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We demonstrate that the physics of the F-model can be approached very closely in a two-
dimensional artificial magnetic system. Faraday lines spanning across the lattice and carrying a
net polarization, together with chiral Faraday loops characterized by a zero magnetic susceptibility
are imaged in real space using magnetic force microscopy. Our measurements reveal the prolifera-
tion of Faraday lines and Faraday loops as the system is brought from low- to high-energy magnetic
configurations. They also reveal a link between the Faraday loop density and ice-like spin-spin
correlations in the magnetic structure factor. Key for this work, the density of topological defects
remains small, of the order of 1% or less, and negligible compared to the density of Faraday loops.
This is made possible by replacing the spin degree of freedom used in conventional lattices of in-
teracting nanomagnets by a micromagnetic knob, which can be finely tuned to adjust the vertex
energy directly, rather than modifying the two-body interactions.

Introduction– In the beginning of the 20th cen-
tury, the formulation of the third law of thermo-
dynamics was vigorously debated, notably between
Nernst, Planck and Einstein [1–3]. In the 20s, it
becomes clear that the following, often taught state-
ment was not precise enough: “When temperature
falls to absolute zero, the entropy of a pure crys-
talline substance tends to a constant, which can be
taken to be zero”. The heat capacity measurements
performed by Giauque and coworkers [4, 5] on water
ice were certainly a milestone in that context as they
unambiguously demonstrated the existence of an ex-
tensive entropy at low temperature. These experi-
mental findings nicely agreed with the description of
the proton disorder in ice proposed by Bernal and
Fowler [6] and Pauling [7], highlighting solid water
as a fascinating candidate for challenging the formu-
lation of the third law.

These works later inspired the introduction in
statistical mechanics of the so-called vertex mod-
els [8, 9] (see Supplemental Material for details).
Although being an abstract, conceptually simple,
two-dimensional view of reality, these theoretical ap-
proaches proved to be very powerful. Among them,
the ice model, one of the variant of the six vertex
model, may “be considered to be one of the more
successful applications of statistical mechanics to the
real world” [10]. The F-model, another variant of the

six vertex model, was introduced by Rys in the 60s
to describe antiferroelectrics [11], and is one of the
few exactly solvable models of statistical mechanics
[12–16].

The F-model has rather unusual properties: i) it
is characterized by an infinite order phase transition
separating a high-temperature critical phase (the so-
called square ice) from an antiferromagnetic order,
and ii) the configurational space is divided into topo-
logical sectors. These properties are inherited from
the constraints of the six vertex model, which allows
only loop excitations to develop on an antiferromag-
netic background consisting of a tessellation of type I
vertices (see Fig. 1). These loops are made of type II
vertices, whose magnetic moments can be joined into
lines (see Fig. 1), the so-called Faraday lines [17].
Faraday lines have a defined A/B parity depending
on the plaquettes they bridge (a loop only crosses ei-
ther A or B plaquettes, see Fig. 1). They carry the
system energy [17] and are thus the elementary exci-
tations of the F-model. They are of two kinds: mag-
netization-free, chiral closed loops extending within
the bulk of the lattice, and system-spanning wind-
ings, hosting a net magnetization. Only closed loops
can be contracted to zero, but they do not couple
with an external field as they carry no net magne-
tization. Instead, system-spanning windings cannot
be contracted, forcing the system to fluctuate within



a given topological sector [17, 18].

These theoretically predicted, exotic properties
are not easily observed in nature. We might won-
der wether they could be conveniently studied ex-
perimentally, for example in artificial magnetic sys-
tems [19–21], or if this is a lost battle. So far, two-
dimensional square assemblies of interacting nano-
magnets have failed to probe the topological proper-
ties of the F-model, despite the fact that they share
the same ground state. As pointed out by Nisoli [17],
the transitions in artificial magnetic systems “are in-
nocuously second order [22–25], and their [magnetic]
susceptibility is never zero”. This is so because the
thermodynamics of artificial square ice magnets is
described by the sixteen vertex model, which per-
mits excitations of vertices violating the ice-rule con-
straint necessarily satisfied in the six vertex model.
These ice-rule defects then act as sources or sinks of
magnetic flux, breaking the topological properties of
the F-model [17].

Here we show that the thermodynamics of the F-
model can be approached very closely in a purely
two-dimensional system, including its macroscopi-
cally degenerate, high-temperature ice regime. More
importantly, the topological properties of the F-
model can be probed by a careful control of the ver-
tex energies and the reduction of ice-rule defects to
a marginal contribution. This allows us to visualize
the proliferation of Faraday loop excitations devel-
oping on the antiferromagnetic ground state as our
system is brought to higher energy configurations.
Faraday lines carrying a net magnetization and chi-
ral Faraday loops characterized by a zero magnetic
susceptibility are imaged in real space, giving access
to the topological properties of the F-model experi-
mentally.

Micromagnetism as an additional degree of free-
dom– The system we consider is a square lattice of
nanomagnets that are physically connected at the
vertex sites [see Fig. 2(a)]. The system differs from a
conventional artificial square lattice [26] in the sense
that it does not consist of an assembly of interacting
nanomagnets. Instead, the system can be viewed as
a unique object, a magnetic grid, in which the energy
results from a micromagnetic texture at the vertex
sites rather than a sum of two-body interactions. As
we will see below, the energy hierarchy between the
four possible vertex types can be tuned by adding a
hole at the vertex site, i.e., by extruding some mag-
netic materials from the grid [see Fig. 2(a)].

To illustrate the influence of the hole diameter on

Type I

Type II

FIG. 1. Schematics showing an excited configuration of
the F-model. Type I domains are colored in green and
blue, whereas type II vertices appear in red. Only type
II vertices carry a magnetic moment which are joined
by the Faraday lines (red and blue oriented thick lines).
Faraday lines have an assigned parity depending on the
A/B plaquettes they bridge (the red Faraday line has A
parity and separates neighboring B plaquettes).

the vertex energies, we first compute the micromag-
netic energy [27, 28] of the four possible vertex types
[see Fig. 2(b) and Supplemental Material for details
on the simulations]. The key result is the capability
to change the energy hierarchy between type I and
type II ice-rule vertices by varying the hole diameter,
while keeping type III topological defects and type
IV vertices much higher in energy. The fact that the
energies of type I and type II vertices evolve differ-
ently as a function of the hole diameter is explained
by the change of the microscopic exchange and mag-
netostatic energies. In the absence of a hole, a type
I vertex always costs more energy than a type II
vertex [29] as it hosts an antivortex [see Fig. 2(c)],
a micromagnetic texture known to be highly ener-
getic because of the exchange penalty resulting form
the curl of the magnetization within the core. Type
II vertices then have the lowest possible energy in
a fully connected grid [29]. For finite hole diame-
ters, the energy of a type II vertex increases because
of the additional magnetostatic energy induced by
the presence of the hole, while at the same time the
exchange penalty is reduced for a type I vertex as
the antivortex core is removed [see Fig. 2(c)]. The
crossing point where type I and type II vertices have
the same energy suggests that the hole diameter can
serve as a knob for exploring different variants of
the sixteen vertex model. In particular, a Coulomb
phase physics should be observed when type I and
type II vertices have the same energy.

To test these predictions, we have fabricated a
series of square grids made of permalloy, with a
material-free circular region at the vertex sites. The
grids are 100 nm-wide, 25 nm-thick, and contain

2



Type II

Type III

Type IV

a)(a)

Hole diameter (nm)

-1
7

M
ic

ro
m

a
g
n
e
ti
c 

e
n
e
rg

y
 (

1
0

 J
)

0 10 20 30 40 50 60

5.0

6.0

7.0

8.0

Type II

Type IV

Type I

Type III

a)(b)

a)(c )

Type I

FIG. 2. (a) Electron micrograph of one lattice. Scale
bar is 500 nm. (b) Micromagnetic energy of the four
vertex types as a function of the hole diameter. (c) Mi-
cromagnetic configurations of type I, type II, type III
and type IV vertices. Black arrows represent the local
direction of magnetization, while the blue / red contrast
codes for the divergence of the magnetization vector.

900 vertices (i.e., 1860 pseudo-spins). The vertex-
to-vertex distance is set to 500 nm and the hole di-
ameter ϕ is varied between lattices, from 70 to 120
nm, typically (see Supplemental Material for a dis-
cussion on the values of the hole diameter). The
permalloy grids were field demagnetized and the re-
sulting magnetic configurations are subsequently im-
aged using a magnetic force microscope (MFM) [see
Supplemental Material for details on the demagne-
tization procedure].

The magnetic configurations of six demagnetized
lattices with different hole diameters are reported in
Fig. 3(a) (see Supplemental Material for the com-
plete MFM dataset). For large holes (ϕ = 120 nm),
the system is close to the antiferromagnetic ground
state configuration built from type I vertices. The
two possible degenerate antiferromagnetic domains,
shaded in blue and green in Fig. 3(a), are sepa-
rated by Faraday lines [colored in red and blue in
Fig. 3(a)]. As the hole diameter is reduced, the
patches of type I domains become smaller, and more
type II vertices are observed. Interestingly, for hole
diameters of about ϕ = 72 nm, the populations of
type I and type II vertices are comparable to those
expected in the square ice manifold (33% and 67%,
respectively). These findings indicate that the mag-
netic correlations can be changed gradually by vary-
ing the hole diameter and suggest that micromag-
netism can be used as a knob to explore different
regimes of the sixteen vertex model. In particular, if

properly chosen, the hole diameter could be adjusted
to reach the Coulombic spin liquid phase associated
with the square ice [30–33].

To confirm this result, we have computed the
associated magnetic structure factors (MSF), aver-
aged over four measurements for each hole diam-
eter [Fig. 3(b) and Supplemental Material for the
whole dataset]. The MSF analysis indeed shows
that tuning the hole diameter allows visualizing sev-
eral regimes of the sixteen vertex model. For the
largest holes, the diffraction pattern is character-
ized by Bragg peaks at the corners of the Brillouin
zone. These Bragg peaks reveal the antiferromag-
netic ground state ordering [34]. When reducing the
hole diameter, the MSF exhibits a diffuse but struc-
tured pattern, typical of the square ice [30, 31]. We
thus provide a purely two-dimensional artificial sys-
tem in which to observe both the Coulombic spin
liquid of the square ice and the conventional anti-
ferromagnetic order. We emphasize that for each
hole diameter, four different lattices are imaged and
found to be in a similar state (see Supplemental
Material). Our demagnetization protocol allows us
reaching efficiently and reproducibly collective low-
energy states, consistent with other studies [30, 31].
Finally, recalling that the square ice is the high-
temperature regime of the F-model, the question we
address next is to what extent the configuration se-
ries reported in Fig. 3 can be accounted for by the
thermodynamics of the F-model.

Approaching the physics of the F-model– Answer-
ing this question first raises the issue of the density of
ice-rule defects usually present in artificial systems.
Reducing the energy gap between type I and type II
ice-rule vertices appears as a necessary but not suffi-
cient condition to avoid trapping topological defects.
For example, previous works on square ice systems
with a height offset [30–32], or incorporating interac-
tion modifiers [33] show that the monopole density
usually remains high, of the order of 10% in field
demagnetized arrays [30, 31], when not 20% [32] or
more [33] in thermally active systems. Having such a
high defect density is detrimental, and all the topo-
logical properties of the F-model would be washed
out in these previously proposed designs.

The salient feature of our strategy is precisely the
fact that the EI/EII → 1− condition is met (EI and
EII standing for the energy of type I and type II
vertices, respectively), while keeping marginal the
density of ice-rule defects. Regardless of the hole di-
ameter, the residual fraction of defects in our lattices
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FIG. 3. Real space (a) and reciprocal space (b) analyses of the magnetic configurations obtained after demagnetizing
six lattices having different hole diameters ϕ. (a) The two degenerate antiferromagnetic domains are shaded in blue
and green. These type I domains are separated by Faraday loops made of type II vertices and represented by directed
lines colored in blue and red depending on their parity. Faraday lines having different parities never intersect, except
in the presence of an ice-rule defect (shown by a colored open circle). (b) The magnetic structure factors are averaged
over four real space configurations (i.e., 3600 vertices / 7440 spins) for each hole diameter to improve statistics, and
are calculated for wavevectors covering ±6 reciprocal lattice units (r.l.u.). Intensity scale is the same in all six MSF.

is 1% typically or less. In particular, in the lattices
where the EI/EII → 1− condition is approached, we
are able to image many Faraday loops which are not
interrupted by an ice-rule defect (there are typically
10 times more Faraday loops than topological de-
fects when ϕ < 85 nm). This contrasts with previous
literature in which these two quantities are similar,
when ice-rule defects are not even in a higher propor-
tion (see for instance Refs. 35–37 and Supplemental
Material for a discussion on the defect density).

Describing our experimental results in terms of
Faraday loops is thus relevant. Some of the Faraday
lines we imaged form closed and chiral loops, extend-
ing entirely within the lattice. As predicted, these
loops have parity properties [17], and both parities
are equally populated in our experiments [see colored
histogram in Fig. 4(a)]. Closed loops do not carry
any net polarization and then must have zero mag-
netic susceptibility. Other Faraday lines form open
strings spanning across the system and ending at the
lattice boundaries. Indeed, because of the finite size
of our arrays, the Faraday lines can remain open and
anchored at the lattice edges. Many of these lines as
well do not host any ice-rule defect, and thus carry
a net polarization. Finally, we observe that loops
having the same parity can intersect, whereas loops
of opposite parity never cross [17].

Analyzing the series of lattices as a whole, two

main features are observed. First, the loop density
continuously decreases as the hole diameter is in-
creased [see Fig. 4)(a)]. This effect is particularly
pronounced for the smallest loops, whose amount
drops by more than an order of magnitude through
the series [see Fig. 4)(b)]. This is a direct evidence of
the contraction of Faraday loops as the system ap-
proaches the antiferromagnetic ground state. The
second feature is the change of the Faraday loop
curvature. Close to the ice regime, the Faraday
loops have a meandering shape, whereas they be-
come straighter when type I domains develop. This
can be illustrated by plotting the average number of
times a loop changes direction [see Fig. 4)(c)]. We
interpret this result as a consequence of the ordered
background tension which becomes more significant
as the effective temperature of the system is reduced.

Interestingly, the magnetic structure factors re-
ported in Fig. 3b also suggest a gradual change of the
spin-spin correlations across the lattice series. When
ϕ = 72 nm, the MSF strongly resembles the one of
the square ice, i.e., a diffuse but structured back-
ground with emerging pinch points. When 80 nm ≤
ϕ ≤ 90 nm, the MSFs show the coexistence of an ice-
like background and Bragg peaks associated with an
antiferromagnetic ordering. The ice-like background
becomes fainter as ϕ increases, whereas the Bragg
peaks become more intense. Finally, when ϕ ≥ 90
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nm, the ice-like background has totally disappeared
and the MSFs only exhibit intense Bragg peaks. It
is thus tempting to consider the lattice series as an
approximate of F-model probed at different fictional
temperatures, from the high-temperature correlated
ice regime to a low-energy antiferromagnetic state,
via several intermediate temperatures.
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FIG. 4. (a) Average number of closed loops for 24 mea-
sured lattices (for each hole diameter, four lattices are
analyzed). The loops are characterized by parity and a
chirality. Both quantities are equally populated, showing
that our demagnetization protocol does not induce any
bias. (b) Average number of the smallest possible closed
loops. (c) Number of times a loop changes direction on
average.

We might argue that the presence of a few ice-
rule defects is sufficient to make the system fluctu-
ate and to ultimately order the lattice in a conven-
tional manner, washing out the topological proper-
ties of the Faraday lines. We believe this is only
partly true when approaching the antiferromagnetic
ground state. The main reason is that ice-rule de-
fects have then local dynamics, and the excursions
they can make outside their loop are extremely lim-
ited. This can be understood by illustrating the mo-
tion an ice-rule defect can make in a configuration
observed experimentally [see Fig. 5(a)]. The poten-
tial moves for the two imaged defects are represented
by colored arrows. A red arrow corresponds to a for-
bidden spin flip event as it generates a highly ener-
getic all-in / all-out state. A green arrow indicates a
potential spin flip with no energy cost, i.e., the ice-
rule defect is free to move in this direction. A yel-
low arrows is associated to a motion having a finite

energy cost due to the creation of a new type II ver-
tex, thus increasing the loop length. At low enough
effective temperature, ice-rule defects are confined
within their loop. When they have the opportunity
to penetrate into the antiferromagnetic background,
they are immediately pushed back into their loop
[see Fig. 5(b)]. As a consequence, the few residual
ice-rule defects remaining in our lattices are less and
less capable to unwind the Faraday loops, and the
dynamics is expected to freeze as the ground state
is approached. In other words, in our approximate
of the F-model, the dynamics stops for two reasons:
the single spin flip dynamics freezes as global up-
dates become the only relevant excitations, and the
remaining ice-rule defects trapped within the Fara-
day loops have only local dynamics. We then con-
clude that the few ice-rule defects we observe exper-
imentally do not affect much the properties of the
Faraday loops, and our system is a good approxi-
mate of the F-model.

Finite energy cost flip

No energy cost flip

Forbidden flip

Type I 

Type II

Type III

Faraday linea)(a)(a)

(b)(b)

FIG. 5. (a) Two Faraday lines bridged by a pair of ice-
rule defects. The schematics on the right side illustrates
the local environment of the topological defects and the
energy cost associated with a spin flip event. (b) Specific
case when propagating the white defect into the type I
domain: once the defect has moved into the domain, it
is statistically likely that it will be pushed back into the
domain wall.

Finally, we emphasize that the strategy proposed
in this work has broader applicability than just the
F-model and could be applied to other geometries.
For example, tuning the vertex energy / hierarchy
might be of potential interest in a variety of square
based lattices [38], such as the Shakti [39], Tetris [40]
or Saint George [41] lattices.
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