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AbstractAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
Information is coded in the brain at multiple anatomical scales: locally, distributed across

regions and networks, and globally. For pain, the scale of representation has not been for-

mally tested, and quantitative comparisons of pain representations across regions and net-

works are lacking. In this multistudy analysis of 376 participants across 11 studies, we

compared multivariate predictive models to investigate the spatial scale and location of

evoked heat pain intensity representation. We compared models based on (a) a single most

pain-predictive region or resting-state network; (b) pain-associated cortical–subcortical sys-

tems developed from prior literature (“multisystem models”); and (c) a model spanning the

full brain. We estimated model accuracy using leave-one-study-out cross-validation (CV; 7

studies) and subsequently validated in 4 independent holdout studies. All spatial scales con-

veyed information about pain intensity, but distributed, multisystem models predicted pain

20% more accurately than any individual region or network and were more generalizable to

multimodal pain (thermal, visceral, and mechanical) and specific to pain. Full brain models

showed no predictive advantage over multisystem models. These findings show that multi-

ple cortical and subcortical systems are needed to decode pain intensity, especially heat

pain, and that representation of pain experience may not be circumscribed by any elemen-

tary region or canonical network. Finally, the learner generalization methods we employ pro-

vide a blueprint for evaluating the spatial scale of information in other domains.
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Introduction

Neuroscience is shaped by a dialectical opposition between modular [1] and global perspec-

tives [2,3], famously underscored by the classic language studies of Broca and Wernicke [4–

6]. These showed unequivocal localization of function, but also a distributed character for

higher-order processing [4–6]. This dialectic echoes in the present day in discussions of the

extent to which a behavior can be reduced to the function of a single brain region or the

converse. It plays out in vision [7,8], emotion [9,10], and other areas, but is particularly

relevant for pain, where neurosurgical and neuromodulatory interventions are guided

directly by scientific understanding of how and where pain experience is localized in the

brain [11–13].

Pain is often seen as a distributed phenomenon [14,15]. The distributed model is sup-

ported by early functional magnetic resonance imaging (fAU : PleasenotethatfMRIhasbeendefinedasfunctionalmagneticresonanceimaginginthesentenceThedistributedmodelissupported::::Pleasecheckandcorrectifnecessary:MRI) data [16–18] and neuroana-

tomical evidence of widespread nociceptive projections in the brain, including targets in the

brainstem and amygdala, [10,19], SII and insula [20,21], and cingulate cortex [22,23]. This

has motivated investigations of pain throughout the brain [24] or even as a global brain

state [25]. Others have dissected pain from a localist perspective, for example, prioritizing

the dorsal posterior insula [26] or anterior midcingulate cortex [27] as “fundamental to” or

“selective for” pain. This view follows in the tradition of Wilder Penfield, who first provided

support for pain localization through electrical stimulation of dorsal posterior insula

[28,29]. Yet, despite 2 centuries of neuroscientific inquiry into the architecture of brain rep-

resentations, the best way to integrate such perspectives remains the subject of active discus-

sion [26,27,30–33].

Crucially, most brain studies identify foci of evoked pain response [16–18] or multivari-

ate patterns that predict pain intensity [34–36]. Neither of these approaches are sufficient to

characterize where pain representations are localized, because they do not explicitly test the

AU : Themainabbreviationlisthasbeenupdated:Pleaseverifythatallentriesarecorrect:spatial scope of representation—whether any region or pattern is necessary or sufficient toAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:
decode pain experience. Two pioneering studies advocate for distributed representations by

investigating the spatial scope of patterns that discriminate painful from nonpainful stimuli

[37,38]. However, they do not comprehensively test either elementary regions or a range of

spatial scales. In addition, they do not generalize across diverse task conditions, studies, or

types of pain. And, finally, they suffer from a number of statistical limitations, including

small sample sizes (N = 16), which raises questions regarding their reproducibility and gen-

eralizability [39]. Nevertheless, these studies make important contributions, including

advancing multivariate modeling as a method of quantifying unique pain information

across brain areas.

Here, we characterize the spatial scope of pain representation using multivariate decoding

of evoked thermal pain intensity across a diverse set of physical and psychological pain manip-

ulations in a large multistudy cohort (N = 376, 11 studies). We formalized a modular perspec-

tive by testing decoding models in each of 486 elementary brain parcels (including cortical

areas from [40] and others) and in defined resting-state connectivity modules (including

7-network and 32-network scales [41]). We formalized the distributed, multisystem perspec-

tive by testing patterns that crossed resting-state modular boundaries, including a priori multi-

system maps based on prior literature and the whole brain. Formal model comparisons at each

spatial scale quantified the extent to which modular features, distributed networks, and the

whole brain represented participants’ pain report. Finally, we repeated this process across a

selection of datasets with varying data acquisitions and pain manipulations, generalizing our

findings to novel studies and contexts.
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Results

Behavioral data analysis: Pain report is multidimensional

First, we characterized how well our dataset reflects thermal pain experience across diverse

task contexts. All but one study (Study 6) varied stimulus intensity and duration (41.1˚C to

50˚C, 1 to 11 seconds), and all but one study (Study 5) had psychological manipulations of

pain (pain-predictive expectation cues, Studies 1 to 4; social cues, Study 7; romantic partner

hand-holding, Study 6; and perceived control, Study 4). We used linear models of pain report

to quantify the cumulative contribution of these factors. Together, they explained 51% of over-

all variance in pain across studies (balanced subsample of data, n = 112 participants, Fig 1B, S1

Table) and 71% of within-participant pain variance specifically. However, this varied substan-

tially between studies: In some cases, psychological factors primarily drove pain variation

(Study 2), and in others, sensory factors like thermal stimulus intensity were the most impor-

tant (Study 5). This reflects between-study differences in stimulus intensity and duration and

in efficacy of psychological manipulations. There were also endogenous nonexperimental fac-

tors like sensitization and habituation effects (S1 Table, sens./habit.) or participant-specific idi-

osyncrasies (participant mean rating differences), which drove pain reports and, in some

cases, dominated (Study 6). Differences in sensitization and habituation were expected due to

differences in the number of thermal stimuli and stimulation sites used [42], while systematic

differences in pain reports across participants depended on the rating scales (S1 Fig), calibra-

tion procedures, and instructions provided in each study. In other words, factors affecting

Fig 1. Study design. (A) Each experimental design involved a succession of thermal boxcar stimuli delivered at variable but finite intervals over a

succession of fMRI sessions. A psychological manipulation designed to affect pain intensity preceded the stimulus in many designs, for example, a pain-

predictive cue designed to heighten or reduce pain experience. Thermal stimuli varied in intensity and were mostly delivered to the left ventral forearm

as illustrated. Cues varied across studies and were uncorrelated with stimulus intensity. After each stimulus, participants rated their pain intensity using

a visual scale. For details on each design, refer to Table 2. (B) Pain ratings reflect a variety of influences on pain experience. Wedges show the

proportion of variance explained by each factor for each study individually and across all studies (excluding validation studies, balancing participants

across studies). Since fMRI data were quartiled for computational tractability, and z-scored for between study normalization, these data were also

quartiled and (in the aggregated data) z-scored prior to regression analyses. The sum of wedges equals model variance explained. Residual model error

is not shown, but completes the circles. We do not consider between-pAU : Pleasenotethatasperstyle; thetermsubject=sshouldnotbeusedforhumanpatients:Hence; allinstancesof subject=shavebeenchangedtoparticipant=sasappropriate:Pleasecheckandcorrectifnecessary:articipant differences further in this study, but we display them here to better

characterize nonexperimental sources of pain variability. See S1 Table for standardized regression coefficients. Underlying data: https://github.com/

canlab/petre_scope_of_pain_representation/tree/main/figure1. Illustrated arm adapted from Da Vinci’s Vitruvian man [101]. fAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1 � 8:Pleaseverifythatallentriesarecorrect:MRI, functional

magnetic resonance imaging.

https://doi.org/10.1371/journal.pbio.3001620.g001
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pain varied according to variations in study designs and were representative of a swath of the

evoked thermal pain experience that spanned both sensory and psychological dimensions.

Many regions and networks predict pain

OAU : ThesentenceOurregionandnetwork � levelmodelsrequire:::seemsincomplete:Pleaseupdateandcorrect:ur region and network-level models require selection of a “best” module, i.e. a “best elemen-

tary region,” best fine resting-state network (fRSN) and best coarse resting-state network

(cRSN; “modular” in the lay sense), and there are many candidates (486 elementary regions,

32 fRSN and 7 cRSN, Fig 2, top row; Methods: Defining model spaces and inputs). Module

selection warrants special attention because it is a nonlinear step and simulates the selection of

regions “fundamental for” pain that has been the focus of recent discussion, so we begin by

investigating their individual predictive abilities.

We fit principal component regression (PCR) models to identify optimally predictive pat-

terns within all modules (Methods: MVPA: General method description). Many modules (51/

486 elementary regions, 7/32 fRSN and 4/7 cRSN) could decode pain (p< 0.05 Šidák-cor-

rected in cross-validated models of predicted versus observed pain with random participant

and study slopes and intercepts; Fig 3). No single region stood out as substantially more pre-

dictive than all others, with many regional predictions showing heterogeneity across partici-

pants and studies, suggesting decisions about the “best” region or network are likely to reflect

idiosyncrasies of particular participant samples and experimental paradigms used (median

SEM, region: 0.10, fRSN: 0.10, cRSN: 0.10, z-Fisher transformed Pearson r across participants,

no random effects, n = 112, balanced across studies with n = 16 participants per study, SEM

illustrated by whiskers in Fig 3). However, some consistent trends were observed.

The areas with the highest predictive accuracy (see Fig 3) included regions implicated in

sensory processing and nociception (dorsal posterior insula [OP1], ventral posterior medial

thalamus [VPM], and periaqueductal gray [PAG]), motor control (Cerebellar lobule VI and

vermis [VII], supplementary motor cortex [Area 6], and red nucleus [RN]) and orienting

attention to salient stimuli (lateral prefrontal cortex [PAU : PleasenotethattheabbreviationPFChasbeenintroducedforprefrontalcortexinthesentenceTheareaswiththehighestpredictiveaccuracy::::Pleasecheckandcorrectifnecessary:FC; Area 44], frontal operculum

[FOP3], and anterior cingulate [Areas 24 and 32]). Among resting-state networks, the “Ventral

Attention A” and “Somatomotor” networks were the most strongly associated with pain,

although other networks (including “Dorsal attention” and “Visual”) were also predictive.

Fig 2. We tested 6 different hypotheses regarding the scope of pain representation by inspecting the decoding

performance of models trained on each of 6 corresponding sets of brain areas. Three modular sets of areas (top

row) tested predictive models based on single regions and networks. A single most predictive “module”—region, fRSN,

or cRSN—was chosen, and voxel weights within the module were optimized to predict pain. The modules are shown in

different colors. Three additional nonmodular sets of areas (bottom row) tested if the BOLD signal across sets of

distributed and functionally heterogeneous areas best represented pain. All performance metrics were evaluated using

nested CV to ensure independent testing, training, and (where applicable) module selection. Underlying atlas and

mask data: https://github.com/canlab/petre_scope_of_pain_representation/tree/main/figure2. BAU : PleasedefineBOLDintheabbreviationlistofFig2ifapplicable=appropriate:OLD, Blood Oxygen

Level Dependent; cRSN, coarse resting-state network; CV, cross-validation; fRSN, fine resting-state network.

https://doi.org/10.1371/journal.pbio.3001620.g002
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Additionally, predictive regions were disproportionately in the right hemisphere, reflecting the

preferential contralateral representation of thermal stimuli delivered to the left arm (32/51 ele-

mentary regions and 5/7 fRSN right lateralized, one elementary region and all cRSN are bilat-

eral; see Table 2 for stimulation sites). These trends in predictive performance across modules

provide context for “best” module choices made by our algorithms.

Multivariate pattern analysis (MVPA) model coefficients are nested across

scales

The analysis above describes the distribution of predictive information across the brain at a

number of scales, but does not directly show how voxel-level information was used in pain pre-

diction. Multivariate models were fit by first selecting the “best” modules for elementary

regions and resting-state networks and then estimating specific patterns of model coefficients

(i.e., pattern weights) across voxels for each model (region, network and multisystem/full

brain). To further examine how these model coefficients interrelate, we inspected statistically

significant coefficients (Supporting information methods: MVPA bootstrap tests) and the sim-

ilarities in coefficients across spaces. For modular scales, we considered statistically significant

Fig 3. Multiple brain areas produced models with significant pain decoding capabilities, with prediction accuracy

varying considerably across participants (error bars show SEM; n = 112). Predictions from 51 elementary regions, 7

fine-scale (fRSN) and 4 coarse-scale (cRSN) resting-state networks correlated significantly with pain reports (shown; ɑ
= 0.05, twice repeated 5-fold cross-validated predictions modeled with random participant and random study effects,

Šidák correction for multiple comparisons, effective p< 10e-4). This means the “best” region, cRSN or fRSN, is highly

dependent on the participant sample examined (and will differ across folds in a CV scheme). Regions are color-coded

by large-scale structures (i.e., subdivisions of Ctx, Cblm, Bstem, or Thal). cRSNs and fRSNs are colored by individual

network parcels. Underlying data: https://github.com/canlab/petre_scope_of_pain_representation/tree/main/figure3.

Cblm, cerebellum; cRSN, coarse resting-state network; Ctx, cortex; CV, cross-validation; fRSN, fine resting-state

network; Thal, thalamus.

https://doi.org/10.1371/journal.pbio.3001620.g003
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coefficients for all “best” areas selected during cross-validation (CV; maximum 10 areas, from

2 × 5 CV) and took the union of significant pattern weights for the modules selected across

folds, constructing one map for each spatial scale (3 maps, Fig 4).

When fit to the complete dataset (7 studies), the best modules were right anterior cingulate

(a24pr), right salience/ventral attention, and bilateral frontoparietal networks, respectively.

However, different CV folds chose different “best” modules (Fig 4, barplots). The regions

selected appeared to be sampled from areas implicated in sensory processing and orienting

responses and were overrepresented in the right hemisphere. Thus, CV predictions from mod-

ular spaces reflect the same uncertainty in selecting a single “best” module as we described

Fig 4. Multivariate brain models of pain response can be interpreted as nested models that draw on increasing

amounts of unique information. Which module—single-region, fine-scale (fRSN) and coarse-scale (cRSN) resting-

state network—was selected by the algorithm varied across folds. Bar graphs illustrate frequency of area selection

across 10 folds (2 × 5 repeated CV). Variability across folds is consistent with the large number of highly predictive

regions and network parcels and the fact that predictive signal is distributed across them. Bootstrap-corrected maps

were computed for all regions to characterize pattern stability. For modular spaces, maps from different CV folds were

conjoined after bootstrap correction (i.e., the union of maps across folds), and we calculated pairwise correlations

among weights from different models. Model weights are shown on representative brain slices, with yellow/orange

indicating positive weights (pro-pain) and blue negative weights (antipain), thresholded with 5,008 bootstrap samples,

voxel-wise p< 0.05, uncorrected. While the relatively small number of significant weights suggests low model stability,

the pattern spatial similarity matrix (correlations in patterns of model weights) shows that these weights were highly

consistent across modeling spaces. Across all 6 model spaces, we commonly observed frontal midline deactivations,

and cingulate, insular and cerebellar activations, supporting a nested modeling space interpretation. Underlying data:

https://github.com/canlab/petre_scope_of_pain_representation/tree/main/figure4. cRSN, coarse resting-state network;

CV, cross-validation; fRSN, fine resting-state network.

https://doi.org/10.1371/journal.pbio.3001620.g004
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above (Fig 3). In the full brain modeling space, significant pattern weights (bootstrap p< 0.05)

were found in ACC, insular, and visual cortices; PAG; brainstem cuneiform, parabrachial, and

raphe nuclei; select cerebellar lobules; and pulvinar, VPM, and ventrolateral nuclei of the thala-

mus (significant percent voxel coverage in constituent regions relative to permuted null distri-

bution of shuffled voxel indices, α = 0.05 uncorrected p< 0.001), recapitulating many of the

most predictive elementary regions.

To compare model coefficients across scales, we performed a spatial correlation analysis of

the intersection of significant pattern weights across pairs of models (bootstrap p< 0.05, with

modules conjoined across folds where relevant). Pain decoding patterns at one scale were spa-

tially correlated with shared areas of decoding patterns at other scales (mean Pearson r: 0.48,

interquartile range: [0.11, 0.81], 15 unique pairwise comparisons, Fig 4, correlation matrix).

Thus, the voxels with statistically significant weights in the full brain model are largely consis-

tent with the most frequent patterns selected across scales. For example, areas like ACC, insula

and cerebellum with significant positive weights in the elementary region, pain pathways, or

Neurosynth-derived patterns also had significant positive weights in the full brain pattern.

Similarly, negative pattern weights in the ventromedial PFC and dorsal attention areas of the

full brain model (significant, α = 0.05) were reproduced by patterns fit in analogous areas in

the fRSN and cRSN parcels.

This suggests that as we moved from spatially constrained models to spatially less con-

strained models we in fact built on more constrained models in a consistent way. Larger mod-

els exploited the same signals as smaller models and used them in a similar way, but also

incorporated additional information available due to the broader scope of a larger modeling

space. Thus, each model drew on progressively greater amounts of independent additive infor-

mation across brain areas as we moved from elementary regions to network parcellations to

multisystem and full brain patterns.

Multistudy MVPA analysis and model generalization performance:

Distributed models predict pain better than local models

Comparisons of pain decoding across models at different brain scales (n = 112 participants, 16

per study) showed significant differences in performance (F5,11 = 4.25, p = 0.021, mixed model

with random participant and study intercepts, random study effects, and Satterthwaite correc-

tion for degrees of freedom (df); Fig 5A, S2 and S3 Tables). Models which aggregated across

systems performed better. Planned orthogonal comparisons showed models from multisystem

(a priori “pain pathways” and Neurosynth-derived) and full brain scales were more predictive

on average than modular patterns (regional, fRSN, and cRSN parcellations; F1,6.9 = 15.1,

p = 0.006). Otherwise, signatures derived from individual brain modules (regions or networks)

performed equivalently to one another, and multisystem models also showed equivalent per-

formance with one another and with the full brain model. Elementary regions were equivalent

in performance to cRSN and fRSN (Bayes factor [BF] in favor of the null = 38.9). Neurosynth-

based and a priori Pain Pathways-based models were equivalent (BF in favor of the

null = 89.2). The full brain model was equivalent to Neurosynth and Pain Pathways models

(BF in favor of the null = 15.8). The comparison of cRSN and fRSN did not yield a definitive

conclusion (p> 0.05 but BF in favor of the null = 5.3, which is less than the<10 required for

definitive evidence).

One potential limitation is that the statistical contrast of multisystem and full brain decod-

ing versus modular decoding implicitly performed model averaging (average of pain pathways,

Neurosynth and full brain on the one hand versus cRSN, fRSN, and elementary regions on the

other). This complicates interpretation. For greater transparency and interpretive
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convenience, we also performed a planned comparison of the specific difference at the

extremes: between full brain decoding (our most distributed model) and the elementary region

based decoding (our most local model). The full brain pattern was significantly more accurate

(F1,7.9 = 12.4, p = 0.008). This demonstrates the added brain tissue included in the more

Fig 5. Multisystem and full brain representations of pain performed better than modular representations of pain

in a 2 × 5 repeated CV test of model performance. We Fisher z-transformed within-participant correlation

coefficient (predicted versus observed) to quantify performance. (A) All obtained models showed significant predictive

performance (p< 0.01, random participant and study intercept, random study effect), and the specific models

obtained here to predict pain using distributed sets of brain areas outperformed the models trained on individual

modules (planned comparison, mean(PainPathway, Neurosynth, FullBrain) − mean(regions, fRSN, cRSN) = 0.272

(0.07), F1, 6.9 = 15.1, p = 0.0062). We confirmed the nullity of remaining planned contrasts (BF> 10 favoring the null),

except for cRSN> fRSN about which we could reach no conclusion (BF = 5.3 in favor of cRSN = fRSN). Post hoc

comparison showed a full brain model outperformed the best single region (FullBrain − Regions = 0.34(0.10), F1,7.9 =

12.39, p = 0.008). Models were trained after pooling data across 7 datasets, yielding 90 participants per training fold.

(B) We retrained cross-validated models separately for each study to infer whether findings would generalize to new

PCR models trained on new datasets. All obtained models showed significant predictive performance (p< 0.01,

random participant and study intercept, random study effect), but comparison of performance across models from

each study showed that distributed representations continued to outperform modular representations (planned

comparison, mean(PainPathway, Neurosynth, FullBrain) − mean(regions, fRSN, cRSN) = 0.27(0.09), F1,6.1 = 9.20,

p = 0.022). Remaining planned contrasts were null (BF> 10). Post hoc comparison showed training on the full brain

results in better performance than training on elementary regions (FullBrain–Regions = 0.32(0.11), F1,5.3 = 8.10,

p = 0.034). Training set sizes = {22, 14, 13, 23, 21, 24, 20} participants, resp. All effects estimated with participant-wise

repeated measures and random study effects. Mean within study effects overlaid as colored dots. Gray brackets:

nonsignificant planned comparisons; black bracket: significant planned comparison; dashed bracket: significant post

hoc comparison. Contrasts enumerated across brackets. �p< 0.05, �p< 0.01, ;confirmed null. Mixed effect degrees of

freedom estimated using Satterthwaite’s approximation. SEM error bars. Underlying data: https://github.com/canlab/

petre_scope_of_pain_representation/tree/main/figure5. BF, Bayes factor; cRSN, coarse resting-state network; CV,

cross-validation; fRSN, fine resting-state network.

https://doi.org/10.1371/journal.pbio.3001620.g005
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distributed models carried unique pain-related signals that were not fully subsumed under

more limited subsets of brain areas.

Learner generalization performance: Distributed multisystem scales

produce the best models

Generalization and statistical inference can happen at multiple levels. Above, we generalized

the performance of 6 models to a population of participants. However, to quantify information

content in an abstract sense, it is important to generalize not only performance, but also learn-

ing itself (the model training process). The above analysis did not do this. It lacked multiple

independent instances of learning because CV folds shared training data [43]. To generalize

over learning instances, we partitioned our data by study, fit models to each study, and then

used CV on a study-by-study basis to estimate the performances of these independent models

(n = 16 to 30 participants each, 7 studies, 171 participants total; Methods: Study-wise MVPA

and learner generalization performance). These model performance estimates varied indepen-

dently across our sample of 7 studies, which is essential for inference to novel models obtained

from novel studies. We refer to this as “learner” generalization performance, borrowing from

the machine learning literature.

Regardless of a study’s design or experimental manipulation, there was a systematic ten-

dency for models trained at multisystem and full brain scale to outperform models trained on

individual modules (F1,6.1 = 9.20, p = 0.022, mixed model with random participant and study

intercept, random study effects, Satterthwaite df correction; Fig 5B, S2 and S3 Tables). The

additional planned contrast between full brain and elementary region models offered a simpler

interpretation and confirmed the same result (F1,5.3 = 8.10, p = 0.034). This showed that more

can be learned in a formal sense by allowing pain representation to span multiple brain sys-

tems than by adopting a localized perspective (see S2 and S3 Tables for comparisons in vari-

ance explained). For example, the best region approach only explained 81% of the signal

represented by the full brain (ratio of r2). Differences between other models were confirmed

null (BF> 10) or nearly so (BFs in favor of the null for region = cRSN/fRSN: 9.6,

cRSN = fRSN: 37.1, Neurosynth = pain pathways: 75.2, full brain = neurosynth/pain pathways:

98.2).

Mediation analyses: Models predict multiple dimensions of pain

Our earlier behavioral analysis of pain report showed pain signals originated from multiple

sources (Fig 1B), including temperature, expectation, sensitization/habituation, social cues,

and perceived control. A good model of pain report should likewise reflect its multifactorial

character and mediate the effects of both sensory and psychological influences. Interestingly,

behavioral models and our best brain models decoded similar amounts of total pain variance

(70% and 72%, respectively), suggesting that brain models might have succeeded in this sense,

but we performed a within-participant mediation analysis to formally test the possibility (Sup-

porting information methods: Mediation analysis). Multiple models significantly mediated

multiple influences on pain report (S5 and S6 Tables). Here, we focus primarily on the full

brain model, which provides a representative summary, because this model subsumes the

more spatially constrained models in its pattern weights (Fig 4).

When fit to data from multiple studies, the full brain model significantly mediated the

effects of temperature (T), expectation (exp), and habituation (habit) effects on pain report

(Fig 6, S4 Table; Tind: 0.065 [0.031, 0.113], standardized α�β [95% confidence interval], 12%

mediated; expind: 0.030 [0.010, 0.060], 12% mediated; habitind: −0.022 [−0.051, −0.004], 10%

mediated). However, the full brain model did not fully capture these effects because direct
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effects remained significant in all cases (Tdir: 0.471 [0.388, 0.577], partial-r2 = 0.34; expdir:

0.227 [0.148, 0.302], partial-r2 = 0.14; socialdir: 0.212 [0.177, 0.268], partial-r2 = 0.06; habitua-

tiondir: −0.139 [−0.211, −0.072], partial-r2 = 0.08; controldir: −0.073 [−0.162, −0.001], partial-r2

= 0.01; brain: 0.189 [0.107, 0.276], partial-r2 = 0.1). In addition, the model did not significantly

respond to manipulations of social cues or perceived control. Significant mediation of sensory

and psychological effects indicated the brain model encoded representations of these effects

(brain partial-r2
mediation = 0.07, Fig 6 “α�β” insert), but the brain model also decoded additional

unique variance in pain reports independent of these manipulations (brain partial-r2
unique =

0.03, “model b” total brain partial-r2 = 0.10). This showed our full brain model captured multi-

ple sources of influence on pain report, in proportions representative of their overall effect on

experimental pain, but missed the effects of some variables (social cue and perceived control),

while also decoding variance in pain unrelated to the experimental manipulations. Mediation

effects at other scales generally captured some subset of the above (S5 Table), but expectation

effects were only significantly mediated by full brain, Neurosynth, and cRSN models.

Fig 6. Full brain models captured brain correlates of both sensory (red, orange) and psychological (blue) influences on pain reports. Five

experimental factors showed significant effects on pain reports: temperature, habituation, perceived control (control), expectation, and social cues

(multivariate regression, fixed participant effects, p< 0.05). However, the full brain CV model predictions also significantly correlated with pain

outcome (scatter plot), and temperature, habituation, and expectation, in turn, significantly correlated with these full brain model predictions (α,

standardized multivariate regression coefficients; Model a pie chart show partial-r2, color-coded by factor). Finally, the full brain model continued to

significantly predict pain outcome (β) even while controlling for experimental factors (τ). This suggested that temperature, habituation, and expectation

effects were captured by the full brain model. Multivariate mediation analysis supported this showing both significant indirect (mediated, α�β), and

direct (τ) effects on pain report, with additional significant direct effects from perceived control and social cues. Together, these factors and the full

brain model predictions explained 72% of pain variance (Model b r2, subdivided by color-coded categories in pie chart; gray: brain model predictions).

Of the 10% of variance explained apportioned to the brain predictions in multivariate analysis (model b pie chart), 7% represented indirect

temperature, expectation and habituation effects (α�β pie chart insert); however, brain model predictions also explained some unique variance (residual

gray wedge in insert). Together, these results showed brain models captured the multifactorial nature of pain experience. Nearly identical conclusions

were supported by full brain learner predictions (†, S4 Table; S5 and S6 Tables for other models). Standardized path coefficients shown. All parameter

estimates computed after removing participant fixed effects. �p< 0.05, in models using full brain model predictions (shown). †p< 0.05 in models using

full brain learner predictions. Gray arrow, significant factor with full brain model but not learner. Bias corrected bootstrap test for nonzero α, β, τ, and

α�β. Underlying data: https://github.com/canlab/petre_scope_of_pain_representation/tree/main/figure6. CV, cross-validation.

https://doi.org/10.1371/journal.pbio.3001620.g006
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While this mediation analysis showed some examples of mediation, it does not generalize

to new models which might be learned in new studies. The latter requires mediation of model

learner performance, i.e., performance of models trained independently across studies. How-

ever, mediation analysis of study specific models did not show any significant mediation

effects (Full brain models: Study 7 social mediation p< 0.1, Study 2 temperature mediation

p< 0.1, all others p> 0.1), likely due to a known lack of power in bootstrap tests of small sam-

ples [44]. We therefore pooled predictions obtained from each study’s models and performed

a within-participant mediation analysis across studies for each learner (S4 and S6 Tables). For

full brain learners, temperature, expectation, and habituation showed significant partial medi-

ation (Tind: 0.129 [0.088, 0.175], 23% mediated; expind: 0.028 [0.005, 0.056], 13% mediated,

habitind: −0.020 [−0.041, −0.002], 12% mediated), while temperature, expectation, social cues,

and habituation showed significant direct effects on pain report (Tdir: 0.429 [0.353, 0.510], par-

tial-r2 = 0.31; expdir: 0.192 [0.122, 0.259], partial-r2 = 0.10; socialdir: 0.221 [0.188, 0.251], par-

tial-r2 = 0.06; habitdir: −0.149 [−0.207, −0.092], partial-r2 = 0.06) while controlling for brain

predictions (brain: 0.253 [0.186, 0.315], partial-r2: 0.16, partial-r2
mediation: 0.12, partial-r2

unique:

0.04). These results mirrored those found in the multistudy analysis (Fig 6, S4 Table), albeit

with perhaps a greater bias toward capturing sensory rather than psychological effects. These

effects were once again largely consistent across scales, with a greater tendency for distributed

learners to mediate psychological effects (expectation and social cues; S6 Table).

It was not possible to understand which specific experimental factors were mediated by

multivariate learners in any particular study, nor was it possible to distinguish whether learn-

ers captured multiple factors simultaneously or if models obtained from different studies

rather differed in the factors they mediate. Nevertheless, these results do show that representa-

tions of multiple distinct influences on pain experience were learned, especially at multisystem

and full brain scales. This supports the notion that distinct sensory and cognitive pain modu-

lating signals were captured by multisystem spaces in a general sense.

Validation

We validated both our models’ and learners’ performances by evaluating 4 studies, which once

again differed in experimental design, but which we did not use for model training or obtain-

ing estimates of model or learner performances (Methods: Data). This included inspection of

statistical model calibration, i.e., whether observed validation data fell within the confidence

intervals of initial performance estimates, given the precision of those initial performance esti-

mates (Fig 7, prediction 95% confidence intervals indicated by violin plots). Variability in

decoding accuracy across validation studies was consistent with our initial estimates, suggest-

ing that our inferences were well calibrated (Fig 7A, observed: connected dots). We also

inspected significant comparisons from the model development stage in the validation studies

and found that validation data fell within the range of expected effect sizes for multisystem and

full brain versus modular comparisons but not brain versus elementary region comparisons.

Multisystem and full brain models showed significantly better accuracy than modular

region or network models (F1,1005 = 15.6, p = 8.1e-5, mixed model with fixed study effects, ran-

dom participant intercept, Satterthwaite df correction). At the model (as opposed to learner)

level, full brain decoding was not significantly better than elementary region decoding in the

validation data (p = 0.68, BF = 3.3e4 in favor of full brain = regions). However, in tests of

learner generalization performance, multisystem models significantly outperformed modular

region or network models (multisystem and full brain versus region, cRSN, fRSN: F1,1005 =

25.3, p = 5.7e-7; Fig 7B), the full brain models outperformed single-region models (brain ver-

sus region: F1,201 = 6.5, p = 0.01), and learner performance fell within the expected range for
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both (Fig 7B). These comparisons confirmed the validity of inferences drawn: In novel partici-

pants and experimental designs, decoding at multisystem and full brain scale systematically

outperforms more spatially constrained and targeted models of pain intensity, supporting the

hypothesis that pain information is broadly distributed across multiple brain systems.

Models capture pain-specific representations

We next investigated the pain specificity of learned models using an independent multimodal

dataset of within-participant contrast maps (task versus baseline averaged across trials, or

mean high versus low magnitude stimulus evoked blood oxygen level dependent, BAU : PleasedefineBOLDinthesentenceWenextinvestigatedthepainspecificity:::ifapplicable=appropriate:OLD,

Fig 7. Distributed representations outperformed modular representations in validation datasets, consistent with

estimated generalization performances. (A) All models fit to the 7 study dataset significantly predicted pain in novel

data, except for 5 models in 5/28 cases (p< 0.05, left, only nonsignificant results labeled, Holm–Sidak corrected).

Performance in validation data continued to be significantly better for multisystem and full models relative to modular

models in validation studies 1 and 2 (mixed effects model, random participant intercept, F1,160 = 12.6, p< 10e-3; F1,220

= 11.8, p< 10e-3; resp.) as well as overall (mixed effects model, random participant intercept, and fixed study effects,

F1,1005 = 15.6, p< 1e-4); however, the full brain model did not show better performance than the best elementary

region model specifically (region = full brain, BF = 2.2e5; right). (B) Nevertheless, retraining all 6 families of algorithms

in novel data reproduced both findings: full brain and multisystem representations predicted more pain than regional

and network representations and the full brain model specifically out performed any single best region. In a 2 × 5

repeated CV scheme, all models separately retrained for each study successfully predicted pain, except for 2/28,

specifically in validation Study 1 (left, only nonsignificant results labeled, Holm–Sidak corrected); however, full brain

and multisystem models significantly outperformed modular models in validation Studies 1 and 2 (mixed effects and

random participant intercept, F1,160 = 15.0, p = 0.0002; F1,220 = 28.4, p< 1e-6; resp.) and overall (mixed effects, random

participant intercept, and fixed study effects, F1,1005 = 25.3, p< 1e-6). Additionally, the full brain models specifically

outperformed the best elementary region models in Study 2 (mixed effects, random participant intercept, F1,44 = 10.1,

p = 0.0027) and overall (mixed effects, random participant intercept, and fixed study effects,F1,201 = 6.49, p = 0.012;

right). NSp> 0.05 (not significant), �p< 0.05, ��p< 0.01, ���p< 0.001, ;BF> 10, “strong” evidence of null. Gray bars

previously shown in Fig 5. Error bars: SEM, random participant intercepts, random study (gray bars) or fixed study

(otherwise). Violin plot width indicates likelihoods estimated by inferential models fit to the original dataset (7 studies;

Fig 5), vertically constrained to 95% confidence intervals. Underlying data and validated models: https://github.com/

canlab/petre_scope_of_pain_representation/tree/main/figure7. BF, Bayes factor; CV, cross-validation.

https://doi.org/10.1371/journal.pbio.3001620.g007
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signal) from 18 different studies. These include both thermal, pressure, and visceral (rectal dis-

tention) pain (6 studies, 2 per modality, n = 15 participants per study) and studies that shared

negative affective dimensions or task demands with pain rating. The latter consisted of tasks

focusing on aversive images, social manipulations (romantic rejection and vicarious pain), and

aversive sounds, and tasks focused on working memory, response inhibition, and response

selection (2 studies × 15 participants each). Specificity was tested by comparing model scores

for multimodal pain studies to those from the cognitive and affective studies with putatively

homomorphic evoked responses. To determine whether models were specific to heat pain or

specific to more general pain representations, we also tested generalizability by comparing

model scores between heat pain versus pressure and visceral pain contrasts.

On average models produced greater scores when applied to mechanical, thermal, or vis-

ceral pain data than when applied to putatively homomorphic tasks like response inhibition,

aversive sounds, or emotional rejection (Fig 8; B = 1.19, t270 = 18.5, p< 10e-6, planned con-

trast, mixed effects model with random participant effects), and although not trained as

Fig 8. Distributed models were more pain-specific than local models. In a set of 18 studies that estimated

participant mean responses to 1 of 6 multimodal pain tasks or 1 of 12 nonpain tasks, models significantly

discriminated pain from nonpain tasks on average (p< 10e-6), even though nonpain tasks all shared aversive

characteristics or task demands with pain. Planned contrasts showed this discrimination was statistically significant for

each of the 6 models tested. Notably, all models were exclusively trained on painful stimuli, so the ability to

discriminate was an emergent phenomenon. Most importantly, discrimination of pain from nonpain was greater for

distributed than local models (p = 2.2e-5), indicating that the performance advantage of distributed models was due to

improved pain-specific representations. Bars are grouped into pain tasks (blue), cognitive demand control tasks (red),

and nonpainful aversive tasks (yellow). Planned contrasts: black brackets, p< 0.003 (Sidak threshold for 17

comparisons), gray/black brackets p< 0.05. Post hoc t test: �p< 0.003. Dashed gray line: optimal cut point for

discrimination (balancing sensitivity and specificity). Legend indicates sensitivity/specificity at the optimal threshold.

Underlying data: https://github.com/canlab/petre_scope_of_pain_representation/tree/main/figure8. cRSN, coarse

resting-state network; fRSN, fine resting-state network.

https://doi.org/10.1371/journal.pbio.3001620.g008
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classifiers our models nevertheless discriminated pain from putatively homomorphic tasks

(sensitivity/specificity for pain versus not pain at optimal cut point, right a24pr (elementary

region): 0.72/0.72, right salience/ventral attention (fRSN): 0.77/0.76, frontoparietal (cRSN):

0.67/0.67, pain pathways: 0.71/0.71, neurosynth: 0.79/0.79, full brain: 0.76/0.77). These models

were all trained on heat pain stimuli. Consequently, in addition to preferentially responding to

pain versus putative homomorphs, all models responded preferentially to heat pain tasks over

mechanical or visceral pain (B = 0.75, t270 = 6.7, p< 10e-6, planned contrast), but most models

also showed significant predictions in most visceral and mechanical pain studies (fRSN, cRSN,

neurosynth and full brain models predicted 3 out of 4 visceral and mechanical studies, t test,

p< 0.05, corrected for 18 comparisons, Fig 8). Most importantly, discrimination of pain from

not pain tasks was significantly better for larger scale models (distributed − local = 0.34, t1350 =

4.3, p = 2.2e-5, planned contrast). This advantage could not be attributed to greater specificity

to the primitive stimulus features of our training data because the difference between heat and

visceral/mechanical pain was unchanged across models (BF = 21.2): the move from local to

distributed representations increased pain identifiability equally across all 3 pain modalities,

without a preference for heat pain. Thus, our models discriminated pain from not-pain, larger

scale representations discriminated better, and this effect was due to their ability to capture a

better multimodal representation of pain rather than any increased specificity to the particular

task characteristics of our training data. These results confirm that the models learned in this

study captured pain-specific information.

Discussion

This study investigated the spatial scope of pain representation. In a sample of participants

pooled across 7 studies, we found that evoked pain intensity was best decoded when pooling

information from multiple brain systems. However, models trained on the full brain showed

no advantage over multisystem models, suggesting the latter had already subsumed all

uniquely informative signals. Meanwhile, an elementary region account emerged as a surpris-

ingly good approximation of overall pain representation. Follow-up comparisons of models

trained separately for each study support identical conclusions, showing that these results will

generalize to new models which might be learned from novel participants, experimental

designs and studies. These results build on prior studies that examined only one particular spa-

tial scale a priori (e.g., [34,36]) or investigated spatial scope of pain-predictive representations

under more restrictive conditions [37,38] by comprehensively quantifying information repre-

sentation across scales and generalizing to heterogeneous evoked pain experiences across a

diverse collection of task conditions, including mechanical and visceral pain. We thus demon-

strate that evoked pain is represented preferentially by specific brain areas, but that multiple

areas are required for accurate pain decoding.

Several limitations of our approach must be recognized. This study assumes that there is a

common configuration of brain activity that corresponds to pain representation, that it can be

measured using BOLD fMRI, and that incremental reconfigurations of this activity correspond

to proportional changes in subjective experience. However, distinct representations have been

demonstrated for different types of pain including somatosensory and vicarious pain [45] and

different kinds of clinical pain [46,47]. Further, BOLD fMRI is best at measuring the anatomi-

cal configuration of responses [48], but the absolute magnitude of evoked activity also encodes

pain information [26]. Finally, structural and functional heterogeneity across individuals as

well as physical limitations on spatial resolution erodes local information decoding capabilities

of fMRI, while the complexity of distributed representations makes them much harder to iden-

tify with multivariate methods. Nevertheless, the specificity and consistency of our findings
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across heterogenous studies and task conditions supports the notion that good pain represen-

tations were successfully obtained here.

Multivariate fMRI models formally map specific configurations of brain activity to con-

structs of interest, but constructs must be validated [49]. Here, the performance of multivariate

representations was reproducible across constituent studies, and all models showed signifi-

cantly greater scores during pain tasks than superficially correlated cognitive or affective tasks.

Differences ranged from moderate to dramatic: equivalent to a diagnostic odds ratio of 14:1

for the Neurosynth-derived model. Furthermore, all models generalized to other pain modali-

ties like mechanical and visceral pain that were also distinguished from nonpain tasks, and this

multimodal specificity tracked heat pain specificity across models. Some models idiosyncrati-

cally tracked some nonpain modalities like the odd putatively homomorphic task. This is

unsurprising because our models were designed to capture all pain relevant features, including

any shared with other tasks, mediation analysis suggested they captured some (e.g., anticipa-

tion), and linear models cannot discriminate nonspecific features based on context. Although

we cannot extend our conclusions to characterize all forms of pain, these results show both

convergent and discriminant construct validity for multimodal evoked pain [49]. Therefore,

multivariate modeling captures good approximations of common, cross-subject evoked pain

representations.

Despite the strengths of multivariate brain models, this study moves beyond the perfor-

mance of individual models to make stronger claims about information content. Our multi-

study analysis provides a convenient and familiar starting point of fitting a model to data and

establishes our ability to estimate model performances accurately. However, unlike traditional

unbiased statistical models, machine learning is not optimized to recover underlying genera-

tive processes [50,51]. Similarly, the routine exercise of generalizing from one statistical mod-

el’s performance to new models that might be learned is notoriously problematic in machine

learning [43]. We resolve these issues by operationalizing “brain information content” as what

can be learned in general and simply estimate performance of independent models retrained

for each study separately (i.e., 42 different models, 6 hypotheses, and 7 studies). It is conceptu-

ally simple, follows precedent established in machine learning [52,53], applications in geno-

mics [54], and more general modeling recommendations for multistudy mega-analyses [55].

The consistency of our results across heterogenous evoked heat pain tasks bolsters construct

validity, but such qualitative implications are incidental. More importantly, evaluating vari-

ability of independent model performances across studies using traditional statistical methods

quantitatively informs the performance of new unseen models trained on unseen new partici-

pants in new studies in a practical sense. We successfully validated these estimates and illus-

trated the broader nature of this claim by training new models in new studies on new

participants and obtained an identical performance hierarchy favoring multisystem represen-

tations. This provides a blueprint for exploiting large heterogeneous datasets to practically

quantify information content in the brain, one which can just as readily be applied to other

brain phenomena besides pain.

Although our findings primarily support a multisystem representation of pain, they also

support the notion that specific regions have a privileged role in pain representation. Different

subregions of mostly ACC, insula, midbrain, and cerebellum significantly predicted pain on

their own. Previously, some of these areas have been suggested to be pain specific (a24pr) [27]

or “fundamental” to pain (OP1) [26] (regions labeled using the scheme of [40]). Substantial

evidence indicates cingulate and insular cortex represent parallel pathways mediating distinct

dimensions of pain. Cingulate cortex has traditionally been associated with emotional–motiva-

tional dimensions of pain [23,56–61]. Conversely, posterior insula has traditionally been asso-

ciated with sensory-discriminative dimensions [21,29,62]. Convergence between our results
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and prior studies puts such studies in a quantified context. We showed that many brain

regions might predict pain with high sensitivity depending on the experimental conditions

and sample of participants observed, but there was substantial unique information elsewhere

in the brain (24% more in the full brain versus best elementary region), which regional inter-

pretations of pain failed to capture.

Resting-state network modules also predicted pain intensity, especially somatomotor,

salience, and attention networks. Salience networks respond to painful stimuli [63–66], leading

to interpretations of pain as an orienting response [14]. Our results echo network level interpre-

tations of pain, but brain network parcels of pain were no more pain predictive than elementary

regions, correlated with regional pattern maps, and the salience and somatomotor regions

selected most frequently showed substantial overlap with individually predictive insular and

cingulate elementary regions. This indicates that the best a network model of pain can hope for

is to recapitulate the information already present in the best constituent elementary region.

Multisystem and full brain representations were the most pain predictive, most specific, and

supported the greatest learning capacity across studies. Converging evidence implicates antero-

lateral, midbrain, and cerebellar brain systems in cognitive evaluation, more posterolateral areas

in detection of physical stimulus properties, and thalamic and frontal midline regions in both

cognitive and physical evaluation of painful stimuli [60,67–77]. Although characterizing the

diversity of pain information in the brain exceeds the scope of this study, this was precisely the

scope of [78] and [79] who use Study 2 and Study 5 (respectively) to identify expectation media-

tors in dorsolateral PFC, amygdala, pons, and dorsal striatum, thermal stimulus mediators in

somatomotor areas and cerebellum, and mediators of both components in dorsal ACC, anterior

insula, and thalamus. These results are all consistent with statistically significant weights in our

multisystem and full brain models and with our mediation analysis, which showed mediation of

expectation and stimulus intensity effects. This lends support to the notion that multisystem

models subsume, integrate, and expand upon a diverse constellation of unique regional signals.

Several studies suggest that traditional methods of functional localization may miss subtle

representations within and across brain areas and that pain representations might be embed-

ded in areas typically associated with unrelated processes [8,24]. We hoped the full brain space

would allow our models to capture traditionally overlooked signals, but the failure of full brain

models to outperform multisystem models suggests that any such exotic signals are redundant

with what was already captured by the multisystem representations.

We used MVPA models of pain defined at spatial scales according to established biological

gradients in anatomy and function, or a meta-analytic area representative of the neuroimaging

findings of the field, estimated their performance, and validated these estimates to show multi-

system models best represent pain. We then generalized our conclusions to novel models

trained in novel studies and validated these conclusions as well. Finally, we showed our models

captured pain in a multidimensional manner and were specific to multimodal evoked pain but

not other experiences with common cognitive characteristics, affirming construct validity. In

the face of current gyrations between local and global perspectives of pain, our results illustrate

the extent to which the neural basis of pain can be localized, that it is best captured by distrib-

uted signals spanning multiple brain systems, and provide a blueprint for quantifying informa-

tion content in the brain across diverse neural phenomena.

Methods

Participants

This study aggregated data from 11 previously published studies involving 376 participants

from whom written consent for participation was obtained. Institutional review boards at the
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University of Colorado Boulder, Columbia University, or the ethics committee of the Medical

Chamber Hamburg approved these studies. Please refer to Table 1 for details on sample size,

age ranges, and gender. All participants were right handed.

Data

Except for Study V4, data were included in this study if they conformed to several criteria: (1)

they included evoked pain stimuli and subjective ratings of the intensity of those stimuli; (2)

they were previously published at the time this study was conceived (May 2019); (3) involved

healthy participants, without any drug manipulations (excluded one study [74]); (4) if the lead

authors on those prior publications had prepared a set of single-trial stimulus evoked contrast

images (see “General linear model (GLM) analysis” subsection below) in the course of their

original analyses for purposes unrelated to this study; and (5) if those contrast images had

been made available to the senior author of this study for archival purposes (TW). The latter

requirements introduced organic variability across datasets more representative of variability

seen across studies in the field. Sources of variability include differences in preprocessing

choices and statistical designs. Study V4 was introduced subsequently to provide multimodal

data (pain and aversive sound) for improved tests of model specificities, but otherwise con-

forms to the same requirements. Refer to Table 1 for references to publications containing rel-

evant experimental design and data acquisition details and Table 2 for overviews of

experimental designs. Data are available as “single trial” statistical contrast maps, hosted at

figshare.com (uniformly prepared by BP), and best accessed via the CANlab Single Trials

Repository on GitHub (https://github.com/canlab/canlab_single_trials).

Each study involved a series of trials of painful thermal stimuli of varying intensities (40.8

to 50˚C) applied to the left arm, anticipatory cues, noxious stimuli lasting 1 to 20 seconds, and

a pain rating period following a variable (jittered) interval (Fig 1A). Additionally, many studies

included cognitive or affective psychological manipulations like romantic partner hand-hold-

ing or manipulations of perceived control over stimulus intensities (Fig 1B). Table 2 details

stimulus durations, sites, intensities, and additional protocol details by study. S1 Table pro-

vides effect sizes for experimental pain manipulations across studies. S1 Fig shows histograms

of pain ratings across studies.

Table 1. Study participants overview.

Sample size Gender Mean age (SD) Citations

Study 1 (BMRK4) 28 10F 25.7 (7.4) [45]

Study 2 (EXP) 17 9F� 25.5 [78]

Study 3 (IE2) 16 9F 25.9 (10.0) [95]

Study 4 (ILCP) 29 16F� 20.4 (3.3)�� [96]

Study 5 (NSF) 26 9F 27.8 [34,79]

Study 6 (Romantic pain) 30 30F 24.5 (6.7) [97]

Study 7 (SCEBL) 25 11F 27.4 (8.8) [98]

Study V1 (BMRK3) 33 22F 27.9 (9.0) [34,75]

Study V2 (IE) 45 25F 24.7 (7.1) [99]

Study V3 (Placebo) 40 0F 26 [19,40]��� [100]

Study V4 (BMRK5) 87 46F 28.5 (5.7) [82]

�Gender of one participant unknown.

��Age of one participant unknown.

���Standard deviation unavailable; range provided instead.

https://doi.org/10.1371/journal.pbio.3001620.t001
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We performed all of our primary analyses in 7 studies (Studies 1 to 7) and used 4 validation

studies (Studies V1 to V4) as a post hoc confirmation of the validity of our inferences. Datasets

were selected as validation studies semirandomly. We aim for our results to generalize to novel

studies and contexts; however, we recognize that we cannot exhaustively include all possible

permutations of studies and contexts in our analysis here. To simulate the burden of generaliz-

ing to novel pain conditions, we selected validation studies that partially overlapped with the

experimental conditions of the training dataset (studies V1, V2, and V3 had thermal intensity

variation and V2 had expectation cues) as well as studies that had novel experimental condi-

tions absent from the primary analysis (study V1 had pain reappraisal and V2 and V3 had pla-

cebo manipulations). Additionally, we included studies with multimodal stimuli (V1 and V4)

so that we might evaluate pain specificity of decoding models (S1 Text). Importantly, the use

of validation studies was separate from the use of CV, which was used extensively for model fit-

ting and evaluation (see MVPA sections below): CV generates an estimate while validation

studies put that estimate to the test. Analysts were blind to validation studies until all primary

analyses had been completed.

In addition to the “single trial” dataset used to test pain intensity decoding, we also assem-

bled a partially (but minimally) overlapping dataset of traditional GLM contrast maps (one

contrast per participant representing a mean task effect) from multimodal pain and nonpain

studies for indirect evaluation of model pain specificity. This dataset consisted of 18 previously

published studies: 2× acute thermal pain tasks (Study V1 and V2 above), 2× visceral pain tasks

[80,81], 2× mechanical pain tasks [82], 2× working memory tasks (WM) [83,84], 2× response

selection (Inhib) [85,86], 2× response conflict (RespInhib) [87, 88], 2× negative emotion

induction through visual scenes (AversiveImg) [89,90], 1× social rejection (Rejection)[91], 1×
vicarious pain (Vicarious Pain) [45], and 2× emotionally aversive vignettes from the Interna-

tional Affective Digital Sounds system (Emotion AversiveSnd, including study V4 above) [88].

Each study contributed 15 contrast maps from 15 participants, and the dataset is designed to

balance across studies and task categories, which consist of pain tasks (6×), cognitive demand

Table 2. Study stimuli overview.

Stimulus intensity (˚C) Stimulus

duration

Stimulus

location

Thermode size

(mm2)

Trials per

participant

Other experimental manipulations

Study 1 (BMRK4) 46, 47, 48 11 seconds L forearm, L

foot

16 81 Learned heat-predictive visual cues

Study 2 (EXP) 41.1, 44.2, 47.1� 10 seconds L forearm 16 64 Learned heat-predictive auditory cues

Study 3 (IE2) 48, 49 1 second L forearm 27 70 Learned heat-predictive visual cues

Study 4 (ILCP) 45, 47� 10 seconds L forearm 16 64 Perceived control, learned heat-

predictive visual cues

Study 5 (NSF) 40.8 to 47.0 11 seconds L forearm 16 48 Masked emotional faces

Study 6 (Romantic

pain)

47 11 seconds L forearm 16 16 Romantic partner hand-holding

Study 7 (SCEBL) 48, 49, 50 2 seconds R calf 27 96 Unlearned visual expectation cue

Study V1 (BMRK3) 44.3, 45.3, 46.3, 47.3,

48.3, 49.3

12.5 seconds L forearm 16 97 Cognitive self-regulation of pain

(reappraisal)

Study V2 (IE) 46, 47, 48 4 seconds L forearm 16 48 Learned heat-predictive visual cues,

placebo

Study V3 (Placebo) 46.4� 20 seconds L forearm 30 60 Unlearned visual cues placebo

Study V4 (BMRK5) 47, 48, 49 8 seconds/11

seconds

L forearm 16 36 None

�Variable across participants. Mean across participants shown.

https://doi.org/10.1371/journal.pbio.3001620.t002
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control tasks (e.g., pain rating requires holding pain experience in working memory, inhibi-

tion of defensive withdrawal reflexes, etc.; 6×) and tasks that share aversive emotional qualities

with pain (6×). This dataset is a modified version of a previously published dataset [88] avail-

able at https://neurovault.org/api/collections/3324. Contrasts of stimulus versus baseline from

Study V1 and Study V2 were substituted for the original thermal pain studies, since coinciden-

tally the original thermal pain studies from [88] are used to train our decoding models here

(Study 2 and Study 5 in particular), and we wished to test models on independent data.

Behavioral data analysis

To provide an informative description of each study’s experimental effects, we modeled pain

reports as a function of experimental manipulations while controlling for participant fixed

effects (differences in mean pain between participants). We considered all experimental

manipulations, as well as site specific and nonspecific sensitization and habituation effects and

then used backward stepwise regression to select parameters which affect pain report

(p< 0.05). All nonsignificant parameters other than mean participant effects were removed.

For simplicity, this analysis did not consider nonlinear effects (i.e., interaction effects). All

analyses were performed in quartiled data to match and thus better inform the subsequent

MVPA analyses, which were similarly quartiled due to computational constraints (see Data

standardization subsection below for details).

Defining model spaces and inputs

We defined 3 hypotheses regarding scope of pain representation (modular, a priori multisys-

tem areas or full brain) and formalized them using one or more of 6 modeling spaces (explic-

itly enumerated below), which constrained subsequently trained machine learning algorithms

to draw on sources of information from particular brain areas (Fig 2).

The “modular” hypothesis contends that pain intensity information is best captured in a

single physiologically coherent brain area, but is agnostic with respect to location and size of

the brain area. To formalize this, we drew on 3 brain parcellations that vary in areal size from

fine to coarse. (1) Our finest representation, the “elementary region” parcellation, defined a set

of elementary brain areas by combining the Human Connectome Project’s cortical parcella-

tion [40] with individual cerebellar lobules, and thalamic basal ganglia and brainstem nuclear

parcellations. (2) A fRSN parcellation involving 32 distinct lateralized resting-state network

parcels and (3) a cRSN parcellation using 7 bilateral parcels formalize the network hypothesis.

Both fRSN and cRSN parcellations were derived from clustering of brain areas based on their

functional connectivity profiles, but differ in their clustering threshold. Illustrations (Fig 2)

show that some networks primarily involve adjacent areas while others involve several discon-

nected areas of the cortex.

The hypothesis that pain has a “multisystem” representation assumes that there is a pain-

specific configuration of brain activity localized in a finite but not necessarily contiguous or

physiologically homogenous set of brain areas. We formalized this hypothesis as 2 additional

modeling spaces. (4) First, by identifying a priori the subset of the regional parcellation that

receives afferent nociceptive information either directly or indirectly and taking its union to

define a model space (“pain pathways”). These regions include thalamic and brainstem nuclei,

amygdala, insular, somatosensory, and mid-cingulate cortex. (5) Next, we took an empirical

approach using a reverse inference metaanalysis map for “pain” from neurosynth.org. Both

pain pathways and neurosynth spaces crossed multiple modular boundaries and comprised

approximately 30% of the brain, including cortex, thalamus, subcortical nuclei, and brainstem

regions.
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Finally, the holistic hypothesis assumes that any of a number of sensory or cognitive func-

tions may recruit any one brain area, and, therefore, pain-predictive information could be dis-

tributed anywhere and everywhere in the brain. (6) Models trained on the entire brain

formalized this final hypothesis.

Thus, 3 model spaces formalized the modular hypothesis, 2 formalized the multisystem

hypothesis, and 1 formalized the holistic hypothesis. We elaborate on how each space was

defined in the Defining mode spaces and inputs in S2 Text.

fMRI acquisition and preprocessing

Briefly, all data were acquired using 3T MRI scanners and were motion corrected, had cere-

brospinal fluid and white matter signals linearly removed, and were spatially normalized to a

standard MNI152 template, except for Studies 2, 5 and V4. Studies 2 and 5 were acquired at

1.5T, and none of the 3 had cerebrospinal fluid or white matter signals removed. Please refer

to studies referenced in Table 1 for further details on data preprocessing.

General linear model (GLM) analysis

This study used beta-series analysis [92] to estimate brain response to each evoked noxious

stimulus (a “single trial”). The GLM design matrix included separate regressors for each stimu-

lus event and nuisance parameters (e.g., head motion). This study excluded trials with variance

inflation factors >2.5. We thus obtained a separate parameter estimate brain map for stimulus

evoked activity for each stimulation (trial), which represents heat versus baseline. For compu-

tational tractability, we averaged these maps within pain intensity quartile after data standardi-

zation (see “Data standardization” below for discussion).

Data standardization

We demeaned data across studies (subtracted the study mean map from all constituent con-

trast maps) and standardized all single trial images (mean voxel value is 0, and standard devia-

tion of voxel values within trial image is 1). Thus, individual images differed from one another

in the spatial configuration of their pain response but were matched on net response. Although

global intensity information may be task related, it is also affected in idiosyncratic ways by pre-

processing decisions, image acquisition parameters, and spurious physiological noise. We also

z-scored pain ratings within study to partially control for quantitative differences in the rating

scales and calibrations used (S1 Fig). This preserved between-participant differences within-

study.

Standardized imaging data and pain ratings were averaged within the pain rating quartiles

for each participant. This removed some portion of the overall variance in our pain reports,

and all reported r2 statistics should be interpreted as variance explained in quartiled data, but

this was necessary for computational tractability. Quartiled data in particular was selected

rather than some other quantile interval (e.g., tertiles or quintiles) because it has been estab-

lished as a convention by previous studies [34] since it is the minimum level needed for all

measures to contribute to estimates of linear intensity effects. With tertiles, e.g., the middle

quantile only affects an intercept estimate, while the intensity effect is fully determined by the

lowest and highest quantiles.

Incidentally, quartiling also denoised our data, partially aligning variability in our brain

data with our outcome variable (pain rating), improved PCR models by increasing the sensitiv-

ity of principal component analysis to pain relevant features and reduced noise related dilution

of regression parameter estimates (see MVPA: General method description below). Thus, we

expect this approach to have more accurately estimated underlying generative processes
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relative to single trial derived models. This nominal impact on our performance metrics has

no impact on our conclusions because all our model comparisons were performed as repeated

measures analyses, and each model performance metric was affected equally.

MVPA: General method description

Multivariate patterns were fit to each modeling space using PCR with dimensionality deter-

mined by Bayesian optimization of mean squared error (MSE, S2 Text). The dimensionality

search space spanned 1-R PCA dimensions, where R is the matrix rank of the training data.

We precluded intercept only models (0 PCA dimensions) a priori. Finally, we used 2 × 5-fold

repeated k-fold nested CV to estimate model performance. The inner CV loop selected PCR

dimensions (S2A Fig), the outer CV loop obtained properly cross-validated model predictions

(S2B Fig), and repetition stabilized results with respect to idiosyncrasies of fold partitions. We

evaluated cross-validated predictions using within-participant Pearson correlation between

predicted and observed pain ratings. This means the scope of this study is limited to within-

participant variance in pain rather than between individual differences. Participant-wise Pear-

son r-values were normalized by Fisher’s z transformation (hereon: “within-participant corre-

lations”). PCR implementation is available at https://github.com/bogpetre/mlpcr0.

MVPA multistudy analysis and model generalization performance

We pooled data across 7 studies and trained separate MVPA models for each modeling space.

Pooling individual participant data from multiple studies to fit a single model is commonly

referred to as mega-analysis [93,94], which has been shown to perform better than 2-stage pro-

cedures where models are fit separately for individual studies before being integrated in a

meta-analytic model [55]. All input spaces required estimation of a PCR dimension. We esti-

mated these dimensions in a nested CV loop as described in the “General method description”

above; however, modular spaces (elementary regions, cRSN, and fRSN) required the additional

selection of a best module. We used an additional level of CV for this and sampled modules

exhaustively (so counting the nested 5-fold CV for optimization of PCR dimension within

each area this was ultimately a 3× nested CV).

Model comparisons were performed using mixed effect models of within-participant corre-

lations, with random participant and random study intercepts and random study slopes.

Orthogonal contrast codes tested planned comparisons between within-participant correla-

tions across models, similar to an rm-ANOVA but with additional random study effects. Null

hypothesis tests were conducted for all nonsignificant contrasts using BFs (Bayesian hypothe-

sis tests in S2 Text).

The multistudy analysis balanced participants across studies. Our smallest study had 16 par-

ticipants, resulting in random sampling of 16 participants from each study, for a total of 112

participants and 6,668 stimulus trials. After quartiling data, this resulted in model training

over 448 observed points.

Study-wise MVPA and learner generalization performance

We defined the learner as the combination of algorithm (PCR) and the modeling space

(regional, cRSN, fRSN, pain pathways, Neurosynth, or full brain). For learner performance

estimates, we did not aggregate data across studies, instead defining 7 nonoverlapping datasets,

one for each study (using the complete participant sample available in each case, in contradis-

tinction with the multistudy analysis where participants were balanced across studies), and

trained separate patterns for each. This study-wise MVPA used a total of 171 participants and

9,773 trials (16 to 30 participants, 256–2592 trials per study MVPA, Table 2). As for the
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multistudy analysis, we averaged data within-pain rating quartile within participant and evalu-

ated the performance of MVPA patterns using 2 × 5 repeated k-fold nested CV. Our statistical

models were the same as for the multistudy analysis: mixed effect models of within-participant

correlation of predicted versus observed pain.
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S1 Text. Supporting information results.
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S2 Text. Supporting information methods.

(DOCX)

S1 Fig. Histograms of single trial pain reports across studies. Data shown are unstandard-

ized, and, instead, the x-axis was scaled to match the rating scale range offered to participants.

Underlying data: https://github.com/canlab/petre_scope_of_pain_representation/tree/main/

figureS1.

(TIF)

S2 Fig. We tested 6 different hypotheses regarding the scope of pain representation using

cross-validated PCR to predict pain intensity. (A) We used PCR to learn a model from an

area. We estimated model performance using 5-fold CV, training models on data averaged

within pain intensity quartiles (smallest squares) for each participant (4× squares and one

color per participant). Participant data were not fragmented across folds (shown), and studies

were balanced across folds (not shown). We estimated model performance using within partic-

ipant Pearson correlation of predicted and observed ratings. (B) The model fitting algorithm

selected optimal model hyperparameters to minimize MSE, which it estimated using nested

CV folds. In the case of multiarea hypotheses (A, top row), the algorithm treated region selec-

tion as a hyperparameter, and identified a single best region for each outer fold (folds illus-

trated in B). This region may have differed across outer CV folds. PCR dimensionality was

optimized by estimating expected MSE in an additional innermost CV loop (3 levels of nested

folds). In the case of distributed area hypotheses (A, bottom row), the algorithm only per-

formed the latter step (2 levels of nested folds). PCR hyperparameter optimization folds are

not illustrated. CV, cross-validation; MSE, mean squared error; PCR, principal component

regression.

(TIF)

S3 Fig. Distributed models are more pain specific than local models. In validation studies

where participants rated aversiveness of sound or warmth of nonpainful noxious heat as well

as heat pain, models on average predicted nonpain ratings (left, warmth prediction p = 3e-4,

sound prediction p = 0.001), and specifically fRSN, cRSN, and neurosynth models predicted

warmth (p = 1.2e-3, 4.2e-3, and 9.8e-4 resp), while the pain pathways model predicted both

warmth and sound ratings (p = 1.7e-3, p = 2.7e-4, resp). However, models predicted pain rat-

ings better than not-pain ratings (center, pain > warmth, p = 0.008, pain> sound p = 0.037).

Accuracy of pain rating predictions are indirectly indicated by net model response differences

(right), which likewise showed greater responses for pain than not-pain stimuli in a manner

roughly proportional to the intermodal within-participant differences in correlations (center).
�Holm–Sidak α = 0.05 for 12 comparisons. Underlying data: https://github.com/canlab/petre_

scope_of_pain_representation/tree/main/figureS3. cRSN, coarse resting-state network; fRSN,

fine resting-state network.

(TIF)
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S1 Table. Study behavioral factors overview. Regression model coefficients (Fig 1B) shown.

Standardized coefficients (SEM), regression of quartiled pain report with (unlisted) participant

fixed effects. p< 0.05, all effects shown. ns, nonsignificant, excluded from model. blank cell,

invariant or absent factor. †,‡Unique unlisted nonsignificant factors (†masked emotional facies,
‡cognitive self-regulation).

(XLSX)

S2 Table. Model and learner performance across modeling spaces (Fig 5A and 5B). †cross-

validated model performance (Pearson-r) within-participant is normalized by z-fisher trans-

formation and modeled using a mixed effects design (random participant intercept, random

study intercept and slope). Inverse z-Fisher transformed model coefficients and CI shown.

CI0.95, 95% confidence Intervals. df, degrees of freedom estimated using Satterthwaite’s cor-

rection.

(XLSX)

S3 Table. Contrasts of model and learner performances across modeling spaces (Fig 5A

and 5B). †Performance contrasts are modeled using a mixed effects design (random partici-

pant intercept, random study intercept, and slope). ‡z-fisher transformation of cross-validated

model performance (within-participant Pearson-r). df, degrees of freedom estimated using

Satterthwaite’s correction. NS, neurosynth; PP, pain pathways. �p< 0.05.

(XLSX)

S4 Table. Mediation model (standardized) coefficients and 95% confidence intervals (Fig

6). �,†p< 0.05, bias-corrected bootstrap confidence interval, 5,000 repetitions. Factors

included based on statistical significance in multiple regression on pain (t test, p< 0.05). All

parameters and statistics estimated while modeling participant fixed effects (not shown).

(XLSX)

S5 Table. Mediation effects for multistudy models (Fig 5A), product of standardized coef-

ficients, [95% confidence] and (mediation partial R2). �p< 0.05, bias-corrected bootstrap

confidence interval, 5,000 repetitions. Factors included based on statistical significance in mul-

tiple regression on pain (t test, p< 0.05). All parameters and statistics estimated while model-

ing participant fixed effects (not shown).

(XLSX)

S6 Table. Mediation analysis of pooled study specific models’ predictions, product of stan-

dardized coefficients, [95% confidence] and (mediation partial R2). �p< 0.05, bias-cor-

rected bootstrap confidence interval, 5,000 repetitions. Factors included based on statistical

significance in multiple regression on pain (t test, p< 0.05). All parameters and statistics esti-

mated while modeling participant fixed effects (not shown).

(XLSX)
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33. Liberati G, Klöcker A, Safronova MM, Ferrão Santos S, Ribeiro Vaz JG, Raftopoulos C, et al. Nocicep-

tive Local Field Potentials Recorded from the Human Insula Are Not Specific for Nociception. PLoS

Biol. 2016; 14:1–18.

34. Wager TD, Atlas LY, Lindquist MA, Roy M, Woo C-W, Kross E. An fMRI-based neurologic signature of

physical pain. N Engl J Med. 2013; 368:1388–97. https://doi.org/10.1056/NEJMoa1204471 PMID:

23574118

35. Cecchi GA, Huang L, Hashmi JA, Baliki M, Centeno MV, Rish I, et al. Predictive dynamics of human

pain perception. PLoS Comput Biol. 2012; 8:e1002719. https://doi.org/10.1371/journal.pcbi.1002719

PMID: 23133342

36. Marquand A, Howard M, Brammer M, Chu C, Coen S, Mourão-Miranda J. Quantitative prediction of

subjective pain intensity from whole-brain fMRI data using Gaussian processes. Neuroimage. 2010;

49:2178–89. https://doi.org/10.1016/j.neuroimage.2009.10.072 PMID: 19879364

37. Brodersen KH, Wiech K, Lomakina EI, Lin C-S, Buhmann JM, Bingel U, et al. Decoding the perception

of pain from fMRI using multivariate pattern analysis. Neuroimage. 2012; 63:1162–70. https://doi.org/

10.1016/j.neuroimage.2012.08.035 PMID: 22922369

38. Brown JE, Chatterjee N, Younger J, Mackey S. Towards a physiology-based measure of pain: patterns

of human brain activity distinguish painful from non-painful thermal stimulation. PLoS ONE. 2011; 6:

e24124. https://doi.org/10.1371/journal.pone.0024124 PMID: 21931652

39. Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, et al. Power failure: why small

sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013; 14:365–76. https://

doi.org/10.1038/nrn3475 PMID: 23571845

40. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, et al. A multi-modal parcel-

lation of human cerebral cortex. Nature. 2016; 536:171–8. https://doi.org/10.1038/nature18933 PMID:

27437579

41. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of

the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;

106:1125–65. https://doi.org/10.1152/jn.00338.2011 PMID: 21653723

42. Jepma M, Jones M, Wager TD. The dynamics of pain: evidence for simultaneous site-specific habitua-

tion and site-nonspecific sensitization in thermal pain. J Pain. 2014; 15:734–46. https://doi.org/10.

1016/j.jpain.2014.02.010 PMID: 24768695

43. Bengio Y, Grandvalet Y. No Unbiased Estimator of the Variance of K-Fold Cross-Validation. J Mach

Learn Res. 2004; 5:1089–105.

44. MacKinnon DP, Lockwood CM, Williams J. Confidence Limits for the Indirect Effect: Distribution of the

Product and Resampling Methods. Multivariate Behav Res. 2004; 39:99–128. https://doi.org/10.1207/

s15327906mbr3901_4 PMID: 20157642

45. Krishnan A, Woo C-W, Chang LJ, Ruzic L, Gu X, López-SolàM, et al. Somatic and vicarious pain are
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