N
N

N

HAL

open science

Preconditioned Plug-and-Play ADMM with Locally

Adjustable Denoiser for Image Restoration Mikael
Mikael Le Pendu, Christine Guillemot

» To cite this version:

Mikael Le Pendu, Christine Guillemot. Preconditioned Plug-and-Play ADMM with Locally Adjustable

Denoiser for Image Restoration Mikael. SIAM Journal on Imaging Sciences, 2022, pp.1-30.

03857826

HAL Id: hal-03857826
https://hal.science/hal-03857826

Submitted on 17 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03857826
https://hal.archives-ouvertes.fr

Preconditioned Plug-and-Play ADMM with Locally Adjustable Denoiser for
Image Restoration*

Mikael Le Pendu® and Christine Guillemot!

Abstract. Plug-and-Play priors recently emerged as a powerful technique for solving inverse problems by plug-
ging a denoiser into a classical optimization algorithm. The denoiser accounts for the regularization
and therefore implicitly determines the prior knowledge on the data, hence replacing typical hand-
crafted priors. In this paper, we extend the concept of Plug-and-Play priors to use denoisers that can
be parameterized for non-constant noise variance. In that aim, we introduce a preconditioning of the
ADMM algorithm, which mathematically justifies the use of such an adjustable denoiser. We addi-
tionally propose a procedure for training a convolutional neural network for high quality non-blind
image denoising that also allows for pixel-wise control of the noise standard deviation. We show
that our pixel-wise adjustable denoiser, along with a suitable preconditioning strategy, can further
improve the Plug-and-Play ADMM approach for several applications, including image completion,
interpolation, demosaicing and Poisson denoising.

Key words. Plug-and-Play Prior, Inverse Problems, Preconditioning, ADMM, Denoising, Interpolation

MSC codes. 62H35, 68U10, 94A08, 68T99

1. Introduction. Inverse problems arising in image restoration require the use of prior
knowledge on images in order to determine the most likely solutions among an infinity of pos-
sibilities. Traditional optimization methods rely on priors modeled as convex regularization
functions such as the total variation, encouraging smoothness, or the {; norm for sparsity. In
this context, convex optimization algorithms have played an important role and their conver-
gence properties have been well-established. However, the methods based on ”hand-crafted”
convex priors are now significantly outperformed by deep neural networks that directly learn
an inverse mapping from the degraded measurements to the solution space. Here, the prior
knowledge on images and the degradation to recover from do not need a formal mathematical
definition. Instead, they are implicitly taken into account when training the network from a
large dataset of degraded images (i.e. network’s input) along with their original versions (i.e.
network’s output). This approach has enabled a significant leap in performance for common
image restoration problems including denoising, demosaicing, super-resolution, etc. However,
different neural networks must be carefully designed and trained for each problem specifically.
Furthermore, it is usually impossible to interpret what task is performed by the different layers
or sub-modules of the trained network which acts as a black box.

In order to increase the interpretability and genericity of deep neural networks, the field
is evolving towards methods that combine them with traditional optimization algorithms.

*Submitted to the editors November 17, 2022
Funding: This work was supported in part by the french ANR research agency in the context of the artificial
intelligence project DeepCIM, and in part by the EU H2020 Research and Innovation Programme under grant
agreement No 694122 (ERC advanced grant CLIM).
TInria Rennes — Bretagne-Atlantique, 263 Avenue Général Leclerc, 35042 Rennes Cedex, France (e-mail: first-
name.lastname@inria.fr)

2 M. LE PENDU, AND C. GUILLEMOT

approach, seen for example in [1-8], consists in defining so-called “unrolled” neural networks
that simulate several iterations of an optimization algorithm. For instance, in unrolled gradient
descent, the gradient of the data-fidelity term can be computed knowing its closed form
expression, while a convolutional neural network (CNN) is used to simulate the gradient
computation of a regularization term. End-to-end training of this regularizing network is
then performed by “unrolling” a given number of iterations of the optimization algorithm.
Here, the trained CNN is meant to represent only prior knowledge on images, which does
not depend on a specific image restoration task. However, in practice these networks require
re-training for each task, meaning that task-specific features are also learnt in the end-to-end
unrolled training.

A more universal approach referred to as “Plug-and-Play” (PnP), relies on proximal algo-
rithms such as the Alternating Direction Method of Multipliers (ADMM) [9] or Half Quadratic
Splitting (HQS) [10], where the proximal operator of the regularization term is usually replaced
by a denoiser as in [11-15]. While Venkatakrishnan et al. [11] introduced this approach using
traditional denoising techniques including BM3D [16] or K-SVD [17], more recent methods
attain higher performance thanks to neural networks trained for denoising. The advantage
compared to unrolled methods is that the neural network component is only trained for Gauss-
ian denoising, and can then be used generically for solving several tasks. However, unrolled
methods can reach even higher quality with fewer iterations by task-specific training, which
highlights the necessity of embedding task-related features in the denoiser. Our aim is then to
introduce a more general mathematical framework for Plug-and-Play that enables advanced
task-specific tunable denoising, while preserving the interpretability, and thus the genericity
of the approach.

More specifically, we propose in this paper a preconditioning of the ADMM in order to
improve the algorithm’s performance in the Plug-and-Play scenario. While the proposed
formulation remains mathematically equivalent to the original problem, the preconditioning
makes it possible to use a denoiser that takes into account spatially varying noise levels. This is
particularly advantageous for applications where the variance of the approximation error made
at each iteration varies spatially in a predictable way. For instance, in image demosaicing,
completion, or interpolation, only the unknown pixels that require interpolation are expected
to have an approximation error. Hence, the pattern of known and unknown pixels can be
used in our scheme to define a sensible preconditioning matrix. Likewise, when an image
is corrupted by Poisson noise, the noise variance at each pixel is known to be proportional
to the noiseless pixel intensity. Note that the term “preconditioned ADMM” has also been
used in the literature (e.g. [18,19]) in reference to a different version of the ADMM designed
for cases where the sub-problems are difficult to solve, which is not related to the proposed
preconditioning scheme. In summary, the main contributions of our paper are as follows:

e We formulate a preconditioned ADMM, which enables the use of a denoiser that can
take into account spatially varying standard deviation.

e We propose a procedure for training a denoising neural network that takes as input a
map of pixel-wise standard deviation, along with the image to be denoised.

o We demonstrate the effectiveness of the approach and define suitable preconditioning
schemes for several applications: image completion, interpolation, demosaicing and
Poisson denoising. Note that for Poisson denoising, we present further derivations

PRECONDITIONED PLUG-AND-PLAY ADMM 3

accounting for the negative log-likelihood of the Poisson distribution, which replaces
the conventional least square data fidelity term (only suitable for Gaussian noise).

2. Background: Plug-and-Play ADMM.

2.1. Plug-and-Play Prior. Let us consider the linear inverse problem of recovering a clean
image & € R" from its degraded measurements b € R™ obtained with the degradation model
b= Ax + v, where A € R™*" is the degradation matrix, v € R™ is additive white Gaussian
noise with standard deviation o, and « is the unknown ground truth image arranged as a
vector. The problem is generally formulated as the Maximum a Posteriori (MAP) estimation
of x, given its prior probability density function p. The MAP is given by:

(2.1) & = argmax p(x|b) = argmax p(blx) - p(x),
€T x

(2.2) arg min — In(p(bl)) — In(p(x)).

x

(2.3)

1
arg min 3 |Az — b||5 + o’ R(x).
T

In practice, the prior distribution p is not used directly, but is represented by the regularizer
R(x) = —In(p(x)), which penalizes unlikely solutions.

The PnP approach introduced in [11] goes one step further by removing the need for an
explicit definition of the regularizer. This is made possible by the use of proximal algorithms
such as ADMM in which the regularizer only appears in the evaluation of the proximal operator
of 7R for some scalar factor «. This operator is defined as:

1
(2.4) prox, (u) = argmin o |l - ull3 +v - R(z).
xTr

It can be noted that the expression of prox,.r is a particular case of Eq. (2.3), where the
degradation matrix A is the identity matrix, i.e. the degradation model only consists in the
addition of white Gaussian noise. In other words prox,. is the MAP denoiser assuming
additive white Gaussian noise of variance v and given the underlying prior p(x) = e R@)
Based on this observation, the authors of [11] replaced prox,.g by a standard image denoiser
which implicitly determines the prior distribution. In the following, we will note the denoiser
as a function of the image and the noise standard deviation:

(2.5) Pr(u, v/7) = prox,z (w)

More recent works use a trained CNN to represent the proximal operator. For instance,
in [14], adversarial training is used to learn a projection operator. Here, the assumption
is that the regularizer is the indicator function of the set of “natural images”. Hence, the
corresponding proximal operator projects the input image to the closest “natural image”,
which can be seen as a form of blind denoising. While this avoids the need for a parameter
7, it does not allow for controlling the denoising “strength” within the algorithm. In [12], a
neural network called DRUNet, that combines Res-Net [20] and U-Net [21] architectures, is
trained for the task of Gaussian denoising. The noise standard deviation is given as a constant

4 M. LE PENDU, AND C. GUILLEMOT

input map in addition to the noisy image. Hence, compared to approaches based on denoising
CNNs trained for a single noise level [22], or for blind denoising [14,23,24], the method in [12]
can control the algorithm’s parameters more precisely at each iteration, while keeping the
highest denoising performance. Since a single network is used, it also simplifies the method
in [13], where 25 denoisers are trained for different standard deviations in order to cover a
larger range of noise levels.

In this paper, we argue that a denoiser parameterized with an input map for standard
deviation can even be trained to control the noise level at each pixel independently. Such
a denoiser further improves the PnP scheme for several applications thanks to the proposed
preconditioning.

2.2. ADMM Formulation. In this section, we present the classical ADMM formulation
in the case of the least squares inverse problem in Eq. (2.3). The same notations will be used
throughout the paper. In order to use the ADMM, the problem is first cast into a constrained
optimization problem by splitting the two terms:

. . 1 2, 2
& =argmin = |[|[Az — b||5 + c“R(y)
(2.6) 2y 2 ?

subject to x =y,

The constraint @ = y is included in the optimization by defining the augmented La-
grangian function £, which introduces a dual variable [€ R™ and a penalty parameter p:

1
L(z,y,1) = 5 | Az — bl + *R(y)

(2.7)
+1T (@ —y) + £ e —yl3,
1 2 2 P L] Hng
2. == ||Az —b Ble—y+ - — 212
(28) 5142~ blE + o*R(y) + § o=y + o 1]

The ADMM method consists in alternatively minimizing the augmented Lagrangian £ for
the variables « and y separately, and by updating the dual variable I. In practice, the penalty
parameter p may also be increased over the iterations. This strategy was shown in [25] to
ensure convergence to a fixed-point in the PnP scenario with only mild assumptions on the
denoiser. The ADMM iteration thus reads as:

: I\ |17
(2.9) k1 = argmin | Az — b5 + p* ||z — <y’c — k> 7
2
(2.10) L PV - U—zR(y)
. ’ 9 ,Ok) ,Ok)
(2.11) L L e)
(2.12) Pl =pFa, with a>1,

where the dual variable [is typically zero-initialized. An initialization of x is also required
and is often performed as ° = ATb, but a finer initialization strategy may be used depending
on the problem.

PRECONDITIONED PLUG-AND-PLAY ADMM 5

The y-update in Eq. (2.10) can be equivalently written using a proximal operator:
(2.13) Y+ prox g (@ 4 1/ph),

where v = 02/ p¥. As seen in Section 2.1, this step can be performed in the PnP approach by
denoising the image x**1 4 1¥/p* using a Gaussian denoiser for a noise standard deviation
Vi = oI\

Note that other PnP methods such as [12] use the HQS algorithm which is similar to
ADMM, but without the dual variable I in the two sub-problems (Egs. (2.9) and (2.10)).
Hence, the dual-update step in Eq. (2.11) is also removed. While we present our precon-
ditioning method in the next section for the ADMM, it would apply similarly to the HQS
algorithm.

3. Preconditioned Plug-and-Play ADMM. In several problems, we have additional
knowledge about locally varying noise level. For instance, in image completion or interpo-
lation problems, the pixels already sampled in b are known without error. Thus, at a given
iteration, only the pixels at unknown positions need to be denoised. However, in the orig-
inal ADMM formulation the denoising step considers the same noise level o*/\//Tk at each
pixel. Hence, in order to finely tune the denoising effect and improve the performance of the
PnP-ADMM, we reformulate the problem with a preconditioner that takes into account the
knowledge of a variable noise level.

3.1. ADMM Reformulation. Let us consider the following problem, mathematically
equivalent to Eq. (2.3):

—~ 1
(3.1) Tp = argmin - | APz — b3 + *R(Px),

I
|

(3:2) Pz,
where P is a diagonal preconditioning matrix.

Similarly to the Section. 2.2, we can express the ADMM algorithm for solving Eq. (3.1)
by replacing the updates of and y in Egs. (2.9) and (2.10) with respectively:

lk
o= (v)

2 0_2
2 P

2

)

(3.3) k1 — argmin | APz — b|3 + p*
© 2

1 Ik
(3.4) yktt = arg;nin 3 Hy — <wk+1 + pk>

The variable can be updated directly using the well-known closed form solution of
Eq. (3.3):

(3.5) Pt = (PTATAP + p"I)"Y(PTATb + pry* — 1F).

In this paper we will focus on the case of diagonal matrices A and P where Eq. (3.5) can
be implemented with simple pixel-wise operations. Note that for other problems such as
deblurring and super-resolution where A includes a convolution, practical implementations

6 M. LE PENDU, AND C. GUILLEMOT

are given in [12] and remain applicable when P applies a deconvolution of the form ®TD®,
where ® is the Fourier transform and D is diagonal.

However, for updating y, the denoiser Fr from Eq. (2.5), is no longer suitable because of
the matrix P within the regularization term. The next section presents how the y-update can
still be performed using a more general denoiser that considers Gaussian noise with variable
variance.

3.2. New Prior Term Sub-Problem.

3.2.1. General Gaussian Denoiser. Let us first define the general expression of a denoiser
for Gaussian noise with covariance matrix 3. The MAP estimate from a noisy image u
can be derived similarly to Egs. (2.1)-(2.3), where the likelihood p(u|x) is a multivariate

1 _ 2
Gaussian distribution, i.e. p(u|m)OCe_§||E Pu—a),,

negative logarithm gives the expression of the denoiser:

Including the prior and taking the

2
(3.6) Gr(u,BY?) = arg min% HE_l/Z(u — :B)H2 + R(x),
x

Here, we will only consider the case of a diagonal matrix 3. Hence, we still assume independent
noise at each pixel (but not identically distributed), and the diagonal of 3 corresponds to pixel-
wise variance. Note that the denoiser Fr is equivalently defined as Fgr(x,0) = Gr(x, o) for
a constant standard deviation o. A practical image denoiser G can be obtained by training
a CNN that takes as input a map of the pixel-wise noise levels in addition to the noisy image.
A training procedure for such a denoiser is presented in Section 4.

3.2.2. Sub-Problem Solution. Now, let us rewrite Eq. (3.4) using the change of variable

g = Py, which gives y = P~'4. Thus, we have y**! = P~1g*¥*1 and g*+! = argmin f(%)
1]
with:
~ P 1~ k+1 LAY ~

(3.7 10) = 4 [P e (a4) |+ i@

o 0%) ly

2

1 {[+/p" 1k
(3.8) | (g-P (2 + R(§).

2| o P)

Given the denoiser Gr in Eq. (3.6) we can then rewrite the y-update step as:

1* o
(3.9) y*l = P71GR (P <azk+1 + > , P)
k)7 N\ pk

Therefore, the preconditioned ADMM still solves the original problem but introduces a
denoising step that assumes noise with spatially varying standard deviation. The standard
deviation can be adjusted per pixel via the diagonal matrix P and the global parameters
o and pF. A suitable choice of the preconditioning matrix can be made depending on the
problem in order to improve the performance of the PnP-ADMM.

PRECONDITIONED PLUG-AND-PLAY ADMM 7

3.3. Variables Interpretation and Initialization. It should be noted that in the precondi-
tioned problem, an image x* only estimates the intermediate variable Zp, but the final result
is & = Pz, (see Eq. (3.2)). Hence, ¥ (similarly y*) may not be a plausible image. However,
the input of the denoiser is P(x**1 +1%/p*), where the multiplication by P rescales the image
pixels consistently with the “natural image” &, as expected by the denoiser.

Inversely, for the initialization, the inverse scaling must be performed. Given an initial
estimate &0 of the true image &, a good initialization for our problem is thus «® = P~1&0.

3.4. Computational complexity. The complexity of the x-update and y-update steps in
Egs. (3.5) and (3.9), is not significantly increased by the preconditioning in the case of diagonal
matrices A and P since the multiplication by P (or equivalently PT) and by P~! only
consists of a pixel-wise multiplication and division respectively. Hence, the overall per-iteration
complexity of the algorithm is essentially that of the deep denoiser network Gr. As detailed
in the next Section, we use the same network architecture for Gz as in the non-preconditioned
PnP method in [12]. Hence, the complexity of one iteration is similar in the preconditioned
and non-preconditioned cases. Furthermore, our experiments in Section 6 show that the
preconditioning accelerates the convergence, as expected by our analysis in Section 5.4. Since
the overall complexity scales linearly with the number of iterations, significant computing time
can be saved with the proposed approach.

4. Deep Locally Adjustable Denoiser. Our algorithm relies on a deep neural network
for solving the prior term sub-problem which corresponds to a Gaussian denoising problem
where the noise level (i.e. standard deviation) is known and can be adjusted for each pixel.
Although recently proposed denoisers (e.g. FFDNet [26], DRUNet [12]) can take into account
a spatially varying noise level to some extent, these methods are only suitable for smooth
noise level patterns. It is also worth noting that very recent improvements have been achieved
in image denoising by the Restormer network [27] that uses a transformer-based architecture
to overcome the issue of limited receptive field of traditional convolution layers. However,
although the Restormer network has demonstrated higher quality Gaussian denoising than
DRUNet for a similar complexity and over a large range of noise standard deviations, it was
trained in [27] as a blind denoiser. As shown in [12], blind denoisers are not suitable for
the PnP framework which requires adjusting the noise level parameter within the algorithm.
Furthermore, the images given as input to the denoiser within the PnP framework typically
have different types of degradation than i.i.d. Gaussian noise.

In this section, we propose a method to train a locally adjustable denoiser for arbitrary
noise level patterns.

4.1. Denoising Network for Known Noise Level. Here, we use the DRUNet architecture
proposed in [12]. The overall structure consists of a U-Net where each level contains sequences
of 4 residual-blocks and either a down-sampling layer (first branch of the U) or an upsampling
layer (second branch).

The DRUNet network structure in [12] conforms to the definition of the denoisers Fr
(Eq. (2.5)) or Ggr (Eq. (3.6)) by taking as input the concatenation (in the channel dimension)
of the noisy image and a noise level map whose pixels’ values are equal to the noise standard
deviation. The advantage of using an input noise level map is that a single generic model

8 M. LE PENDU, AND C. GUILLEMOT

can be trained to perform optimally for a large range of noise levels. However, in [12] the
model is only trained considering constant noise level maps since their algorithm only uses
the constant denoiser Fr. In the rest of the paper, we refer to this network as DRUNet-cst
and we re-trained it for fair comparisons with our locally adjustable versions.

In order to use our preconditioning approach, a locally adjustable denoiser G is required.
Therefore, the training process must be adapted so that each input sample consists of an
arbitrary noise level map along with an image corrupted with the corresponding Gaussian
noise level for each pixel. We describe in the next section how to randomly generate suitable
patterns so that the trained model generalizes well for any arbitrary noise level map.

4.2. Noise Level Map Generation. Let us first consider the case of a constant noise level
map as in [12]. Here, all the pixels are equal to the same random variable S that can be
simply defined as:

(4.1) S =2u-X,

where X is a uniformly distributed random variable in the range [0,1]. The parameter p is
equal to the expectation of the random variable S. It can be selected to train a denoiser that
is sufficiently generic for all the noise levels o in the range [0,2u].

Now, in order to train a locally adjustable denoiser Gr, we generate a random map for
each training image using the following random process:

where i is the pixel index, O, W and X; (for each pixel i) are independent random variables
with uniform distributions in the range [0,1]. One can verify that p is the expectation of \S;,
and the range of possible values of S; is [0,2u] similarly to the previous case with constant
noise level.

The random weight W allows us to adjust the variance of the noise level map (i.e. lower
weight corresponding to higher variance). The random offset O is also necessary to reduce
the correlation between the variance and the mean of the generated maps. In particular, the
offset enables the generation of maps with a low variance but a high average level, so that
the trained denoiser generalizes well even in the constant noise level case. Hence, the method
makes it possible to train the network with noise level maps covering a wide range of first and
second order statistics, which prevents overfitting for a specific type of pattern. In the paper,
we refer to the network trained with this method as DRUNet-var.

For some applications, the noise standard deviation may also need to be adjusted de-
pending on the color component. For these applications, we train another network called
DRUNet-var-RBG that takes an input noise level map for each color component. For the
training, the noise level maps are generated for each component separately using the random
process in Eq. (4.2).

4.3. Training Details. The training is performed by generating a noise level map ran-
domly for each input image, as described in Section 4.2. Considering pixel data in the range
[0, 1], we use the parameter u = 25/255 in Eq. (4.1) (for the DRUNet-cst denoiser) or Eq. (4.2)
(for the DRUNet-var and DRUNet-var-RBG denoisers). The maximum noise level is thus

PRECONDITIONED PLUG-AND-PLAY ADMM 9

Table 1
Denoising performance (average PSNR over each dataset) for Gaussian noise with constant noise level
(standard deviation o = 10, 30 or 50).

Dataset CBSD68 Setb
noise level o 10 30 50 10 30 50
CBM3D [16] 35.90 29.91 27.51 | 36.02 30.97 28.75
FFDNet [26] 36.14 30.32 2797 | 36.16 31.35 29.24
RNAN ([33] 36.43 30.65 28.30 | 36.62 31.77 29.61
DRUNet-cst [12] 36.51 30.79 28.48 | 36.67 31.90 29.80
DRUNet-var 36.51 30.80 28.48 | 36.67 31.91 29.79
DRUNet-var-RBG | 36.47 30.78 28.46 | 36.61 31.90 29.77

2u = 50/255. Gaussian noise with standard deviation defined by the noise level map is then
added to the input image.

The remaining details of the training procedure are the same as described in [12]. We
use the same large dataset of 8694 images, including the Berkeley Segmentation Dataset
BSDS500 (without the validation images) [28], the Waterloo Exploration Database [29], the
DIV2K dataset [30], and the Flickr2K dataset [31]. We minimize the I; loss between the
denoiser’s output and the ground truth image using the ADAM optimizer [32] with a learning
rate initialized at 1e—4 and decreased by half every 100000 iterations. The training is stopped
when the learning rate is smaller than 5e — 7. Finally, each iteration of the training uses a
batch of 16 patches of size 128x128 randomly selected from the images of the training dataset.

4.4. Denoising Performance. Here, we evaluate the performance of our denoisers
DRUNet-var and DRUNet-var-RBG generalized for variable standard deviation, in compar-
ison with DRUNet-cst [12] as well as other state-of-the-art denoisers that assume a constant
noise level. These include the BM3D denoiser (noted CBM3D for color images) [16] and the
two recent CNN-based methods FFDNet [26] and RNAN [33]. Similarly to DRUNet-cst, the
FFDNet denoiser can be parameterized at inference time knowing the noise standard devi-
ation. On the other hand, RNAN requires a separate training for each noise level, but has
shown higher denoising performance thanks to a non-local attention module.

We perform our evaluations with the widely used Set5 [34] and CBSD68 [35] test datasets.

4.4.1. Constant Noise Level. First, let us consider input images corrupted with constant
noise level. The results in Table 1 show that our locally adjustable denoisers DR UNet-var and
DRUNet-var-RBG do not have significantly degraded performance compared to the reference
network DRUNet-cst, despite being trained for more generic noise level maps. Only a very
moderate loss is observed for the DRUNet-var-RBG denoiser compared to DRUNet-cst, mostly
for the lowest and highest noise levels (o = 10 or 50). Nevertheless, DRUNet-var-RBG still
outperforms the other state-of-the-art methods, even the RNAN denoiser trained specifically
for each noise level.

4.4.2. Spatially Varying Noise Level. Now, let us show the advantage of the proposed
training procedure by comparing the performances of our DRUNet-var denoiser with the
DRUNet-cst version when the input noise standard deviation varies spatially. For these tests,

10 M. LE PENDU, AND C. GUILLEMOT

(a) Ground truth / noisy (b) Avg-std (¢c) True-std
(1 = 100/255) PSNR=19.18 PSNR=19.07

(d) PnP-ADMM (e) DRUNet-var
PSNR=28.94 PSNR=29.28

Figure 1. Denoising results with pizel-wise standard deviation randomly selected in [0,2u]. The average
noise standard deviation is p = 100/255. For the Avg-std, True-std and PnP-ADMM schemes in (b-d), the
network DRUNet-cst is used. In (e), the network DRUNet-var is used with the True-std scheme.

we randomly select a standard deviation in the range [0,2u] for each pixel. For a complete
comparison with DRUNet-cst, we have tested this network in three different ways:
e Awg-std: using the average noise level u as input.
o True-std: using the true noise level map as input.
e PnP-ADMM: solving the problem of denoising with variable noise level (Eq.(3.6))
using PnP-ADMM without preconditioning based on the DRUNet-cst network.
For the PnP-ADMM, we set the parameters using Eq. (6.1) so that the noise of highest
standard deviation ogen = 24 is removed at the first iteration, while successive iterations
refine the result by decreasing the noise level of the denoiser down to o2 . Here, we use
aﬁén = %" for N = 25 iterations, which we found to give the best results for this application.
Table 2 and Fig. 1 present the results of DRUNet-cst in each of the three schemes, and
DRUNet-var in the True-std scheme. As expected, the results using only the average standard
deviation are unsatisfying, since the pixels with above average noise level are not sufficiently
denoised, while details are not optimally preserved in less noisy regions. The same behavior is
observed when using the true noise level map as input to DRUNet-cst. This confirms that a
denoiser trained for constant noise level does not generalize when the noise standard deviation
strongly varies between pixels. More satisfying results are obtained when using DRUNet-cst
in the PnP-ADMM scheme. However, our DRUNet-var denoiser trained directly for this task
can still retrieve more details, which indicates that the PnP-ADMM without preconditioning
is sub-optimal. More realistic applications are presented in the rest of the paper to demon-
strate that our locally adjustable denoisers also allow for improved performances in practical

PRECONDITIONED PLUG-AND-PLAY ADMM 11

Table 2
Denoising performance (average PSNR over each dataset) for Gaussian noise with pizel-wise variable
standard deviation in the range [0, 2p].

DRUNet-cst [12] DRUNet-var
Dataset | Avg-std True-std PnP-ADMM True-std
_ 25 Setd 29.01 29.03 34.35 34.48
H= 125 | BSD6S 28.14 28.22 32.75 32.90
s | Seth | 2445 24.37 32.03 32.24
H= 255 | BSD6S 23.59 23.60 30.09 30.27
100 Seth 19.82 19.58 29.69 30.06
H= 255 | BSD6S 19.03 18.88 27.73 28.01

scenarios thanks to the preconditioned PnP-ADMM.

5. Applications. In this section we present several examples of applications in image
restoration. Although the proposed denoiser allows us to adjust of the variance locally, it
still assumes an independent noise distribution for each pixel. Hence, in order to demonstrate
the advantage of our preconditioning for the PnP-ADMM scheme, we restrict our study to
applications where the error variance is expected to vary only in the pixel domain. While
this excludes deblurring, or super-resolution from an anti-aliased downsampled image, many
applications of high practical interest are still concerned. These include image completion,
interpolation, demosaicing and Poisson denoising.

5.1. Image Completion and Interpolation. In the problems of image completion and
interpolation, a subset) of the original image pixels are sampled in the input vector b, while
the remaining ones are unknown and must be determined. In both problems, the sampling
can be expressed in the matrix form Ax = b with a sampling matrix A such that each row
contains only zeros, except one element equal to 1 at the index of a sampled pixel.

When solving the problem with ADMM, all the unknown pixels are expected to have
the highest estimation error at the initialization stage. However, over iterations, more reliable
estimates should be obtained especially for pixels close to a sampled pixel. Hence, the denoiser
within our preconditioned PnP-ADMM should be adjusted locally depending on the proximity
to a sampled pixel. Following this intuition, we define a preconditioning matrix P that varies
over iterations according to the following formula for each iteration k:

k
max(m”™) + €
(5.1) [Pk] - —X(k)
i [mk], + €
where € is a scalar parameter and mP¥ is defined recursively by blurring m*=1, and where m?°

is the mask indicating the known pixels:

1 if 7€
5.2 mF =mF1xg(o ., with [mP?] = A4
(5:2) 9(oy) []l 0 otherwise

Here, * is the 2D convolution operation and g is a 2D Gaussian filter of parameter o¢. Note
that it is equivalent to have m* = m© « g(of\/E). We can thus determine oy so that the

12 M. LE PENDU, AND C. GUILLEMOT

preconditioning at the last iteration N does not depend on N, but only on a fixed parameter
aé}“”t at the last iteration by taking oy = a}“t /V/'N.

Using this definition, the preconditioning values are always equal to 1 for the known pixels
(i.e. [Pk]“ = 1Vi € Q), and higher than 1 for the other pixels, which results in a stronger
denoising for the unknown pixels in Eq. (3.9). The parameter € prevents too high precondi-
tioning values that would make the denoising impractical. The highest preconditioning value
iS Pmar = (1 + €)/e. Additionally, thanks to the Gaussian blur, the preconditioning values
of unknown pixels will depend on their distance with sampled pixels. Therefore, the least
reliable pixels (i.e. that are far from sampled pixels) will be denoised more.

Note that we only use non-zero preconditioning values (and thus non-zero standard devi-
ation in the denoiser) so that the matrix P remains invertible. However, ideally, no denoising
should be performed at the sampled pixel positions to prevent unnecessary loss of information.
Therefore, we force the denoiser’s output to be equal to the input for these pixels.

5.2. Demosaicing. Digital cameras typically capture colors using a sensor with a color
filter array (CFA). Thanks to the mosaic formed by the CFA, neighbor pixels on the sensor
record a different color information. Knowing the CFA pattern, the full color information can
then be retrieved by an inverse problem called demosaicing.

Red, green and blue filters are generally used so that each pixel directly records one of the
RGB components. Demosaicing can then be seen as an interpolation problem where a pixel R,
G or B value is either known or unknown. Therefore, we use the same preconditioning strategy
described in Section 5.1. However, in a realistic scenario, sensor data may also contain noise
which is preferably removed jointly with the demosaicing step [36]. In the case of noisy data,
our method applies similarly, but we do not force the denoiser to keep the sampled pixels
unchanged as explained in Section 5.1.

Furthermore, unlike the problems of completion and interpolation, the demosaicing uses
different masks indicating the sampled pixels for the R, G and B components. The precondi-
tioning matrix thus takes different values for each component of the same pixel, which requires
using a denoiser parameterized with a RGB noise level map. Our DRUNet-var-RBG network
trained for arbitrary noise level patterns is thus suitable for this application.

However, in order to illustrate the tradeoff between the genericity of the denoiser and the
optimal performance, we also trained a more specialized denoiser for demosaicing that we
call DRUNet-dem. For training this network, instead of generating noise level maps with the
generic random process in Eq. (4.2), we generate the patterns from the CFA mask, that is also
used in the preconditioned ADMM. These patterns are defined by Egs. (5.1) and (5.2), where
a mask m0 is defined for each color component by the CFA pattern. Experimental results
using either the generic network DRUNet-var-RBG or the specialized one DRUNet-dem, are
given in Section 6.4.

5.3. Poisson Denoising. In many practical scenarios, the assumption that images are
corrupted by additive white Gaussian noise is inaccurate. Camera noise is typically better
modelled by a Poisson process. In order to formulate a MAP optimization for the problem of
denoising an image corrupted with Poisson noise, the least squares data term in Eq. (2.3) must
be modified. Here, we re-derive our preconditioned ADMM algorithm for Poisson denoising.

PRECONDITIONED PLUG-AND-PLAY ADMM 13

5.3.1. Preconditioned ADMM for Poisson denoising. Applying Poisson noise to an orig-
inal image x € R™ gives a noisy image b € N™ such that the likelihood distribution is:

n b —x;

6:3) pole) =[]

i=1

As seen in Egs. (2.1)-(2.3), the data term is the negative log-likelihood which can be
derived as

(5.4) —In(p(blx)) = —b" In(x) + 17z + ¢,

where ¢ is a constant term that can be ignored for the minimization. The preconditioned
Poisson denoising problem is then formulated by substituting & with Px and by adding the
regularization term as in Eq. (3.1):

(5.5) T, = argmin —b' In(Px) + 1 Pz + R(Px),
x
The problem is solved using the ADMM, by splitting the data and regularization terms
following the methodology in Section 2.2. Since the regularization term remains the same as
in Section 3, the y-update in Eq. (3.9) still applies, and is performed using the same Gaussian
denoiser Gr. However, given the new data term, the x-update becomes:

k
(5.6) xzF*t! — argmin —b' In(Px) + 1" Px + % Ha: — uk’

2
Y
T 2

where u® = y* — 1% /pF.

Knowing that P is a diagonal matrix, this problem can be solved independently for each
pixel. The following closed form solution is derived in Appendix A (similar derivations are
also found in [15] for the case P = I):

[mk+1] _ Pui — P+ /(PPus — Pyi)? + 4pPb;

(5.7) 3

It is worth noting that unlike the Gaussian case, the noise level only depends on the data
and is not controlled by a parameter o. However, in photography the amount of Poisson noise
can be reduced by increasing the exposure. This effect can be simulated by applying Poisson
noise to a ground truth image rescaled in the range [0, A]. A high peak value A thus simulates
a high exposure and less noise. However, for an input image b with values in the range [0, A],
the algorithm must be modified since the denoiser Gz in Eq. (3.9) assumes data in the range
[0,1]. The y-update should then be performed by replacing Gg with the denoiser Gg\z adapted
to the range [0, \] by rescaling the input and output as:

(5.8) G (u, BY?) = A\Gr(u/X, TY2/N).

Similarly, the final ADMM result should be divided by A to recover an image in the range
[0,1].

14 M. LE PENDU, AND C. GUILLEMOT

5.3.2. Choice of Preconditioning Matrix. It is well known that the variance and the
expected value of a random variable with the Poisson distribution are both equal to the
distribution’s parameter, i.e. the noiseless image pixel. This means that for each pixel of the
image, the noise standard deviation is equal to the square root of the pixel value in the ground
truth image. Although this image is unknown, the noisy image provides a first estimate of
the noise variance, which can be refined at the next iterations, as we obtain a better estimate
of the noiseless image.

Therefore, in this problem, we use p, = 1 for each iteration, so that the denoiser is only
controlled using the preconditioning matrix which is initialized as P® = diag(v/b). Here, the
square root is applied element-wise and the notation diag forms a diagonal matrix from the
vector. Following the initialization strategy in Section 3.3, the variable x is then initialized
such that 0 = P20 = b, and thus 2° = [P°] ' b = vb.

Then, at each iteration, a more accurate estimate of the noiseless image is given by P*y*
obtained after the denoising step in Eq. (3.9). Note that P*y¥ is directly the output of the
denoiser (before applying [Pk]fl) and is thus obtained without further matrix multiplication.
Hence, the preconditioning matrix can be updated to better estimate the noise standard

deviation using P**! = diag(\/Pkyk).

5.4. Analysis for noise-free sampling applications. In this section, we provide further
analysis to illustrate the benefit of the proposed preconditioning approach for the sampling
problems such as image completion, interpolation or demosaicing, in the noise-free scenario.

For these problems, we can define the sets S and S of indices of respectively the known
and unknown pixel’s. The sampling matrix A is diagonal and such that A;; =1if i € S and
A;; =0ifi e S. In Sections 5.1 and 5.2, we have also defined a diagonal preconditioning
matrix P such that P;; = 1if i € S (and for ¢ € S, we have P;; > 1 in the preconditioned
case and P;; = 1 if no preconditioning is used). The closed form solution to the data-fidelity
sub-problem in Eq. (3.5) can thus be expressed per pixel as:

i [yk]l. - [lk]i/pk, ifieS.

First, let us show that for the noise-free sampling applications, the dual variable in the ADMM
(either with or without preconditioning) has no effect, making the algorithm equivalent to the
HQS, which simplifies the analysis.

For all the known pixels of indices ¢ € S, the initialization is such that [yo]i = b;
and [lo]i = 0. Hence, at the first iteration, Eq. (5.9) gives [a:l]l = b;. Furthermore,
since we prevent the denoising of the known pixels for noise-free sampling problems by
forcing the denoiser’s output to be equal to its inputs for these pixels, the prior term sub-
problem in Eq. (3.9) becomes [y**1] = [z*+1] + [I¥] /p*, which gives at the first it-
eration [yl]z = [:131]Z = b;,Vi € S§. The dual variable update in Eq. (2.11) then gives
[ll]i = [lo]l. + pF ([mo]i — [yo]l.) = 0. Thus, both y; and I; are unchanged after 1 itera-

tion, and by recurrence we obtain [zc’“]Z = [yk]l. = b; and [lk] = 0,Vk € Z,Vi € S. The

)

PRECONDITIONED PLUG-AND-PLAY ADMM 15

data-fidelity sub-problem is then:

w1l b;, ifieS,
(5.10) [90]i_{[yk]i_[lk]i/pk’ ifieS.

For the unknown pixels of indices i € S, on the other hand, the dual variable I may be
non-zero. However, the y-update step of the ADMM in Eq. (3.4) only uses this variable to
compute the input &¥*1 4+ 1, /p* of the regularization term’s proximal operator. Furthermore,
from Eq. (5.10), for i € S, we have [mkHL + [lk]l./pk = ['yk]Z Therefore, the y-update can
be directly computed from the previous estimate y* for the unknown pixels independently of
the values [lk]i. Hence the ADMM and HQS are equivalent in this particular case. Note that
for the noisy case, we provide comparisons between HQS and ADMM (either with or without
preconditioning) in Appendix B.

In order to analyse the effect of the preconditioning, let us now rewrite the x and y-update
steps as a single step by injecting the result of Eq. (5.10) into the y-update equation. Since
the final result is obtained as y = Py, let us directly consider the y-update with this change
of variable as expressed in Eq. (3.7). We obtain:

2
~f+1 _ i 1 -l — k+1 ﬁ 12 y
(5.11) yr s argming | Py — (@B 4)+ SER(),
g 2 P 2 p
2
1 _ 5 1 Yi — [gk] o 7
5.12 = in 7 by L\ T,) TR
(5.12) arggm%z(yz)2+ 22(B o (9),
€S €S 7
2
1 - o 0% 1 Ui — [gk]
5.13 = ing |lAy - bl + ZR 2u\ "R,)
(5.13) arggmln 5 |Ag — bl|5 + oF (9) + 2 ;q (P
2

One can note that by taking p = 1 and P;; arbitrarily large for all i € S, Eq. (5.13) would
directly solve the original problem of Eq. (2.3) in a single iteration. However, choosing arbi-
trarily large preconditioning values for the unknown pixels is impractical in the plug-and-play
context. This would require parameterizing the denoiser using a standard deviation map with
extreme variations between the known pixel positions and the unkown ones, while the denoiser
can only be trained for a limited range of standard deviation values. In our implementation
for sampling problems, we have constructed a preconditioning matrix with maximum values
Pmaz as described in Section 5.1 in order to keep standard deviations in a reasonable range.

Nevertheless, we have py,q, = P;; > 1 for the unknown pixels, hence reducing the weight
of the last term in Eq. (5.13) compared to the non-preconditioned algorithm (where P;; =
1Vi). This term ensures proximity of the unknown pixels with their values at the previous
iteration, which intuitively slows down the algorithm. Reducing the weight of this term with
the proposed preconditioning is thus expected to accelerate the algorithm, as confirmed by
the experimental results presented in the next section.

6. Experimental Results.

6.1. ADMM Parameters Setting. In this section, we provide the main intuition behind
the tuning of the ADMM parameters. Note that alternatively to a manual tuning, automatic

16 M. LE PENDU, AND C. GUILLEMOT

hyper-parameter tuning have also been developed recently in [37] for the PuP-ADMM, and
would apply similarly in our preconditioned case.

The main hyper-parameters of the ADMM are the number of iterations /N, the initial
penalty parameter p°, and it’s increase factor a in Eq. (2.12). The additional parameter o in
Eq (3.1) depends on the problem and corresponds to the Gaussian noise standard deviation in
the measurement vector b. For noise-free applications (i.e. completion, interpolation, noise-
free demosaicing), using the theoretical value ¢ = 0 would remove the regularization term.
Therefore, in order to keep the benefit of the regularization in these applications, we use a
small value o = 1/255. Also note that this parameter does not appear in the case of Poisson
denoising in Eq. (5.5) since the noise standard deviation only depends on the ground truth
image.

6.1.1. Completion, Interpolation and Demosaicing. For the completion, interpolation
and demosaicing (either with or without noise) the parameters setting is inspired from [12]:
since the noise level of the denoiser is globally controlled at each iteration by asen =0/ \/TC ,
we choose p" such that agen is sufficiently large to remove initialization noise or artifacts at
the first iteration (regardless of the loss in details). For example, in the completion problem,
we use zero-initialisation and a large value of O'gen = 1. For the interpolation and demosaicing
problems, more accurate initialisation can be performed, thus we use a smaller value of agen =
50/255. The parameter « is then determined so that O‘Sen decreases down to o
order to best preserve the details in the final image. Therefore, we have asen = aé\;n/\/pik.

Using this equation for £ = 0 and k = N, we can compute the parameters values:

o\ 2 1\ YN
6.1 P’ = <de”> and « = ()
(o1 O den P

Note that the noise level assumed by the denoiser is also controlled locally by the precondi-
tioning matrix P in Eq.(3.9). However, our preconditioning strategy for these problems is
such that P;; = 1 if ¢ is the index of a sampled pixel (see Section 5.1). Hence at the last
iteration, the image is denoised assuming the correct noise standard deviation aé\;n = ¢ for
the sampled pixels. In our experiments, we can thus compare our preconditioned PnP-ADMM
to the non-preconditioned version using the same parameterization of O'gen and Jé\én.

The preconditioning matrix definition in Egs. (5.1) and (5.2) introduces the additional
parameters oy, controlling the blurring of the mask at each iteration, and ¢, controlling the
maximum preconditioning value ppa, = (1 + €)/e. In all the experiments, we use ppqe = 10
(i.e. € = 1/9). The parameter of is set according to the number of iterations N using
op = Uiﬂ“)’t / V/N as explained in Section 5.1, where aﬁc‘wt is the blurring parameter at the last
iteration that we set empirically for each application (see details in the respective sections and

parameters summary in Table 3).

= 0, in

6.1.2. Poisson Denoising. For the problem of Poisson denoising, the noise level at each
pixel and each iteration is fully controlled by the preconditioning matrix as explained in
section 5.3, which removes the need for the penalty parameter. Therefore we simply use
p’ =1and o = 1.

Nevertheless in order to evaluate the advantage of the preconditioning, we also implement
the non-preconditioned version by taking P = I and using the DRUNet-cst network. In this

PRECONDITIONED PLUG-AND-PLAY ADMM 17

Table 3
Summary of the parameters setting. For the demosaicing with preconditioning, we use either aﬁc‘”t =0
with the DRUNet-dem network or a}‘”t = 0.3 with the DRUNet-var-RBG network.

without preco. with preco.
Ugen Utji\én Ugen O-Zi\én UicaSt Pmaz
completion 1 % 1 %5 0 10
interpolation % % % % 0.4 10
demosaicing noise-free % ﬁ % % Oor 0.3 10
noise o 555 o 555 o Oor 0.3 10
without preco. | with preco.
Poisson denoising p° e} p° Q@
(peak \) : 4N 1 1

(a) Bicubic (c) Ours: of** = 0.4

(b) Ours: o** =0

Figure 2. Interpolation for 2 upsampling using either: (a) bicubic interpolation, (b) our method without
P update (i.e. o' =0), (c) our method with o'** = 0.4. For (b) and (c), we used N = 6 iterations.

case, the noise standard deviation assumed by the denoiser in Eq. (3.9) is 1/\/ﬁ at each
iteration k. Given an input image data in the range [0, A] and with Poisson noise, the highest
possible noise standard deviation is V. Hence, we initialize pg so that 1/ \//T = /. We found
empirically that the best results are always obtained by decreasing the denoiser’s standard
deviation down to 1/4/pN = +v/A/2 at the last iteration N. Therefore in our experiments
without preconditioning, we always use p° = 1/\ and a = 4N

A summary of the parameters setting can be found in Table 3. It does not include the
number of iterations N which is studied more in detail for each application in the following
sections.

6.2. Interpolation Results. The interpolation problem can be seen as a particular case
of super-resolution, where the low resolution input image was generated without applying an
antialiasing filter before sub-sampling the ground truth image pixels. As a result, the main
difficulty of the interpolation problem is to remove aliasing effects. First, we show in Fig. 2

18

M. LE PENDU, AND C. GUILLEMOT
% 34 % 27 (o
4 “ —w/o preco.| £ s —w/0 preco.
g0 : |=w/preco. | ¥ —w/ preco.
® og U : ® 24 ‘ ; '
6 10 20 30 40 50 60 10 50 1&0 150 200
N
(a) x2 interpolation. (b) x4 interpolation
& 25 1 /o Preco-1 2 29 /— —w/0 preco.
g0 WIPIECo. | o5 / ==w/ preco.
® 20 1L : — : - ' : ‘
0 18 50 100 118 150 200 0 20 50 1130 150 200
N

(¢) completion (20%) (d) completion (10%)

Figure 3. Results of the PnP-ADMM either with or without preconditioning with respect to the number of

iterations N for: (a) x2 interpolation, (b) x4 interpolation, (c¢) completion from 20% pizels, (d) completion
from 10% pizels. The plots show the average PSNR over the Setb Dataset.

(b) bicubic interpolation
PSNR=25.30

(¢) No Preconditioning N=100 (d)

With Preconditioning N=10
PSNR=25.37

PSNR=25.84

Figure 4. Example of x4 interpolation results.

that our method better removes aliasing when we update the preconditioning matrix P by
blurring the mask of sampled pixels, as described in Section 5.1 (see Egs. (5.1)-(5.2)). In this
example, the results of the bicubic interpolation in Fig. 2(a) displays strong aliasing artifacts.
In Fig. 2(b), using our preconditioned PnP-ADMM with a}‘”t = 0 (i.e. no update of P and
no blurring of the mask) partially removes the aliasing. However, better results are obtained

PRECONDITIONED PLUG-AND-PLAY ADMM 19

Table 4
Interpolation results for x2 and x4 factors (average PSNR over each dataset). In each case, the number
of iterations N giving the best results is used for the PnP-ADMDM.

Seth CBSD68

bicubic interpolation 31.63 27.85
x2 | PnP-ADMM w/o preco. (N =30) | 33.34 28.85
PnP-ADMM w/ preco. (N = 6) 33.47 29.00
bicubic interpolation 25.66 23.20
x4 | PnP-ADMM w/o preco. (N = 100) | 26.36 23.65
PnP-ADMM w/ preco. (N = 10) 26.94 23.90

in Fig. 2(c), when updating P using J?St = 0.4.

Although many super-resolution algorithms exist and excellent performances have been
obtained by deep learning techniques, these methods are generally trained assuming that
the degradation already includes a given antialiasing filter. Therefore these methods are not
suitable for the interpolation. Hence, we only compare our approach to the non-preconditioned
PnP-ADMM, as well as the bicubic interpolation which we also use as an initialisation in the
ADMM. The results of the PnP-ADMM either with or without preconditioning depends on
the chosen number of iterations N. Fig. 3(a)-(b) shows that without preconditioning, the
best results are obtained using respectively N = 30 and N = 100 iterations for x2 and
x4 interpolation, while with our preconditioning, we only need to use N = 6 and N = 10
respectively. Note however that the results are sensitive to the rate of change of the ADMM
parameters (controlled by V) both in the preconditioned and non-preconditioned cases, since
a quality degradation can be seen in Fig. 3(a)-(b) for too high values of N (e.g. too slow
increase of the parameter p). Nevertheless, from our experiments, the best setting of N does
not significantly depend on the tested image. Using these values for the parameter /N in each
case, the results in Table 4 and Fig. 4 show that in addition to the faster convergence, our
preconditioning improves the final results of the PuP-ADMM both in x2 and x4 interpolation.

6.3. Completion Results. For the completion problem, we evaluate the results using a
rate of either 20% or 10% of known pixels. Unlike the interpolation problem, the known
pixels do not form a regular grid and are instead selected randomly, which prevents the
aliasing artifacts. For this reason, contrary to what we observed for the interpolation in
Fig. 2, updating the preconditioning matrix P with a blurred version of the mask does not
improve the completion results. Hence, we use o = 0 in the following experiments.

Based on the results in Fig. 3(c)-(d), we use N = 18 and N = 20 iterations respectively
for the 20% and 10% completion problems when using our preconditioning since these values
gave the best results for the Set5 dataset. In this case, the PSNR remains stable for a higher
number of iterations N. Hence, our method has little sensitivity to the rate of change of the
ADMM parameters for the image completion task. Similarly to the interpolation problem, the
convergence of the non-preconditioned PnP-ADMM is significantly slower: the best results
for the Set5 dataset are obtained using respectively N = 118 and N = 200 for 20% and 10%
completion.

For further comparisons, we also provide completion results obtained with the conven-

20 M. LE PENDU, AND C. GUILLEMOT

(a) Ground Truth (b) Input (c) Total variation (d) Diffusion (e) PuP-ADMM (f) PnP-ADMM
(10% pixels) (EED) (no preco.) (preco.)

Figure 5. Results of completion from 10% pizels for the butterfly image using (c) Total Variation regular-
ization, (d) Edge-Enhancing Diffusion, (e) PnP-ADMM without preconditioning (using N = 200 iterations),
(f) PnP-ADMM with our preconditioning (using N = 20 iterations).

tional total variation (TV) regularization, using the implementation in [38]. We also compare
our results to a state of the art diffusion based method. A review of diffusion methods in [39]
have shown that the best completion performance was obtained with a non-linear anisotropic
diffusion scheme referred to as edge enhancing diffusion (EED). The EED was also exploited
within compression schemes in more recent works (e.g. [40], [41]), where only a small percent-
age of pixels are encoded and the remaining ones must be recovered by the decoder. Therefore,
we use the EED scheme for our comparisons.

The results in Fig. 5 show that, while the EED diffusion better recovers large image
structures than solving the inverse problem with TV regularization, the PnP-ADMM scheme
retrieves finer details and sharper edges thanks to the advanced regularization provided by
the trained denoiser. However, without our preconditioning, some important structures of the
image may be lost as shown in Fig. 5(e) (e.g. white spots on the butterfly, zebras’ stripes). On
the other hand, our preconditioned version recovers all the structures that could be inferred
from the input data, hence resulting in a large gain in PSNR. Note that this observation
is consistent with the interpolation results in Fig. 4, where important details of the image
are lost in the non-preconditioned PnP-ADMM but are preserved with our preconditioning.
The average PSNR results in Table 5 confirm the superiority of the proposed preconditioned
PnP-ADMM over the other approaches for image completion from either 10% or 20% pixels.

6.4. Demosaicing Results. For the demosaicing, we evaluate the results both in the noise-
free scenario and in the presence of Gaussian noise of standard deviation ¢ = 10 or o = 20.
In each case, the input images are filtered by the traditional Bayer CFA, i.e. only one of
the red green or blue components is known at each pixel. The Bayer CFA forms a repetitive
pattern of 2x2 blocks, each containing one red, one blue and two green pixels. For our
preconditioned PnP-ADMM method, we evaluate the results using either the generic denoising
network DRUNet-var-RBG or the specialized network DR UNet-dem that was trained for noise
level patterns generated from the Bayer CFA, as explained in Section 5.2.

PRECONDITIONED PLUG-AND-PLAY ADMM 21

Table 5
Completion results for 20% and 10% rates (average PSNR over each dataset). In each case, the number
of iterations N giving the best results is used for the PnP-ADMDM.

Sets CBSD68
Total Variation regularization 26.11 24.80
20% Edge Enhancing Diffusion 28.61 25.55
PnP-ADMM w/o preco. (N = 118) | 30.20 26.75
PnP-ADMM w/ preco. (N = 18) 30.94 27.43
Total Variation regularization 22.86 22.66
10% Edge Enhancing Diffusion 25.85 23.43
PnP-ADMM w/o preco. (N = 200) | 26.20 24.06
PnP-ADMM w/ preco. (N = 20) 2752 24.95

Table 6
Demosaicing results (average PSNR over each dataset) for the Bayer pattern in the noise-free scenario
(0 = 0). For our preconditioned PnP-ADMM method, we show the results using either the generic denoiser
DRUNet-var-RBG or the specialized denoiser for demosaicing DRUNet-dem. The best and second best results
are in red and blue respectively.

Malvar Gharbi Henz Kokkinos PnP-ADMM
(Matlab) | (DeepJoint) 24] (MMNet) | no preconditioning with preconditioning
[42] [36] [43] (DRUNet-cst) | DRUNet-var-RBG | DRUNet-dem
Kodak 34.68 41.85 42.05| 40.26 41.45 42.37 42.32
McMaster| 34.46 39.13 39.50] 36.84 39.24 39.27 39.31

Similarly to the interpolation problem, the repetition of the 2x2 block pattern in the Bayer
CFA may cause artifacts comparable to aliasing. When using the generic network DRUNet-
var-RBG in our preconditioning scheme, these artifacts are better removed by updating the
matrix P with a blurred version of the mask. In this case, we use a}‘“t = 0.3 to control the
blur at each iteration. However, when using the denoiser DRUNet-dem specialized for such
patterns, the aliasing artifacts from the Bayer CFA are naturally removed without the need
for altering the preconditioning matrix. Thus we use ¢'®! = 0 in this case.

Note that for all the experiments, a fast initialisation is performed with Matlab’s demo-
saicing method [42] that uses bilinear interpolation and gradient-based corrections. Given this
initialisation, we fix the number of iterations N of the PnP-ADMM according to the prelimi-
nary experiment in Fig. 7. Using our preconditioning (Fig. 7(a)), close to optimal results are
obtained using N = 10, either with or without noise, and for both the DRUNet-var-RBG and
DRUNet-dem networks. For the non-preconditioned PnP-ADMM, more iterations are needed
and the setting of N is also more sensitive to the noise level: the best performance is reached
using N = 40 in the noise-free scenario (o = 0), and using N = 16 in both noisy settings (see
Fig. 7(b)).

For the evaluation, we use the Kodak [44] and McMaster [45] test datasets that are widely
used for demosaicing benchmarks as they contain natural images which include challenging
features for this application. We compare both versions of our preconditioned PnP-ADMM

22 M. LE PENDU, AND C. GUILLEMOT

b JE L E L ARE R e

Ground Truth| .uv \VETE _: MMNet J\.pv DeepJomt ||| AN

IR

e 'f'“""" e

Henz et al. |\ ” J\| N PnP-ADMM (DruNet cst)l Ours (DruNet- var- RGB) ¥ Ours (DruNet-dem) i

Figure 6. Demosaicing results in the noise-free scenario. The “PnP-ADMM (DRUNet-cst)” result cor-
responds to the mon-preconditioned version, while our method is preconditioned and uses either the generic
denoiser DRUNet-var-RBG or the specialized one DRUNet-dem.

Table 7
Demosaicing results (average PSNR over each dataset) for the Bayer pattern in the noisy scenario with
noise of standard deviation o = 10/255 or o = 20/255. For our preconditioned PnP-ADMM method, we show
the results using either the generic denoiser DRUNet-var-RBG or the specialized denoiser for demosaicing
DRUNet-dem. The best and second best results are in red and blue respectively.

Malvar Gharbi | Kokkinos PnP-ADMM

(Matlab) | (DeepJoint) | (MMNet) | no preconditioning with preconditioning
o: [42] [36] [43] (DRUNet-cst) | DRUNet-var-RBG | DRUNet-dem
10 | Kodak 27.54 33.27 30.96 33.24 33.90 34.18
25 | McMaster | 27.69 33.18 30.19 33.35 33.89 34.06
90 | Kodak 22.38 30.04 23.81 29.92 30.84 31.18
25 | McMaster | 22.75 30.18 23.65 30.09 31.09 31.36

with the non-preconditioned version (based on the DRUNet-cst denoiser), as well as other
reference methods including Matlab’s demosaicing method by Malvar et al. [42] and the deep
learning based methods of Gharbi et al. (DeepJoint) [36], Henz et al. [24] and Kokkinos et al.
(MMNet) [43].

Table 6 and Fig. 6 present the results in the noise-free scenario. Our method performs
among the best in average PSNR, indicating that it successfully recovers the fine details
overall, and with greater accuracy than the non-preconditioned PnP-ADMM. However, in
very challenging areas with high frequency patterns (see Fig. 6), our preconditioning based
on the generic network DRUNet-var-RBG leaves some zipper and color artifacts. Note that,
on closer inspection, similar artifacts also remain in the Henz et al. and DeepJoint methods.
However, using the specialized denoiser DRUNet-dem in our scheme completely solves this
issue. This shows that it was not a limitation of the preconditioning or the PnP-ADMM
scheme itself, but rather a limitation of the DRUNet-var-RBG denoiser that does not perform
optimally when the noise level map is a structured pattern constructed from the Bayer CFA.

Similar conclusions can be drawn for the noisy scenario in Table 7 and Fig. 8. Our precon-
ditioned PnP-ADMM best recovers the image details, and using the specialized DRUNet-dem
network prevents the color issues that may appear in challenging areas when using the generic
DRUNet-var-RBG network.

PRECONDITIONED PLUG-AND-PLAY ADMM 23

— DRUNet-dem (0=0) 40 —o=
*** DRUNet-var-color (6=0) | £ —o=10
~=DRUNet-dem (c=20) L35t = ag=20
- DRUNet-var-color (0=20)| &
H [+

30t
i /
5 10 15 20 o 1620 40 60 80
N N
(a) with preconditioning. (b) without preconditioning

Figure 7. Results of the PnP-ADMM for demosaicing with respect to the number of iterations N: (a) with
preconditioning, (b) without preconditioning. The plots show the average PSNR over the Kodak Dataset.

i |z3 s

lh""‘

-ADMM (DruNet-cst

=111

Ours (DruNet-var-RGB) & Ours (DruNet-dem)

N—

0

it

Figure 8. Demosaicing results for the same detail as in Fig. 6, but in the noisy scenario with Gaussian

noise of standard deviation o = 20.

6.5. Poisson Denoising. For Poisson denoising, we compare the results of the PnP-
ADMM either with or without our preconditioning. Note that the non-preconditioned version
was previously described in [15] for this application. However, the BM3D denoiser was used in
[15]. For a fair evaluation of our approach, we use instead the DR UNet-cst network which gives
the best performance when no preconditioning is required. For our preconditioned scheme,
we use the DRUNet-var-RBG denoiser since the Poisson noise variance depends not only on
pixels’ positions, but also on the colour component.

First, we analyse the results for moderate to high levels of Poisson noise (using A € {255,
255/4, 255/8}). Table 8 and Fig. 10(a) show that the proposed preconditioning improves the
results compared to the original PnP-ADMM, regardless of the fixed number of iterations
N. Furthermore, a better convergence is obtained with our approach as shown in Fig. 10.
While the results of the non-preconditioned PnP-ADMM start degrading when using more
than IV = 6 iterations, our method successfully converges to the best result. The improved
convergence is confirmed in Fig. 10(b) showing that the equality constraint between the two

24 M. LE PENDU, AND C. GUILLEMOT

(a) Ground Truth (b) Noisy (c¢) No Preco. (d) No Preco. (e) With Preco. (f) With Preco.
A = 255/8 N=6 N=100 N=6 N=100
PSNR=30.15 PSNR=29.49 PSNR=30.28 PSNR=30.76

Figure 9. Poisson Denoising given a peak value A = 255/8. Results are shown for the PnP-ADMM either
with preconditioning (e,f) or without (¢,d) and using a number of iterations N = 6 (c,e) or N = 100 (d,f).

Table 8
Results of PnP-ADMM for Poisson denoising either with or without preconditioning (average PSNR over
each dataset).

Without Preconditioning With Preconditioning

Dataset | N =6 N =20 N =6 N =20
\ = 955 Setb 36.54 36.33 36.82 36.81
CBSD68 | 36.35 36.25 36.58 36.57
\ o 255 Seth 33.34 33.13 33.65 33.69
4 | CBSD68 | 32.36 32.19 32.72 32.74
\ o 255 Seth 31.73 31.41 31.94 32.06
8 | CBSD68 | 30.42 30.20 30.81 30.89

ADMM variables is better satisfied with our preconditioning. The visual results in Fig. 9 also
show that our approach can recover finer details. Using a large number of iterations further
improves the PSNR in this case, although the visual results are similar (see Fig. 9(e,f)). On
the other hand, in the non-preconditioned PnP-ADMM, using a too large number of iterations
visually degrades the results by removing details in the bright regions, while leaving more noise
in the dark regions (see Fig. 9(c,d)).

Let us now evaluate our method for an extreme noise level, i.e. using A = 1. In this
situation, the noisy image is a very inaccurate estimate of the noise variance, and it can’t be
used to initialize the preconditioning matrix. Instead, we compute an initial estimation using
variance stabilization and Gaussian denoising: the Anscombe transform [46] is first applied
to obtain an image with approximately constant noise variance; our Gaussian denoiser is
then used assuming a constant standard deviation; finally the inverse Anscombe transform
is applied after denoising. The preconditioning matrix P is thus computed as the square
root of this initial estimate. We also disabled the update of P which degraded our results in
this case. The PSNR results using this initialization method are presented in Table 9, and
visual comparisons are shown in Fig. 11. Here, the best results are obtained after convergence

PRECONDITIONED PLUG-AND-PLAY ADMM 25
30-
=~
&
408 - —no preconditioning (N=20) |
; —no preconditioning (N=15)
Z. —no preconditioning (N=10)
E 26 - no preconditioning (N=6) | -
no preconditioning (N=4)
—with preconditioning
24 5 10 15 20
1terations
(a) PSNR of the results at each iteration.
801y —no preconditioning (N=20)
L Neo —no preconditioning (N=15)
= —no preconditioning (N=10)
S 40 no preconditioning (N=6)
e
< no preconditioning (N=4)
— 20r —with preconditioning
0 L
5 10 15 20
1terations

(b) Mean Square Error between the two ADMM variables

Figure 10. Convegence plots of the PnP-ADMM for Poisson denoising with X = 255/8 and for the image
“head” (from Fig. 9). For, the non-preconditioned case, several parameters depend on the fixred number of
iterations N, thus, different curves are obtained with respect to N. With our preconditioning, the curves for
different values of N are superimposed on the red curve because no parameter depend on N.

Table 9
Denoising Results for extreme Poisson noise with A = 1 (average PSNR over each dataset).

Anscombe | PnP-ADMM (N=100) | PnP-ADMM (N=100)
initialization no preconditioning with preconditioning
Setb 17.50 22.04 23.82
CBSD68 17.30 20.50 23.05

either with or without the preconditioning. Hence the results are given for a large number
of iterations N = 100. Our approach significantly outperforms both the non-preconditioned
PnP-ADMM and the Anscombe variance stabilization method used for the initialization.

7. Conclusion. In this paper, we have proposed a new preconditioning approach for Plug-
and-Play methods in the context of image restoration. Existing PnP schemes perform reg-
ularization of inverse problems using any conventional denoiser that assumes independent
and identically distributed Gaussian noise. On the theoretical level, we have shown that our
preconditioning removes this i.i.d. assumption by introducing in the algorithm a denoiser pa-
rameterized with a covariance matrix (directly related to the chosen preconditioning matrix)
instead of a single standard deviation parameter. Greater control is thus granted for better
adapting the algorithm to each task by accounting for the specific error distribution of the

26 M. LE PENDU, AND C. GUILLEMOT

(a) Ground Truth/Noisy (b) Anscombe (initialization)
A=1 PSNR=17.89

(¢) No Preconditioning N=100 (d) With Preconditioning N=100
PSNR=16.90 PSNR=22.30

Figure 11. Poisson Denoising for very high noise level (using peak value A = 1).

current image estimate.

For our practical implementation, we have proposed a training procedure that generalizes
a state-of-the-art CNN denoiser, enabling its parameterization with an arbitrary noise level
map. While this restricts our study to diagonal covariance and preconditioning matrices, it is
sufficient for many applications where the input image is degraded independently on each pixel.
Such applications include image interpolation, completion, demosaicing and Poisson denoising.
For each of these tasks, we have defined a suitable preconditioning scheme that significantly
outperforms the non-preconditioned version both in convergence speed and image quality.
The proposed method also preserves the genericity of the PnP approach since a denoiser is
used to solve several inverse problems. Nevertheless, as we have shown with demosaicing, our
method may be further specialized and improved for a given task by training the denoiser
using the corresponding noise level maps.

A possible direction for future work would be to develop denoisers suitable for correlated
noise (i.e. non-diagonal covariance matrix), hence extending the use of our preconditioned
PnP scheme to a broader range of applications. Another promising direction for reducing
the complexity of plug-and-play approaches would be to study efficient denoising network
architectures (e.g. Transformer-based architectures as in Restormer [27]).

Appendix A. Poisson data term sub-problem.
Let us find the closed form solution of the minimization in Eq. (5.6) which we rewrite

PRECONDITIONED PLUG-AND-PLAY ADMM 27

here without the iteration numbers for simplicity of notation:

(A1) argmin —b" In(Px) + 17 Pz + g |z —ull3,
€T
where P is a diagonal matrix. Here, we additionally assume p > 0, b; > 0 and P;; > 0, Vi.
Since P is diagonal, the problem is equivalently expressed for each element 7 independently.
Using the scalar notations b = b;, p = P;; and u = u;, the problem is to find the value x that
minimizes the function h defined as:

(A.2) h(z) = —b-ln(x-p)+x-p—|—g(x—u)2

The function is defined for z > 0 and is convex. Therefore, finding > 0 such that %(x) =0
gives the global minimum. Differentiating h gives:

dh —b
(A.3) £=?+p+p-(x—u)=0,

(A.4) §-G¥+m<p;w>—2)

Therefore, if we can find x > 0 such that x is a root of the second order polynomial

2+ - (M) — % then z minimizes the function h. For b; > 0, the solution always ex-

p p

ists and is:

1 - —p\? 4b
(A.5) v=2 2 p+¢Cm % + 2,

2 p P P

1

= — — —_)2

(A.6) % (/m p++/(pu—p)? + 4pb) :

Note that if b = 0 and u < p/p, then the highest root is z = 0, which is not in the domain
of h. However, when b = 0, we can simply redefine h using h(z) = 2 - p + 5(z — u)? which is
defined for z = 0. So in practice, we can extend the domain of h to the value 0 (negative
values are not valid pixel values and should remain excluded). With this definition, Eq. (A.6)
gives the solution in every case.

Rewritting Eq.(A.6) using the matrix notations directly gives the solution to Eq. (A.1):

pui — Py ++/(pui — P;;)? + 4pbi

Appendix B. Comparisons with the HQS algorithm.

We have established in Section 5.4 that our implementation of the PnP-ADMM is equiv-
alent to the PnP-HQS in the particular case of noise-free sampling problems. Hence, for
the interpolation, completion and noise-free demosaicing applications, the results of the PnP-
ADMM either with or without preconditioning (see e.g. results in Tables 4, 5, 6) are not
changed when replacing the ADMM with the HQS algorithm (i.e. by removing the dual
variable).

28 M. LE PENDU, AND C. GUILLEMOT

Table 10
Demosaicing results with PnP-HQS and PnP-ADMM (average PSNR over each dataset) for the Bayer
pattern in the noisy scenario with noise of standard deviation o = 10/255 or o = 20/255. For both algorithms
the DRUNet-dem networks is used for the preconditioned version.

PnP-HQS PnP-ADMM
no preco. preco. no preco. preco.
(DRUNet-cst) (DRUNet-dem) || (DRUNet-cst) | (DRUNet-dem,)
o N=16 | N=40| N=100 | N=200 N=10 N=16 N=10
10 | Kodak 31.38 | 32.08 | 32.40 | 32.52 34.23 33.24 34.18
255 | McMaster | 31.80 | 32.42 | 32.71 | 32.81 34.09 33.35 34.06
90 | Kodak 28.68 | 29.04 | 29.21 | 29.29 31.21 29.92 31.18
25 | McMaster | 29.09 | 29.44 | 29.62 | 29.69 31.35 30.09 31.36

However, this equivalence is not true for any inverse problem. In particular, we present
here additional results with the HQS algorithm for the demosaicing problem from noisy data.
Note that when using the same parameter setting as in the ADMM, the HQS results in too
strong denoising and lack of detail. Hence, for the experiments, instead of using the true noise
variance o2 as the weight of the regularization term in Eq. 2.3, we use a small weight afnm,
with opin = 1/255 (i.e. o is replaced with o,,;, in the x-update and y-update equations).
The other parameters are set as in the ADMM experiments (see Table 3).

The results are reported in Table 10, which also includes the PnP-ADMM results from
Table 7 for the comparison. One can note that the preconditioned PnP-HQS yields similar
performance as the preconditioned PnP-ADMM. Without the preconditioning, on the other
hand, the PnP-HQS requires significantly more iterations to converge than the PnP-ADMM.
Furthermore, the reconstruction quality remains lower, still due to too strong denoising despite
the adjustment of the regularization weight.

REFERENCES

[1] S. Diamond, V. Sitzmann, F. Heide, and G. Wetzstein, “Unrolled optimization with deep priors,” arXiwv
preprint arXiw:1705.08041, 2017.

[2] M. Mardani, Q. Sun, S. Vasawanal, V. Papyan, H. Monajemi, J. Pauly, and D. Donoho, “Neural proximal
gradient descent for compressive imaging,” arXiv preprintarXiv:1806.03963, 2018.

[3] Y. Yang, J. Sun, H. Li, and Z. Xu, “Deep admm-net for compressive sensing mri,” in Proc. NeurIPS,
2016, pp. 10-18.

[4] D. Gilton, G. Ongie, and R. Willett, “Neumann networks for linear inverse problems in imaging,” IEEE
Trans. Comput. Imaging, vol. 6, pp. 328-343, 2019.

[5] Q. Ning, W. Dong, G. Shi, L. Li, and X. Li, “Accurate and lightweight image super-resolution with
model-guided deep unfolding network,” IEEE J. Sel. Topics Signal Process., 2020.

[6] S. Lefkimmiatis, “Universal denoising networks : A novel cnn architecture for image denoising,” in Proc.
CVPR, Jun. 2018, pp. 3204—-3213.

[7] W. Dong, P. Wang, W. Yin, G. Shi, F. Wu, and X. Lu, “Denoising prior driven deep neural network for
image restoration,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 10, pp. 2305-2318, 2019.

[8] A. H. Al-Shabili, H. Mansour, and P. T. Boufounos, “Learning plug-and-play proximal quasi-newton

PRECONDITIONED PLUG-AND-PLAY ADMM 29

(10]
(11]
(12]
(13]

(14]

[15]
[16]
17]
18]
[19]
[20]
[21]
[22]
23]
[24]
[25]
[26]

27]

(28]

29]

denoisers,” in Proc. IEEE ICASSP, 2020, pp. 8896-8900.

S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical learning via the alternating
direction method of multipliers. Now Publishers Inc, 2011.

D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic regularization,” IEEE Trans.
Image Process., vol. 4, no. 7, pp. 932-946, 1995.

S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors for model based recon-
struction,” in IFEFE Global Conference on Signal and Information Processing, 2013, pp. 945-948.

K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Timofte, “Plug-and-play image restoration with
deep denoiser prior,” IEEE Trans. Pattern Anal. Mach. Intell., 2021.

K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep cnn denoiser prior for image restoration,” in
Proc. CVPR, 2017, pp. 3929-3938.

J. R. Chang, C.-L. Li, B. Péczos, B. Vijaya Kumar, and A. C. Sankaranarayanan, “One network to solve
them all — solving linear inverse problems using deep projection models,” in Proc. ICCV, 2017, pp.
5889-5898.

A. Rond, R. Giryes, and M. Elad, “Poisson inverse problems by the plug-and-play scheme,” J. Vis.
Commun. Image. Represent., vol. 41, pp. 96-108, 2016.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain
collaborative filtering,” IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080-2095, 2007.

M. Aharon, M. Elad, and A. Bruckstein, “K-svd: An algorithm for designing overcomplete dictionaries
for sparse representation,” IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311-4322, 2006.

K. Bredies and H. Sun, “A Proximal Point Analysis of the Preconditioned Alternating Direction Method
of Multipliers,” J. Optim. Theory. Appl., vol. 173, no. 3, pp. 878-907, Jun. 2017.

Y. Jiao, Q. Jin, X. Lu, and W. Wang, “Preconditioned alternating direction method of multipliers for
inverse problems with constraints,” Inverse Problems, vol. 33, no. 2, p. 025004, Jan. 2017.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. CVPR,
2016, pp. 770-778.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmen-
tation,” in Medical Image Computing and Computer-Assisted Intervention, 2015, pp. 234-241.

T. Meinhardt, M. Moeller, C. Hazirbas, and D. Cremers, “Learning proximal operators: Using denoising
networks for regularizing inverse imaging problems,” in Proc. ICCV, Oct. 2017, pp. 1799-1808.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian denoiser: Residual learning of
deep cnn for image denoising,” IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142—-3155, Jul. 2017.

B. Henz, E. S. Gastal, and M. M. Oliveira, “Deep joint design of color filter arrays and demosaicing,” in
Computer Graphics Forum, vol. 37, 2018, pp. 389-399.

S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play admm for image restoration: Fixed-point
convergence and applications,” IEEE Trans. Comput. Imaging, vol. 3, no. 1, pp. 84-98, 2017.

K. Zhang, W. Zuo, and L. Zhang, “FFDNet: Toward a fast and flexible solution for CNN-based image
denoising,” IEEFE Trans. Image Process., vol. 27, no. 9, pp. 4608-4622, 2018.

S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M.-H. Yang, “Restormer: Efficient transformer
for high-resolution image restoration,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2022, pp. 5728-5739.

P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image segmenta-
tion,” IEEFE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 5, pp. 898-916, May 2011.

K. Ma, Z. Duanmu, Q. Wu, Z. Wang, H. Yong, H. Li, and L. Zhang, “Waterloo exploration database:
New challenges for image quality assessment models,” IEEFE Trans. Image Process., vol. 26, no. 2,
pp- 1004-1016, 2017.

E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image super-resolution: Dataset and study,”
in Proc. CVPR Workshops, Jul. 2017.

B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual networks for single image
super-resolution,” in Proc. CVPR Workshops, 2017, pp. 1132—-1140.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. ICLR, 2015.

Y. Zhang, K. Li, K. Li, B. Zhong, and Y. Fu, “Residual non-local attention networks for image restora-
tion,” in Proc. ICLR, May 2019.

M. Bevilacqua, A. Roumy, C. Guillemot, and M. line Alberi Morel, “Low-complexity single-image super-

30

M. LE PENDU, AND C. GUILLEMOT

(35]

(36]
37]
(38]
(39]
(40]

41]

42]
(43]

(44]
(45]

(46]

resolution based on nonnegative neighbor embedding,” in Proc. BMVC, 2012, pp. 135.1-135.10.

D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural images and
its application to evaluating segmentation algorithms and measuring ecological statistics,” in Proc.
I1CCV, vol. 2, Jul. 2001, pp. 416-423.

M. Gharbi, G. Chaurasia, S. Paris, and F. Durand, “Deep joint demosaicking and denoising,” ACM
Transactions on Graphics (TOG), vol. 35, no. 6, pp. 1-12, 2016.

K. Wei, A. Aviles-Rivero, J. Liang, Y. Fu, C.-B. Schonlieb, and H. Huang, “Tuning-free plug-and-play
proximal algorithm for inverse imaging problems,” in Proc. ICML. PMLR, 2020, pp. 10 158-10 169.

J. Dahl, P. C. Hansen, S. H. Jensen, and T. L. Jensen, “Algorithms and software for total variation image
reconstruction via first-order methods,” in Numerical Algorithms, vol. 53, no. 1, Jul. 2009, pp. 67-92.

I. Gali¢, J. Weickert, M. Welk, A. Bruhn, A. Belyaev, and H.-P. Seidel, “Image compression with aniso-
tropic diffusion,” J. Math. Imaging Vis., vol. 31, no. 2, pp. 255-269, Apr. 2008.

S. Andris, P. Peter, and J. Weickert, “A proof-of-concept framework for pde-based video compression,”
in Proc. PCS, 2016, pp. 1-5.

C. Schmaltz, P. Peter, M. Mainberger, F. Ebel, J. Weickert, and A. Bruhn, “Understanding, optimising,
and extending data compression with anisotropic diffusion,” Int. J. Comput. Vision, vol. 108, no. 3,
p- 222-240, Jul. 2014.

H. S. Malvar, L.-W. He, and R. Cutler, “High-quality linear interpolation for demosaicing of bayer-
patterned color images,” in Proc. IEEE ICASSP, 2004.

F. Kokkinos and S. Lefkimmiatis, “Iterative joint image demosaicking and denoising using a residual
denoising network,” IEEE Trans. Image Process., vol. 28, no. 8, pp. 4177-4188, 2019.

R. Franzen, “Kodak lossless true color image suites,” 1999, source: http://rOk.us/graphics/kodak.

L. Zhang, X. Wu, A. Buades, and X. Li, “Color demosaicking by local directional interpolation and
nonlocal adaptive thresholding,” J. Electron. Imaging, vol. 20, no. 2, pp. 1 — 17, 2011.

F. Anscombe, “The transformation of poisson, binomial and negative-binomial data,” in Biometrika,
vol. 35, no. 3-4, Dec. 1948, pp. 246-254.

http://r0k.us/graphics/kodak

	Introduction
	Background: Plug-and-Play ADMM
	Plug-and-Play Prior
	ADMM Formulation

	Preconditioned Plug-and-Play ADMM
	ADMM Reformulation
	New Prior Term Sub-Problem
	General Gaussian Denoiser
	Sub-Problem Solution

	Variables Interpretation and Initialization
	Computational complexity

	Deep Locally Adjustable Denoiser
	Denoising Network for Known Noise Level
	Noise Level Map Generation
	Training Details
	Denoising Performance
	Constant Noise Level
	Spatially Varying Noise Level

	Applications
	Image Completion and Interpolation
	Demosaicing
	Poisson Denoising
	Preconditioned ADMM for Poisson denoising
	Choice of Preconditioning Matrix

	Analysis for noise-free sampling applications

	Experimental Results
	ADMM Parameters Setting
	Completion, Interpolation and Demosaicing
	Poisson Denoising

	Interpolation Results
	Completion Results
	Demosaicing Results
	Poisson Denoising

	Conclusion
	Appendix A. Poisson data term sub-problem
	Appendix B. Comparisons with the HQS algorithm

