
HAL Id: hal-03857851
https://hal.science/hal-03857851

Submitted on 17 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Roadmap and Some Directions Towards the
Engineering of Interactive Systems Deployable in Safety

Critical Contexts
David Navarre, Philippe Palanque, Célia Martinie

To cite this version:
David Navarre, Philippe Palanque, Célia Martinie. A Roadmap and Some Directions Towards the
Engineering of Interactive Systems Deployable in Safety Critical Contexts. 2nd Workshop on Charting
the Way towards Methods and Tools for Advanced Interactive Systems @ ACM EICS 2019, IFIP
Working Group 2.7/13.4, Jun 2019, Valencia, Spain. pp.39-45. �hal-03857851�

https://hal.science/hal-03857851
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Roadmap and Some Directions Towards the Engineering

of Interactive Systems Deployable in Safety Critical Contexts

David Navarre1, Philippe Palanque1-2 & Célia Martinie 1

1 ICS-IRIT, University of Toulouse, 118 Route de Narbonne, F-31062, Toulouse, France
2 Technical University Eindhoven, Department of Industrial Design, Eindhoven, Netherlands

{navarre, palanque}@irit.fr

Keywords: Engineering Interactive Systems, Critical systems, Formal Models,

Fault-Tolerance, Development Assurance Levels, Technology Readiness Levels.

1 Introduction

This position paper presents how the engineering of interactive system may be impacted

when these systems are designed to be deployed in safety critical contexts. These domains

are specific as they are usually driven by constraining standards defining precisely best

practices and mandatory processes to be applied. We thus discuss on how it is possible to

take into account these constraints in real-life domains where critical and non-critical com-

ponents may coexist. Engineering approaches in this context must jointly exploit formal

description techniques (for the critical parts) and standard software production techniques

(for the non-critical part). More precisely, we will show how Engineering Interactive Sys-

tems in these domains impact particularly design and development processes, systems ar-

chitectural aspects and developers’ tasks.

In the next section, we present the constraints introduced by the safety critical context

on development processes that embed certification activities as well as standards (with a

focus on aviation industry). Other domain like space, nuclear or Air Traffic Management

propose specific standards with stronger or softer constraints but the overall approach re-

mains the same. The third section presents how software and (more globally) system ar-

chitectures must encompass specificities of current interactive systems and how they are

deeply impacted by their critical nature. The fourth section focuses on the human aspect

highlighting the specific need for usable tools to support software and system engineers.

Last section concludes the paper and provides directions for future work.

2 Constraints from Safety Critical Context

When dealing with safety critical systems, it is important to notice that all components of

the whole system do not have necessarily the same level of criticality, requiring to care-

fully identify each of them in the early stages of the development process.

In this section we present how this identification of levels of criticality is performed

and more precisely how it is handled in civil aviation.

Copyright © 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2

2.1 Development Assurance Level (DAL) identification

In civil aviation, the criticality level of a system (or component) is classified by means of

five Development Assurance Levels (DAL), introduced in the DO-178C standard [6] for

software components and in the DO-254 standard [7] for electronic hardware components.

These levels are directly linked to failure condition categories defined by certification au-

thorities such as EASA (European Aviation Safety Agency) or FAA (Federal Aviation

Administration). Table 1 presents the five Development Assurance Levels associated with

their failure condition category and its description (summarized from the EASA CS-25

standard [5]). As presented in the first row of Table 1, a failure having catastrophic con-

sequences (failure condition column) must not occur more often than once per 109 hours

of functioning (failure rate column). Such software must be developed following DAL A

processes and methods as defined in DO-178C [6].

Table 1. System Development Assurance Level for civil aircrafts

According to this standard the first two rows of Table 1 (colored in grey) correspond to

so-called critical systems while systems in the lower rows are called non-critical.

The main difference between critical and non-critical software is that a lot of verifica-

tion activities must be satisfied with independence, thus leading to very expensive soft-

ware and system development. Identifying accurately the correct level of DAL is thus very

important in order to invest adequately development resources (not overspend on low

DAL systems and not underspend on critical software).

ARINC specification 661 [1] aims at providing a common ground for building interac-

tive software in the field of aeronautical industry. All interactive software in cockpits (fol-

lowing ARINC 661 specification) is categorized as DAL C and thus can only be used for

the command and control of non-critical systems. On such systems, assuring that operators

will be able to perform their activities (even if the interactive system exhibits failures) is

an important issue to address. The zero-defect approaches (usually based on formal ap-

proaches such as [2]) try to guarantee that the interactive system will be defect free and if

it is a good mean for removing faults and bugs at development time, natural faults (such

as bit-flips due to radiations) are beyond their reach. Fault tolerance mechanisms are thus

to be added to guarantee that both input and output devices are not becoming single points

of failure, requiring to add redundancy, diversification and segregation of these de-

vices/software as proposed in [12] following ARINC 653 portion management standard

as in [13].

Development As-

surance Level

Failure condi-

tion categories

Description of the failure

 conditions

Failure rate

(failures/hour)

A Catastrophic
Failure conditions that may cause a
crash

Extremely improbable
10-9 +fail safe

B Hazardous

Failure has a large negative impact

on performance, or reduces the

ability of crew to operate the plane

Extremely remote
10-7

C Major
Failure is significant, but has lesser

impact than hazardous

Remote

10-5

D Minor
Failure is noticeable, but has lesser

impact than Major

Probable

10-3

E No safety effect No impact on dependability Any range

3

2.2 Certification

As explained previously, the CS-25 standard [5] is the standard for certification specifica-

tion of the EASA for large aeroplanes. This document identifies requirements dedicated

to the cockpit in section 1302 called “Installed systems and equipment for use of the flight

crew”. Following this standard, the cockpit must allow the crew to safely perform all their

tasks and avoid error prone behaviors.

However, during operations, some of the pilot tasks may involve several aircraft sys-

tems with different DALs. For instance, after perceiving an alarm on the ECAM display

the pilot might decide to decrease flight level. In that case, he will successively use infor-

mation displayed by the Flight Warning System (DAL C) and trigger commands using the

Flight Control Unit (DAL A). In order to comply with CS 25 1302 it is thus important to

develop methods and tools capable of ensuring that goals can be reached and tasks can be

performed on systems of various DALs involving different techniques (formal and non-

formal) for their development as presented in [11].

2.3 Standards

An important task in processes for critical systems is to ensure that high-level requirements

(HLR) have been explicitly (and in an exhaustive manner) gathered and described. Be-

yond, the designs and developments must demonstrate that they take into account each of

these requirement and that such traceability is also part of the certification processes (e.g.

in Air Traffic Management [9]). Taking into account all HLR into development is an ob-

jective and this is assessed by external bodies (for DAL A and DAL B software). DO-

178C only identifies what must be done while annexes to that standard identify how thing

should/could be done. For instance, DO-333 annex [8] (page 101) states that high-level

requirements should be expressed in temporal logic (and more precisely Computational

Tree Logic [10]) while low-level requirements (LLR) should be expressed by state-based

description techniques. Compliance between these two representations must be done using

model-checking techniques [3] (as illustrated by Fig. 1).

Fig. 1. Analysis Process (DO-178 C [6])

Dealing with interactive systems introduces specific HLRs that mix together a system

point of view (hardware and software) and an operation point of view (users’ tasks).

This would require the extension of such standards with the use of specific formal de-

scription techniques covering both the system side and the operation side.

Such approach has been proposed by [11], highlighting (only for standard WIMP inter-

action techniques), that a process should ensure completeness and consistency between a

4

mixed-criticality interactive application and users’ tasks to support design of multiple

DAL systems:

 Completeness: Aims at assessing if there is a system artifact dedicated to each ex-

pected supported user tasks. For verification purpose, a focus must be put on having a

correspondence for each critical task.

 Consistency: As tasks may be critical, they should be performed using a critical part

of the application (higher DALs), while standard tasks may be performed without any

attention put on the criticality of the interactive software part they are performed with

(lower DALs).

3 Architectures to deal with complexity

The software architecture of an interactive critical system must be able to follow the evo-

lution of systems (input devices, output devices, interaction techniques…). Such an ever-

changing context makes it very difficult to provide generic approaches to support design,

development and deployment. Designers need to go beyond the interactive application

design by providing new interaction techniques that encompass new input and output

deices which can be very cumbersome to design and evaluate. Developers of these systems

are repetitively facing the same issues of new devices integration, software redesign (due

to device drivers’ evolution) and above all poor reliability of the resulting system due to

the low level of maturity of the various components to integrate. Such constraints are even

stronger with high DAL critical components.

As proposed in [4], ensuring the modularity of the entire interactive system (including

hardware and software parts), leads to identify the building bricks that must be developed

for integrating new devices as well as the building bricks for merging information from

these devices in order to offer multimodal interactions to users. The proposed architecture

thus enables the separation of a complex system into several components that are then

easier to apprehend, allowing the separation of concerns and the locality of modification.

4 Usable Tools to cope with complexity

Providing support for process and architecture of complex interactive critical systems re-

quires the tools to cope with three challenges: they must be mature enough to support

industrial processes, they must support developers’ tasks, they must support models engi-

neering.

4.1 Assessing the maturity of tools

The Technology Readiness Levels (TRLs), defined in ISO 16290:2013 [15] is a scale from

1 (Basic principles observed and reported) to 9 (Actual system “flight proven” through

successful mission operations) that defines conditions to be met to qualify the maturity of

an element within a system. Initially designed for space system hardware, it can be used

in many domains, including tool support.

5

While industrial processes may require specific TRL for their tool support, it is im-

portant to assess the maturity of proposed tools. However, in the field of interactive soft-

ware engineering, there is not any communication about the TRL of tools involved in

engineering interactive systems. We know for instance that PetShop [19] has gone through

TRL3 (Analytical and experimental critical function and/or characteristic proof-of-con-

cept) at Airbus, but this did not lead to any publication or advertisement.

4.2 Supporting models engineering

Several tasks must be performed when producing models during the development of an

interactive system:

 When designing and developing interactive systems, the scope of the modeling activi-

ties must be identified in order to determine which elements (related to the interactive

system to be developed) will be modeled and which types of models will be used. Then,

the user/engineer must analyze the extant system, as well as the needs and requirements

for the interactive system to be developed. After this analysis step, the production of

the models starts with the editing step. That step produces a first version of models.

 The verification step is then performed for checking the models in order to ensure that

they are complete and consistent.

 The validation step will then be initiated to check whether the model meets specified

needs and requirements.

This editing-verification-validation loop will be performed again until the models are

complete, consistent and meet needs and requirements. When introducing several kinds of

models (e.g. task models and system models), the whole process thus must include the

cross validation of these models in order to check if they are complete and consistent.

While these steps are presented in an abstract way, the tools must be tuned for each nota-

tion in order to best support models engineering. In [14] authors report how action theory

model can be used to design and evaluate modelling tools but only for notations based on

Petri nets.

4.3 Supporting developer’s tasks

In [17], Brad A. Myers stated that “Programmers are Users Too…”, arguing that is it nec-

essary to promote specific design processes and evaluation method to developers.

Such approach must be extended to modelling activities. For instance, applying (in that

context too) the seven stages of Norman action theory [18] to modeling work highlights

specific activities to consider. The two main stages we are focusing on are:

 On the execution side, the activity of going from an intention to its actual transcription

into some model,

 On the evaluation side, the activity of perceiving model behavior and interpreting this

perception.

One of the main advantages of this model is that it provides a generic framework for

investigating where the main difficulties can occur during system modeling which is a

6

highly demanding task on the engineer’s side. This framework thus provides design rules

for environments to support user's activities and reduce their difficulties.

Norman action theory provides a generic framework for investigating where the main

difficulties can occur during system modeling activities performed by an engineer. Each

engineer task described in the previous section (editing, verification, validation and cross-

type validation of models) is a goal that must be accomplished during the development of

interactive systems. And for each of these goals, the seven stages of Norman action theory

can be used to analyze the low-level activities that the engineer will execute.

5 Conclusion

This position paper has advocated the fact engineering interactive system is far from

being a mature domain. This is due to the intrinsic nature of these systems that are directly

handled by human beings but also due to the fact that their deployment to critical contexts

is more and more of importance.

Some work has been proposed over the years by different research groups of different

origins but integration is still needed so that engineers of such systems have processes,

notations, languages and tools adapted to their work.

Lastly, interactive systems are currently of very low quality and exhibit defects and

failure at a very high rate. This is due to the fact that interaction techniques and interaction

technologies are a constant moving target trying to support better users, their needs and

their experience. In the future, interactive systems engineering should thus progress at a

higher pace than interaction technologies in order, first to catch up will current gap and

second to have interactive systems engineers adequately equipped for future challenges.

References

1. ARINC 661-6 specification: Cockpit Display System Interfaces To User Systems, Prepared by

AIRLINES ELECTRONIC ENGINEERING COMMITTEE, Published by AERONAUTICAL

RADIO, INC, sept, 2016.

2. Barboni E., Conversy S., Navarre D., Palanque P. Model-Based Engineering of Widgets, User

Applications and Servers Compliant with ARINC 661 Specification. DSV-IS 2006, LNCS,

Springer Verlag, 25-38

3. Clarke E., Grumberg O. & Peled P. Model Checking, The MIT Press, Cambridge, Massachu-

setts, 2001.

4. Cronel M., Dumas B., Palanque P., Canny A. (2019) MIODMIT: A Generic Architecture for

Dynamic Multimodal Interactive Systems. In: Bogdan C., Kuusinen K., Lárusdóttir M., Palan-

que P., Winckler M. (eds) Human-Centered Software Engineering. HCSE 2018. Lecture Notes

in Computer Science, vol 11262. Springer, Cham

5. CS-25 – Amendment 17 - Certification Specifications and Acceptable Means of Compliance

for Large Aeroplanes. EASA, 2015.

6. DO-178C / ED-12C, Software Considerations in Airborne Systems and Equipment Certifica-

tion, published by RTCA and EUROCAE, 2012.

7. DO-254/ED-80. Design Assurance Guidance for Airborne Electronic Hardware, published by

RTCA and EUROCAE, 2000.

8. DO-333 Formal Methods Supplement to DO-178C and DO-278A, published by RTCA and

EUROCAE December 13, 2011.

7

9. ESARR 6. EUROCONTROL Safety Regulatory Requirement. Software in ATM Systems. Edi-

tion 1.0. http://www.eurocontrol.int/src/public/standard_page/esarr6.html (2003)

10. Emerson E.A., Srinivasan J. Branching Time Temporal Logic, in LNCS 354 p.122-172,

Springer-Verlag 1988.

11. Fayollas, C., Martinie, C., Navarre, D., and Palanque, P. 2016. Engineering mixed-criticality

interactive applications. In Proceedings of the 8th ACM SIGCHI Symposium on Engineering

Interactive Computing Systems (EICS '16). ACM, New York, NY, USA, 108-119. DOI:

https://doi.org/10.1145/2933242.2933258

12. Fayollas C., Fabre J-C., Palanque P., Cronel M., Navarre D., Deleris Y. A Software-Imple-

mented Fault-Tolerance Approach for Control and Display Systems in Avionics. IEEE Pacific

Rim Dependable Computing conference 2014: 21-30

13. Fayollas C., Fabre J-C., Navarre D., Palanque P., Deleris. Fault-Tolerant Interactive Cockpits

for Critical Applications: Overall Approach. SERENE 2012: LNCS, Springer Verlag, 32-46

14. Fayollas C., Martinie C., Palanque P., Barboni E., Fahssi R., Hamon A.Exploiting Action The-

ory as a Framework for Analysis and Design of Formal Methods Approaches: Application to

the CIRCUS Integrated Development Environment. Handbook of Formal Methods in Human-

Computer Interaction 2017: 465-504

15. ISO/IEC IS 16290:2013: Space Systems - Definition of the Technology Readiness Levels

(TRLs) and their criteria of assessment. International Organization for Standardization, Geneva,

Switzerland, 2013.

16. Morris M., Huang A., Paepcke A., & Winograd T. Cooperative Gestures: Multi-user Gestural

Interactions for Colocated Groupware. ACM CHI Conf., 2006. 1201-1210.

17. Myers, B. A., Ko, A. J., LaToza, T. D. and Yoon, Y. "Programmers Are Users Too: Human-

Centered Methods for Improving Programming Tools," IEEE Computer, Special issue on UI

Design, 49, issue 7, July, 2016, pp. 44-52.

18. Norman, D. A. (2013). The design of everyday things: Revised and expanded edition. Basic

books.

19. Sy, O, Bastide, R, Palanque, P, Le, D-H, Navarre, D. “PetShop: a CASE Tool for the Petri Net

Based Specification and Prototyping of CORBA Systems.” In 20th International Conference

on Applications and Theory of Petri Nets, ICATPN’99, Williamsburg, VA, USA. 1999.

https://doi.org/10.1145/2933242.2933258

