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1 Introduction 

This position paper presents how the engineering of interactive system may be impacted 

when these systems are designed to be deployed in safety critical contexts. These domains 

are specific as they are usually driven by constraining standards defining precisely best 

practices and mandatory processes to be applied. We thus discuss on how it is possible to 

take into account these constraints in real-life domains where critical and non-critical com-

ponents may coexist. Engineering approaches in this context must jointly exploit formal 

description techniques (for the critical parts) and standard software production techniques 

(for the non-critical part). More precisely, we will show how Engineering Interactive Sys-

tems in these domains impact particularly design and development processes, systems ar-

chitectural aspects and developers’ tasks. 

In the next section, we present the constraints introduced by the safety critical context 

on development processes that embed certification activities as well as standards (with a 

focus on aviation industry). Other domain like space, nuclear or Air Traffic Management 

propose specific standards with stronger or softer constraints but the overall approach re-

mains the same. The third section presents how software and (more globally) system ar-

chitectures must encompass specificities of current interactive systems and how they are 

deeply impacted by their critical nature. The fourth section focuses on the human aspect 

highlighting the specific need for usable tools to support software and system engineers. 

Last section concludes the paper and provides directions for future work.  

2 Constraints from Safety Critical Context 

When dealing with safety critical systems, it is important to notice that all components of 

the whole system do not have necessarily the same level of criticality, requiring to care-

fully identify each of them in the early stages of the development process. 

In this section we present how this identification of levels of criticality is performed 

and more precisely how it is handled in civil aviation.  

Copyright © 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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2.1 Development Assurance Level (DAL) identification 

In civil aviation, the criticality level of a system (or component) is classified by means of 

five Development Assurance Levels (DAL), introduced in the DO-178C standard [6] for 

software components and in the DO-254 standard [7] for electronic hardware components. 

These levels are directly linked to failure condition categories defined by certification au-

thorities such as EASA (European Aviation Safety Agency) or FAA (Federal Aviation 

Administration). Table 1 presents the five Development Assurance Levels associated with 

their failure condition category and its description (summarized from the EASA CS-25 

standard [5]). As presented in the first row of Table 1, a failure having catastrophic con-

sequences (failure condition column) must not occur more often than once per 109 hours 

of functioning (failure rate column). Such software must be developed following DAL A 

processes and methods as defined in DO-178C [6].  

Table 1. System Development Assurance Level for civil aircrafts 

According to this standard the first two rows of Table 1 (colored in grey) correspond to 

so-called critical systems while systems in the lower rows are called non-critical. 

                                                        

The main difference between critical and non-critical software is that a lot of verifica-

tion activities must be satisfied with independence, thus leading to very expensive soft-

ware and system development. Identifying accurately the correct level of DAL is thus very 

important in order to invest adequately development resources (not overspend on low 

DAL systems and not underspend on critical software). 

ARINC specification 661 [1] aims at providing a common ground for building interac-

tive software in the field of aeronautical industry. All interactive software in cockpits (fol-

lowing ARINC 661 specification) is categorized as DAL C and thus can only be used for 

the command and control of non-critical systems. On such systems, assuring that operators 

will be able to perform their activities (even if the interactive system exhibits failures) is 

an important issue to address. The zero-defect approaches (usually based on formal ap-

proaches such as [2]) try to guarantee that the interactive system will be defect free and if 

it is a good mean for removing faults and bugs at development time, natural faults (such 

as bit-flips due to radiations) are beyond their reach. Fault tolerance mechanisms are thus 

to be added to guarantee that both input and output devices are not becoming single points 

of failure, requiring to add redundancy, diversification and segregation of these de-

vices/software as proposed in [12] following ARINC 653 portion management standard 

as in [13].  

Development As-

surance Level 

Failure condi-

tion categories 

Description of the failure 

 conditions 

Failure rate 

(failures/hour) 

A Catastrophic 
Failure conditions that may cause a 
crash 

Extremely improbable 
10-9 +fail safe  

B Hazardous 

Failure has a large negative impact 

on performance, or reduces the 

ability of crew to operate the plane 

Extremely remote 
10-7 

C Major 
Failure is significant, but has lesser 

impact than hazardous 

Remote 

10-5 

D Minor 
Failure is noticeable, but has lesser 

impact than Major 

Probable 

10-3 

E No safety effect No impact on dependability Any range 
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2.2 Certification 

As explained previously, the CS-25 standard [5] is the standard for certification specifica-

tion of the EASA for large aeroplanes. This document identifies requirements dedicated 

to the cockpit in section 1302 called “Installed systems and equipment for use of the flight 

crew”. Following this standard, the cockpit must allow the crew to safely perform all their 

tasks and avoid error prone behaviors.  

However, during operations, some of the pilot tasks may involve several aircraft sys-

tems with different DALs. For instance, after perceiving an alarm on the ECAM display 

the pilot might decide to decrease flight level. In that case, he will successively use infor-

mation displayed by the Flight Warning System (DAL C) and trigger commands using the 

Flight Control Unit (DAL A). In order to comply with CS 25 1302 it is thus important to 

develop methods and tools capable of ensuring that goals can be reached and tasks can be 

performed on systems of various DALs involving different techniques (formal and non-

formal) for their development as presented in [11].  

2.3 Standards 

An important task in processes for critical systems is to ensure that high-level requirements 

(HLR) have been explicitly (and in an exhaustive manner) gathered and described. Be-

yond, the designs and developments must demonstrate that they take into account each of 

these requirement and that such traceability is also part of the certification processes (e.g. 

in Air Traffic Management [9]). Taking into account all HLR into development is an ob-

jective and this is assessed by external bodies (for DAL A and DAL B software). DO-

178C only identifies what must be done while annexes to that standard identify how thing 

should/could be done. For instance, DO-333 annex [8] (page 101) states that high-level 

requirements should be expressed in temporal logic (and more precisely Computational 

Tree Logic [10]) while low-level requirements (LLR) should be expressed by state-based 

description techniques. Compliance between these two representations must be done using 

model-checking techniques [3] (as illustrated by Fig. 1). 

 

Fig. 1. Analysis Process (DO-178 C [6]) 

Dealing with interactive systems introduces specific HLRs that mix together a system 

point of view (hardware and software) and an operation point of view (users’ tasks). 

This would require the extension of such standards with the use of specific formal de-

scription techniques covering both the system side and the operation side. 

Such approach has been proposed by [11], highlighting (only for standard WIMP inter-

action techniques), that a process should ensure completeness and consistency between a 
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mixed-criticality interactive application and users’ tasks to support design of multiple 

DAL systems: 

 Completeness: Aims at assessing if there is a system artifact dedicated to each ex-

pected supported user tasks. For verification purpose, a focus must be put on having a 

correspondence for each critical task. 

 Consistency: As tasks may be critical, they should be performed using a critical part 

of the application (higher DALs), while standard tasks may be performed without any 

attention put on the criticality of the interactive software part they are performed with 

(lower DALs). 

3 Architectures to deal with complexity 

The software architecture of an interactive critical system must be able to follow the evo-

lution of systems (input devices, output devices, interaction techniques…). Such an ever-

changing context makes it very difficult to provide generic approaches to support design, 

development and deployment. Designers need to go beyond the interactive application 

design by providing new interaction techniques that encompass new input and output 

deices which can be very cumbersome to design and evaluate. Developers of these systems 

are repetitively facing the same issues of new devices integration, software redesign (due 

to device drivers’ evolution) and above all poor reliability of the resulting system due to 

the low level of maturity of the various components to integrate. Such constraints are even 

stronger with high DAL critical components.  

As proposed in [4], ensuring the modularity of the entire interactive system (including 

hardware and software parts), leads to identify the building bricks that must be developed 

for integrating new devices as well as the building bricks for merging information from 

these devices in order to offer multimodal interactions to users. The proposed architecture 

thus enables the separation of a complex system into several components that are then 

easier to apprehend, allowing the separation of concerns and the locality of modification. 

4 Usable Tools to cope with complexity  

Providing support for process and architecture of complex interactive critical systems re-

quires the tools to cope with three challenges: they must be mature enough to support 

industrial processes, they must support developers’ tasks, they must support models engi-

neering. 

4.1 Assessing the maturity of tools 

The Technology Readiness Levels (TRLs), defined in ISO 16290:2013 [15] is a scale from 

1 (Basic principles observed and reported) to 9 (Actual system “flight proven” through 

successful mission operations) that defines conditions to be met to qualify the maturity of 

an element within a system. Initially designed for space system hardware, it can be used 

in many domains, including tool support. 
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While industrial processes may require specific TRL for their tool support, it is im-

portant to assess the maturity of proposed tools. However, in the field of interactive soft-

ware engineering, there is not any communication about the TRL of tools involved in 

engineering interactive systems. We know for instance that PetShop [19] has gone through 

TRL3 (Analytical and experimental critical function and/or characteristic proof-of-con-

cept) at Airbus, but this did not lead to any publication or advertisement. 

4.2 Supporting models engineering 

Several tasks must be performed when producing models during the development of an 

interactive system: 

 When designing and developing interactive systems, the scope of the modeling activi-

ties must be identified in order to determine which elements (related to the interactive 

system to be developed) will be modeled and which types of models will be used. Then, 

the user/engineer must analyze the extant system, as well as the needs and requirements 

for the interactive system to be developed. After this analysis step, the production of 

the models starts with the editing step. That step produces a first version of models.  

 The verification step is then performed for checking the models in order to ensure that 

they are complete and consistent. 

 The validation step will then be initiated to check whether the model meets specified 

needs and requirements. 

This editing-verification-validation loop will be performed again until the models are 

complete, consistent and meet needs and requirements. When introducing several kinds of 

models (e.g. task models and system models), the whole process thus must include the 

cross validation of these models in order to check if they are complete and consistent. 

While these steps are presented in an abstract way, the tools must be tuned for each nota-

tion in order to best support models engineering. In [14] authors report how action theory 

model can be used to design and evaluate modelling tools but only for notations based on 

Petri nets.  

4.3 Supporting developer’s tasks 

In [17], Brad A. Myers stated that “Programmers are Users Too…”, arguing that is it nec-

essary to promote specific design processes and evaluation method to developers.  

Such approach must be extended to modelling activities. For instance, applying (in that 

context too) the seven stages of Norman action theory [18] to modeling work highlights 

specific activities to consider. The two main stages we are focusing on are:  

 On the execution side, the activity of going from an intention to its actual transcription 

into some model,  

 On the evaluation side, the activity of perceiving model behavior and interpreting this 

perception. 

One of the main advantages of this model is that it provides a generic framework for 

investigating where the main difficulties can occur during system modeling which is a 
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highly demanding task on the engineer’s side. This framework thus provides design rules 

for environments to support user's activities and reduce their difficulties. 

Norman action theory provides a generic framework for investigating where the main 

difficulties can occur during system modeling activities performed by an engineer. Each 

engineer task described in the previous section (editing, verification, validation and cross-

type validation of models) is a goal that must be accomplished during the development of 

interactive systems. And for each of these goals, the seven stages of Norman action theory 

can be used to analyze the low-level activities that the engineer will execute.  

5 Conclusion  

This position paper has advocated the fact engineering interactive system is far from 

being a mature domain. This is due to the intrinsic nature of these systems that are directly 

handled by human beings but also due to the fact that their deployment to critical contexts 

is more and more of importance.  

Some work has been proposed over the years by different research groups of different 

origins but integration is still needed so that engineers of such systems have processes, 

notations, languages and tools adapted to their work.  

Lastly, interactive systems are currently of very low quality and exhibit defects and 

failure at a very high rate. This is due to the fact that interaction techniques and interaction 

technologies are a constant moving target trying to support better users, their needs and 

their experience. In the future, interactive systems engineering should thus progress at a 

higher pace than interaction technologies in order, first to catch up will current gap and 

second to have interactive systems engineers adequately equipped for future challenges.  
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