
Fidelity-aware Distributed Network Emulation
Houssam ElBouanani, Chadi Barakat, Walid Dabbous, and Thierry Turletti

Inria, Université Côte d’Azur

Abstract—The design and development of new network proto-
cols, architectures, and technologies require an evaluation phase
where the researcher must provide empirical evidence for the
performance of their contributions. In this context, network
emulation has proven to be an attractive approach as it offers
more flexibility compared to traditional testing platforms, and
more realism compared to simulation software. However, as
emulation requires running multiple concurrent virtual network
components on a limited amount of resources, it faces well-
documented limitations in its scalability and accuracy. Our work
is an attempt to address these issues by developing a lightweight
and highly scalable distributed emulator, and by designing a
framework for fidelity monitoring through passive measurement
of emulated packet delays. The preliminary evaluation shows
promising results and demonstrates the high potential of our
approach.

Index Terms—network emulation, passive monitoring, delay
measurement, overlay networks

I. INTRODUCTION

Network emulators provide contained, customisable, and
reproducible testing environments for researchers to evaluate
their contributions. Popular network emulators (e.g., Mininet
[5]) achieve this by using lightweight containers and virtual
switches, and by providing users with easy-to-use APIs which
let them run complex network topologies and experiments with
few lines of code. In practice, many algorithms, protocols,
and applications have been evaluated using this paradigm.
However, recent works [6] have identified and extensively
studied the inherent limitations of such testing tools, which
typically emerge when large networks are emulated on a single
machine with limited resources.

Recent efforts have tried to address scalability issues by
proposing distributed emulation [1]: instead of running their
experiment on a single machine, the user can deploy it on a
private cluster of connected hosts or a public cloud. In theory,
this solution allegedly overcomes any scale limitations and can
let users run arbitrarily large emulated experiments, provided
they can acquire enough physical hosts to sustain them. In
practice, however, distribution introduces a new layer which
can be a source of emulation inaccuracy: the underlay network.

This paper summarises our approach to theorise emulation
fidelity and to develop a framework for fidelity monitoring,
whose ultimate objective is to help users run reliable ex-
periments with accurate results. In particular, we propose a
methodology for fidelity monitoring through passive delay

This work was carried out with the support of the SLICES-SC project,
funded by the European Union’s Horizon 2020 programme (grant 101008468).
This work has received partial funding from the Fed4FIRE+ project under
grant agreement No 732638 from the Horizon 2020 Research and Innovation
Programme.

measurement that can detect emulation inaccuracy and poten-
tially infer its root causes.

II. HIGH-FIDELITY EMULATION

A. Methodology

Our contributions revolve around the key concept of emula-
tion fidelity, which intuitively signifies realism and measures
the similarity of an emulation to its target environment, i.e.,
if it were implemented using actual hardware. We specifi-
cally propose to define emulation fidelity phenomenally: by
focusing on network phenomena (aspects that are observable,
measurable, and which can be modeled into deterministic
laws) instead of conceptualising fidelity at the level of in-
ternal, low-level functioning of the emulated network. Such
definition is particularly useful for being both conceptual (i.e.,
it captures the essence of the concept and its relationship
to other concepts) and operational (i.e., it can be concretely
and systematically measured and evaluated) by design. Our
main hypothesis is therefore that phenomenal fidelity carries
information about the quality of emulation and can infer the
accuracy of its results.

In particular, the proposed methodology examines the indi-
vidual packet delay as a candidate network phenomenon for
fidelity monitoring. The choice of this measure is motivated
by many outstanding properties compared to other phenomena
(flow throughput, application-level QoS, etc.). Indeed, the
delay:

• is scenario-agnostic and can be systematically monitored
in all experiments regardless of the running applications;

• can be easily and efficiently measured;
• allows fine-grained analysis of the network;
• is directly impacted by network-affecting anomalies;
• offers insights about other network phenomena (jitter,

bandwidth, packet loss);
• can be compared to a reference model to evaluate how

well it is simulated.
In fact, it is known [2] that the measure of network delay

d(P) of a packet P on a link can be modeled and implemented
according to the formula:

d(P) = δ +
|P |
B

+
|Q(P)|

B
, (1)

where δ is a fixed propagation delay, B is the bandwidth of the
link configured in the emulator by the user, and Q(P) is the
size of the link queue (including the head-of-line packet) when
the packet P has entered. Thus, a judgement about the overall
quality of emulation can be made by looking at how well the
packet delays were simulated. In practice, this can be evaluated

by implementing a monitor that collects information each time
a packet passes through a link: its timestamps of transmission
t1(P) and reception t2(P), its size |P |, and the size of the
queue at its arrival |Q(P)|. Then the delay emulation errors
can be calculated as the absolute difference between measured
and modeled delays:

ϵ(P) = |
(
t2(P)− t1(P)

)
− d(P)|.

In cases where strong time synchronisation cannot be
achieved, the round-trip delay of any pair of sent and received
packets can instead be evaluated.

Our methodology can be summarised as follows:

If, throughout the duration of an emulated experiment, the
delay emulation errors are too large, then that emulation

should be considered incorrect.

III. PROTOTYPE

Our fidelity monitoring framework is currently implemented
both as a plug-in to Mininet and Distrinet [3] (Distrinet-HiFi)
and as a standalone lightweight distributed emulator (HifiNet).
The former implementation demonstrates its compatibility
with existing emulators; the latter is part of a larger project
for extreme-scale network emulation aimed at outperforming
state-of-the-art tools in terms of scalability. This section briefly
summarises the design principles and broad architecture of our
framework, independent of the implementation.

A. Architecture

The design of our framework follows a leader/follower ar-
chitecture typical to distributed systems, and to distributed net-
work emulators in particular, where a leader machine manages
the emulated network and allocates its components (end-hosts,
switches and routers, links, etc.) to the follower machines who
host them. Such distributed design complies perfectly with
their architectures and allows seamless integration. Another
feature of distributed architectures is their scale capabilities,
which is an important requirement for a monitoring system.
As such, the logic of the framework is divided into two main
components that perform the passive delay measurement task
at different levels.

a) Packet loggers: The packet loggers are lightweight
and optimised programs that are plugged into both ends of
every link that needs to be monitored. They run as kernel
code in every follower machine of the cluster and their only
task is to intercept packets and log information about their
transmission (size, length of the queue when the packet entered
the queuing system, timestamps of entry and transmission)
and reception (timestamp of reception) events. This captured
data is useful to passively measure the delay of emulated data
packets, and also to estimate their theoretical delay from the
previous model (equation 1).

b) Collector/Analyser: This component is the brain of
the system. Its goal is to compile and analyse packet infor-
mation collected by the packet loggers. It runs on the leader
machine and achieves its goal in three steps: first, the data
is collected from packet loggers as raw files and compiled

into structured tables, which are then cross-examined to match
information about packets distributed over multiple tables, and
output a unique large table where each entry corresponds
to a packet and contains all its info; then the component
computes the measured and modeled delays of each packet
and derives its individual delay emulation error; and finally
from the computed errors the component evaluates the overall
fidelity of the emulation using statistical metrics (mean or
percentiles of absolute or percentage errors, sliding window
of median error, etc.).

B. Overhead and Scalability

By virtue of its design, our fidelity monitoring framework
has a strong potential for scalability, the only potential over-
head is the one incurred by the packet logging task. Indeed,
as emulated packets are to be intercepted and their metadata
logged online, this can lower the packet processing and switch-
ing performance. However, we have identified a low-overhead
implementation opportunity in the Extended Berkeley Packet
Filter (eBPF), which as a kernel programming framework
for running user-written code in the kernel space of Linux
systems, and which is specifically tailored for line-speed kernel
monitoring and packet processing tools. Our previous paper [4]
demonstrates in full details the capabilities of such framework
for passive delay measurement, and proves to be particularly
efficient as it does not incur more than sub-microsecond delay
on intercepted packets.

In addition to efficient implementation, the overhead of
the fidelity monitoring system can be mitigated by packet
sampling. Indeed, it is not necessary to measure the delay of
each individual emulated packet. Instead one can implement a
random sampling strategy for large-size networks and/or heavy
traffic. Our preliminary investigations indicate that a 1 out of
100 packet sampling rate yields results with enough statistical
significance and near-zero overhead.

IV. DEMONSTRATION

A. Testbed

This presented series of experiments has been conducted
and can be reproduced on the Grid50001 open experiment
platform. 1 leader and 10 follower machines are used to run
an emulated network of 110 SDN switches and 1000 end-
hosts. This emulated network is divided into 10 ASes, each of
which manages 100 end-hosts through 1 core and 10 access
switches. The emulator distributes the load to the follower
machines fairly: each AS is embedded in a dedicated physical
node.

In this experiment, the emulated end-hosts are uniformly
divided into 500 clients and 500 servers, and each client is ran-
domly assigned a unique server from which it synchronously
downloads a 10 MB file with an access bandwidth of 10 Mbps.
The experiment is stopped once every client has finished
downloading. In parallel, our fidelity monitoring framework

1The Rennes cluster was used to run the experiments. More details about
the topology, system and hardware specifications can be found at https://www.
grid5000.fr/w/Rennes:Hardware

https://www.grid5000.fr/w/Rennes:Hardware
https://www.grid5000.fr/w/Rennes:Hardware

Fig. 1: High-level (red) and low-level (blue) of emulation
fidelity in an undisturbed (left) and disturbed (right) infras-
tructure.

passively measures the delay emulation errors of each virtual
link whose ends cross the infrastructure network (i.e., inter-
core links), and is configured with a 1% random sampling rate.
The source code of the fidelity-enhanced emulator and instruc-
tions to set-up and reproduce the experiment can be found
at https://github.com/distrinet-hifi/hifinet. A python notebook
along with experiment data is also available to reproduce the
presented results.

B. Results

As both the overlay and underlay networks are over-
dimensioned and the embedding optimal, congestion is not
to be expected and thus each download session should be
expected to last approximately 8 seconds (10 MB / 10 Mbps).
Figure 1 effectively proves this where we observe that the
flow completion times (FCTs) are indeed in an narrow in-
terval around 8 seconds. In parallel, our fidelity monitoring
framework does not report particularly large delay emulation
errors: the 95th percentile of percentage absolute error (PAE)
is less than 10%, which means that at least 95% of all sampled
packets were not delayed by more than 10% of their expected
delays, indicating sound emulation.

However, in a second set of runs an external traffic is
generated in the infrastructure to introduce disturbance, which
simulates traffic from other users in the shared underlay
infrastructure. The results change and we observe increases
in the FCTs: the average, standard deviation, and maximum
increase from 7.90s, 0.17s, and 9.91s, respectively, to 9.05s,
1.31s, and 14.35s. In parallel, the fidelity monitoring system
reports increases in the PAE in some inter-AS links to 53.12%
of delay emulation error.

C. Discussion

The flow completion times of downloads increase when
external traffic in the underlay infrastructure causes congestion
which impacts the correct operation of the emulated network.
These results demonstrate that the high-level results of an
emulated experiment depend on the state of the infrastructure,
which the user might not have complete awareness of and/or
control over (as is the case in shared infrastructures such as the
used experiment platform). And unless a careful modelling and
analysis of the emulated scenario is conducted, it is difficult

to determine whether the obtained emulation results were
corrupted by underlying issues, and impossible to localise the
failures. The monitoring of the emulated delay helps solve this
problem by providing systematic information about the fidelity
of the emulation, and can even help troubleshoot its failure. In
this scenario, for instance, increase in delay emulation error
has occurred in a specific set of inter-AS links only, which
can already help rule out certain infrastructure machines and
links.

D. Reproducibility

We will repeat the steps of the presented experiment to
showcase how our fidelity-enhanced emulator works in prac-
tice, and how well it performs to evaluate the fidelity of the
emulation under different settings (undisturbed infrastructure,
disturbed infrastructure with different traffic profiles, etc.). The
live demo will also display the results with more granularity:
the increases in completion times of flows from clients in
specific ASes to servers in other ASes, and the measured
delay emulation error in individual inter-AS links. The code
to produce and reproduce these results is available as a Python
notebook at https://github.com/distrinet-hifi/hifinet.

V. CURRENT AND FUTURE WORK

Our fidelity monitoring framework has proven to be efficient
for file download scenarios involving average-size clusters of
machines. We are currently investigating its viability for more
complex emulated scenarios –where fidelity is necessary to de-
tect biased emulation results– and larger infrastructures –where
troubleshooting bottleneck links is not straightforward. This
will be tested by a larger-scale series of experiments where we
induce controlled infrastructure issues and assess how precise
our tool is in identifying them. We are also examining how the
framework can learn from the troubleshooting phase to help
the user better revise the emulated experiment.

REFERENCES

[1] Mininet cluster edition, 2016.
[2] Guy Almes, Sunil Kalidindi, and Matthew Zekauskas. A one-way delay

metric for ippm. Technical report, 1999.
[3] Giuseppe Di Lena, Andrea Tomassilli, Damien Saucez, Frédéric Giroire,

Thierry Turletti, and Chidung Lac. Distrinet: A mininet implementation
for the cloud. ACM SIGCOMM Computer Communication Review,
51(1):2–9, 2021.

[4] Houssam Elbouanani, Chadi Barakat, Walid Dabbous, and Thierry
Turletti. Passive delay measurement for fidelity monitoring of distributed
network emulation. Computer Communications, 195:40–48, 2022.

[5] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop:
rapid prototyping for software-defined networks. In Proceedings of the
9th ACM SIGCOMM Workshop on Hot Topics in Networks, pages 1–6,
2010.

[6] David Muelas, Javier Ramos, and Jorge E Lopez de Vergara. Assessing
the limits of mininet-based environments for network experimentation.
IEEE Network, 32(6):168–176, 2018.

https://github.com/distrinet-hifi/hifinet
https://github.com/distrinet-hifi/hifinet

	Introduction
	High-fidelity Emulation
	Methodology

	Prototype
	Architecture
	Overhead and Scalability

	Demonstration
	Testbed
	Results
	Discussion
	Reproducibility

	Current and Future Work
	References

