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Abstract. Formal system modelling languages lack explicit constructs
to model domain knowledge, hindering clear separation of this knowl-
edge from system design models. Indeed, in many cases, this knowledge
is hardcoded in the system formal specification or is simply overlooked.
Providing explicit domain knowledge constructs and properties would
yield a significant improvement in the robustness and confidence of the
system design models. Therefore, it speeds up formal verification of safety
properties and advances system certification since certification standards
and requirements rely on domain knowledge models. The purpose of this
paper is to show how formal system design models can benefit from ex-
plicit handling of domain knowledge, represented as ontologies. To this
end, state-based Event-B modelling language and theories are used to
model system models and domain knowledge ontologies, respectively.
Our proposition is exemplified by the TCAS (Traffic Collision Avoid-
ance System) system, a critical airborne avionic component. Finally, we
provide an assessment highlighting the overall approach.

Keywords: Domain knowledge · Ontologies · System engineering · State-based
formal methods · Safety proofs · Invariant preservation · Event-B

1 Introduction

Context. Due to the high level of confidence required, critical systems are sub-
jected to a variety of validation and verification (V&V) activities. Engineering
these critical systems requires the use of numerous engineering techniques and
methods, standards and certification processes, etc. Formal methods have proved
their capability to handle complex verification and validation techniques set up
at different development phases. They are grounded on mathematical and logic
theories and are equipped with a proof system used to check formalised proper-
ties. They advocate the design of a formal model specifying the desired system
behaviours and the description of a set of properties expressing requirements,
usually safety and security requirements. The underlying proof system allows
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to check the properties on the formalised system model. Various formal meth-
ods are available and several tools have been developed to support both system
modelling and property verification using automatic verification procedures like
model checking techniques (e.g. Promela/SPIN, NuSMV, Uppaal) or SMT and
SAT solvers (e.g. Z3, CVC4), interactive theorem proving based on higher order
logic or type theory (e.g. Isabelle/HOL [36], Coq [11]).

If we consider a system specification S and a set of property requirements R,
then property verification consists in proving that requirements can be proved
from the specification by establishing S ⊢ R.

In this case, the designed formal model associated to a specification S must
make explicit all the knowledge required to write a specification, in particular the
domain knowledge provided by the domain and the context where the system
is supposed to evolve i.e. S encapsulates the whole formal system description
needed to establish R. The seminal work of [47] and [12,13] suggests to separate
so called Domain Knowledge from the specification and proposes the well-known
triptych K,S ⊢ R where K formalises domain knowledge. This separation is
motivated by two main arguments: first domain knowledge is usually stable and
reusable and second its formalisation is made explicit through K.

Motivation. In general, system engineering approaches, particularly formal meth-
ods, do not offer explicit constructs allowing the designer to define formal models
of domain knowledge, nor mechanisms to import such existing models. However,
there exist formal modelling languages and/or meta-models, sometimes stan-
dardised [19], that support the formalisation of such domain knowledge. It is
often the case that transformations are required to reuse, in the set up formal
method, already defined knowledge domain formalisations. As a result, hetero-
geneous formalisations are obtained, so sharing and reuse are compromised.

Our claim. We believe that ontologies, seen as an explicit shared specification
of a conceptualisation [26] suit with the requirement of domain knowledge shar-
ing and reuse. We advocate that domain knowledge must be formalised as an
ontology formally modelled as datatypes theories with axioms, theorems and
reasoning capabilities, once and for all, in the used system development formal
method. Moreover, we claim that this formalisation shall not impact system
modelling languages nor system models. Last, to avoid semantic heterogeneity,
both ontologies, system specifications and requirements shall be formalised in a
single shared mathematical setting, Event-B [1] with set theory and First order
logic in our case.

Objective of this paper. We propose to use the Event-B [1] proof and refine-
ment formal method to express both domain knowledge as ontologies formalised
using Event-B theories, and system specification and requirements formalised
as Event-B models (machines and invariants). As ontologies constructs are not
present as first order concepts in Event-B, we introduce an Event-B meta-theory,
based on generic and abstract datatypes and operators, describing an ontology
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model formalising an ontology modelling language (e.g. OWL [6]), further in-
stantiated to derive specific domain ontologies. These ontologies become share-
able, reusable and referencable by any Event-B model using typing, operators
and properties guaranteed by proving both ontology instantiated theorems and
Well-Definedness (WD) Proof Obligations (POs).

Structure of this paper. Next section presents the Event-B state-based method
and theories used to formalise our models. Section 3 is devoted to an overview
of the state of the art in handling domain knowledge in system models. Our
approach is synthesised in section 4. Then, Section 5 presents a generic theory
encoding OWL-like ontologies. In Section 6, we address the problem of domain
knowledge handling in system design through the case of Aircraft Critical In-
teractive Systems design. Section 7 provides an assessment of our approach and
Section 8 concludes the paper.

2 Event-B: a Refinement and Proof-Based Formal
Method

2.1 Core Event-B

First-order logic (FOL) and set theory underpin the Event-B [1] modelling lan-
guage. The design process consists of a series of refinements1 of an abstract model
(specification) leading to a final concrete model. The core modeling components
of the Event-B language are Contexts, Machines and Theories.

CONTEXT ContextName
EXTENDS contexti
SETS si
CONSTANTS ci
AXIOMS

A
THEOREMS

Tctx
END

MACHINE MachineName
REFINES machinei
VARIABLES x
INVARIANTS I(x)
VARIANTS V (x)
EVENTS

EVENT
ANY a
WHERE G(x, α)
THEN

x : | BAP (x, α, x′)
END

THEORY TheoryName
IMPORT Theory1, ...
TYPE PARAMETERS T1, T2, ...
DATATYPES

Datatype1(T1, ...)
CONSTRUCTORS

cstr1(p: T1, ...)
OPERATORS

operator1 <nature> (p1 : T1)
well-definedness WD(p1, ...)
direct definition D
...

AXIOMATIC DEFINITIONS
AxiomaticDefinitionsName1

Types AT1
Operators

operator1 <nature> (p1 : T1)
well-definedness WD(p1, ...)

Axioms Axm1, ...
THEOREMSThm1, ...
END

Lst. 1.1: Basic Event-B building blocks: context, machine and theory

Event-B Contexts. Contexts (see Listing 1.1) define the static part of a model.
They introduce definitions, axioms and theorems describing the required con-
cepts and their properties. Carrier sets s defining algebraically new types (pos-
1 As refinement is not necessary to understand our contribution, it has been skipped.

More details can be found in [1]
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sibly constrained in axioms or other extending contexts), constants c, axioms A
and theorems Tctx are introduced.

Event-B Machines. A machine (see Listing 1.1) describes the dynamic part of
a model as a transition system. A set of possibly parameterised and/or guarded
events (transitions) modifying a set of state variables (state) represents the core
concepts of a machine. Variables x, invariants I(x), theorems Tmch(x), variants
V (x) and events evt (possibly guarded by G and/or parameterised by α) are
defined in a machine. Invariants and theorems formalise system safety while
variants define convergence properties (reachability).
Before-After Predicates (BAP) express state variables changes using prime no-
tation x′ to record the new value of a variable x after a change. The “becomes
such that” :| substitution is used to define the next (transition or event) value
of a state variable. We write x :| BAP(x, x′) to express that the next value of
x (denoted by x′) satisfies the predicate BAP(x, x′) defined on before and after
values of variable x. When a parameter α is involved in a variable the BAP is
expressed as x :| BAP(α, x, x′).

Proof Obligations (PO) and Property Verification. To establish the correctness of
an Event-B model (machine) the POs (automatically generated from the calculus
of substitutions) need to be proved.

PO designation PO formal definition
(1) Ctx Theorems (THM) A ⇒ Tctx (For contexts)
(2) Mch Theorems (THM) A ∧ I(x) ⇒ Tmch(x) (For machines)
(3) Initialisation (INIT) A ∧ G(α) ∧ BAP(α, x′) ⇒ I(x′)
(4) Invariant preservation (INV) A ∧ I(x) ∧ G(x, α) ∧ BAP(x, α, x′) ⇒ I(x′)

Table 1: Relevant Proof Obligations

The main POs, relevant for this paper, are listed in Table 1. They require to
demonstrate that both contexts (1) and machines (2) theorems hold, initialisa-
tion (3) and each event preserves invariants (induction (4)).

Core Well-definedness (WD). WD POs are associated to all Event-B built-in
operators of the Event-B modelling language. For example a WD proof obligation
for the division operator WD(a÷b) is WD(a)∧WD(b)∧b ̸= 0 and for conjunction
WD(P ∧Q) is WD(P ) ∧ (P =⇒ WD(Q)). These proof obligations are defined
for every operator of the core Event-B language.

2.2 Event-B Extensions with Theories

To handle additional abstract concepts beyond set theory and first order logic,
an Event-B extension supports externally defined mathematical objects, mod-
elled as theories [2,18]. Close to other proof assistants (e.g. Isabelle/HOL [36],
PVS [37]), this capability is convenient when modelling, using data types, con-
cepts not available in core Event-B.
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Theories for abstract data types. They define types (possibly inductive) carried
by sets and operators. They introduce axioms and theorems, and use the Event-
B sequent calculus as proof system to prove theorems. The concepts defined in
theories can be imported by Event-B models and used in further developments.

Well-definedness (WD) in Theories. An important feature provided by Event-
B theories relates to the definition of well-definedness conditions. Each defined
operator may be associated to a condition guaranteeing its correct definition.
When the operator is used (either in the theory or in an Event-B machine or
context), this well-definedness condition generates a proof obligation requiring
to establish that this condition holds, i.e. the use of the operator is correct.
The theory developer defines these WD conditions, which are then added to the
native Event-B WD POs. We extensively use this feature for defining domain
knowledge operators.

Theory description (see Listing 1.1). Theories define and make available new
data types, operators and theorems. Data types (DATATYPES clause) are asso-
ciated with constructors i.e operators to build inhabitant of the defined type.
They may be inductive. A theory may define various operators further used in
Event-B expressions. They may be predicates built using classical first order
logic or expressions producing actual values (<nature> tag). Operators applica-
tions (predicates or expressions) can be used in other Event-B theories, contexts
and/or machines. They enrich the modelling language as they may occur in the
definitions of axioms, theorems, invariants, guards, assignments, etc.
As mentioned above, an operator may be associated with WD conditions en-
coding specific requirements. It defines, as a PO, the condition under which the
operator is used. Each time the operator is used, this PO must be proved.
Operators may be defined explicitly using an explicit (“direct”) equivalent defini-
tion, in the direct definition clause, (e.g., in the case of a constructive defini-
tion), or defined axiomatically in the AXIOMATIC DEFINITIONS clause, (e.g. a set
of axioms). At the definition level, operators application mode is characterised:
infix or prefix, or if they are commutative and/or associative. Last, a theory
defines a set of axioms, completing the definitions, and theorems. Theorems are
proved from the definitions and axioms.
We mention that many theories have been defined for sequences, lists, groups,
reals, differential equations, etc.

Associated proof system. As mentioned in [18], soundness of theories is achieved
through the definition of soundness proof obligations generated following the
standard approach of Event-B and their proofs are carried out using the sequent
calculus of Event-B encoded in the Rodin provers. They rely on a set-theoretic
formalisation of operators. More details can be found in [2,18]. Theories are also
tightly integrated in the proof process. Depending on their definition (direct or
axiomatic), operators definitions are expanded either using their direct defini-
tion (if available) or by enriching the set of axioms (behaving as hypotheses in
proof sequents) using their axiomatic definition. Theorems may be imported as
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hypotheses and, like other theorems, they may be used in the proof as any other
one. They are accessible by the interactive and automatic provers, and SMT
solvers of Rodin.

Event-B and its IDE Rodin. Rodin2 is an open source, Eclipse-based Integrated
Development Environment for modelling in Event-B. It offers resources for model
editing, automatic PO generation, project management, refinement and proof,
model checking, model animation and code generation. Event-B’s theories exten-
sion is available under the form of a plug-in, developed for the Rodin platform.
Many provers like predicate provers, SMT solvers, are plugged to Rodin.

Application of the B method. Event-B method has been successfully applied to
design critical systems for applications, like control system for the Meteor line
14 in Paris or the VAL shuttle for Paris CDG airport [9], medical devices [40],
autonomous systems [42], security protocols [10], control-command systems [23]
and distributed protocols [34,48]. More information can be found in [17,39].

3 Related Works

The contribution presented in this article is at the intersection of three scientific
themes studied by the scientific community for decades.

Ontologies and Domain Modelling. Ontologies, as explicit knowledge mod-
els [26], have been extensively studied in the literature and applied in several
domains spanning semantic web, artificial intelligence, information systems,
system engineering etc. Several approaches for describing, designing and for-
malising ontologies for these application domains have been proposed. Models,
browsers like Protégé or PlibEditor, repositories like JENA-SDB, TripleStore,
OntoDB or OntoHub query languages like RQL, SPARQL or OntoQL, reasoners
like Pellet, RACER or KAON, annotators like CREAM, Terminae or SAWSDL
and translators have been proposed to engineer ontologies. Many ontologies have
been described for several engineering domains and annotation mechanisms
were proposed to establish links to domain objects like texts, images, videos and
engineering models. Most of mentioned approaches rely on XML-based formats
and are applied to the semantic web. As they are grounded on descriptive
logics, they pay lot of attention to the decidability criterion for automated
reasoning and inference purposes (which may limit the scope of addressed
knowledge models and logics). To the best of our knowledge, formal annotation
of formal design models and their analysis have not been set up using the above
mentioned approaches or tools.

2 http://www.event-b.org/index.html
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Explicit domain models in formal methods. Formalisation of domain knowl-
edge witnessed high interest in the formal methods community where many
approaches and frameworks were proposed in Coq [11], Isabelle/HOL [36] with
ISADof [16,15] Framework, PVS [37], Event-B with theories [2,18] (e.g. con-
trol theory for control-command systems [24,22]) and critical systems [4], DOL
- Distributed Ontology Model and Specification Language based on CASL al-
gebraic specification [35] integrated to the OntoHub ontology repository and
RSL - RAISE Specification Language [14] for transportation, shipping, and lo-
gistic systems. In [21], the authors present a two-layered language ground on
higher-order logic of Coq formal system as a lower layer, and ontology language
as upper layer for expressing and specifying contexts. Indeed, the higher-order
KDTL language [8,20] supports the definition of new contextual categories and
facts on the basis of low-order context. The language provides means to support
comparability of diverse and non-countable information as well as numeric data.
Although the approaches cited above tackle the problem of formalising domain
knowledge and provide modular frameworks, they differ from the modelling level
where they apply. Two kinds of modelling levels incorporating domain knowledge
have been identified. On the one hand, the modelling level that offers domain-
specific language constructs, in particular constructs for ontologies allowing the
explicit definition of ontology components like classes, properties and instances.
In general, such approaches adopt a deep modelling style by explicitly encoding
both syntax and semantics of some ontology description language like OWL. On
the other hand, the second modelling language level adopts a shallow modelling
style. It encodes domain knowledge concepts directly in the hosting formal mod-
elling language using its syntactic and semantic constructs. Knowledge domain
concepts are not made explicit in the obtained models.

Domain Knowledge in system design. In [30], the authors clearly state the chal-
lenge of linking domain knowledge and design models. A mathematical analysis
of models and meta models, ontologies, modelling and meta-modelling languages
is included. Design models annotation by domain-specific knowledge has been
studied for state-based methods in [4] as well. More recently, the textbook [5]
reviewed many cases of exploiting explicit models of domain knowledge by sys-
tem models spanning medical systems, e-voting systems, distributed systems etc.
Indeed, [41] presents a four steps modelling approach based on the methodol-
ogy described in [4]. It relies on Event-B contexts as domain knowledge models
for ontologies for verifying medical protocols. An assessment of the proposed
approach is given through a complex case study of a real-life reference protocol
(electrocardiogram (ECG) interpretation) covering a wide variety of protocol
characteristics related to different heart conditions. [31] showcases how Event-B
theories may be used to capture domain-specific abstract data types (ADTs)
and build dynamic systems using the developed structures. The authors adopt
an incremental approach to model domain knowledge concepts in parallel with
the refinement of the model. The approach uses Event-B theories so it benefits
from the use of the operators endowed with well-definedness conditions. The case
studies used to illustrate the approach also define inference rules for easing the
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proving process. The work of [46] describes a meta model for a domain mod-
eling language built from OWL and PLIB which is part of the SysML/KAOS
requirements engineering method that includes a goal modeling language. The
formal semantics of SysML/KAOS models is specified, verified, and validated
using the Event-B method. Goal models provide machines and events of the
Event-B specification while domain models provide its structural part (sets and
constants with their properties and variables with their invariant). The proposal
is exemplified through a case study dealing with a localization component for an
autonomous vehicle Last, focusing on Event-B, a proposal of simplified ontology
description language was put forward and illustrated on case studies in [28,29].
The approach was based on context extension where the design models need to
discharge proof obligation in form of theorems to validate the compliance of the
formal design models to the formalised domain knowledge.
The approaches mentioned above illustrate interesting solutions to the formalisa-
tion and incorporation of domain knowledge in formal design models. However,
several limitations are identified. They constitute part of the challenges we ad-
dress in our proposal. First, some of these approaches lack a general framework
such as ontologies for defining domain knowledge in standardised way. They re-
quire to formalise the domain properties and their proofs in Event-B contexts.
They do not offer explicit mechanisms enforcing domain knowledge constraints
on the design models. The designer has to handle these constraints while for-
malising systems models.
Last, they strongly focus on full automation for reasoning and inference and
target decidable fragments of logic like descriptive logics which do not enable the
expression of all properties encountered in engineering domain (e.g. expression
of arithmetic properties).
The main purpose of this paper is to define a general proof-based framework
addressing the limitations identified above. It relies on engineering ontologies
in the view of [3] to model domain knowledge as Event-B theories —a collection
of data types and operators with well-definedness conditions — and use typing
to annotate system design models formalised in Event-B.

4 Domain Knowledge in State-Based Formal Methods:
the Case of Event-B

Formal methods are equipped with constructs allowing to support formal system
developments and reasoning. In general these methods separate the system spec-
ification from the properties expressing requirements. They do not offer built-in
constructs to axiomatise domain knowledge.
In our approach, we propose to use the capability of formal methods to describe,
import and (re-)use theories in the system design models.
In the sequel, we use Event-B theories to model domain ontologies as a col-
lection of data types, constructors and operators defined by specific axioms.
Each operator is accompanied with WD (Well-Definedness) properties defining
the conditions for correct use of each operator. When an operator is used (i.e.
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applied), a WD proof obligation, corresponding to this condition, needs to be
proved (discharged). Indeed, once the theory formalising an ontology is designed,
models import and use its data types and operators and the corresponding WD
proof obligations require to be discharged. As a consequence, domain knowledge
model is factorised once and for all in a single reusable and shareable theory
and second it does not require, from the designer, to write domain knowledge
invariants and properties required to guarantee correctness of the design models.
Indeed, the use of operators brings, for free, WD conditions as proof obligations
to be discharged. Each design model is annotated by domain knowledge through
typing. Event-B theories offer services and capabilities to implement the notion
of design models conforming to domain knowledge constraints expressed by the-
ories. These theories provide data types and operators for expressiveness while
requiring discharging of WD conditions ensuring conformance checking.
At this level, a formal setting to write theories for domain knowledge modelling is
missing. A domain knowledge modelling language shall be used for this purpose.
Next sections describe an Event-B based development process allowing to handle
domain knowledge as formal ontologies and annotate formal models using typing.
A generic theory for ontologies is presented and a case study issued from aircraft
cockpits engineering showcases the overall approach.

5 Ontologies as Event-B Theories

From section 3, we conclude that ontologies, as descriptive knowledge models for
domains, are powerful models for knowledge representation and reasoning, and
from section 4 we also conclude that Event-B, and more generally state-based
formal methods, are suitable for enforcing design models to reference domain
knowledge concepts and express their constraints as well-definedness conditions.
To define our ontologies, we rely on defined ontology modelling languages (OML)
like OWL [6] or PLIB [38]. In our case, provided that it can be described using
data-types based on set theory and first order logic, whatever is the ontology
modelling language, it can be described by Event-B theories.
Our approach proposes a formal parameterised theory, acting as a meta-theory
associated to the OML and each ontology is described as a theory instance of
this meta-theory. More precisely, the ontologies we use are based on a theory
inspired from OWL3 where domain knowledge is formalised as collections of
classes, properties and instances..
Listing 1.2 shows an extract of OntologiesTheory theory allowing the for-
malisation of OWL-based ontologies. It is parameterised by C, P, and I which
stand for classes, properties and instances. The Ontology(C,P,I) data type is
built using the consOntology constructor based on seven components: classes,
properties, instances (i.e. set of classes, properties and instances respec-
tively), classProperties for associating classes to properties, classInstances
for relating instances to classes, classAssociations defining a set of property-
named binary associations and instanceAssociations for representing the as-
3 https://www.w3.org/TR/owl-features/
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sociations between instances. Besides the ontology structure, operators are de-
fined to manipulate, access and update an ontology.
In Listing 1.2, the getInstanceAssociations, instanceHasPropertyValuei,
addValueOfAnInstanceProperty and removeValueOfAnInstanceProperty op-
erators define access to properties of a class and instances of an association, check
if a property is valued and add/remove a property value. The isA relationship
encoding class subsumption is defined and the theorem isATransitivityThm,
stating its transitivity, is proven.

THEORY OntologiesTheory
TYPE PARAMETERS

C, P, I
DATATYPES

Ontology(C, P, I)
CONSTRUCTORS

consOntology(classes: P(C), properties: P(P), instances: P(I),
classProperties: P(C × P), classInstances: P(C × I),
classAssociations: P(C × P × C),

instanceAssociations: P(I × P × I) )
OPERATORS

isWDClassProperites <predicate> (o : Ontology(C, P, I))
. . .

getClassProperties <expression> (o : Ontology(C, P, I)
. . .

isWDInstancesAssociations <predicate> (o : Ontology(C, P, I))
. . .

getInstanceAssociations <expression> (o : Ontology(C, P, I)

isWDOntology <predicate> (o : Ontology(C, P, I))
direct definition

isWDClassInstances(o) ∧ isWDClassProperites(o) ∧
isWDClassAssociations(o) ∧ isWDInstancesAssociations(o)

. . .
isWDinstanceHasPropertyValuei <predicate>

. . .
instanceHasPropertyValuei <predicate>
(o : Ontology(C, P, I), ipv: P I × P × I), i: I, p: P, v: I)
well-definedness

isWDinstanceHasPropertyValuei(o, ipv, i, p)
direct definition

v ∈ ipv[{i 7→ p}]

getInstancesOfaClass <expression> (o : Ontology(C, P, I), c: C)
well-definedness

isWDOntology(o) ∧ ontologyContainsClasses(o, {c})
direct definition

getClassInstances(o)[{c}]
addValueOfAnInstanceProperty <expression>

. . .
removeValueOfAnInstanceProperty <expression>

. . .
isA <predicate>
(o : Ontology(C, P, I), c1: C, c2: C)
well-definedness

isWDOntology(o)
ontologyContainsClasses(o, {c1, c2})

direct definition
getInstancesOfaClass(o, c1) ⊆ getInstancesOfaClass(o, c2)

THEOREMS
isATransitivityThm: ∀o, c1, c2, c3 · o ∈ Ontology(C, P, I)∧

c1 ∈ C ∧ c2 ∈ C ∧ c3 ∈ C∧
ontologyContainsClasses(o, {c1, c2, c3})
⇒ (isA(o, c1, c2) ∧ isA(o, c2, c3) ⇒ isA(o, c1, c3))

Lst. 1.2: Excerpt of ontologies theory OML

Thanks to its type system, Event-B theories support the description of other op-
erators e.g. arithmetic or defined-types operators. These operators are associated
to WD conditions (logical expressions) to ensure correct use and to preserve a
valid ontology structure at instantiation. When an operator is applied, generated
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WD proof obligations need to be proved. Hence, depending on the chosen OML,
Event-B theories permit the modelling of complex domain knowledge.

Important Note. The choice of the OML is driven by the needs and complex-
ity of the domain knowledge of interest: system engineering. It requires other
modelling capabilities like property derivation using arithmetic expressions or
context dependent properties and associated proof rules (see [3] [4] for more
details). To handle engineering knowledge, we use first-order logic with arith-
metic in our OML. This richer expressive power leads to semi-automatic proofs
requiring interactive proof effort4.

6 Application to the Design of Critical Interactive
Systems

We highlight the importance of system design models annotation relying on
explicit formalised domain knowledge via the development of a critical interactive
system (CIS): TCAS - Traffic Collision Avoidance System.
In this section, We describe the development of a critical interactive system
(CIS): the TCAS - It is critical to the safe flight of any aircraft, namely Traffic
Collision Avoidance System. We show the importance of formalising domain
information and its integration to the system design model.
The formal development of this case study relies on domain knowledge formalised
as an instantiated theory (Displayability Theory) of the ontology model (see
Listing 1.2). Then, the definition of the knowledge related to the specific case of
aircraft objects displayability is obtained by instantiating of the latter ontology
using an Event-B context (see Listing 1.4), where the seven components of the
ontology are defined and used to build the aircraftOntology ontology.

6.1 The TCAS Case Study

Fig. 1: Protection Volume

TCAS is an airborne avionics system
that acts as a last resort safety net
to mitigate risks of midair collisions.
TCAS tracks aircraft in the surround-
ing airspace exploiting position sent
by their transponders to detect col-
lision risks. If an impedent collision
is detected, TCAS issues a Resolution
Advisory (RA) to the flight crews of
concerned aircrafts. These advisories
ask them to climb or descend at a
given vertical rate to prevent collision
[44,25].
4 Automatic reasoners (decidable logics) like Pellet [43] or Racer [27] apply to less rich

OML than the one offered by Event-B theories.
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TCAS computes a virtual protected
volume (Fig. 1) which includes the po-
sition of the aircrafts nearby. This volume depends on the aircraft speed and
trajectory. It is permanently updated. Some of the information related to vol-
ume is displayed in a cockpit screen for flight crew usage. An example of such
display can be found in [45]. Due to space constraints, we only focus on a single
critical safety property: TCAS must display, on a PFD (Primary Flight Display)
cockpit screen, the current status of all the aircrafts in the volume. Beyond, a
critical aircraft (due to its proximity) must be visible.

6.2 A Domain Ontology for the Critical Interactive Systems

Two steps are required to build the domain ontology.

THEORY DisplayabilityTheory
IMPORT OntologiesTheory
AXIOMATIC DEFINITIONS

IOOntology
TYPES

IOClasses , IOProperties , IOInstances
OPERATORS

isIOOntologyWD < predicate >
(o : Ontology(IOClasses, IOProperties, IOInstances))

visible < expression >: IOInstances
hidden < expression >: IOInstances
critical < expression >: IOInstances
safe < expression >: IOInstances
hasVisibility < expression >: IOProperties
hasCriticality < expression >: IOProperties
visibility < expression >: IOClases
criticality < expression >: IOClases
isVisibleWDi < predicate > ...
isVisiblei < predicate >

(o : Ontology(IOClasses, IOProperties, IOInstances),
ipvs : P(IOInstances × IOProperties × IOInstances),
i : IOInstances)

well-definedness
isVisibleWDi(o, ipvs, i)

setCriticaliWD < predicate > ...
setCriticali < expression >

(o : Ontology(IOClasses, IOProperties, IOInstances),
ipv : P(IOInstances × IOProperties × IOInstances),
i : IOInstances)

well-definedness
setCriticaliWD(o, ipvs, i)

AXIOMS
axm1 : ∀o · o ∈ . . . ⇒ (isIOOntologyWD(o) ⇔ isWDOntology(o)
axm2 : partition(IOProperties, {hasV isibility}, {hasCriticality})
axm3 : {visibility, criticality} ⊆ IOClasses
axm4 : ∀o, ipv, i · o ∈ . . . ⇒ (isV isibleWDi(o, ipv, i) ⇔

i ∈ dom(dom(ipv)))
axm5 : ∀o, ipv, io ∈ . . . ⇒ (isV isiblei(o, ipv, i) ⇔

instanceHasPropertyV aluei(o, ipv, i, hasV isibility, visible)
...

axm18 : ∀o, ipv, i · o ∈ . . . ⇒ (setCriticaliWD(o, ipv, i) ⇔
i ∈ dom(dom(ipv)) ∧ isV isiblei(o, ipv, i))

axm19 : ∀o, ipv1, ipv2, i · o ∈
Ontology(IOClasses, IOProperties, IOInstances)∧
ipv1 ∈ P(IOInstances × IOProperties × IOInstances)∧
ipv2 ∈ P(IOInstances × IOProperties × IOInstances)∧
i ∈ IOInstances ⇒ (ipv2 = setCriticali(o, ipv1, i) ⇔
ipv2 = (ipv1 \ {i 7→ hasCriticality 7→ safe})∪
{i 7→ hasCriticality 7→ critical})

Lst. 1.3: Exerpt of Displayability theory
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An Ontology of Interactive Objects First, we define a generic domain
knowledge model for interactive objects (IOs) by instantiating the ontology the-
ory (see Listing 1.2) to get the DisplayabilityTheory Event-B theory (IO
ontology - Listing 1.3). It axiomatises a collection of specific operators with WD
conditions entailing displayability properties of critical IOs. Indeed, IOClasses,
IOProperties, IOInstances types and two kinds of operators (predicates and
expressions) are defined. Predicates check if a property holds in the system
variable or introduce WD conditions required for other operators. Besides, we
create constant operators like visible, hidden, critical, safe which are in-
stances of IOInstances and hasVisibility, hasCriticality being elements
of IOProperties.
The instanceHasPropertyValuei operator of OntologiesTheory is a predicate
with five arguments: ontology, system variable, instance, property and value. The
predicate is true when the 3-tuple instance 7→ property 7→ value is in system
variable. For example, the operator isVisiblei uses it to state that an IO is
visible if and only if its property hasVisibility relates the IO to visible and
complies with the ontology schema (see instanceHasPropertyValuei in Listing
1.2). We adopted the same methodology for writing all operators.
For instance, we define the WD condition for setCriticali as a predi-
cate setCriticaliWD encapsulating the conditions needed to use this oper-
ator: i ∈ dom(dom(ipv)) stating that i must be in the model variable and
isVisiblei(o,ipvs,i) meaning that the IO i must be visible. Last, for do-
main coverage purposes, the domain knowledge model (theory) is self-contained,
i.e. defined concepts and properties are manipulated using theory operators only
(no other IO manipulation is allowed). Thus, proved theorems hold for all IOs.
Remark. From system engineering perspective, this assumption means that a
designer shall only use the types and operators supplied by the theory encoding
the domain knowledge ontology.

Instantiation for Aircraft Description IO (Listing 1.4) Displayability
Theory is instantiated in the context OntologyInstantiation Context to de-
fine the specific IOs concepts and properties used in the TCAS models. For
our development, three classes are introduced: aircraftClass (is a thing by
isAthm11)), visibility and criticality. The latter two classes are borrowed
from the DisplayabilityTheory theory. In addition, we introduce the aircraft
Instances using an extensional axiom axm2 (Event-B partition operator as-
serts that the first argument is the disjoint union of the others). Afterwards,
aircraftOntology is built in axm9. Last, note that ConformThm9 theorem is
proved from the constituent of the ontology to ensure that this ontology is WD
by isWDIOontology (Listings 1.3 and 1.2).

6.3 Ontology-Based Annotation of TCAS Design Model

The Event-B machine model TheoryOperatorsBasedModel (Listing 1.5) handles
the safety requirement stating that a critical aircraft must be visible thanks to the
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CONTEXT InstantiationContext
CONSTANTS

aircraftClass, aircraftInstances, ClassProperties, ClassInstances
ClassAssociations, instanceAssociation, aircraftOntology,
thingClass, thingInstances,

AXIOMS
axm1 : partition(IOClasses, {thingClass}, {aircraftClass},

{visibility}, {criticality})
axm2 : partition(IOInstances, {aircraftInstances},

{visible}, {hidden}, {safe}, {critical})
axm3 : thingInstances = IOInstances
axm4 : ClassProperties =

{aircraftClass} × {hasV isibility, hasCriticality}
axm5 : ClassInstances = (

{aircraftClass} × aircraftInstances)
∪({visibility} × {visible, hidden})
∪({criticality} × {critical, safe})
∪(thingClass × thingInstances)

axm6: ClassAssociations ∈ P(IOClasses × IOProperties×
IOClasses)

axm7 : ClassAssociations =
({aircraftClass} × {hasV isibility} × {visibility})
∪({aircraftClass} × {hasCriticality} × {criticality})

axm8 : instanceAssociation =
(aircraftInstances × {hasV isibility} × {hidden})
∪(aircraftInstances × {hasCriticality} × {safe})

axm9 : aircraftOntology = consOntology(IOClasses,
IOProperties, IOInstances, ClassProperties,
ClassInstances, ClassAssociations, instanceAssociation)

ConformThm10 : isIOOntologyWD(aircraftOntology)
isAthm11 : isA(aircraftOntology, aircraftClass, thingClass)

END

Lst. 1.4: Context of instantiation

annotation of the state variable system using isVariableOfOntology predicate
operator in inv1 and to the use of setCriticali operator, borrowed from the
DisplaybilityOntology, in the event CorrectAircraftStatusUpdate.
Indeed, isVariableOfOntology ensures that system variable fully complies with
aircraftOntology rules. From the proof perspective, the guards of the event
guarantee correct variable updating and invariant preservation. As a benefit,
the two theories exempt the designer from writing domain-related properties,
thus focusing only on the system-specific model. Listing 1.5 shows important
parts of the TCAS model, noticebly the event CorrectAircraftStatusUpdate
allows to update the aircraft i status so that it is visible (see its definition of
setCriticali in Listing 1.3). The guards ensure that the operation is performed
in a well-defined fashion through the use of the necessary WD operators.

7 Assessment

The complete Event-B development including all the theories and models may
be downloaded from https://www.irit.fr/~Ismail.Mendil/recherches/

Previous work. [32] proposed a correct-by-construction Event-B development
of TCAS featuring many functionalities. However, domain knowledge formalisa-
tion is not explicit and domain-specific rules are hardcoded in the design models.
Here, we improved our approach making domain knowledge explicit by annotat-
ing models with ontologies, using data types formalised as Event-B theories.
Consequently, automatic domain oriented WD proof obligations are generated
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MACHINE TheoryOperatorsBasedModel
SEES InstantiationContext
VARIABLES system
INVARIANTS

inv1 : isV ariableOfOntology(aircraftOntology, system)
INITIALISATION

THEN
act1 : system : |system′ ⊆ instanceAssociation

EVENT CorrectAircraftStatusUpdate
ANY i
WHERE

grd1 : ontologyContainsInstances(aircraftOntology, {i})
grd2 : isV isibleWDi(aircraftOntology, system, i)
grd3 : isV isiblei(aircraftOntology, system, i)
grd4 : isSafeWD(aircraftOntology, system, i)
grd5 : isSafe(aircraftOntology, system, i)
grd6 : isWDSetCriticali(aircraftOntology, system, i)

THEN
act1 : system := setCriticali(aircraftOntology, system, i)

. . .

Lst. 1.5: Ontology theory based annotated model

and proved in the annotated design models. It is worth noticing that these the-
ories are built and proved once and for all.

Explicit Domain Knowledge and Reusability. The proposed ontology modelling
language (an Event-B theory) makes it possible to design, systematically, a series
of theories, composing and/or extending each other, to model various domain
knowledge as instances of the generic theory of Listing 1.2. In addition, domain
theories and system models are formalised (integrated) in the single setting of
Event-B (Set theory and first order logic) avoiding semantic mismatch that may
occur in case of heterogeneous modelling language semantics. Besides, Listing 1.2
generic theory of ontologies supports engineering standards formalisation. Con-
fidence in the consistency of the standard rules is achieved by proving WD and
theorems. Last, theorems of the theory are proved once and for all. Like domain
knowledge types and operators, these theorems are reused in system models.

Reduction of modelling effort. When models are annotated by references to on-
tology (Listing 1.5) through typing in Event-B theories, guards are described
by WD conditions (grd3 - grd5) systematically borrowed from the ontology
when an operator is applied. They are mined, in a systematic way, from the
well-definedness conditions of the used operator in act1. This model provides
assistance to the designer as domain knowledge operators applications allow a
designer to identify the operator WD conditions for its correct application.

Enhanced safety of system models. We presented an Event-B model (machine)
defined for TCAS based on annotation of state variables through typing with
domain theory defined types (Listing 1.5). This model based on WD and avoids
the designer having to explicitly write invariants. This is a major strength of
our approach as it assists the designer by describing explicitly safety properties
in the domain ontology (Event-B theory of Listings 1.3 and 1.4) as axioms and
theorems and by embedding these safety properties in the design model through
the WD proof obligation. The designer uses operators in the models that brings
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their WD proof obligations that ensure safety when discharged (No need to write
explicitly the invariants, this work is achieved on the ontology side).

Asynchronous evolution. The neat separation of the general domain knowledge
on which the system depends and the specific features of the system under study
enforces the separation of concepts principle and promotes formal specification
modularisation enabling the orthogonality principle i.e. both domain and sys-
tem design models may evolve asynchronously with limited impact on previous
developments. In case of evolution, solely the proof obligations generated due to
this evolution are discharged again.

8 Conclusion and Future Work

The work presented in this paper takes advantage of foundations and methods of
knowledge modeling and reasoning on the one hand and formal system engineer-
ing on the other hand. This work defines a uniform framework integrating both
domain knowledge, system specification and safety requirements in a unique for-
mal modelling setting and proof system offered by Event-B. It advocates the
1) explicit modelling of domain knowledge by ontologies as a well-accepted for-
mal modelling framework and the 2) separation of domain and system models.
The proposition yields three important advantages in formal modelling state-of-
the-art. Indeed, it becomes possible to 1) refer to (annotation) domain models
concepts (types, operators, etc.), 2) automatically bring, in the system model,
checking of well-definedness proof obligations for robustness purposes, and 3)
allow asynchronous evolution of both domain and system models thanks to the
separation of concerns. However, this evolution does not prevent from checking
new occurring proof obligations and/or old ones that may not be preserved.
The overall approach was showcased using a formalised an OWL-based domain
modelling language as an Event-B theory where data types, operators and Well-
Definedness play a central role. We used this formal ontology language to describe
a domain theory for critical interactive systems (CIS) concepts and safety rules
for displaying aircraft in TCAS. Moreover, the system engineering domain was
exemplified to shed the light on the gain in robustness when using the Well-
Defined operators of a domain theory. An assessment is provided to evaluate
efficiency of knowledge formalisation and integration in our approach. Finally,
the formalized theories developed in this paper were used to annotate design
models as part of our approach for standard conformance in [33]. A large part of
ARINC 661 [7] standard describing Cockpit Display Systems (CDS) interfaces
used in all aircrafts has been formalised. This standard plays important role to
minimise costs as well as to meet certification requirements.

Future work. The current study opened a number of new research directions.
From the foundational perspective, we intend to formalise knowledge models
composition with theory composition operators (importation, extension and in-
stantiation) in order to handle heterogeneity and multi-view problems of complex
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systems while maintaining consistency of obtained Event-B theories. Another sig-
nificant perspective consists in addressing other engineering domains, specifically
transportation systems.
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