 strain has

the ability to adhere to intestinal (Caco-2, HT29-MTX) and vaginal (CRL -2616) epithelial

cells, but the inhibition of pathogen adhesion to intestinal cells by Lcr351 has not been investi-

gated by the authors. This study has also shown that Lcr351 leads to a strong inhibition of vag-

inal (C. albicans, Gardnerella vaginalis) and intestinal (enterotoxigenic and enteropathogenic

Escherichia coli (ETEC, EPEC), Shigella flexneri) pathogens [24]. These probiotic and antimi-

crobial effects have been observed during clinical trials, but we know little about the molecular

mechanisms underlying these properties. Randomized trials conducted in infants and children

have shown that preventive intake of probiotics has a positive impact on the development of

infectious or inflammatory bowel diseases by reducing their symptoms and maintaining the

balance of the microbiota [25]. In vitro and in vivo studies using preventive approaches have

revealed certain mechanisms of action of probiotics [26].

Up to now, most probiotics used in both food and health applications are selected and char-

acterized on the basis of their properties obtained with in vitro models [27] before being tested

on complex in vivo models (murine models) and in human clinical trials. The in vitro studies

are used mainly for ethical and cost issues [28] but also allow experimentations under defined

and controlled conditions. As a result, some strains meeting the criteria for in vitro selection

no longer respond in vivo and vice versa [29]. This fact reinforces the idea that in vitro and in
vivo tests are complementary and necessary for the most reliable characterization of probiotic

properties.

Lcr35 as a candidiasis preventive treatment
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Here, we propose to use both in vitro Caco-2 cell culture and the invertebrate host C. ele-
gans as an in vivo model to investigate microorganism-microorganism-host interactions.

Caco-2 cells are a well-characterized enterocyte-like cell line. They are a reliable in vitro system

to study the adhesion capacity of lactobacilli as well as their probiotic effects, such as protection

against intestinal injury induced by pathogens [30,31]. Nevertheless, the use of in vivo models,

which are closer to the complex environment of the human body, is inevitable in the case of a

mechanistic study. Indeed, while rudimentary models such as C. elegans or Drosophila exhibit

obvious benefits for (large) screening purposes, they are also not devoid of relevance in deci-

phering more universal signalling pathways, even related to mammalian innate immunity

[32]. With its many genetic and protein homologies with human beings [33], C. elegans has

become the ideal laboratory tool for physiological as well as mechanistic studies. This round-

worm has already been used to study the pathogenicity mechanisms of C. albicans. The work

of Pukkila-Worley has demonstrated a rapid antifungal response in C. elegans with the overex-

pression of antimicrobials encoding genes such as abf-2, fipr-22, fipr-23, cnc-7, thn-1 and chiti-

nases (cht-1 and T19H5.1) or detoxification enzymes (oac-31, trx-3). It has also been shown

that C. albicans hyphal formation is a key virulence factor that modifies gene expression in the

C. elegans killing assay [34]. Some of these genes are notably dependent on the highly con-

served p38 MAPK signalling pathway [35]. Several recent studies have established that the

transition from yeast morphology to hyphal form is largely dependent on environmental

parameters. It is also controlled by C. albicans genetic factors, such as eIF2 kinase Gcn2 [36] or

SPT20 [37], whose mutations induce a decrease in virulence of the pathogen and an enhanced

survival of the host. However, few studies have been conducted with the nematode on the use

of probiotic microorganisms for the treatment of C. albicans fungal infection [38].

In this context, the aim of this study was to evaluate the effect of the Lactobacillus rhamno-
sus Lcr351 strain on the prevention of fungal infection due to C. albicans using the in vitro cel-

lular model Caco-2 and the in vivo model C. elegans. To overcome the experimental limits of

the in vitro model, we conducted a mechanistic study solely on the C. elegans model. The

worm survival and gene expression in response to the pathogen and/or the probiotic were

evaluated.

2 Material and methods

2.1 Microbial strains and growth conditions

The E. coli OP50 strain was provided by the Caenorhabditis Genetics Center (Minneapolis,

MN, USA) and was grown on Luria Broth (LB, Miller’s Modification) (Conda, Madrid, Spain)

at 37 ˚C overnight. The L. rhamnosus Lcr351 strain was provided by biose1 (Aurillac, France)

and was grown in de Man, Rogosa, Sharpe (MRS) broth (bioMérieux, Marcy l’Etoile, France)

at 37 ˚C overnight. C. albicans ATCC 10231 was grown in yeast peptone glucose (YPG) broth

pH 6.5 (per L: 10 g yeast extract, 10 g peptone, 20 g glucose) at 37 ˚C for 48 h. Microbial sus-

pensions were spun down for 2 min at 1,500 rpm (Rotofix 32A, Hettich Zentrifugen, Tuttlin-

gen, Germany) and washed with M9 buffer (per L: 3 g KH2PO4, 6 g Na2HPO4, 5 g NaCl, 1 mL

1 M MgSO4) to obtain a final concentration of 100 mg.mL-1.

2.2 Influence of Lcr351 on C. albicans growth and on C. albicans biofilm

formation on Caco-2 cell monolayers

Growth inhibition of C. albicans by the probiotic strain Lcr351 was examined using the

human colorectal adenocarcinoma cell line Caco-2 [39]. Caco-2 cells were grown in Dulbec-

co’s modified Eagle’s minimal essential medium (DMEM, Life Technologie, Villebon-sur-
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Yvette, France) supplemented with 20% inactivated foetal calf serum (Life Technologie) at

37 ˚C with 5% CO2 in air atmosphere. For the assays, the cells were seeded at a concentration

of 3.5x105 cells.well-1 in 24-well plates (Dutscher, Brumath, France) and placed in growth con-

ditions for 24 h. Microbial strains were grown according to Nivoliez et al. [24]. After growth,

cell culture medium was removed and replaced by 1 mL of DMEM and 250 μL of Lcr351 cul-

ture (108 CFU.mL-1) in each well and incubated for 24 h. Two hundred and fifty microliters of

C. albicans culture at different concentrations (102, 103, 104, 105, 106 and 107 CFU.mL-1) were

added to each well. After incubation for 24 and 48 h, the inhibition of C. albicans by Lcr351

was evaluated. One hundred microliters of suspension were taken from each of the wells, and

the number of viable bacteria and/or yeasts was determined by plating serial dilutions of the

suspensions onto MRS or Sabouraud agar plates. For the measurement of C. albicans biofilm

formation, after incubation for 48 h, the wells were washed twice with 0.5 mL of PBS and cells

were harvested with 1 mL of trypsin at 37 ˚C. For the inhibition assay, the number of viable

bacteria and/or yeasts was determined by plating serial dilutions of the suspensions onto MRS

or Sabouraud agar plates. The plates were incubated at 37 ˚C for 72 h (MRS) or 48 h (Sabour-

aud). Each assay was performed three times independently and contained two technical

replicates.

2.3 C. elegans maintenance

C. elegans N2 (wild-type) and TJ356 (daf-16p::daf-16a/b::GFP + rol-6(su1006)) strains were

acquired from the Caenorhabditis Genetics Center. The nematodes were grown and main-

tained at 20 ˚C on nematode growth medium (NGM) (per L: 3 g NaCl; 2.5 g peptone; 17 g

agar; 5 mg cholesterol; 1 mM CaCl2; 1 mM MgSO4, 25 mL 1 M potassium phosphate buffer at

pH 6) plates supplemented with yeast extract (4 g.L-1) (NGMY) and seeded with E. coli OP50

[40]. For all experiments, wild-type C. elegans N2 were used except for the study of the localiza-

tion of DAF-16 (TJ356 strain).

2.4 C. elegans synchronization

To avoid variations in results due to age differences, a worm synchronous population was

required. Gravid worms were washed off using M9 buffer and spun down for 2 min at 1,500

rpm. Five millilitres of worm bleach (2.5 mL of M9 buffer, 1.5 mL of bleach, 1 mL of 5 M

sodium hydroxide) was added to the pellet and vigorously shaken until adult worm body dis-

ruption. The action of worm bleach was stopped by adding 20 mL of M9 buffer. The egg sus-

pension was then spun down for 2 min at 1,500 rpm and washed twice with 20 mL of M9

buffer. Eggs were allowed to hatch under slow agitation at 25 ˚C for 24 h in approximately 20

mL of M9 buffer. L1 larvae were then transferred onto NGMY plates seeded with E. coli OP50

until they reached the L4/young adult stage.

2.5 C. elegans bodyb size measurement

Individual adult worms were imaged using an Evos FL microscope (Invitrogen, Eugene, USA,

10X magnification). After reaching the L4 stage, they were transferred onto NGMY plates pre-

viously seeded with the probiotic strain Lcr351, and their sizes were measured daily for three

days. The length of the worm body was determined using ImageJ software as described by

Mörck and Pilon (41) and compared to E. coli OP50-fed worms. At least 10 nematodes per

experiment were imaged in at least three independent experiments.

Lcr35 as a candidiasis preventive treatment
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2.6 C. elegans lifespan assay

Synchronous L4 worms were transferred to NGMY with 0.12 mM 5-fluorodeoxyuridine

FUdR (Sigma, Saint-Louis, USA) to avoid egg hatching and seeded with 100 μL of microbes at

100 mg.mL-1 microbial strain (~50 worms per plate) as previously stated. The plates were kept

at 20 ˚C, and live worms were scored each day until the death of all animals. An animal was

scored as dead when it did not respond to a gentle mechanical stimulation. This assay was per-

formed as three independent experiments with three plates per condition.

2.7 Effects of L. rhamnosus Lcr351 on candidiasis in C. elegans
Sequential feeding with Lcr351 and C. albicans were induced in C. elegans in all experiments

(preventive assays). As control groups, monotypic contamination was induced in C. elegans by

inoculation with only C. albicans, Lcr351 or E. coli OP50.

2.7.1 Preparation of plates containing probiotic bacteria or pathogenic yeasts. One

hundred microliters of Lcr351 or E. coli OP50 suspension (100 mg.mL-1) was spread on

NGMY + 0.12 mM FUdR plates and incubated at 37 ˚C overnight. Concerning C. albicans
strains, 100 μL of suspension was spread on Brain Heart Infusion BHI (Biokar Diagnostics,

Beauvais, France) + 0.12 mM FUdR plates and incubated at 37 ˚C overnight.

2.7.2 Survival assay: Preventive treatment. The survival assay was performed according

to the work of de Barros [38], with some modifications. During a preventive treatment, young

adult worms were placed on plates containing Lcr351 at 20 ˚C for different times (2, 4, 6 and

24 h). Next, the worms were washed with M9 buffer to remove bacteria prior to being placed

on C. albicans plates for 2 h at 20 ˚C. Infected nematodes were washed off plates using M9

buffer prior to being transferred to a 6-well microtiter plate (approximately 50 worms per

well) containing 2 mL of BHI/M9 (20%/80%) + 0.12 mM FUdR liquid assay medium per well

and incubated at 20 ˚C. For the control groups (i.e., E. coli OP50 + C. albicans, E. coli OP50

only, Lcr351 only and C. albicans only), worms were treated in the same way. Nematodes

were observed daily and were considered dead when they did not respond to a gentle mechani-

cal stimulation. This assay was performed as three independent experiments containing three

wells per condition.

2.8 Colonization of C. elegans intestine by C. albicans
To study the colonization of the worm gut by the pathogen C. albicans, fluorescent staining of

the yeast was performed. The yeast was stained with rhodamine 123 (Yeast Mitochondrial

Stain Sampler Kit, Invitrogen) according to the manufacturer’s instructions. A fresh culture of

C. albicans was performed in YPG broth as described before, 1.6 μL of rhodamine 123 at 25

mM was added to 1 mL of C. albicans suspension and incubated at room temperature in the

dark for 15 min. The unbound dye was removed by centrifugation (14,000 rpm for 5min at 4

˚C) (Beckman J2-MC Centrifuge, Beckman Coulter, Brea, USA) and washed with 1 mL of M9

buffer. Subsequently, the nematodes were fed with E. coli OP50 or Lcr351 on NGMY plates

for 4 h and then with labelled C. albicans on BHI plates for 72 h. The nematodes were then

visualized using a fluorescence microscope at 100X magnification (Evos FL, Invitrogen).

2.9 RNA isolation and RT- quantitative PCR

Approximately 10,000 worms were harvested from NGMY plates with M9 buffer. Total RNA

was extracted by adding 500 μL of TRIzol reagent (Ambion by Life Technologies, Carlsbad,

USA). Worms were disrupted using a Precellys (Bertin Instruments, Montigny-le-Bretonneux,

France) and glass beads (PowerBead Tubes Glass 0.1 mm, Mo Bio Laboratories, USA). Beads

Lcr35 as a candidiasis preventive treatment
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were removed by centrifugation at 14,000 rpm for 1 min (Eppendorf1 5415D, Hamburg, Ger-

many), and 100 μL of chloroform was added to the supernatant. Tubes were vortexed for 30

seconds and incubated at room temperature for 3 minmin. The phenolic phase was removed

by centrifugation at 12,000 rpm for 15 min at 4 ˚C. The aqueous phase was treated with chloro-

form as previously described. RNA was precipitated by adding 250 μL of isopropanol for 4

min at room temperature and spun down at 12,000 rpm for 10 min (4 ˚C). The supernatant

was discarded, and the pellet was washed with 1,000 μL of 70% ethanol. The supernatant was

discarded after centrifugation at 14,000 rpm for 5 min (4 ˚C), and the pellet was dissolved in

20 μL of RNase-free water. RNA was reverse-transcribed using a High-Capacity cDNA

Archive kit (Applied Biosystems, Foster City, USA) according to the manufacturer’s instruc-

tions. For real-time qPCR assay, each tube contained 2.5 μL of cDNA, 6.25 μL of Rotor-Gene

SYBR Green Mix (Qiagen GmbH, Hilden, Germany), 1.25 μL of 10 μM primers (reported in

Table 1) (Eurogentec, Seraing, Belgium) and 1.25 μL of water. All samples were run in tripli-

cate. Rotor-Gene Q Series Software (Qiagen GmbH) was used for the analysis. In our study,

two reference genes, cdc-42 and Y45F10D.4, were used in all the experimental groups. The

quantification of gene-of-interest expression (EGOI) was performed according to the following

formula [41] taking into account the efficiency of the PCR for each primer pair and normaliz-

ing the expression of the gene of interest by two reference genes (cdc-42 and Y45F10D.4):

EGOI ¼
ðGOI efficiencyÞDCtGOI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcdc � 42eff iciencyÞDCtcdc� 42 � ðY45F10D:4 eff iciencyÞDCtY45F10D:5

q

The worms fed with E. coli OP50 were used as control conditions for the gene expression

calculation.

2.10 Statistical analysis

Data are expressed as the mean ± standard deviation.

The C. elegans survival assay was examined using the Kaplan-Meier method, and differ-

ences were determined using the log-rank test with R software version 3.5.0 [45], and the sur-
vival [46] and survminer [47] packages. For C. albicans growth inhibition and biofilm

formation and C. elegans growth and gene expression of the genes analysed, differences

between conditions were determined by a two-way ANOVA followed by a Fisher’s Least Sig-

nificant Difference (LSD) post hoc test using GraphPad Prism version 7.0a for Mac OS X

(GraphPad Software, La Jolla, California, USA). A p-value� 0.05 was considered significant.

Table 1. C. elegans gene primers for qPCR analysis. GOI: Gene of interest.

Gene name Gene type Forward Primer (5’– 3’) Reverse Primer (5’– 3’) Reference

cdc-42 housekeeping ATCCACAGACCGACGTGTTT GTCTTTGAGCAATGATGCGA [42]

Y45F10D.4 housekeeping CGAGAACCCGCGAAATGTCGGA CGGTTGCCAGGGAAGATGAGGC [43]

daf-2 GOI AAAAGATTTGGCTGGTCAGAGA TTTCAGTACAAATGAGATTGTCAGC [44]

daf-16 GOI TTCAATGCAAGGAGCATTTG AGCTGGAGAAACACGAGACG [44]

sek-1 GOI GCCGATGGAAAGTGGTTTTA TAAACGGCATCGCCAATAAT [44]

pmk-1 GOI CCGACTCCACGAGAAGGATA AGCGAGTACATTCAGCAGCA [44]

abf-2 GOI TCGTCCGTTCCCTTTTCCTT CCTCTCTTAATAAGAGCACC This study

fipr-22/fipr-23 GOI CCCAATCCAGTATGAAGTTG ATTTCAGTCTTCACACCGGA This study

cnc-4 GOI ATGCTTCGCTACATTCTCGT TTACTTTCCAATGAGCATTC This study

https://doi.org/10.1371/journal.pone.0216184.t001
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2.11 DAF-16 nuclear localization

DAF-16 nuclear localization was followed as described elsewhere [48] using a transgenic TJ-

356 worm strain constitutively expressing the DAF-16 transcription factor combined with

GFP (DAF-16::GFP). Once adults, worms were exposed to a single strain: E. coli OP50,

Lcr351 or C. albicans for 2, 4, 6, 24 and 76 h at 20 ˚C. A preventive approach was also con-

ducted: worms were placed in the presence of E. coli OP50 or Lcr351 for 4 h and then C. albi-
cans for 2 hh. The nematodes were subsequently imaged 2, 4, 6 and 24 h after infection. The

translocation of DAF-16::GFP was scored by assaying the presence of GFP accumulation in

the C. elegans cell nuclei using a fluorescence microscope at 40X magnification (Evos FL,

Invitrogen).

3 Results

3.1 Anti-C. albicans effects of Lcr351 on Caco-2 cell monolayer

3.1.1 Growth inhibition of CC. albicans. In the presence of Caco-2 cells, regardless of the

concentration of the C. albicans inoculum, the yeast grew to similar concentrations that ranged

from 7.48 ± 0.39 to 7.83 ± 0.34 log CFU.mL-1 after 48 h of incubation. When prophylactic

treatment was used, i.e., when the Caco-2 cells were pre-incubated with the probiotic Lcr351,

we observed an inhibition of C. albicans growth. Indeed, the bacterium induced a significant

inhibition of the yeast growth of 2 log CFU.mL-1, which then reached a concentration ranging

from 5.40 ± 0.07 to 6.05 ± 0.25 log CFU.mL-1. Two different inhibition profiles were observed

after 48 h. On the one hand, when the inoculum was highly concentrated (7 log CFU.mL-1),

we observed a decrease in the yeast population, which is a sign of cell death. On the other

hand, when the inoculum was less concentrated (2 to 4 log CFU.mL-1), we noticed that the

yeast was able to grow, although its growth seemed to stop between 5.32 ± 0.36 and 5.51 ± 0.14

log CFU.mL-1 (Table 2).

3.1.2 Inhibition of C. albicans biofilm formation. After 48h of incubation, the C. albi-
cans biofilm contained between 5.78 log CFU.mL-1 (inoculum at 102 CFU.mL-1) and 8.69 log

Table 2. Evolution of the concentration of C. albicans in the presence or absence of Lcr351 on Caco-2 cell monolayers.

Length of incubation (hh)

Concentration of C. albicans inocula (CFU.mL-1) With or without Lcr351 0 24 48

107 with 7.25 ± 0.51 6.39 ± 0.73 6.05 ± 0.25 ����

without 6.77 ± 0.10 7.29 ± 0.23 7.78 ± 0.41

106 with 5.85 ± 0.25 5.47 ± 0.12 � 5.73 ± 0.09 ���

without 5.76 ± 0.18 7.42 ± 0.27 7.69 ± 0.20

105 with 4.77 ± 0.41 5.01 ± 0.12 �� 5.49 ± 0.04 ����

without 4.60 ± 0.28 7.60 ± 0.69 7.83 ± 0.34

104 with 3.69 ± 0.21 4.92 ± 0.54 5.51 ± 0.14 �

without 3.72 ± 0.13 7.09 ± 0.59 7.48 ± 0.39

103 with 2.56 ± 0.34 3.59 ± 0.25 5.51 ± 0.16 ����

without 2.30 ± 0.17 6.60 ± 0.28 7.93 ± 0.45

102 with 1.34 ± 0.31 3.18 ± 0.76 5.32 ± 0.36 ���

without 1.34 ± 0.38 6.18 ± 1.01 7.80 ± 0.27

The results are expressed as log10 CFU.mL-1 of yeast alone (controls) or co-incubated with Lcr351 (mean ± standard deviation). A comparison between the conditions

with and without Lcr351 was performed using a two-way ANOVA followed by a Fisher’s LSD post hoc test

(p < 0.05: �; p < 0.01: ��; p < 0.001: ���; p < 0.0001: ����)

https://doi.org/10.1371/journal.pone.0216184.t002
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CFU.mL-1 of yeast (inoculum at 107 CFU.mL-1). However, since the cells were pre-exposed to

Lcr351 and for the same C. albicans inocula, we observed a significant decrease in the amount

of yeast in the biofilm: 4.32 to 5.16 log CFU.mL-1, which corresponded to an inhibition rang-

ing from 1.46 to 3.53 log. The strongest inhibition was observed in the case where the inocu-

lum of C. albicans was the most concentrated (Fig 1).

3.2 Effects of Lcr351 on C. elegans physiology

3.2.1 Lcr351 extends the C. elegans lifespan. We investigated the effects on C. elegans
lifespan induced by either the pathogenic yeast C. albicans or the probiotic Lcr351. Feeding

adult nematodes with the probiotic strain resulted in a significant increase in the mean life-

span compared to E. coli OP50-fed worms (p = 3.56.10−6) evolving from 7 to 10 days

(+ 42.9%), whereas C. albicans had no impact on the mean lifespan of C. elegans. On the

other hand, when C. albicans was used as a feeding source, worms displayed a significantly

reduced longevity (p = 1.27.10−5), which dropped from 16 to 14 days (-12.5%). Lcr351 did

not increase the worm longevity compared to E. coli OP50 (Fig 2). These results showed that

the probiotic strain ameliorated the mean lifespan without increasing the life expectancy of

the worm.

3.2.2 Lcr351 does not modify C. elegans growth. The body size of Lcr351 fed nema-

todes was compared to that of E. coli OP50-fed worms. Feeding worms with the probiotic

strain did not significantly change the growth rate or body size, as they all reached their maxi-

mal length after three days (Fig 3).

Fig 1. Determination of the C. albicans concentration in the biofilm in the presence or absence of Lcr351 (108

CFU.mL-1) on the Caco-2 cell monolayer (mean ± standard deviation). Different concentrations of yeast were

tested, and the amount present in the biofilm was evaluated after 48 h of incubation. Comparison between conditions

with and without Lcr351 was performed using a two-way ANOVA followed by a Fisher’s LSD post hoc test (p< 0.05:
�; p< 0.01: ��; p< 0.001: ���; p< 0.0001: ����).

https://doi.org/10.1371/journal.pone.0216184.g001
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3.3 Effect of Lcr351 preventive treatment on candidiasis

3.3.1 Effect of Lcr351 on C. elegans survival after C. albicans exposure. When C. ele-
gans was sequentially exposed to Lcr351 for 2 h prior to being infected by C. albicans, the

Fig 2. Influence of Lactobacillus rhamnosus Lcr351 and C. albicans on the lifespan of the C. elegans wild-type N2

strain. Worms were fed E. coli OP50 (n = 285), C. albicans ATCC 10231 (n = 242), and Lcr351 (n = 278). The mean

lifespan, where half of the population was dead, is represented on the abscissa. The asterisks indicate the p-values (log-

rank test) with E. coli OP50 as a control (p < 0.05: �; p< 0.01: ��; p< 0.001: ���).

https://doi.org/10.1371/journal.pone.0216184.g002

Fig 3. Growth of C. elegans (adult) on E. coli OP50 and on Lcr351. All results are represented as means +/- standard

deviations (ns: statistically not significant).

https://doi.org/10.1371/journal.pone.0216184.g003
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survival of the nematodes increased significantly as the mean lifespan increased from 3 to 11

days (267% increase in survival) compared with that observed with C. albicans infection alone

(p< 2.10−16). There was no significant difference in worm survival between those sequentially

exposed to Lcr351 and C. albicans and those exposed to Lcr351 only (Fig 4) (p = 1). Similar

results were obtained with the 4-hours treatment time. In that case, we observed that Lcr351

completely protected C. elegans from infection since there was no significant difference with

the Lcr351 control condition without infection (p = 0.4).

For longer treatment times (6 and 24 h), we observed a significant decrease in the mean sur-

vival in the presence of Lcr351 (condition 6 h: p = 0.04, condition 24 h: p<2.10−16) or Lcr351

and C. albicans (condition 6 h: p = 9.10−13, condition 24 h: p< 2.10−16) compared to the treat-

ment of 4 h. Taken together, the results showed that the 4 probiotic treatment was the most

protective against infection.

3.3.2 Influence of Lcr351 on C. albicans colonization of the worm gut. To determine

whether the anti-C. albicans effects observed were due to the removal of the pathogen, coloni-

zation of the nematode intestine by C. albicans was observed by light microscopy. After three

days of incubation in the presence of the pathogen, wild-type worms exhibited notable coloni-

zation of the entire digestive tract (Fig 5A). However, this strain of C. albicans was not able to

form hyphae within the worm. We subsequently applied prophylactic treatment to the worms

for 4 h before infecting them with yeast. We observed that after treatment with E. coli OP50

Fig 4. Preventive effects of Lcr351 against C. albicans ATCC 10231. Mean survival, where half of the population

was dead, is represented on the abscissa. The asterisks indicate the p-values (log-rank test) against E. coli OP50

(p< 0.05: �; p< 0.01: ��; p< 0.001: ���). Infection duration: 2 hour;2-hour preventive treatment (E. coli OP50

(OP50, n = 126); C. albicans ATCC 10231 (CA, n = 424); Lcr351 (Lcr35, n = 93); E. coli OP50 + C. albicans (OP50 +

CA, n = 287); Lcr351 + C. albicans (Lcr35 + CA, n = 224));4-hour preventive treatment (E. coli OP50 (OP50,

n = 313); C. albicans ATCC 10231 (CA, n = 424); Lcr351 (Lcr35, n = 259); E. coli OP50 + C. albicans (OP50 + CA,

n = 120); Lcr351 + C. albicans (Lcr35 + CA, n = 164)); 6-hour preventive treatment (E. coli OP50 (OP50, n = 222); C.

albicans ATCC 10231 (CA, n = 424); Lcr351 (Lcr35, n = 165); E. coli OP50 + C. albicans (OP50 + CA, n = 339);

Lcr351 + C. albicans (Lcr35 + CA, n = 300)); 24-hour preventive treatment (E.treatment coli OP50 (OP50, n = 248);

C. albicans ATCC 10231 (CA, n = 424); Lcr351 (n = 170); E. coli OP50 + C. albicans (OP50 + CA, n = 220); Lcr351 +

C. albicans (Lcr35 + CA, n = 183)).

https://doi.org/10.1371/journal.pone.0216184.g004
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(Fig 5B) or the probiotic Lcr351 (Fig 5C) followed by infection, the yeast C. albicans was still

detected in the digestive tract of the host.

3.4 Mechanistic study

3.4.1 Modulation of C. elegans gene expression induced by Lcr351 and C. albicans. To

elucidate the mechanisms involved in the action of Lcr351 against C. albicans, we studied the

expression of seven C. elegans genes (Table 3). We targeted three groups of genes: daf-2 and

daf-16 (insulin signalling pathway), which are involved in host longevity and anti-pathogenic-

ity; sek-1 and pmk-1 (p38 MAPK signalling pathway), which concern the immune response;

and abf-2, cnc-4 and fipr-22/fipr-23, which encode antimicrobial proteins. We noted that

Lcr351 tended to induce an overexpression of daf-16 (p = 0.1635) and had no effect on daf-2
(p = 0.2536), while C. albicans tended to induce an upregulation of both genes (p = 0.1155 and

p = 0.2396, respectively). We did not observe any expression modulation of daf-2 or daf-16
using a preventive treatment with E. coli OP50 (p = 0.1258 and p = 0.1215, respectively) or

with Lcr351 (p = 0.1354 and p = 0.3021, respectively).

The expression of the sek-1 and pmk-1 immunity genes was significantly downregulated in

the presence of Lcr351 by 2.63-fold (p = 0.015) and 2.78-fold (p = 0.0149), respectively, while

they were upregulated by C. albicans 3.21-fold (p = 0.0247) and 4.33-fold (0.1618), respectively.

In the control condition, in the presence of E. coli OP50 and C. albicans, sek-1 was repressed

2.70 times (0.37-fold with p = 0.0204), but pmk-1 tended to be overexpressed. Preventive treat-

ment with Lcr351 had the same effect on sek-1 (p = 0.0016) but induced no change in pmk-1
expression (p = 0.8205). Finally, among the 3 antimicrobials encoding the genes tested, only

the expression of cnc-4 seemed to be modulated in the presence of Lcr351, and cnc-4 was

overexpressed (p = 0.1753). C albicans also seemed to induce the overexpression of abf-2
(p = 0.2213) and cnc-4 (p = 0.3228), but interestingly, fipr-22/fipr-23 (p = 0.8225) expression

remained unchanged. Overexpression of abf-2 (6.25-fold, p = 0.3158) and significant

Fig 5. C. albicans colonization of the C. elegans gut after 72 h (A) and after a 4-hour prophylactic treatment with

E. coli OP50 (B) or Lcr351 (C). The green colour represents yeast labelled with rhodamine 123. Scale bar, 10 μm.

https://doi.org/10.1371/journal.pone.0216184.g005

Table 3. Relative expression of the C. elegans genes of interest in the presence of Lcr351 and C. albicans in pure or sequential cultures in comparison with the con-

trol condition E. coli OP50 (alone).

Genes of interest

Insulin signalling pathway p38 MAPK signalling pathway Antimicrobials

Conditions daf-2 daf-16 sek-1 pmk-1 abf-2 cnc-4 fipr-22 /

fipr-23
Lcr351 1.35 2.18 0.38 �� 0.36 � 1.70 3.39 0.61

C. albicans 2.48 3.31 3.21 � 4.33 11.33 22.32 1.08

E. coli OP50 + C. albicans 1.82 0.53 0.37 � 3.40 4.69 0.16 �� 0.78

Lcr351 + C. albicans 0.69 1.74 0.31 �� 1.15 1.61 0.41 � 0.42 �

Genes were considered differentially expressed when the p-value was lower than 0.05 (�) or 0.01 (��) according to Fisher’s LSD test and simultaneously when the

expression change was at least 2 times or 0.5 times.

https://doi.org/10.1371/journal.pone.0216184.t003
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repression of cnc-4 (p = 0.0088) were observed when E. coli OP50 was added before infection

with C. albicans. Using a Lcr351 preventive treatment, cnc-4 and fipr-22/fipr-23 were signifi-

cantly repressed (p = 0.0396 and p = 0.0385, respectively).

3.4.2 Influence of Lcr351 and C. albicans on DAF-16 nuclear translocation. To further

investigate the mechanisms involved in the anti-C. albicans effects of Lcr351, we followed the

nuclear translocation of the DAF-16/FOXO transcription factor using the DAF-16::GFP strain.

Whatever the incubation time, the worms did not show any translocation of DAF-16 when

fed with E. coli OP50 (Fig 6A). When Lcr351 was used as food, we observed a nuclear translo-

cation of the transcription factor, taking place gradually from 4 h of incubation with a maxi-

mum intensity in the nuclei after 6 hh. The distribution of DAF-16 was both cytoplasmic and

nuclear (Fig 6B). When the nematode was fed exclusively with C. albicans, we observed a rapid

nuclear translocation of the transcription factor after two hours of incubation in the presence

of the pathogen (Fig 6C). This translocation was maintained throughout the experiment, i.e.,

76 h.

3.4.3 Effect of Lcr351 preventive treatment on DAF-16 nuclear translocation. We

investigated the effect of preventive treatment on the cellular localization of DAF-16 over time

after infection by C. albicans using the C. elegans DAF-16::GFP mutant. When nematodes

were first fed with E. coli OP50 before being infected, DAF-16 was fully observed in the nuclei

Fig 6. DAF-16 cellular localization in C. elegans transgenic strain TJ-356 (daf-16p::daf-16a/b::GFP + rol-6
(su1006)) expressing DAF-16::GFP. Worms fed on E. coli OP50 (A), on Lcr351 (B) and on C. albicans ATCC 10231

(C). Scale bar, 100 μm.

https://doi.org/10.1371/journal.pone.0216184.g006
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up to 4 h after infection and then gradually translocated to the cytoplasm after 24 h (Fig 7A).

Conversely, the worms that were first exposed to Lcr351 and then to the pathogen showed a

different response, and the transcription factor was found only in the nuclei (Fig 7B).

4 Discussion

The selection of microbial strains as probiotics is based on a combination of functional probi-

otic properties revealed first by classical basic in vitro testing. Beyond resistance to gastric pH

or bile salts, the ability of a strain to adhere to epithelial cells is frequently studied since this

represents a prerequisite for mucosal colonization as part of the anti-pathogen activity. Adhe-

sion is also a key parameter for pathogens since it allows them to release toxins and enzymes

directly into the target cell, facilitating their dissemination [49]. Nivoliez et al. showed that the

Fig 7. Impact of preventive Lcr351 treatment on DAF-16 cellular localization in the C. elegans transgenic strain

TJ-356 expressing DAF-16::GFP. Worms fed with E. coli OP50 + C. albicans (A) and on Lcr351 + C. albicans (B).

Scale bar, 100 μm.

https://doi.org/10.1371/journal.pone.0216184.g007
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native probiotic strain Lcr351 adhered rather weakly to Caco-2 intestinal cells, while the

industrial formulation increased this capacity [24]. We have demonstrated here the ability of

Lcr351 to inhibit the growth of the pathogen C. albicans and the formation of a C. albicans
biofilm on an intestinal cell monolayer in vitro. As described by Jankowska et al., the low

adherence of L. rhamnosus compared to C. albicans seems to reflect that competition for mem-

brane receptors is not the only mechanism. It is probably related to the synthesis of antifungal

effectors by the probiotic as well [49]. Exopolysaccharides (EPS) secreted by certain lactobacilli

have been shown to modify the surface properties (hydrophobicity) of microorganisms with

direct consequences on their adhesion capacities [50]. EPS have antifungal effects by inhibiting

C. albicans growth and adhesion to epithelial cells. The surface polysaccharides of L. rhamno-
sus GG, a strain phylogenetically close to Lcr35, appear to interfere in the binding between the

fungal lectin-like adhesins and host sugars or between the fungal cell wall carbohydrates and

their epithelial adhesion receptor [51]. A recent study has shown that purified fractions of exo-

polysaccharides also interfered with adhesion capacities of microorganisms [52]. It would be

interesting to assay the inhibitory properties of Lcr351 EPS. However, to fully understand the

probiotic mechanisms, in vitro approaches are too limited. Moving to an in vivo approach is

mandatory to better understand the interactions between microorganisms (probiotics and

pathogens) and the host response.

C. elegans is considered a powerful in vivo model for studying the pathogenicity of microor-

ganisms [34,35,53–55] and the antimicrobial properties of lactic acid bacteria [56,57]. The

nature of the nutrient source is an important parameter that has a great influence on nematode

physiology. Regarding worm growth, it appears that there is some disparity depending on the

type of lactic acid bacteria used to feed C. elegans. Bifidobacterium spp. had no influence on the

size of adult worms, although their growth was slightly slowed down [58,59]. Lactobacillus spp.

by contrast usually result in reduced growth rates and sizes and are sometimes even lethal to

the larvae [60,61]. The mechanisms for explaining the longevity extension induced by lactic

acid bacteria are not fully understood, but some authors have suggested the involvement of

caloric restriction [62–64]. In our case, similar to the work of Komura et al., it seems that

Lcr351 did not induce pro-longevity effects through caloric restriction insofar as the growth

of Lcr351-fed nematodes is identical compared to E. coli OP50-fed worms [65].

After demonstrating the preventive effect of Lcr35 against C. albicans in the nematode, we

decided to better understand the protective effect at the mechanistic level. In C. elegans, the

insulin/IGF-1 signalling pathway is strongly involved in regulating the longevity and immu-

nity of the animal. Signal transduction is mediated through DAF-16, a highly conserved

FOXO transcription factor [66]. Using the GFP fusion protein, we have shown that Lcr351

induces translocation of DAF-16 to the nucleus, suggesting that DAF-16 is involved in the pro-

biotic mechanisms of action of Lcr351. According to several studies, our data suggested that

the pro-longevity effect of Lcr351 implements mechanisms involving different regulatory

pathways linked to DAF-16, such as the DAF-2/DAF-16 insulin pathway [67] or the c-Jun N-

terminal kinase JNK-1/DAF-16 pathway [59]. The absence of modulation of daf-2 expression

in the presence of Lcr351 suggests that the DAF-2/DAF-16 pathway is not involved and that

the anti-Candida capacity of Lcr351 is due to the JNK signalling pathway. The involvement of

these pathways needs to be followed at proteomic and phosphoproteomic levels to validate this

hypothesis.

The yeast C. albicans is capable of inducing a severe infection in C. elegans, causing a rapid

death of the host and even after a very short contact time. This infection is first manifested by

the colonization of the whole intestinal lumen by yeasts and then by the formation of hyphae

piercing the cuticle of the nematode leading to its death [34,68]. In addition, it has been shown

that strains of C. albicans incapable of forming hyphae, such as SPT20 mutants, have a
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significantly reduced pathogenicity in C. elegans as well as in Galleria mellonella or Mus mus-
culus models while still being lethal [37]. In the nematode, it seems that the distention of the

intestine caused by the accumulation of yeast is one of the causes of the death of the animal

[35]. Recently, de Barros et al. [38] showed that L. paracasei 28.4 had anti-C. albicans activity

both in vitro and in vivo by inhibiting filamentation of yeast protecting the nematode.

Although C. albicans ATCC 10231 is able to form hyphae during in vitro assays, it failed to kill

C. elegans by filamentation. Therefore, it is likely that Lcr351 represses virulence factors in

yeast other than filamentation.

From a mechanistic point of view, several hypotheses can explain the anti-C. albicans prop-

erties of Lcr351 in the nematode: a direct interaction between the two microorganisms as well

as an immunomodulation of the host by the probiotic. According to Nivoliez et al. demon-

strating the inhibitory capacity of Lcr351 with respect to the pathogen during a co-culture

experiment [24], our data showed Candida albicans inhibition on mammalian cell monolayers.

This inhibition may be due to nutrient competition (i.e., glycogen consumption) or to the pro-

duction of toxic metabolites against the yeast [24]. We have shown that even after preventive

treatment with the probiotic, the digestive tract of the nematode is colonized by the pathogen

without showing a pathological state. This suggests that Lcr351 induced repression of viru-

lence factors in C. albicans, as shown by De Barros et al. [38]. Moreover, an in vitro study on

human dendritic cells revealed that Lcr351 induced a large dose-dependent modulation not

only in the expression of genes mainly involved in the immune response but also in the expres-

sion of CD, HLA and TLR membrane proteins. Highly conserved and found in C. elegans,
TLR also plays a role in the antipathogenic response of the nematode by activating the p38

MAPK pathway [59]. A pro-inflammatory effect has also been shown through cytokine secre-

tion, such as IL-1β, IL-12, TNFα. However, this immunomodulation takes place only in the

presence of a high concentration of Lcr351 [69]. In C. elegans, DAF-16 is closely related to

mammalian FOXO3a, a transcription factor involved the inflammatory process [70]. There-

fore, nuclear translocation of DAF-16 by Lcr351 can be interpreted as the establishment of an

inflammatory response in the host allowing it to survive an infection. In our study, we

observed that the duration of the Lcr351 treatment influences the preventive anti-C. albicans
effect on nematode lifespan, suggesting that the quantity of Lcr351 ingested and/or the treat-

ment period of time may have an impact on the efficiency of the treatment. A thorough tran-

scriptional study will be interesting to characterize the dose-dependent effect probiotics

administered. We demonstrated that Lcr351 induces a transcriptional response in the host by

activating the transcription factor DAF-16 and repressing the p38 MAPK signalling pathway,

including in the presence of C. albicans. We also observed the repression of the genes encoding

antimicrobials when fungal infection was preceded by probiotic treatment. The work of Puk-

kila-Worley et al. [35] demonstrated that C. albicans induced a fast antifungal response in the

host inducing the expression of antimicrobial genes such as abf-2, cnc-4, cnc-7, fipr-22 and

fipr-23. With the exception of abf-2, all these genes are under the control of PMK-1, whose

inactivation makes the nematode susceptible to infection. In our study, we showed that an

Lcr351 preventive treatment induced a down-regulation in the cnc-4, fipr-22 and fipr-23
genes, while pmk-1 remained unchanged compared to the control condition. Based on the

data of Pukkila-Worley et al., the absence of overexpression of these genes in the presence of

C. albicans after pre-exposure with Lcr351 suggests again that the probiotic inhibits yeast viru-

lence, obviating the establishment of a defence mechanism by the host. Similar results have

also been observed with Salmonella Enteritidis, where the authors hypothesize that the probi-

otics used induce immunotolerance in the nematode rather than the synthesis of antimicrobi-

als [58]. The use of C. elegans mutants or RNAi could be further considered to decipher the

signalling and regulation mechanisms.
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5 Conclusion

This study demonstrates the preventive anti-C. albicans properties of Lcr351 using both in
vitro and in vivo models. The probiotic strain inhibits the growth of the pathogenic yeast and

its ability to form biofilms on intestinal cells in vitro. Lcr351 allows protection of the host C.

elegans against infection despite the presence of C. albicans in its gut. Lcr351 during C. albi-
cans infection seems to induce a decrease in the immune response of the nematode (downre-

gulation of sek-1, pmk-1, abf-2, cnc-4 and fipr-22/23). Extra studies on C. elegans whole

transcriptome modulation by Lcr351 would be interesting to further reveal other mechanisms

involved. The study of the yeast virulence gene modulation induced by Lcr351 could be very

informative about the complex mechanisms of the probiotic mechanisms of action. Addition-

ally, in a second phase, the realization of a comparative study between Lcr351 and other Lacto-
bacillus strains (L. rhamnosus, L. casei, L. paracasei) as well as between different strains of CC.

albicans, including clinical strains, could be of interest to determine the degree of strain depen-

dence of our results.

Acknowledgments

Some strains were provided by the CGC, which is funded by the NIH Office of Research Infra-

structure Programs (P40 OD010440).
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67. Grompone G, Martorell P, Llopis S, González N, Genovés S, Mulet AP, et al. Anti-Inflammatory Lacto-

bacillus rhamnosus CNCM I-3690 Strain Protects against Oxidative Stress and Increases Lifespan in

Caenorhabditis elegans. PLoS One. 2012; 7(12).

68. Breger J, Fuchs BB, Aperis G, Moy TI, Ausubel FM, Mylonakis E. Antifungal chemical compounds iden-

tified using a C. elegans pathogenicity assay. PLoS Pathog. 2007; 3(2):0168–78.

69. Evrard B, Coudeyras S, Dosgilbert A, Charbonnel N, Alamé J, Tridon A, et al. Dose-dependent immuno-
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