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Abstract

Order and disorder govern protein functions, but there is a great diversity in disorder,

from regions that are—and stay—fully disordered to conditional order. This diversity is still

difficult to decipher even though it is encoded in the amino acid sequences. Here, we

developed an analytic Python package, named pyHCA, to estimate the foldability of a pro-

tein segment from the only information of its amino acid sequence and based on a mea-

sure of its density in regular secondary structures associated with hydrophobic clusters,

as defined by the hydrophobic cluster analysis (HCA) approach. The tool was designed by

optimizing the separation between foldable segments from databases of disorder

(DisProt) and order (SCOPe [soluble domains] and OPM [transmembrane domains]). It

allows to specify the ratio between order, embodied by regular secondary structures

(either participating in the hydrophobic core of well-folded 3D structures or conditionally

formed in intrinsically disordered regions) and disorder. We illustrated the relevance of

pyHCAwith several examples and applied it to the sequences of the proteomes of 21 spe-

cies ranging from prokaryotes and archaea to unicellular and multicellular eukaryotes, for

which structure models are provided in the AlphaFold protein structure database. Cases

of low-confidence scores related to disorder were distinguished from those of sequences

that we identified as foldable but are still excluded from accurate modeling by Alpha-

Fold2 due to a lack of sequence homologs or to compositional biases. Overall, our

approach is complementary to AlphaFold2, providing guides to map structural innova-

tions through evolutionary processes, at proteome and gene scales.
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1 | INTRODUCTION

Protein order has been largely explored by experimental approaches

so that the protein fold universe has been widely mapped.1–3 This has

led to a comprehensive inventory of the combinations according to

which regular secondary structures (RSSs) are assembled to form com-

pact, well-organized 3D structures, associated with specific func-

tions.4 Over the years, the structure–function paradigm has however

evolved to integrate intrinsically disordered proteins/regions (IDPs/

IDRs), which lack well-defined 3D structures under physiological con-

ditions but fulfill a variety of functions, in particular in signaling and

regulatory pathways.5–8 IDPs/IDRs are characterized by a heteroge-

neous spatiotemporal structural organization.9 They correspond to

very diverse entities, from highly extended, heterogeneous unstruc-

tured states to compact but disordered molten globules.10 They

include short linear motifs and longer regions promoting molecular

recognition and protein–protein interactions, which have led to elabo-

rate specific classification schemes related in particular to their amino

acid sequence characteristics.6,11 IDPs/IDRs were also shown to play

a key role in the formation of higher-order assemblies and in the con-

trol of many cellular processes via their participation in biomolecular

condensates, through multivalent interactions leading to liquid–liquid

phase separation.12,13 IDPs/IDRs are generally defined by a heteroge-

nous ensemble of conformations, undergoing rapid interconver-

sion14,15; some can fold into a unique conformation upon binding with

a partner or within oligomeric complexes,16 while some cases of disor-

der maintained in the bound state were also described.17

Characterization of IDPs/IDRs is challenging as they are generally

“unseen” by traditional structural biology methods and are therefore

considered as the dark side of protein universe.18 Their identification

at large scale relies on computational methods that predict them

directly from the information of the amino acid sequence.19 Some

predictors are trained on experimental annotations of protein disor-

der, as stored in the DisProt database,20 while others are not, relying

on physicochemical properties and predicting disorder as lack of, or

deviation from order.21,22 Using such predictive tools, IDPs/IDRs

were found abundant at the proteome level, making up approximately

30% of residues in the human proteome and up to 50% in some uni-

cellular eukaryotes such as parasitic protozoa, enriched in long IDRs

(with at least 30 consecutive disordered residues).23–26 In contrast,

the fractions of disordered residues represented less than 28% in

most archaeal and bacterial proteomes. The quality of disorder predic-

tors has improved over time, in particular by considering deep learning

techniques and evolutionary information, as illustrated in the recent

Critical Assessment of protein Intrinsic Disorder (CAID).27 The pre-

dicted local distance difference test (pLDDT) introduced in the recent

AlphaFold2 (AF2) predictor, a deep learning program which predicts

3D structures with an unprecedented accuracy28 and which was

applied at proteome scale,29 was also shown to provide a good metric

for identifying order and disorder.30–32

Only a few computational approaches have addressed the issue of

the predictions of different, multiple states (or flavors) of IDPs/IDRs,

while not considering evolutionary information.33,34 Here, we propose

an approach for appreciating the disorder/order degree in a protein

segment from the only information of its amino acid sequence, which is

based on a measure of the overall density in RSSs, as predicted through

Hydrophobic Cluster Analysis (HCA). HCA-based hydrophobic clusters

match the positions of regular secondary structures constituting the

building blocks of folded domains.35–39 The hydrophobic alphabet and

rules used for the definition of hydrophobic clusters have been sup-

ported by comparison with experimental data, and the method has

been successfully applied, for instance, to the identification of remote

relationships based on the conservation of 2D signatures associated

with hydrophobic clusters (see Dataset S1 for a complete description

of the method). The use of a simple hydrophobic/nonhydrophobic

dichotomy (rather than an hydrophobicity scale), associated with the

use of a two-dimensional net for defining the amino acid neighborhood,

offers an efficient way to reveal these signatures in remotely related

sequences.40 We have previously developed a tool, called SEG-HCA, for

the delineation of regions with a high density in hydrophobic clusters,

which have been shown to correspond to domains which have the abil-

ity to fold, either in an autonomous way or upon contact with part-

ners.41,42 Contrasting with otherwise performant methods based on

evolutionary couplings43 or even earlier tools based on propensities to

be in ordered or disorder states,44, the advantage of SEG-HCA is to

allow the prediction of foldable domains from the only information of a

single amino acid sequence, without the prior knowledge of homolo-

gous sequences or consideration of pre-calculated propensities. Hence,

by identifying structurally homogeneous entities (i.e., the foldable seg-

ments), this approach allows to highlight, in absence of evolutionary

information, regular secondary structures that are likely to interact,

however without being able to predict how they interact (which is pos-

sible by taking into account residues co-evolution). At proteome scale,

SEG-HCA “order” predictions totalize more amino acids than the “undi-
sordered” predictions performed by the popular IUPRED tool,45,46

which captures the inter-residue interaction capacity by energy estima-

tion.42 The overlap between order and disorder detected by this com-

parison concentrates small sequences that are able to undergo

disorder-to-order transitions.42

We optimized the residue weights of the here-proposed density

metric for an optimal separation of foldable domains found in refer-

ence databases of order (soluble and transmembrane domains

extracted from SCOPe and OPM, respectively) and disorder (DisProt),

thereby deconvolving the spectrum of disorder according to the

order/disorder ratio and specifying different types of disorder. Using

this scoring scheme, we analyzed the per-residue confidence (pLDDT)

scores of AF2 structural predictions in 21 reference proteomes, for

species ranging from prokaryotes and archaea to unicellular and multi-

cellular eukaryotes with different lifestyles.29,47 Our analysis provides

new elements to distinguish cases where low-confidence structural

predictions are indeed related to disorder, as now commonly

reported,30-32 from those of domains which are foldable but whose

structures cannot be accurately predicted due to AF2 intrinsic limita-

tions. Overall, the complementarity of pyHCA and AF2 provides

guides to map structural innovations through evolutionary processes,

at proteome and gene scales.

2 BRULEY ET AL.
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2 | MATERIALS AND METHODS

2.1 | Delimitation of foldable segments within
protein sequences

The HCA methodology is described in details in Dataset S1. SEG-

HCA42 was previously developed to automatically delineate regions

with high density in hydrophobic clusters, constituting potential

“foldable” domains within protein sequences. The new version of

SEG-HCA was rewritten for speed and includes new functionalities,

including the calculation of HCA score (see below). In addition, we

rewrote and packaged in a python module the tools SEG-HCA (in a

function named segment), TREMOLO-HCA (Traveling through

REMOte homoLOgy)48 and the HCA drawing, as well as provided

some utility scripts to analyze results, adding information on amino

acid conservation and taxonomy. These tools can significantly help

detection of hidden relationships between sequences, as repeatedly

performed using the HCA approach in an expert-based way (see Ref.

41 and Dataset S1). The package can be used as a Python library,

named pyHCA, or as a standalone tool, named HCAtk, and is provided

at https://github.com/DarkVador-HCA/pyHCA under the CeCILL-C

license agreement.

2.2 | HCA score implementation

The HCA score was introduced in order to describe the general com-

position of hydrophobic clusters and hydrophobic amino acids in fold-

able segments. Each residue of a protein sequence is associated with

a class regarding the residue type and hydrophobicity. Such a residue

is either (a) in a hydrophobic cluster and hydrophobic according to the

common HCA alphabet, which considers as strong hydrophobic the

seven amino acids V, I, L, M, F, Y, and W, (b) in a hydrophobic cluster

and nonhydrophobic, or (c) outside a hydrophobic cluster. A value is

assigned to each class and the HCA score (SHCA) is computed as

follows:

SHCA ¼
XN

i¼1

wHCA seqi, classð Þ=N: ð1Þ

with wHCA(seqi, class) the weight associated with the i amino acid of a

sequence from a given class, and N the sequence length.

Therefore, the HCA score scales with the density of hydrophobic

clusters and of strong hydrophobic residues within clusters. As the

HCA score calculation motivation is to provide an estimation of the

globular character, i.e., the foldability of a domain, the weight of each

residue was optimized within each of the three classes to minimize

the overlap between the distributions of the HCA scores calculated

on nonredundant disordered foldable segments from DisProt v8.0.2

sequences and nonredundant foldable segments of globular proteins

from the SCOPe (soluble domains) and OPM databases (transmem-

brane domains), respectively (see below for details on the datasets).

During the optimization step, the possible allowed values of the

weights were discrete in the [�10; 10] interval ([�1; 1] scaled to one

order of magnitude for better readability). For a given combination of

weights, the distribution overlap (i.e., the criteria to be minimized) was

estimated by histogram intersection as follows:

XB

i¼1
min H1 ið Þ, H2 ið Þð Þ,

with B the number of histogram bins (set to 60), and H1(i) and H2(i)

the values in normalized histograms of HCA scores for nonredundant

dataset Disprot v8.0.2 and nonredundant dataset SCOPe and OPM

for bin i, respectively. The optimization was achieved using 10-fold

cross-validation, repeated 10 times. We selected the set of parame-

ters that was most often optimal among the 10 iterations, and that

allowed to achieve the least overlap between disorder and order.

This implementation is an updated version (v2) of a previous one,

described in Ref. 49 and applied in investigations such that reported

in Ref. 50, where the disorder dataset corresponded to sequence seg-

ments predicted by Mobi-DB51 on the DisProt v7.0 sequences. The

pyHCA GitHub repository has been updated accordingly (https://

github.com/DarkVador-HCA/pyHCA).

2.3 | Sequence datasets

2.3.1 | Sequence redundancy filters

For each dataset described below (b–e), sequence redundancy was

addressed using the MMseqs252 clustering module (clustering mode

1, sensitivity 8) with a sequence identity threshold of 30% and a cov-

erage threshold of 90%. The nonredundant sets of sequences

(Dataset S2) comprised the representative sequences of each cluster.

2.3.2 | Disordered segments

Disordered sequences, as assessed from experiments and manually

curated, were extracted from the reference database DisProt v8.0.2

(8 254 sequences,20; https://disprot.org/). The corresponding nonre-

dundant set DisProt comprises 3 166 sequences.

2.3.3 | Soluble domains

27 543 sequences of soluble domains with known 3D structures were

collected from the Structural Classification of Proteins—extended

(SCOPe) v2.0.7 database (53; https://scop.berkeley.edu/) as provided

by Astral repository with 95% identity filter. The SCOPe classification

of these entries according to their content in regular secondary struc-

tures was as follows: 4 974 all-alpha domains (class a), 7 622 all-beta

domains (class b), 8 250 alpha/beta domains (class c), 6 697 alpha

+beta domains (class d). Our nonredundant dataset SCOPe comprises

10 885 domain sequences with the SCOPe a-d classes represented by

2 507, 2 511, 2 841 and 3 026 entries, respectively.

BRULEY ET AL. 3
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2.3.4 | Transmembrane domains

The orientations of proteins in membranes (OPM) database (54; https://

opm.phar.umich.edu/) was evidenced to include the largest number of

membrane proteins with known 3D structures.55 The OPM entries

annotated as transmembrane domains were downloaded on August

30, 2021 and include 3 classes: alpha-helical polytopic or multi-pass

(140 superfamilies, 5 381 entries), bitopic or single-pass (69 superfam-

ilies, 1 151 entries) and beta-barrels transmembrane (35 superfamilies,

601 entries) domains. 35 sequences only formed by unknown residues

(replaced in OPM by alanines) were omitted. We performed a first

redundancy treatment to remove repeated sequences (using MMseqs2

clustering module with a sequence identity threshold of 95% and keep-

ing the longest sequence of each cluster), leaving only 3 051 unique

TM domains in total. For each domain, OPM provides the information

of the calculated transmembrane (TM) segment boundaries. In order to

delineate the whole membrane-spanning domains, we included loops

with lengths less than or equal to 30 residues in our sequence dataset.

According to the distribution of loop lengths in TM domains and to the

minimum size of known globular domains, TM segments separated by

more than 30 residues are likely to encompass nested soluble

domains.56 In order not to include these cases of large loops in our

sequence dataset, we only kept the first 15 residues after the first TM

segment and the last 15 before the second TM segment. If an extended

segment boundary falls inside a hydrophobic cluster, we moved it to

include the whole hydrophobic cluster and the 4 following residues

(i.e., the minimal distance considered to separate contiguous hydropho-

bic clusters, see Dataset S1). This pruning needed to be applied to

1 882 sequences (see Dataset S2 for details). The OPM nonredundant

dataset comprises 1 698 sequences: 1 330, 165, and 203 annotated as

alpha-helical polytopic, bitopic and beta-barrels transmembrane

domains, respectively.

2.3.5 | Proteomes from AlphaFold Protein
Structure database v1

The amino acid sequences, the 3D structure predictions and the cor-

responding per-residue model confidence values (pLDDT) were down-

loaded from the AlphaFold Protein Structure database (AFDB) v147

(https://alphafold.ebi.ac.uk, downloaded on July 21, 2021) for the ref-

erence proteomes of 21 model organisms. pLDDT values estimate on

a per residue basis how well the predicted structure would agree with

the experimental 3D structure and is scaled between 0 and 100 as fol-

lows: very low (pLDDT ≤ 50), low (50 < pLDDT ≤ 70), confident

(70 < pLDDT ≤ 90), very high (pLDDT > 90).

2.4 | Figure creation and statistical analyses

3D structures were visualized with the UCSF Chimera package.57

Statistical analyses were performed using the R software, version

4.1.2 (58) and the Python Language (http://www.python.org),

versions 3.7.6 (for the HCA score implementation and AFDB v1 ana-

lyses) and 3.6.3 (for the classification of order and disorder from Dis-

Prot, SCOPe and OPM databases). Standardized principal

component analysis (PCA) and hierarchical clustering on principal

components were performed using the R package Factoshiny, ver-

sion 2.4 (https://cran.r-project.org/web/packages/Factoshiny).

Mean comparisons by nonparametric Mann–Whitney U test were

performed using the Python scipy library, version 1.4.1 (https://

scipy.org). Graphics were generated using the Python libraries mat-

plotlib, version 3.0.3 (https://matplotlib.org) and seaborn, version

0.11.2 (https://seaborn.pydata.org).

3 | RESULTS

3.1 | Exploring the degree of order and disorder in
reference databases using HCA score

HCA score was introduced in order to provide a global estimation of

the density of a given amino acid sequence in hydrophobic clusters

and hydrophobic amino acids within hydrophobic clusters, as a proxy

for order/disorder ratio in protein segments. Hence, we focused on

foldable segments (as defined by the segment function of the pyHCA

package) of the reference datasets and optimized the weights of this

metric to best separate the different categories according to structural

features.

We optimized the weights of this metric to best separate order

and disorder relative to two datasets: (a) a set of 16 489 nonredun-

dant foldable segment sequences from globular proteins from the ref-

erence databases SCOPe for soluble domains (14 624 segments) and

OPM for transmembrane domains (1 865 segments) and (b) a set of

3 276 nonredundant foldable segment sequences from disordered

proteins from the reference DisProt database (v8.0.2) (Dataset S3).

The optimal HCA score was reached for a minimum overlap of 49%

between the score distributions of the globular and disordered

sequences, respectively, and with the weights of 9 for strong hydro-

phobic residues in hydrophobic clusters, 7 for nonstrong hydrophobic

residues in hydrophobic clusters and �10 for residues outside of

hydrophobic clusters (see Eq. (1) in Section 2).

A vast majority of amino acids of the SCOPe and OPM nonredun-

dant datasets are included in foldable segments (90% and 96%,

respectively) (Table 1), while non foldable segments in these datasets

mostly correspond to large, hydrophilic loops (see for instance the

example shown in Figure S1a). In contrast, only 50% of amino acids in

the DisProt v8.0.2 dataset are included in foldable segments (Table 1),

the remaining ones (i.e., in nonfoldable segments) can be thus consid-

ered as fully disordered (Figure S1b). DisProt segments can thus be

analyzed after being separated into two distinct categories

(i.e., foldable and nonfoldable segments). A few instances of poor cov-

erage of folded domains of the SCOPe database by foldable segments

are observed. These correspond to sequences rich in alanine (class a)

and threonine/serine (class b), which are not included in the hydro-

phobic alphabet used for hydrophobic cluster definition, but

4 BRULEY ET AL.
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participate in the hydrophobic core (Figure S1c,d). Some other cases

of low coverage actually correspond to domains stabilized by a ligand

or for which the folding is cooperative or dependent of an oligomeric

organization (obligate oligomers) (Figure S1e).

The HCA score values range between �7 and 9 (Figure 1,

Dataset S3). Soluble domains have HCA scores included mostly in the

[�1,3.5] interval (labeled b). As illustrated for the SCOPe b class, the

lowest and highest values are mainly associated with the presence

TABLE 1 Foldable segments (FS) in the nonredundant sequence datasets

Dataset Class Sequences aa Sequences with FS Sequences without FS aa in FS aa outside of FS

SCOPe a 2 507 347 268 2 507 (100.0%) 0 (0.0%) 309 100 (89.0%) 38 168 (11.0%)

SCOPe b 2 511 366 584 2 511 (100.0%) 0 (0.0%) 322 970 (88.1%) 43 614 (11.9%)

SCOPe c 2 841 688 643 2 841 (100.0%) 0 (0.0%) 633 955 (92.1%) 54 688 (7.9%)

SCOPe d 3 026 455 400 3 026 (100.0%) 0 (0.0%) 410 347 (90.1%) 45 053 (9.9%)

DisProt v8.0.2 3 166 209 812 2 418 (76.4%) 748 (23.6%) 105 390 (50.2%) 104 422 (49.8%)

OPM polytopic 1 330 186 220 1 328 (99.8%) 2 (0.2%) 181 396 (97.4%) 4 824 (2.6%)

OPM bitopic 203 4 390 202 (99.5%) 1 (0.5%) 4 025 (91.7%) 365 (8.3%)

OPM beta 165 37 320 164 (99.4%) 1 (0.6%) 33 986 (91.1%) 3 334 (8.9%)

Note: Total number of sequences and amino acids (aa) of each dataset, as well as their number (and percentage) of sequences with and without foldable

segment(s), and the number (and percentage) of residues found in or outside of foldable segments. The datasets are those of soluble domains with known

3D structures (SCOPe), transmembrane domains with known 3D structure (OPM) and disordered segments (DisProt v8.0.) (see Materials and Methods for

details). OPM classes have been shortened to polytopic for alpha-helical polytopic domains, bitopic for alpha-helical bitopic domains and beta for beta-

barrels.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
HCA score

0.00

0.05

0.10
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0.20
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de
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OPM (alpha-helical polytopic and bitopic)
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a c dba' c'

F IGURE 1 Distribution of the HCA scores calculated for the foldable segments from disordered protein regions (DisProt) and ordered protein
domains (soluble domains from SCOPe and membrane domains from OPM). The considered nonredundant datasets are: DisProt v8.0.2 (HCA
scores ranging from �6.95 to 9 and peaking at 0.5 and 8.1), SCOPe (HCA scores ranging from �4.67 to 9 and peaking at 1.4 and 8.1), OPM
alpha-helical polytopic and bitopic categories (HCA scores ranging from �3.32 and 0.97 to 9 and peaking at 4.9 and 8.3, respectively) and OPM
beta-barrel category (HCA scores ranging from �3.86 to 9 and peaking at 1.2 and 7.9). Several thresholds were fixed from these distributions,
allowing to define four main classes of foldable segments (intervals a-d). The threshold of 3.5 better discriminates the HCA scores of SCOPe
foldable segments from those of alpha-helical OPM foldable segments. �1 is the threshold above which are found 95% of the HCA scores
computed for foldable segments from SCOPe protein domains. (a) Below �4.7: only foldable segments from disordered regions, (b) from �1 to
3.5, globular soluble segments (SCOPe) or membrane beta-barrels (OPM), (c) from 3.5 to 6.7, segments from alpha-helical transmembrane
domains, (d) above 7.6, foldable segments composed of only one hydrophobic cluster. Two intermediate regions were also defined: (a0) between
�4.7 and �1, in this range 62% of segments are from SCOPe and 36% from DisProt, they represent only 5% of SCOPe and 11% of DisProt; (c0)
between 6.7 and 7.6, foldable segments with a dense composition in hydrophobic clusters and of short length (96% are shorter than 100 aa).

BRULEY ET AL. 5
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and absence of large loops (thus large intercluster linkers), respectively

(Figure 2A). HCA scores for the beta-barrel transmembrane class are

close to those of this SCOPe distribution, while those for the alpha-

helical polytopic class are higher ([3.5,6.7] interval, labeled c)

(Figure 1). This is consistent with the general properties of these two

classes of proteins; the beta-barrel strands, albeit longer, are indeed

characterized by a periodicity of 2 in hydrophobic amino acids, as for

beta-strands from globular domains, while transmembrane alpha-

helices from alpha-helical polytopic segments are associated with

larger numbers of strong hydrophobic amino acids dotted with

charged/polar amino acids, as well as tiny ones (Gly, Ala), ensuring

tight packing (Figure 2B). Beta-barrel transmembrane sequences can

be distinguished from soluble globular domains by their amino acid

composition and hydrophobic cluster characteristics (Figure 2B, also

see Discussion). Finally, a separate category exists for all reference

databases, with HCA scores above a value of 7.6 (labeled d), including

F IGURE 2 Foldable segments extracted from the SCOPe and OPM databases: HCA scores, HCA 2D plots and experimental 3D structures.
The HCA plots of the sequences extracted from the SCOPe (all beta) (A) and OPM (B) databases are shown, with their foldable segments boxed
(dashed lines). The corresponding HCA scores are reported below the boxes. Special symbols used in the HCA representation and the way to read
the sequences and regular secondary structures (RSSs) are indicated in the inset. Positions of the RSSs, as experimentally observed from the
corresponding 3D structures (ribbon representations), are reported in color below the HCA plots. The position of the 13 aa-long segment which
has been removed for the OPM protein sequence in order to only keep membrane domains is highlighted in red (see Section 2 for details)
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mostly short sequences covered by a single hydrophobic cluster.

These correspond entirely to the foldable segments of OPM bitopic

sequences (made of only one transmembrane segment, rich in strong

hydrophobic amino acids, Figure 2B light blue) or are part of OPM

polytopic or SCOPe soluble sequences, which have been fragmented

into several parts due to the presence of large loops (see the example

in Figure S1a). Overall, the HCA score represents a metric that allows

to globally assess the order/disorder ratio in a single protein sequence

and to unravel its main structural features (Table 1).

The HCA score distribution of foldable segments from the Dis-

Prot database is wide, ranging from �7 to 9, due to the structural het-

erogeneity of the corresponding sequences, reflecting diverse order/

disorder ratio. Some foldable segments have low HCA score values,

having hydrophobic cluster densities below those observed for folded

domains, which reflect their propensity to fluctuate between disorder

and order and/or to interact with partners (labeled a and a0 in

Figure 1). This is for instance the case of a foldable segment from the

yeast nuclear pore complex NUP2 protein, which contains FxFG

repeats (shown with a red circle in Figure 3A, HCA score of �5.36

[interval a in Figure 1]). FxFG repeats are known to bind transport

factors of the importin-beta/karyopherin-beta family, which function

as carriers for many nuclear trafficking processes.59 They bind in

hydrophobic pockets displayed at the surface of HEAT repeats, in

which the phenylalalanine side chains are buried (modeled on

Figure 3A, on the basis of a complex of FxFG peptides with importin-

beta). A second example is related to foldable segments of the mouse

nucleoporin ELYS, interacting with chromatin60 (Figure 3B, no 3D

structure available, HCA score of �2.84 [interval a0 in Figure 1]). A

third example is that of a cadherin 1 segment, whose 3D structure has

been partially solved in complex with catenin beta 161 (Figure 3C,

HCA score of �1.62 [interval a0 in Figure 1]). Some other DisProt fold-

able segments are falling into the “folded, soluble domain” category

(interval b in Figure 1), being characterized by hydrophobic clusters

ratio typical of this kind of stable 3D structures. This is for instance

the case of a foldable segment of the 7SK Sn RNA methylphosphate

capping enzyme, which is partially disordered and undergoes a

disorder-to-order conformational change upon RNA binding62

(Figure 3D, HCA score of 0.40). Another example of a DisProt

sequence, totally covered by a foldable segment, is shown in

Figure S2a, with a cluster composition and density similar to that

observed in globular domains, albeit with a slightly low content (30%)

in hydrophobic amino acids. This example corresponds to the yeast

proteasome maturation factor Ump1, which is disordered when free

in solution, as observed using various experimental techniques.63,64 It

however forms well-ordered secondary structures in complex with

the 20 S core particle, playing a key role in the dynamical assembly of

proteasome.65 An additional example of stabilization of 3D structures

in complexes is provided in Figure S2b. It is also in this interval b of

HCA score, typical of well folded 3D structures, that are found molten

globules (IDP0:00077), which are compact, with native-like secondary

structures but disordered tertiary structures.10 We illustrate this case

with the well-known nuclear coactivator binding domain (NCBD) of

the mouse CREB-binding protein (DisProt DP00348r018, aa 2059–

2117; foldable segment aa 2068–2102, HCA score = �0.09),66 which

moreover folds into two different conformations depending on the

binding partner67 (Figure S2c).

Next, higher HCA scores values, typical of polytopic membrane

domains (interval c in Figure 1), are also encountered in DisProt

sequences. In a general way, these segments have long hydropho-

bic clusters (which are common in membrane domains), but form

long helical structures involved in oligomeric coiled-coils. This is

the case for instance of the HR2 domain of SARS-CoV-2 spike gly-

coprotein, which form an elongated six-helix bundle together with

the HR1 domain68 (Figure 3E, HCA score of 5.66). Another example

is the flexible C-terminal part of the Escherichia coli antitoxin ParD,

which is involved in the binding and neutralization of the ParE

toxin69 and forms upon binding long helices docking into the

groove of the partner70 (DP0033r012, HCA score = 5.15, 27 amino

acids).

Finally, HCA score values above 7.6 (interval d in Figure 1) include

foldable segments with a single hydrophobic cluster, as for similar seg-

ments of the SCOPe and OPM databases. Such segments frequently

correspond to preformed secondary structures (MORFs) or short lin-

ear motifs (SLIMs), which fold upon binding, as illustrated here with

the short linear motif of the C. elegans EGL-1, whose binding to

CED-9 initiate cell programmed death71 (Figure 3F, HCA score

of 8.23).

Overall, applied to disordered sequences extracted from the Dis-

Prot database, the HCA score also allows to globally assess the order/

disorder ratio and unravel the wide diversity (or different flavors) of

disorder.

3.2 | Leveraging AlphaFold2 predictions with
pyHCA package

The recent development of the AlphaFold2 (AF2) deep-learning

approach was a huge step forward in the high-throughput prediction

of 3D structures for folded regions, and was even announced as a dis-

order prediction tool, as regions with very low confidence largely

overlap with IDRs.30–32,72 We wanted here to compare the AF2 pre-

dictions to those of foldability and structural states, which can be

made using pyHCA. Each proteome processed by AF2, provided by

the AlphaFold Protein Structure Database (AFDB,47 https://alphafold.

ebi.ac.uk), can be described in terms of foldability and order/disorder

content by the pyHCA package: the segment function allows first to

quantify the proteome coverage in foldable segments, then to com-

pute the HCA score on foldable segments, leading to their assignment

to a structural class related to their position within the order–disorder

continuum, as inferred in Figure 1. The link between these two met-

rics (one, binary, and the other, discretized from a continuum) and the

per-residue metrics of uncertainty (pLDDT) defined by AF2 was here

explored. Four main classes of pLDDT values, reflecting the confi-

dence in the AF2 structural predictions, are generally considered: very

high (pLDDT > 90), high (90 ≥ pLDDT > 70), low (70 ≥ pLDDT > 50)

and very low (pLDDT ≤ 50).

BRULEY ET AL. 7
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We first analyzed the confidence in the AF2 structural predictions

for residues in versus outside of the foldable segments, for the

362 094 sequences of the 21 reference proteomes from AFDB v1.

Among this whole dataset, 81.9% of the residues are part of foldable

segments (ranging from 73.1% to 96.3% for the proteomes of the par-

asitic protozoa Leishmania infantum and the autotrophic

F IGURE 3 Foldable segments extracted from the DisProt database: HCA scores, HCA 2D plots and experimental 3D structures. The HCA
plots of the sequences extracted from the DisProt database are shown (arrows indicate the N- or C-terminal limits of the DisProt segments). The
foldable segments are boxed (dashed lines). The corresponding HCA scores are reported below the boxes. Special symbols used in the HCA
representation and the way to read the sequences and regular secondary structures (RSSs) are indicated in the inset. 3D structures (in green, with
their pdb identifiers) have been solved for only a few of the DisProt sequences (moreover often limited to only a part of the regions), stabilized by
interaction with a partner (gray surfaces for two of them). One of the FXFG repeats of yeast NUP2 (red circles) has been modeled based on the
experimental 3D structure of such a repeat in complex with importin beta-1 (pdb 1O6O)

8 BRULEY ET AL.
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hyperthermophilic archaeon Methanocaldococcus jannaschii, respec-

tively), corresponding mostly to confident predictions: 45.7% and

27.1% residues with very high and high pLDDT, respectively

(Figure 4A). Instead, the residues located outside of foldable segments

(hereafter described as nonfoldable segments, representing 18.1%

residues of the whole dataset) correspond mostly to low confident

predictions (61.3% and 17.1% residues with very low and low pLDDT,

respectively, Figure 4A). These trends are also observed for each

organism separately, at the exception of Plasmodium falciparum whose

proteome is dominated by low confident predictions, even in the fold-

able segments (39.7% and 13.1% residues with very low and low

pLDDT, respectively) (Figure S3 and Table S1). The four prokaryotic

proteomes are instead largely dominated by high confident

predictions, in foldable (>72% residues with very high pLDDT) but

also in nonfoldable segments (<40% residues with very low or low

pLDDT). Overall, low and high pLDDT scores are thus mostly

observed for amino acids in nonfoldable (full disorder) and foldable

segments, respectively (Figure 4B, Table S1), thereby independently

supporting the observation that AF2 low confidence predictions are

significantly enriched in intrinsically disordered regions.30,31 This is

consistent with the recently reported distributions of pLDDT scores

for the per-residue predictions of order and disorder.72,73

In order to further explore the confidence of AF2 predictions for

foldable and nonfoldable segments separately, we considered regions

of contiguous residues (2 aa as minimum length) within these seg-

ments where the residues are all affiliated to the same class of pLDDT

values (4 classes, see above). In the nonfoldable segments, 96.1% resi-

dues with a very high pLDDT are located in such regions of homoge-

neous prediction confidence (3.9% residues with a very high pLDDT

in nonfoldable segments are thus isolated within regions with a lower

prediction confidence).

The sequence length distribution of these regions of very high

prediction confidence in nonfoldable segments is illustrated in

Figure S4 (only 13 sequences with length greater than 100 amino

acids are observed, corresponding to 6 different proteomes). These

regions fall into two distinct categories, corresponding to: (a) large

loops within folded domains (Figure S5a) or linkers between folded

domains (Figure S5b), which are generally disordered or flexible in iso-

lated proteins but conditionally folded in presence of specific interac-

tions, (b) regions which are well folded but independent of the

presence of strong hydrophobic amino acids (Figure S5c–f). These

sequences correspond to either (a) long coiled-coils, which form

extended rod-like structures and are rich in alanine (Figure S5d) or

made of acidic and basic-rich heptad repeats (Figure S5c), and to vari-

ous structural repeats (left-handed parallel beta helix repeats

(Figure S5e), tetratricopeptide repeats, armadillo repeats, …) or

(b) domains with ion-dependent folding (calcium [Figure S5f], zinc, …).

Nonfoldable sequences which form well-stable structures thus corre-

spond to particular cases in which the fold is not conditioned by the

presence of a core of strong hydrophobic amino acids, but which pos-

sess clear, distinctive amino acid composition. Conversely, as dis-

cussed in Ref. 73 foldable segments do include sequences with

disorder potential, for which AF2 prediction however capture some

structural features formed upon interaction (some of which already

depicted in experimental structures).

The methodology developed here allows us to put the AF2 pre-

diction made at the residue level into the context of the foldable seg-

ment to which it belongs and of its position in the order/disorder

continuum. We thus calculated the distribution of residues in each

pLDDT category as a function of the HCA scores of the foldable seg-

ments in which they are included (Dataset S4). Overall, we observed

differences in the relative proportions of each pLDDT category as

regards to the structural states (labeled a to d), previously defined

based on the HCA score (Figure 5A). The highest proportion of resi-

dues with very high pLDDT (51.8%) is observed for the foldable seg-

ments with an HCA score within ]1;2] interval, corresponding to the

(A)

81.9% Residues in 
foldable segments

18.1% Residues outside of 
foldable segments

(B)

0 20 40 60 80 100
pLDDT score

0.00
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0.04
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0.07

D
en

si
ty

residues in foldable segments
residues outside of foldable segments

very low (pLDDT≤50)
low (70≥pLDDT>50)
confident (90≥pLDDT>70)
very high (pLDDT>90)

AF2 prediction confidence

45.7%

16.8%

10.4%

27.1%

61.3%

17.1% 11.6%

10.0%

F IGURE 4 Distribution of AlphaFold2 per-residue prediction
confidence scores (pLDDT) within and outside of foldable segments.
(A) Distribution of residues from the AFDB 21 proteomes within
foldable segments (top, 81.9% of the total) and outside of foldable
segments (bottom, 18.1% of the total) in the different categories of
AF2 prediction confidence. (B) Distribution of pLDDT scores for
residues within (dark gray) and outside of (light gray) foldable
segments. The AF2 prediction confidence categories are highlighted
following the same color code as in (A)
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typical score of soluble domains (interval b, as defined in Figure 1).

Moreover, the residues with very high pLDDT represent 48.3% resi-

dues included in foldable segments with a HCA score in ]�1;6], corre-

sponding to the soluble/beta-barrel and alpha-transmembrane

domains (intervas b and c). Instead, residues with very low pLDDT

dominate the likely disordered foldable segments with a HCA score in

]�7;�4] (74.8%), but also those with a HCA score in ]+7;+9] (63.7%)

corresponding to local maxima in the HCA score distribution for

DisProt disordered sequences (see Figure 1). We should notice the

uniformity of the length of the foldable segments with HCA score

lower than +7, with a median length of 84 aa, as evidenced by the

tight correlation between the number of residues and the number of

foldable segments within the corresponding intervals of HCA score

(see top graph in Figure 5A, with black bars and gray line, respec-

tively). Instead, the foldable segments with HCA score higher than +7

are much shorter, with a median length of 6 aa.
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F IGURE 5 Relationship between HCA score and AlphaFold2 per-residue prediction confidence score for foldable segments. (A) AFDB v1
21 proteomes, (B–F) 5 representative proteomes from AFDB v1 (see Figure 6 and Figure S6 for details). Top: Representation of the number of
residues by the barplot (axis on the left, base 10 logarithmic scale) and number of foldable segments by the gray line and points (axis on the right,
base 10 logarithmic scale) belonging to foldable segments with HCA scores in a given interval. Bottom: percentage of residues in each AF2
prediction confidence categories for each HCA score range. Below the barplot are represented the foldable segment types that are likely to be
found according to their HCA score, as defined in Figure 1: (a) disorder only, (a0) mainly disorder, (b) globular domains/ membrane domains (beta-
barrel), (c) membrane domains (alpha-helical), (d0) mainly foldable segments with one hydrophobic cluster, (d) foldable segments with one
hydrophobic cluster
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Although these global trends of relationship between pLDDT and

HCA score of foldable segments are conserved across the 21 individ-

ual proteomes, several differences should be noticed, as illustrated by

five representative patterns in Figure 5B–F. The 21 proteomes have

been clustered according to the principal component analysis (PCA)

built of their relative proportion of residues of each pLDDT category

for foldable segments of each interval of HCA score values (Figure 6).

The first principal component explained 56.4% of the total variance

and showed that the foldable segments of prokaryotic and eukaryotic

proteomes differ for almost all intervals of HCA scores, with higher

proportions of very high and very low pLDDT residues, respectively

(Figure S6a–d). At second order and according to the second principal

component (explaining only 11.7% of the total variance), the prote-

ome of the archaeon Methanocaldococcus jannaschii slightly differs

from the 3 bacterial proteomes, in particular due to the absence of

sequences with HCA scores lower than �4 (corresponding to full dis-

order) in M. jannaschii (Figure 5B,C).

The proteomes of eukaryotes are split into 3 groups, cluster

4 includes the four plant proteomes (Arabidopsis thaliana, Oryza sativa,

Glycine max, Zea mays), the three Ascomycota are separated according

to their taxonomy: the two Saccharomycetaceae (Candida albicans and

Saccharomyces cerevisiae) belong to cluster 3 whereas Schizosaccharo-

myces pombe is in cluster 4. Cluster 4 is characterized by a higher pro-

portion of low and very low confidence regions in segments with

HCA score in ]�1;6] (corresponding to globular sequences), and by a

lower proportion of very low confidence predictions in segments cor-

responding to disorder (HCA score lower than �5) (Figure 5D–E).

Finally, the proteome of Plasmodium falciparum forms another last

group, being characterized by predictions of globally lower confidence

(Figure 5F). This is consistent with the high level of dark sequences in

the Apicomplexa proteomes, for which remote homologs cannot eas-

ily been detected for efficient covariation analyses.

In the foldable sequences, we observed two major types of appar-

ent discrepancies between the confidence score of AF2 structural

prediction and our classification of structural states based on HCA

score. These types indeed deviate from the current assumption that

the structure of folded regions would be predicted with high confi-

dence, while disordered regions would not. First, we reported cases of

regions of contiguous amino acids with high pLDDT values and low

HCA scores, that we suggested to correspond to disorder

(785 sequences with length greater than 100 amino acids, corre-

sponding to 20 different proteomes, i.e., at least one sequence in all

AFDB v1 proteomes except Methanocaldococcus jannaschii;

Figure S7a). These regions include the two categories depicted before

for nonfoldable segments with high pLDDT values, that is,

(a) disordered sequences included in large loops and/or undergoing

conditional folding (AF2 then capturing the structure of the com-

plexed state), (b) long, repetitive structure with a particular abundance
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F IGURE 6 Principal component analysis (PCA) for the AFDB v1 21 proteomes according to HCA score and AF2 prediction confidence. The
64 variables correspond to the proportion of residues of foldable segments found in each pLDDT category (very high, confident, low, very low)
for each of the HCA score intervals (from �7 to 9, in steps of 1) (as represented in Figure 4). The plot represents the 21 AFDB proteomes in the
factor map formed by the first and second principal components (explaining 59.24% of the dataset variability). The correlation circle of the
variables is represented in Figure S6. Five clusters of proteomes were defined using hierarchical clustering on the first four principal components
(explaining 83% of the dataset variability). ARATH: Arabidopsis thaliana, CAEEL: Caenorhabditis elegans, CANAL: Candida albicans, DANRE: Danio
rerio, DICDI: Dictyostelium discoidum, DROME: Drosophila melanogaster, ECOLI: Escherichia coli, HUMAN: Homo sapiens, LEIIN: Leishmania
infantum, MAIZE: Zea mays, METJA:Methanocaldococcus jannaschii, MOUSE: Mus musculus, MYCTU:Mycobacterium tuberculosis, ORYSJ: Oryza
sativa, RAT: Rattus norvegicus, SCHPO: Schizosaccharomyces pombe, SOYBN: Glycine max, STAA8: Staphylococcus aureus, TRYCC: Trypanosoma
cruzi, YEAST: Saccharomyces cerevisiae
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of (alpha-forming) alanine or (beta-forming) serine/threonine and

sequences with an ion-dependent folding (Figure S8). Low HCA

scores are also observed in some enzymes, which depend on ions for

their catalytic activity (e.g., one of the longest regions (224 amino

acids) in the human carbonic anhydrase (P00915, HCA score of

�0.62)). Apolar but nonstrong hydrophobic amino acids are also par-

ticularly abundant in these low HCA score regions within standard

globular domains, completing the hydrophobic clusters participating in

the hydrophobic core.

Second, we reported cases of regions of contiguous amino acids

with very low pLDDT values but with HCA scores typical of folded

domains (9 722 sequences with length greater than 100 amino acids,

corresponding to 21 different proteomes; Figure S7b,c). Only

54 regions of more than 30 amino acids are found in the E. coli

proteome (Figure 7), among which a whole protein reported as a

recent and rare case of emerging gene by overprinting in this bacterial

species (MbiA74; Figure 7A), small domains in multidomain proteins

(RhsC—Figure 7B, YdfE—Figure 7C) or a protein segment (YjfZ—

Figure 7D). RSSs are more or less well predicted by AF2 although their

assembly cannot be validated. Of note however is the case of MbiA

for which only a part of the RSS is predicted, while the HCA plot

clearly indicates several others, associated with hydrophobic clusters

typical of beta-strands. This failure of RSS prediction appears recur-

ring in several AF2 predictions of such regions in the Plasmodium falci-

parum proteome, as illustrated in Figure 7E. These results indicate

that regions with AF2 very low confidence do not always correspond

to disordered regions, in line with studies that have compared AF2 to

order/disorder predictors.72,73

F IGURE 7 Examples of very low AlphaFold2 confidence scores for globular-like domains. The examples shown are segments of contiguous
amino acids with very low pLDDT values, fully included in foldable segments with HCA scores typical of well-folded domains (boxed in orange on
the HCA plots, with the corresponding HCA scores and segment lengths [in aa] reported below). Other foldable segments of the sequences, taken

from UniProt, are boxed in gray. Special symbols used in the HCA representation and the way to read the sequences and RSSs are indicated in
the inset. The AF2 3D structure models of the corresponding segments are highlighted with orange circles, extracted from the models of the
whole proteins (ribbon representations), colored according to the AF2 per-residue confidence metric. Positions of the RSSs, as predicted by AF2,
are reported in color on the HCA plots.
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4 | DISCUSSION

The remarkable progress that has recently been made in the field of

structure prediction75 owes its success to the use of de learning

approaches and the consideration of pre-existing knowledge at the

protein sequence and structure levels. In particular, the wealth of evo-

lutionary information was leveraged to an optimal level to extract key

features of interresidue contacts and distances, which have paved the

way to unprecedented levels of accuracy in the prediction.28,76 Con-

sidering evolutionary information was also instrumental in the recent

advances made in the field of disorder prediction.27

Among the key questions that evolutionary-based methods

applied to structure prediction cannot easily address, at least with the

expected accuracy, is that of regions lacking known homologous

sequences and falling outside family annotations, which constitute the

dark proteome.77–79 A common idea was that the dark proteome is

largely made up of IDPs/IDRs, as these are difficult to be character-

ized by traditional methods of structural biology18 and moreover har-

bor less amino acid conservation of their sequences.80 Contrary to

this idea, it was shown that the dark proteome contains an important

part of nondisordered sequences, constituting the “unknown

unknown”.77,79 A recent survey of the human dark proteome before

and after AF2 development has indicated that only a part of these

nondisordered sequences was predicted with good accuracy,81

thereby supporting the ever-present need to develop tools for better

characterizing the foldability potential and structural features from

the only information of single amino acid sequences and applicable to

any proteome, even the darkest ones. It should be noted here that the

foldability is linked to the ability of building blocks (i.e., the regular

secondary structures) to interact. However, the foldability score does

not provide information on how these RSSs interact, which is typically

addressed by analysis of residue co-variation, when homologs are

available.

The (non)foldability of proteins is encoded in their amino acid

sequences, with two global physicochemical patterns, the absolute

mean charge and the mean hydropathy, primarily accounting for the

differences between two classes.82 This issue of the foldability poten-

tial was addressed here in two steps, based on the consideration of

this basic hydrophobic/nonhydrophobic dichotomy, enriched by the

information on local structure through the use of a two-dimensional

representation of amino acid sequences. Capitalizing on the proven

ability of HCA to highlight structural invariants in a context of high

evolutionary divergence,82 we do not explicitly use an hydrophobicity

scale especially in order to take into account at the best this dichot-

omy and the driving role of strong hydrophobic amino acids in the for-

mation of regular secondary structures, regardless of their specific

physico-chemical features. The first step of our procedure relies on a

binary definition of foldability, with the delineation of homogeneous

regions in terms of general properties related to order (foldable seg-

ments) or disorder (nonfoldable segments). The second step, focusing

on the foldable segments, estimates their degree of foldability in a

continuum. This combined approach goes thus beyond a binary and

per-residue order/disorder dichotomy and is independent of the

consideration of a set of homologous sequences. pyHCA thus provides

a useful information about the position and global characteristics of

structurally homogenous segments, that is, the foldable segments,

which contain building blocks that are likely to interact and thus goes

beyond the local interactions which can be predicted by considering

only isolated hydrophobic clusters. pyHCA is in line with the spirit of

polymer scaling behavior, which combines hydropathy and charge pat-

terning and is used for characterizing the structural properties of

IDPs/IDRs.83 It is also to be compared to ODiNPred, a sequence

order/disorder predictor which uses a deep neural network trained on

a database of an experimental, continuous-valued quantification of

local disorder based on NMR chemical shifts and considering a large

number of sequence features,33 among which foldable domains as

predicted by SEG-HCA. The foldable segments defined by SEG-HCA

are expected to fold spontaneously or conditionally into stable 3D

structures through the participation in an hydrophobic core, while

nonfoldable segments correspond to full disorder, with the exception

of regions whose stably fold without the need of a consistent hydro-

phobic core, but, for example, depending on ion binding.49 Conditional

foldable segments, having transient residual structures or fold depen-

dent on interactions or environment,8,11 can generally be distin-

guished from the autonomous folding units as these segments are

often predicted as disordered by current disorder predictors.42 This

category of transient disorder includes short linear motifs (SLIMs)84

and Molecular Recognition Features (MoRFs),85 which are generally

embedded in large disordered regions. Their intermediate behavior

can be highlighted using tools such as ANCHOR86 and visualized with

FELLS, an estimator of latent structures integrating SEG-HCA and

IUPred2 predictions.87 It is interesting to note that these sequences,

which are predicted as disordered but foldable, are globally well pre-

dicted by AF2, capturing the folded state, however without detecting

their structural plasticity.73

In a global way, the HCA scoring scheme introduced here allows

to appreciate the degree of foldability of protein segments, reflecting

the relative abundance of loop/coil regions (disorder) and regular sec-

ondary structures (order). Thereby, we are able to disentangle the

great diversity present within the IDPs/IDRs, which is reflected by a

wide range of HCA score values, whereas folded domains are charac-

terized by narrower ranges of values (Figure 1). The distinct behaviors

between these two groups have also been evidenced in a recent study

using a Gini index, which allows to estimate distribution uniformity.88

Based on the HCA score, some foldable segments from DisProt

clearly deviate from folded-like segments (intervals a–a0 in Figure 1)

while having the capacity to conditionally fold. This is the case, for

instance, of the segments shown in Figure 3A–C, with low HCA

scores. These segments can thus be easily distinguished from those

that are closer to a soluble, globular domain behavior (interval b in

Figure 1). IDPs/IDRs found in this last interval of HCA scores are diffi-

cult to distinguish from well-folded globular domains based on the

only consideration of the HCA score and other features must be con-

sidered to refine the analysis. However, one can note that such IDPs/

IDRs are generally shorter than typical well-folded globular domains

extracted from the SCOPe database, which may explain that they are
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unable to fold stably in absence of partners. Indeed, only 48.4% of

sequences from this category in DisProt have length greater than

30 amino acids (mean length 81.6 aa), against 85.1% in SCOPe (mean

length 133.3 aa). In cases of longer IDPs/IDRs from this category,

amino acid composition may help to distinguish them from well-folded

globular domains. Indeed, we observed that segments from DisProt of

this category (interval b in Figure 1) are enriched in polar amino acids

that have been previously described as disorder-promoting (Gln, Lys,

Ser, Glu)89 (Figure S9a). Remarkably, they have composition in strong

hydrophobic amino acids comparable to that found in soluble

domains. This composition, consistent with high HCA scores, thus

defines a specific class of long disordered sequences, reflecting their

propensity to fold upon constraint (Figure S10). The example of

AF4-AF9 complex, discussed in49 also suggested that some sequences

of IDPs/IDRs might be stabilized in absence of interacting partners by

intra-molecular interactions mediated by sequences located at long-

range distance in the protein. In this interval b, one can also observe

that the composition of well-folded soluble domains is different from

that of also well-folded transmembrane beta-barrels, characterized by

similar HCA scores values (Figure 1). These have indeed distinctive

features such as dyad-repeat patterns and a high abundance in aro-

matic amino acids at the bilayer interface,90 allowing their accurate

predictions by dedicated tools.91,92. Here, we also evidenced an

enrichment of beta-barrel foldable segments relative to soluble

domain ones in Tyr and Trp, as well as in small and polar amino acids

(Gly, Asn, Ser, Thr) (Figure S9a), consistent with previous observa-

tions.90 In the interval c, the DisProt foldable domains can also be dis-

tinguished of well-folded alpha-helical membrane domains by their

amino acid composition, as the former ones are also enriched in polar/

charged amino acids (Asp, Glu, Asn, Gln, Arg, Lys, His, Ser, Thr)

(Figure S9b). Examples extracted from this category of DisProt seg-

ments highlighted sequences with long hydrophobic clusters (length

similar to transmembrane helices), but forming elongated, soluble

coiled-coils. First attempts to develop tools for sorting sequences in

the intervs b-c and distinguishing between stable structures and con-

ditional order or molten globules, based on these amino acid composi-

tion differences, are encouraging. However, further investigations are

needed to characterize the building blocks (hydrophobic clusters) of

IDPs and sequences linking them, in order to understand the molecu-

lar basis of their particular structural behavior, especially in terms of

both fuzziness (typified by the co-existence of several minima of free-

energy content)14,93 and frustration.94,95

The combination of HCA score and AF2 pLDDT applied to

proteome-wide analysis shed light on the relative part of each given

proteome in which order is still hidden, corresponding to very low

AF2 pLDDT values but with HCA scores typical of globular-like

regions (intervals b–c in Figure 1). Examination of particular cases of

hidden order indicates that AF2 is able in some situations to predict

RSSs, which correlate with hydrophobic clusters (as observed in the

E. coli sequences presented in Figure 7), nonetheless without confi-

dence in the way they are associated. The overestimation of disorder

by AF2 is minimum in the case of prokaryotic proteomes (Figure 8A),

where large amount of known 3D structures and sequences are

available. In contrast, the accuracy of disorder prediction by AF2 is

much lower in case of Dictyostelium discoideum and parasitic organ-

isms such as Trypanosoma cruzi, Leishmania infantum and Plasmodium

falciparum. For this latter proteome, a percentage of amino acids as

high as 40.8% identified in the globular-like category by pyHCA corre-

spond to AF2 very low pLDDT scores. Some hypothetical proteins

from Plasmodium falciparum escape RSS prediction by AF2 and are

represented as fully disordered, although they possess hydrophobic

clusters with HCA scores typical of well-folded domains. In fact, the

higher proportion of amino acids with very low pLDDT values in the

Plasmodium falciparum proteome (46.0%) cannot be explained in a

straightforward way by a higher proportion of disorder, but instead by

the compositional bias and low complexity regions leading to mask

the order characteristics and to leave a large number of sequences in

the dark.96,97 pyHCA is not affected by these biases and estimates a

similar foldability trend for Plasmodium falciparum as for other eukary-

otes such as human (80%–85% aa within foldable segments,

Table S1). It allows therefore to unravel the characteristics of the hid-

den order, as already applied to the identification of hidden actors of

the transcription machinery.98

Importantly, the reliability of the “order” prediction by pyHCA

can unambiguously be demonstrated in cases where the AF2 predic-

tion fails. Indeed, in a joint study,99 we have focused on long (>30

amino acids) foldable segments with HCA scores typical of soluble,

globular-like domains and that, in the corresponding AF2 models,

include only amino acids very low pLDDT values and lack regular sec-

ondary structures and folded hydrophobic core (random coils). We

showed that some of these sequences are reported in the DisProt

database as forming transient regular secondary structures

(as determined by various biophysical approaches).99 Moreover, a spe-

cific search of these segments against the PDB sequences that were

published after the deposit of the AF2 models highlighted a case of an

AF2 structureless coil prediction, which was further investigated by

NMR and ESR, combined with Rosetta computations.100 In this study,

the observed 3D structure of the intracellular domain (ICD) of human

alpha7 nicotinic acetylcholine receptor, which shows conformational

plasticity, has proven to be well organized in its resting state

(Figure S11). In particular, a loop is anchored onto the intracellular MA

helix (merging with the transmembrane helix TM4) via an alpha-helix

(h3), which provides with significant hydrophobic contributions to the

packing of the MA bundle. The foldable segment contains three

hydrophobic clusters, one of which corresponding to the observed

helix h3. Thus, these examples of conditional order illustrate the rele-

vance of pyHCA for identifying foldability potential in the AF2 struc-

tureless coil predictions. This opens the way to reveal novel 3D

structures, including some corresponding to unconditional order,

which cannot be predicted by AF2, due to lack of homologs and few

local patterns corresponding to existing structures.

pyHCA biases mainly rely on regions which stably fold without

the need of a consistent hydrophobic core (Figure S5). The analysis of

AF2 pLDDT scores outside of foldable segments provides therefore a

useful way to evaluate the overestimation of full disorder by pyHCA

(Figure 8B). At the proteome scale, this bias is minimum for

14 BRULEY ET AL.
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Dictyostelium discoideum and the three parasitic organisms (in case of

Plasmodium falciparum, 3.3% aa outside of foldable segments corre-

spond to a very high pLDDT in AF2 predictions) while ranging to a

maximum for the four prokaryotic organisms (51% in E. coli). Remind-

ing that these latter proteomes are mostly covered by regions identi-

fied as foldable by pyHCA (84%–96% aa), this overestimation of

disorder by pyHCA is however quite low when considering the num-

ber of long regions (length higher than 30 aa) capable to fold

(e.g., corresponding only to 8 different proteins for Methanocaldococ-

cus jannaschii).

Overall, combining pyHCA with AF2 provides a revised estimation

of the full disorder content in proteomes, corresponding not only to

nonfoldable segments which are not well-predicted by AF2, but also

to foldable segments with HCA score lower than �4.7. The condition-

ally folded regions, corresponding to foldable segments with higher

HCA score values, are thus discarded from this estimation. Compared

Arabidopsis thaliana

Caenorhabditis elegans
Candida albicans

Danio rerio

Dictyostelium discoideum

Drosophila melanogaster

Escherichia coli

Homo sapiens

Leishmania infantum

Zea mays

Methanocaldococcus jannaschii

Mus musculus

Mycobacterium tuberculosis

Oryza sativa

Plasmodium falciparum

Rattus norvegicus

Schizosaccharomyces pombe

Glycine max

Staphylococcus aureus

Trypanosoma cruzi

Saccharomyces cerevisiae
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Caenorhabditis elegans
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Dictyostelium discoideum

Drosophila melanogaster

Escherichia coli

Homo sapiens

Leishmania infantum

Zea mays

Methanocaldococcus jannaschii
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Rattus norvegicus

Schizosaccharomyces pombe
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Trypanosoma cruzi
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(A) (B)

F IGURE 8 Classification of the
AFDB v1 21 proteomes according to
probable overestimation of disorder by
AF2 and pyHCA in foldable and
nonfoldable segments, respectively.
(A) Proteomes are sorted in a top-down
scale (ranging from 0% to 60%)
according to the increasing proportion
of residues predicted with a very low

confidence by AF2 in segments with
HCA scores typical of soluble globular
HCA scores (category b defined in
Figure 1). (B) Proteomes are sorted in a
top-down scale (ranging from 0% to
60%) according to the increasing
proportion of residues found in
nonfoldable segments that are
predicted with a very high confidence
by AF2. For details on the proportion of
residues in nonfoldable segments, see
Table S1 and Figure S3. The proteome
of the archaeon Methanocaldococcus
jannaschii harbors the lowest number of
long regions (length > 30 aa) composed
only by residues predicted with a very
high confidence by AF2, included in
nonfoldable segments. The UniProt
sequence accession numbers and the
boundaries of these 8 regions are as
follows: Q60356 (171–207), Q57673
(15–83), Q58130 (243–276), Q58560
(108–139), Q58991 (253–283),
Q60317 (32–64), Q57676 (24–54) and
Q58814 (28–61). All have at least one
homologous sequence with known 3D
structure (data not shown)
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to previous studies,101 we thus suggest a lower disorder content, as

long IDRs (length higher than 30 aa) were found in 12% to 40.4% of

long proteins (length higher than 60 aa) in the eukaryotic proteomes

in AFDB, and in 0.6%–4.7% for the prokaryotic ones. Our approach

also allows to explore the order/disorder content of proteomes in

relation to organism ecological traits, in a complementary way to pre-

vious works.24,102 In addition to a specific behavior of parasitic organ-

isms within eukaryotes (see above and Figure 6) that remains to be

explained, our study also detected a particularly low disorder content

in the proteome of the hyperthermophilic archaeon Methanocaldococ-

cus jannaschii, likely related to the high thermal stability constrained

by the environmental conditions.

Finally, the scoring scheme offered by pyHCA can be used for

understanding the protein evolutionary trajectories at the proteome

level. It is particularly well-suited to study the structural properties of

proteins encoded by de novo emerging genes and how such proper-

ties have influenced their early emergence and long-term retention. In

particular, it can bring new light to the debate of whether de novo

proteins have much intrinsic disorder103 or are aggregation-prone104

and whether retention of de novo gene precursor is driven by such

properties or remains a stochastic process.105,106 Several works have

already used the concept of foldable segments to investigate such

properties,107,108,109 and a recent work considering a preliminary ver-

sion of HCA scoring systems has evidenced that most yeast intergenic

ORFs contain the elementary building blocks of protein structures.50

The example of E. coli MbiA, an overlapping (protein-coding) orphan

gene which has recently evolved by overprinting and was shown to

share the structural properties of globular-like domains although not

predicted by AF2 (Figure 7A), well illustrates the interest of our

approach to decipher structural features in absence of homologs and

uncover dark sides of protein evolution.
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