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Small Strong Blocking Sets by Concatenation

Strong blocking sets and their counterparts, minimal codes, attracted lots of attention in the last years. Combining the concatenating construction of codes with a geometric insight into the minimality condition, we explicitly provide infinite families of small strong blocking sets, whose size is linear in the dimension of the ambient projective spaces. As a byproduct, small saturating sets are obtained.

Introduction

Nonlinear combinatorial objects, as arcs, saturating sets, blocking sets, have been broadly investigated in finite geometry not only for theoretical reasons but also for their deep connections with more applied areas of mathematics as coding theory and cryptography.

Denote by PG(N, q) the N -dimensional projective space over the finite field F q . A point set B is called a blocking set if any hyperplane of PG(N, q) contains at least one point of B. A blocking set B is strong if any hyperplane section of B generates the hyperplane itself; see [START_REF] Bonini | Minimal linear codes arising from blocking sets[END_REF][START_REF] Davydov | Linear nonbinary covering codes and saturating sets in projective spaces[END_REF][START_REF] Fancsali | Lines in higgledy-piggledy arrangement[END_REF]. Although blocking sets were deeply investigated in the last decades (see for example [START_REF] Blokhuis | Blocking sets in projective spaces[END_REF] and references therein), much less is known about strong blocking sets.

Strong blocking sets are the geometrical counterpart of an important class of error correcting codes, the so-called minimal codes; see [START_REF] Alfarano | A geometric characterization of minimal codes and their asymptotic performance[END_REF][START_REF] Tang | Full characterization of minimal linear codes as cutting blocking sets[END_REF]. A codeword is said to be minimal if its support does not contain the support of any other non-proportional nonzero codeword. A code for which every codeword is minimal is called minimal. The importance of minimal codes relies on their connection with cryptography and coding theory. In fact, minimal codewords in linear codes were used by Massey [START_REF] Massey | Minimal codewords and secret sharing[END_REF][START_REF] Massey | Some applications of coding theory in cryptography[END_REF] to determine the access structure in a code-based secret sharing scheme. Previously, minimal codewords were studied in connection with decoding algorithms [START_REF] Hwang | Decoding linear block codes for minimizing word error rate[END_REF]. For a given linear code, describing the whole set of minimal codewords can be a challenging task, even for special classes of linear codes. For this reason, in the last years, minimal codes attracted attention and many of the constructions are connected with few-weight codes (see e.g. [START_REF] Mesnager | Several classes of minimal linear codes with few weights from weakly regular plateaued functions[END_REF][START_REF] Shi | Two classes of optimal p-ary few-weight codes from down-sets[END_REF][START_REF] Shi | Several families of q-ary minimal linear codes with w min /w max ≤ (q -1)/q[END_REF]) or exploit the so-called Ashikhmin-Barg condition [START_REF] Ashikhmin | Minimal vectors in linear codes[END_REF]. Bounds on the parameters of a minimal code were considered in [START_REF] Alfarano | A geometric characterization of minimal codes and their asymptotic performance[END_REF][START_REF] Alfarano | Three combinatorial perspectives on minimal codes[END_REF][START_REF] Chabanne | Towards secure two-party computation from the wire-tap channel[END_REF][START_REF] Cohen | On minimal and quasi-minimal linear codes[END_REF][START_REF] Lu | The parameters of minimal linear codes[END_REF]. Only recently, minimal codes were studied through their connection with strong blocking sets [START_REF] Alfarano | A geometric characterization of minimal codes and their asymptotic performance[END_REF][START_REF] Bonini | Minimal linear codes arising from blocking sets[END_REF][START_REF] Lu | The parameters of minimal linear codes[END_REF][START_REF] Tang | Full characterization of minimal linear codes as cutting blocking sets[END_REF]. It is worth mentioning that minimal codes form a class of asymptotically good codes [START_REF] Alfarano | A geometric characterization of minimal codes and their asymptotic performance[END_REF][START_REF] Cohen | On minimal and quasi-minimal linear codes[END_REF]. Families of short minimal codes (via their equivalence with strong blocking sets) were provided in [START_REF] Bartoli | On cutting blocking sets and their codes[END_REF][START_REF] Héger | Short minimal codes and covering codes via strong blocking sets in projective spaces[END_REF] also in connection with line spreads or sets of lines in higgledy-piggledy arrangement [START_REF] Fancsali | Lines in higgledy-piggledy arrangement[END_REF]. Apart from a few small dimensional cases, none of these constructions were effective. On the other hand, minimal codes whose length is quadratic in the dimension are constructed explicitly in [START_REF] Alfarano | A geometric characterization of minimal codes and their asymptotic performance[END_REF][START_REF] Alfarano | Three combinatorial perspectives on minimal codes[END_REF]. In a very recent work [START_REF] Alfarano | Linear cutting blocking sets and minimal codes in the rank metric[END_REF], minimal rank-metric codes are investigated, in connection with linear sets. As a byproduct, new constructions and perspectives on minimal codes are obtained.

One of the main open questions concerning strong blocking sets (in relation to the parameters of the associated minimal code) concerns the explicit constructions of infinite families of strong blocking sets whose size grows linearly with the dimension of the ambient projective space.

In this paper we exploit a machinery introduced in [START_REF] Cohen | On minimal and quasi-minimal linear codes[END_REF] to provide families of asymptotically good minimal codes via codes concatenation. We obtain explicit constructions of small strong blocking sets in projective spaces, whose size linearly depends on the dimension of the ambient space. It is worth mentioning that in some cases concatenation provides the smallest known strong blocking sets. As a byproduct, we obtain constructions of saturating sets for specific dimensions whose size is the smallest one can find in the literature.

The aim of this paper is two-fold. On the one hand we provide a more geometric insight of the concatenation method, discussing some relevant features of both outer and inner codes. On the other hand we show how explicit families of asymptotically good minimal codes and their corresponding small strong blocking sets can be obtained via this machinery.

Outline. The paper is organized into four sections. Section 1 contains the preliminaries on minimal codes, strong blocking sets and the known bounds on their size. In Section 2 we present a geometric interpretation of the well-known Ashikhmin-Barg condition, we introduce an analogue of the result of Ashkhmin and Barg in the context of concatenated codes -that we call Outer AB condition -and we present some explicit construction of small strong blocking sets. Section 3 is devoted to some asymptotic results, both theoretical and constructive. Finally, we apply some of the previous results to the study of ρ-saturating sets in Section 4.

Background

Minimal codes

For a vector v ∈ F n q , the Hamming weight of v is wt(v

) := |σ(v)|, where σ(v) := {i ∈ {1, . . . , n} | v i = 0} is the Hamming support of v. An [n, k, d] q linear code C is a subspace of F n q of dimension k with minimum weight d = d(C) := min{wt(c) | c ∈ C, c = 0}
and its elements are called codewords. Normally, these are the fundamentals parameters for error correcting purposes, but in our context the maximum weight w(C) := max{wt(c) | c ∈ C} will play a crucial role. A generator matrix G of C is a matrix whose rows form a basis for C. A linear code C is called projective (resp. non-degenerate) if in one (and thus in all) generator matrix G of C no two columns are proportional (resp. no column is the zero vector). Two linear codes are said to be (monomially) equivalent if there is an a monomial transformation sending one into the other. A family of codes is said asymptotically good if it admits an infinite subfamily of increasing length with both dimension and minimum weight growing linearly in the length. Definition 1.1. A nonzero codeword c of a code C over F q is called minimal if every nonzero codeword c ′ in C with σ(c ′ ) ⊆ σ(c) is λc for some nonzero λ ∈ F q . A linear code C is a minimal code if all its codewords are minimal.

Example 1.2. A simplex code S q (k) of dimension k over F q is a code defined up to equivalence as follows: its generator matrix is obtained by choosing as columns a nonzero vector from each 1dimensional subspace of F k q . It is easy to prove that its parameters are [(q k -1)/(q -1), k, q k-1 ] q and that all nonzero codewords have the same weight. This last property implies that S q (k) is minimal.

In this paper, the concatenation of codes, a standard way of combining codes to obtain a code of larger length, plays a crucial role. To describe this process, let n, k be two integers such that n ≥ k and let π : F q k → F n q be an F q -linear injection. In the concatenation process, F q k -linear codes in F N q k are called outer codes and the F q -linear code I := π(F q k ) is called inner code. If C is an F q k -linear code of length N and F q k -dimension K, then the F q -linear code

I π C := {(π(c 1 ), . . . , π(c n )) | (c 1 , . . . , c n ) ∈ C} ⊆ F N •n q
is called the concatenation of C with I by π, or simply the concatenated code. This last depends on the choice of π, but there are some of its properties independent of π. For example,

I π C is an [N • n, K • k, ≥ d(I) • d(C)]
q for every choice of π (see for example [32, §1.2.3.]). If the properties in which we are interested do not depend on π, we will simply denote by I C the concatenated code.

Strong blocking sets

For k > 1, the finite projective geometry of dimension k -1 and order q, denoted by PG

(k -1, q) is PG(k -1, q) := F k q \ {0} / ∼ ,
where u ∼ v if and only if u = λv for some nonzero λ ∈ F q . A hyperplane is a subspace

H ⊆ PG(k -1, q) of codimension 1. A projective [n, k, d]
q system P is a finite set of n points (counted with multiplicity) of PG(r -1, q) not all lying on a hyperplane and such that

d = n - max H hyperplane {|H ∩ P|}.
For an [n, k, d] q non-degenerate code C with generator matrix G, let P be set of columns of G, considered as points in PG(k -1, q). For u = (u 1 , . . . , u k ) ∈ F k q , wt(uG) = n-|H ∩P|, where H is the hyperplane defined by the equation u 1 x 1 +. . .+u k x k = 0. So P is a projective [n, k, d] q system. For the same reason, from a projective [n, k, d] q system P one can obtain an [n, k, d] q code by choosing a representative for any point of P and considering the code generated by the matrix having these representatives as columns. This gives the well-known correspondence (see for example [START_REF] Tsfasman | Algebraic-geometric codes[END_REF]Theorem 1.1.6]) between equivalence classes of non-degenerate [n, k, d] q linear codes and equivalence classes of projective [n, k, d] q systems. Minimal codes correspond to [n, k, d] q systems with additional properties.

Definition 1.3 ([16]). A subset M ⊆ PG(k -1, q) is called strong blocking set if for every hyperplane H of PG(k -1, q) we have M ∩ H = H. Example 1.4. The whole PG(k -1, q) is, clearly, a strong blocking set.
Strong blocking sets were introduced in [START_REF] Davydov | Linear nonbinary covering codes and saturating sets in projective spaces[END_REF]. In [START_REF] Fancsali | Lines in higgledy-piggledy arrangement[END_REF], strong blocking sets are referred to as generator sets and they are constructed as union of disjoint lines. In [START_REF] Bonini | Minimal linear codes arising from blocking sets[END_REF] they were reintroduced, with the name of cutting blocking sets, in order to construct a particular family of minimal codes. In [START_REF] Alfarano | A geometric characterization of minimal codes and their asymptotic performance[END_REF] and [START_REF] Tang | Full characterization of minimal linear codes as cutting blocking sets[END_REF] it was independently shown that strong blocking sets are the geometrical counterparts of minimal codes: the above correspondence between non-degenerate codes and projective systems restricts to a correspondence between equivalence classes of projective [n, k, d] q minimal codes and equivalence classes of subsets of PG(k -1, q) that are strong blocking sets (since in this paper we are interested in short minimal codes or, equivalently, in small strong blocking sets in projective spaces, it is not restrictive to narrow down to projective codes, which correspond to projective systems in which all the points have multiplicity one, that is subsets). Clearly, the simplex codes defined in Example 1.2 correspond to the strong blocking sets defined in Example 1.4.

Bounds on the size of strong blocking sets

Given the above equivalence between minimal codes and strong blocking sets, for the sake of brevity, in this section we will only state the bounds for the size of the latter, but clearly these bounds are also on the length of minimal codes.

For a given dimension and a base field, simplex codes are the longest projective minimal codes, as the whole projective space is the largest strong blocking set. Since from a given strong blocking set we can always obtain a larger one by adding any set of points, it is interesting to know how small a strong blocking set can be.

A (k -1)-fold blocking set in PG(k -1, q) is a subset B of points such that every hyperplane meets B in at least k -1 points. Clearly, a strong blocking set in PG(k -1, q) is a (k -1)-fold blocking set. By a well-known result of Beutelspacher on (k -1)-fold blocking sets (see [START_REF] Beutelspacher | On Baer subspaces of finite projective spaces[END_REF]Theorem 2]), the size of a strong blocking set in PG(k -1, q), is at least (q + 1)(k -1), if k ≤ q + 1. The same result holds without restrictions on k:

Theorem 1.5 ([2]
). The size of a strong blocking set in PG(k -1, q) is at least (q + 1)(k -1).

However, this lower bound is not sharp in general, as shown in [START_REF] Alfarano | Three combinatorial perspectives on minimal codes[END_REF]. There are many constructions of strong blocking sets of small size. One usual way to obtain them is to consider set of lines: a set of lines of PG(k -1, q) is in higgledy-piggledy arrangement if the union of their point sets is a strong blocking set of PG(k -1, q). Using higgledy-piggledy lines one can get strong blocking sets of size (q + 1)(2k -2) in PG(k -1, q), whenever 2k ≤ q + 2 (see [START_REF] Fancsali | Lines in higgledy-piggledy arrangement[END_REF]Theorem 14]). Note that the above result cannot be used to obtain strong blocking sets for large dimensions. There are stronger results for small dimensions: see [START_REF] Davydov | Linear nonbinary covering codes and saturating sets in projective spaces[END_REF][START_REF] Fancsali | Lines in higgledy-piggledy arrangement[END_REF] for k = 3, 4, [START_REF] Bartoli | Resolving sets for higher dimensional projective spaces[END_REF] for k = 5, and [START_REF] Bartoli | On cutting blocking sets and their codes[END_REF] for k = 6.

The best bounds concerning the size of smallest strong blocking sets are summarized in the following theorem, which is a refinement of a result in [START_REF] Chabanne | Towards secure two-party computation from the wire-tap channel[END_REF].

Theorem 1.6 ([21]

). The size of the smallest strong blocking sets in PG(k -1, q) is at most

     2k-1
log 2 (4/3) , if q = 2;

(q + 1)

2 1+ 1 (q+1) 2 ln q (k -1) , otherwise.
The proof of the above theorem is probabilistic. Explicit small constructions can be found in [START_REF] Alfarano | A geometric characterization of minimal codes and their asymptotic performance[END_REF][START_REF] Alfarano | Three combinatorial perspectives on minimal codes[END_REF]: they are of size ck 2 q, for some c ≥ 2/9. However, from Theorem 1.5 and Theorem 1.6 we know that a construction where the size is linear in k (and q) does exist. Note that this would yield explicit construction of asymptotically good families of minimal codes, by the lower bounds on the minimum weight (see [START_REF] Alfarano | Three combinatorial perspectives on minimal codes[END_REF]Theorem 2.8]). In [15, §2.A] (for q = 2) and [13, §2.4] (for all others cases), such a construction is sketched, and it employs the concatenation. However, these results seem to have gone unnoticed to date, in the context of both minimal codes and strong blocking sets. The main aim of this paper is to highlight the power of this approach by delving into it.

2 Strong blocking sets by concatenation

Geometric interpretation of the Ashikhmin-Barg condition

First, we provide an easy geometrical interpretation of part 3 of [4, Lemma 2.1], known as Ashikhmin-Barg condition, which provides a sufficient condition for a subset of points to be strong blocking set. Even if it is a direct consequence of the geometrical interpretation of minimal codes described above, we give a direct proof using only geometrical arguments.

Lemma 2.1 (Ashikhmin-Barg). Let B be a subset of PG(k-1, q) of cardinality n and denote m (resp. M ) the minimum (resp. the maximum) number of points of B contained in a hyperplane of PG(k

-1, q). If n -M n -m > q -1 q (1)
then B is a strong blocking set.

Proof. Suppose that B ⊆ PG(k -1, q) is not a strong blocking set. Then there exists a hyperplane H such that H ∩ B is contained in a subspace S of codimension 2. Consider the q hyperplanes through S distinct from H.

If x = |H ∩ B|, then n = |B| ≤ x + q(M -x) = qM -(q -1)x ≤ qM -(q -1)m.
In coding theoretical language, (1) reads as follows: let C be the (projective) linear code of length n associated with B. If

d(C) w(C) > q -1 q (2)
then C is minimal. In the sequel, we will refer to (1) and ( 2) as AB condition.

Outer AB condition

The concatenation process allows to get strong blocking sets by imposing a similar but weaker condition on the outer codes.

Theorem 2.2 (Outer AB condition). Let C be an [N, K, D] q k code such that

D W > q -1 q ,
where W := w(C), and I be an [n, k, d] q minimal code. Then the concatenated code I π C is a minimal code of parameters [N n, Kk, ≥ Dd] q . Equivalently, the corresponding set in PG(Kk -1, q) is a strong blocking set of size N n.

Proof. Let x and x ′ be two nonzero codewords in I π C such that σ(x ′ ) ⊆ σ(x). Let c and c ′ be the codewords in C such that x = (π(c 1 ), . . . , π(c N )) and

x ′ = (π(c ′ 1 ), . . . , π(c ′ N )). Clearly σ(c ′ ) ⊆ σ(c). Moreover, since I is minimal, it exists λ i ∈ F * q such that c i = λ i c ′ i whenever i ∈ σ(c ′ ). Since |σ(c ′ )| ≥ D, the scalars are equal to a certain λ ∈ F * q in at least D q-1
coordinates. So, up to a multiplication by λ -1 , c and c ′ coincides in at least D q-1 coordinates.

Now D ≤ |σ(c ′ )| ≤ |σ(c)| ≤ W and, since D/W > (q -1)/q, W < q q -1 • D = D + D q -1 ≤ D + D q -1 . Thus |σ(c -c ′ )| ≤ W - D q -1 < D,
which yields |σ(c -c ′ )| = 0 and c = c ′ . Hence I π C is minimal.

Remark 2.3. As one can easily see from the proof of Theorem 2.2, we may get the same result by concatenating in each coordinate with a different minimal code.

It possible to provide a more geometrical interpretation of the concatenation process. In this geometrical description of concatenated codes, companion matrices play a crucial role. Let p(x) = x k + k-1 i=0 p i x i ∈ F q [x] be an irreducible monic polynomial of positive degree k and define the companion matrix of p(x) as

A :=        0 1 0 • • • 0 0 0 1 • • • 0 . . . . . . . . . . . . 0 0 0 • • • 1 -p 0 -p 1 -p 2 • • • -p k-1        .
The F q -algebra F q [A] is a finite field with q k elements (see [START_REF] Lidl | Introduction to Finite Fields and their Applications[END_REF]Chapter 2.5]). In particular, if α is a root of p(x)

and v = v 0 + v 1 α + . . . + v k-1 α k-1 is a generic element of F q [α] ∼ = F q k and φ : F q [α] → F k q is the F q -linear isomorphism that sends v to [v 0 , . . . , v k-1 ], then φ(v)A = φ(vα).
Remark 2.4 (Geometric insight of Theorem 2.2). Let G I ∈ F k×n q be a generator matrix of the inner code I and let F * q k = ω . Denote by A ∈ F k×k q the companion matrix of the minimal polynomial of ω. For an element α ∈ F q k let

A(α) := A r ∈ F k×k q , if 0 = α = ω r , 0 ∈ F k×k q , if α = 0. Consider now a generator matrix G C ∈ F K×N q k of the outer code C G C =      α 1,1 α 1,2 • • • α 1,N α 2,1 α 2,2 • • • α 2,N . . . . . . . . . α K,1 α K,2 • • • α K,N      .
A generator matrix of a concatenated code I C can be chosen as follows

     A(α 1,1 )G I A(α 1,2 )G I • • • A(α 1,N )G I A(α 2,1 )G I A(α 2,2 )G I • • • A(α 2,N )G I . . . . . . . . . A(α K,1 )G I A(α K,2 )G I • • • A(α K,N )G I      ∈ F Kk×N n q . (3) 

Let

• P := {P x+ny | x ∈ {1, . . . , n}, y ∈ {0, . . . , N -1}} be the set of points in PG(Kk -1, q) corresponding to the columns of (3);

• Q := {Q 1 , . . . , Q n } be the set of points in PG(k -1, q) corresponding to the columns of G I ;

• R := {R 1 , . . . , R N } be the set of points in PG(K -1, q k ) corresponding to the columns of G C .

Let H and H ′ be two hyperplanes of PG(Kk -1, q) such that P ∩ H ⊆ P ∩ H ′ . We aim to prove that H = H ′ , which is equivalent to P being a strong blocking set (see for example [START_REF] Alfarano | A geometric characterization of minimal codes and their asymptotic performance[END_REF]Proposition 3.3.])

Let v and v ′ be two vectors in

F Kk q such that H = v ⊥ and H ′ = v ′ ⊥ and let v = (v 1 | . . . |v K ), v ′ = (v ′ 1 | . . . |v ′ K ), with v i , v ′ i ∈ F k q .
For x ∈ {1, . . . , n} and y ∈ {0, . . . , N -1},

H(P x+ny ) = K i=1 v i ∈F 1×k q A(α i,y+1 ) ∈F k×k q Q x ∈F k×1 q = K i=1 v i A(α i,y+1 ) Q x and similarly H ′ (P x+ny ) = K i=1 v ′ i ∈F 1×k q A(α i,y+1 ) ∈F k×k q Q x ∈F k×1 q = K i=1 v ′ i A(α i,y+1 ) Q x .
Recall that Q is a strong blocking set in PG(k -1, q). Now,

K i=1 v i A(α i,y+1
) and

K i=1 v ′ i A(α i,y+1 )
both correspond (if non-vanishing) to hyperplanes in PG(k -1, q) and therefore since P ∩ H ⊆ P ∩ H ′ , there exists

λ i ∈ F * q such that K i=1 η i α i,y+1 = K i=1 (λ i η ′ i )α i,y+1 ,
where η i and η ′ i are the elements of F q k corresponding to v i and v ′ i respectively, by φ. Let H = η ⊥ and H ′ = η ′ ⊥ be the hyperplanes in PG(K -1, q k ) corresponding to η and η ′ respectively. Since |H ′ ∩ R| ≤ N -D, λ i is equal to some fixed λ ∈ F * q for at least D q-1 values i. So, up to a multiplication by λ -1 , η i = η ′ i for at least D q-1 coordinates and the argument follows the proof of Theorem 2.2: we get that η = η ′ , so that also H = H ′ and hence the set P is a strong blocking set.

Remark 2.5. We can reinterpret the construction in [2, Theorem 4.1.] in terms of concatenation. Actually, if ω is a primitive element of F q k , that construction is the concatenation of a [START_REF] Ashikhmin | Minimal vectors in linear codes[END_REF][START_REF] Alfarano | Three combinatorial perspectives on minimal codes[END_REF][START_REF] Alfarano | Linear cutting blocking sets and minimal codes in the rank metric[END_REF] q k MDS code C with generator matrix

G C = 1 1 1 0 0 ω i ω j 1 ,
where 0 < i < j < q k , with a simplex code S q (k). Theorem 2.2 affirms that S q (k) C is minimal if q < 4. However, by [2, Theorem 4.1.] we have that S q (k) C is minimal whenever i -j ≡ 0 mod q s -1 q-1 for every s > 1 dividing r. This provides an infinite family of minimal codes obtained with concatenation, where the outer codes do not satisfy the Outer AB condition.

Concatenation with MDS codes

In view of Theorem 2.2, it is important to have explicit constructions of codes satisfying the Outer AB condition. This is the case, for example, of some MDS codes, as the following result shows.

Corollary 2.6. Let k be an integer greater than 1. For K ≤ q k-1 + 1 and N := qK -(q -1), let C be an [N, K, (q -1)(K -1) + 1] q k MDS code and I be an [n, k, d] q minimal code. Then the concatenation I C of C with I is a [(qK -q + 1)n, Kk, ≥ ((q -1)(K -1) + 1)d] q minimal code.

Thus, there exists a strong blocking set in PG(Kk -1, q) of size nqK -qn + n, for any K ≤ q k-1 + 1.

Proof. It follows directly from Theorem 2.2, since, with the same notations as in Theorem 2.2,

D W ≥ D N = (q -1)(K -1) + 1 N > q -1 q .
Remark 2.7. We may concatenate MDS codes over F q 2 with simplex codes S q (2), of parameters [q + 1, 2, q] q , which are the shortest of dimension 2. We get [(qK -q + 1)(q + 1), 2K, ≥ ((q -1)(K -1) + 1)q] q minimal codes. Those which are shorter than the upper bound of Theorem 1.6 have the following parameters: [START_REF] Blokhuis | Blocking sets in projective spaces[END_REF][START_REF] Ashikhmin | Minimal vectors in linear codes[END_REF] Another possibility is to obtain short minimal codes by concatenating MDS codes over F q 3 with short minimal codes of dimension 3 over F q (see [START_REF] Bishnoi | Minimal multiple blocking sets[END_REF] for an upper bound on their minimal lengths). We get minimal codes shorter than the upper bound of Theorem 1.6 for the following parameters: [START_REF] Denaux | Constructing saturating sets in projective spaces using subgeometries[END_REF][START_REF] Bartoli | Resolving sets for higher dimensional projective spaces[END_REF] 2 , [START_REF] Shi | Several families of q-ary minimal linear codes with w min /w max ≤ (q -1)/q[END_REF][START_REF] Blokhuis | Blocking sets in projective spaces[END_REF] 2 , [42, 12] 2 , [54, 15] 2 , [START_REF] Davydov | Linear nonbinary covering codes and saturating sets in projective spaces[END_REF][START_REF] Bartoli | Resolving sets for higher dimensional projective spaces[END_REF] 3 , [START_REF] Mesnager | Several classes of minimal linear codes with few weights from weakly regular plateaued functions[END_REF][START_REF] Blokhuis | Blocking sets in projective spaces[END_REF] 3 .

Finally, let us remark that we use inner codes corresponding to the tetrahedron (see [1, Theorem 5.3.]) or some shorter ones constructed in [START_REF] Alfarano | Three combinatorial perspectives on minimal codes[END_REF], whose length is quadratic in the dimension. Even if we cannot get strong blocking sets smaller than those in [START_REF] Héger | Short minimal codes and covering codes via strong blocking sets in projective spaces[END_REF], this construction has the great advantage of being explicit.

Example 2.8. We illustrate with a table some minimal codes that one can obtain by Corollary 2.6. Since we want to maximize the rate, we choose the inner code to have the shortest length. In the binary case, we know (see [START_REF] Alfarano | A geometric characterization of minimal codes and their asymptotic performance[END_REF]) that the shortest minimal codes in dimensions ≤ 5 have parameters [START_REF] Alfarano | Linear cutting blocking sets and minimal codes in the rank metric[END_REF][START_REF] Alfarano | Three combinatorial perspectives on minimal codes[END_REF][START_REF] Alfarano | Three combinatorial perspectives on minimal codes[END_REF] 2 , [6, 3, 3] 2 , [START_REF] Blokhuis | Blocking sets in projective spaces[END_REF][START_REF] Ashikhmin | Minimal vectors in linear codes[END_REF][START_REF] Ashikhmin | Minimal vectors in linear codes[END_REF] 2 , [13, 5, 5] 2 . In the ternary case, the simplex [4, 2, 3] 3 code is the shortest minimal code of dimension 2 and we use a [START_REF] Blokhuis | Blocking sets in projective spaces[END_REF][START_REF] Alfarano | Linear cutting blocking sets and minimal codes in the rank metric[END_REF][START_REF] Bartoli | On cutting blocking sets and their codes[END_REF] 3 code with generator matrix   1 0 0 1 2 0 0 2 2 0 1 0 0 0 1 2 1 2 0 0 1 1 1 We give here the generator matrix of the [START_REF] Cohen | Intersecting codes and independent families[END_REF][START_REF] Bartoli | Resolving sets for higher dimensional projective spaces[END_REF][START_REF] Bartoli | Resolving sets for higher dimensional projective spaces[END_REF] 2 code obtained by the concatenation of the extended Reed-Solomon [START_REF] Bartoli | On cutting blocking sets and their codes[END_REF][START_REF] Alfarano | Linear cutting blocking sets and minimal codes in the rank metric[END_REF][START_REF] Alfarano | Linear cutting blocking sets and minimal codes in the rank metric[END_REF] 4 with the simplex [3, 2, 2] 2 code:

G :=        
1 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1

       
The length of this code meets the bound in Theorem 1.5.

Concatenation with simplex codes

If one is interested in getting small strong blocking sets, the shorter the inner codes are, the better it is. On the other hand, concatenating with simplex codes has the great advantage that it is easy to get the weight distribution of the concatenated code. Actually, if

A i (C) = |{c ∈ C | wt(c) = i}|, then A q k-1 i (S q (k) C) = |{c ∈ S q (k) C | wt(c) = q k-1 i}| = A i (C),
and A j (S q (k) C) = 0 for all j which are not multiples of q k-1 .

Corollary 2.9. Let C be an [N, K, D] q k linear code with maximum weight W . Suppose that D/W > (q -1)/q. Then there exists a minimal [N (q k -1)/(q -1), Kk, Dq k-1 ] q code D. Equivalently, in PG(Kk -1, q) there exists a strong blocking set of size N (q k -1)/(q -1).

Proof. This is a straightforward consequence of Theorem 2.2, recalling that the simplex code of parameters [(q k -1)/(q -1), k, q k-1 ] q is in particular a minimal code.

Example 2.10. We illustrate in Table 2.10 some minimal codes that one can obtain by Corollary 2.9. Since we want to maximize the rate, we choose the outer code to be the shortest code of a given dimension satisfying the Outer AB condition, in the library of codes with the best known minimum distance in Magma. Again, in the last column we have the lower bound of Theorem 1.5 and the upper bound given by Theorem 1.6.

Outer

Inner Concatenated Shortest length [START_REF] Blokhuis | Blocking sets in projective spaces[END_REF][START_REF] Ashikhmin | Minimal vectors in linear codes[END_REF][START_REF] Bartoli | On cutting blocking sets and their codes[END_REF] When concatenating with a simplex code of dimension k, it is worth noting that the outer code in our construction is required have relative distance larger than 1 -1/q. Therefore its rate is smaller than 1/q + 1/n and thus the rate of the concatenated code is smaller than k(q -1)

q k -1 1 q + 1 n ≤ 2 q + 1 1 q + 1 n .
The size of the corresponding strong blocking set is lower bounded by q(q + 1) 2

• k -q.

One can, in principle, search for outer codes having a slightly larger relative minimum weight, say (1 -1/q) 1+ǫ , and concatenate with an inner code with relative distance (or ratio between minimum and maximum weight) at least (1 -1/q) -ǫ and rate larger than k(q-1) q k -1 . In this way one obtains constructions of shorter minimal codes and so of smaller strong blocking sets.

3 Asymptotic results

Non-constructive

By the Gilbert-Varshamov Bound (see [32, §1.3.2]), for any 0 ≤ δ ≤ 1 -1/q there exists a q-ary linear code of relative minimum weight δ and rate at least 1 -H q (δ), where

H q (x) := x log q (q -1) -x log q (x) -(1 -x) log q (1 -x).
The following theorem shows that it is possible to construct for any q an infinite family of strong blocking sets of size linear in the dimension k and quadratic in q.

Theorem 3.1. For any ǫ ∈ (0, 1] and any prime power q there exists an integer k q,ǫ such that PG(k q,ǫ -1, q) possesses a strong blocking set of size k q,ǫ • q 1+2ǫ (q + 1) 1 -ǫ .

Proof. Fix δ = 1 -1/q 1+ǫ ≤ 1 -1/q 2 , for ǫ ∈ (0, 1]. By the Gilbert-Varshamov Bound there exists a q 2 -ary linear code C of dimension k q,ǫ with relative minimum weight δ and rate at least

1 -H q 2 (δ) = 1 -1 - 1 q 1+ǫ log q 2 q 2 -1 1 -1 q 1+ǫ + 1 q 1+ǫ log q 2 1 q 1+ǫ = 1 -1 - 1 q 1+ǫ 1 + 1 2 ln q 1 q 1+ǫ - 1 q 2 + 1 2q 2(1+ǫ) - 1 2q 4 • • • - 1 + ǫ 2q 1+ǫ ≥ 1 -ǫ 2q 1+ǫ - 1 2 ln q 1 q 1+ǫ + 1 2q 2(1+ǫ) + • • • ≥ 1 -ǫ 2q 1+2ǫ .
By Corollary 2.9, there exists a minimal q-ary code of rate at least

2 • 1 -ǫ 2q 1+2ǫ (q + 1) = 1 -ǫ q 1+2ǫ (q + 1)
and therefore a strong blocking set in PG(k q,ǫ -1, q) of size k q,ǫ • q 1+2ǫ (q+1) 1-ǫ .

Explicit constructions

As we have just seen, Corollary 2.9 and the Gilbert-Varshamov bound imply the existence of strong blocking set of size linear in the dimension and quadratic in size of the field. In this subsection, exploiting explicit constructions of asymptotically good AG codes, we provide constructions of families of asymptotically good minimal codes and therefore infinite families of small strong blocking sets.

Let N q (X ) denote the number of degree 1 places of an F q -rational curve X and consider the Ihara's constant A(q) = lim sup g→∞ max{#N q (X ) | X has genus g} g .

By the Drinfeld-Vladut Bound (see [START_REF] Tsfasman | Algebraic-geometric codes[END_REF]Theorem 2.3.22]) we know that A(q) ≤ √ q -1.

If q is a square then the Drinfeld-Vladut Bound is actually attained, as shown by Ihara [START_REF] Ihara | Some remarks on the number of rational points of algebraic curves over finite fields[END_REF] and Tsfasman, Vladut and Zink [START_REF] Tsfasman | Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound[END_REF], using the theory of modular curves.

We apply now Corollary 2.9 to the family of AG codes obtained by the curves considered in [START_REF] Garcia | On the asymptotic behaviour of some towers of function fields over finite fields[END_REF].

Theorem 3.2. Let q 0 be a prime power. Consider h ≥ 2. Denote by N h,n := (q h(n+1) 0 -q hn 0 -1); λ h,n := (q nh/2 0 -1) 2 , if 2 | n;

(q (n+1)h/2 0 -1)(q

(n-1)h/2 0 -1), if 2 ∤ n.
There exists a family of good minimal codes C h,n with parameters

N h,n q 2h 0 -1 q 0 -1 , 2h N h,n -1 q 0 -λ h,n + 1 , ≥ q 2h-1 0 N h,n 1 - 1 q 0 q 0 .
Proof. Denote q = q h 0 > 2. Consider the tower T = (T 1 , T 2 , T 3 , . . .) of function fields over F q 2 given by T n := F q 2 (x 1 , . . . , x n ), with x q i+1 + x i+1 =

x q i x q-1 i + 1 , for i ∈ {1, . . . , n -1}.

By [START_REF] Garcia | On the asymptotic behaviour of some towers of function fields over finite fields[END_REF]Remark 3.8.], the genus of T n is g n := g(T n ) = (q n/2 -1) 2 , if n ≡ 0 mod 2; (q (n+1)/2 -1)(q (n-1)/2 -1), if n ≡ 1 mod 2.

Consider Ω := {α ∈ F q 2 | α q + α = 0};

S := {R α ∈ P(T 1 ) | α / ∈ Ω}.
By [20, Lemma 3.9], any R ∈ S splits completely in all the extensions T n /T 1 . Let S n be the places in T n lying over the places in S. Since [T n : T 1 ] = q n-1 , #S n = #S • [T n : T 1 ] = q n-1 (q 2 -q). Let n n := #S n -1 = q n-1 (q 2 -q) -1. Take a place P n ∈ S n and the divisor G n := m n P n with 2g n -2 < m n < n n . Since q > 2, such a value m n exists. Then

k n := dim C n = ℓ(G n ) = m n -g n + 1,
where the last equality is the celebrated Riemann-Roch Theorem (see [START_REF] Tsfasman | Algebraic-geometric codes[END_REF]Chapter 2]).

In what follows we consider the AG code C n := C G n , P ∈Sn\{Pn} P , which is an [n n , m n -g n + 1, d n ≥ n n -m n ] q 2 -code.

Note that although Bound [START_REF] Bartoli | Resolving sets for higher dimensional projective spaces[END_REF] is worse than the estimate in [START_REF] Héger | Short minimal codes and covering codes via strong blocking sets in projective spaces[END_REF]Corollary 6.4], it provides the best explicit construction of small saturating sets for specific dimensions and it improves [START_REF] Bartoli | On cutting blocking sets and their codes[END_REF].

  2 ,[START_REF] Cohen | Intersecting codes and independent families[END_REF][START_REF] Bartoli | Resolving sets for higher dimensional projective spaces[END_REF] 2 ,[START_REF] Davydov | Linear nonbinary covering codes and saturating sets in projective spaces[END_REF][START_REF] Ashikhmin | Minimal vectors in linear codes[END_REF] 3 ,[START_REF] Mesnager | Several classes of minimal linear codes with few weights from weakly regular plateaued functions[END_REF][START_REF] Bartoli | Resolving sets for higher dimensional projective spaces[END_REF] 3 , [40, 8] 3 , [25, 4] 4 , [45, 6] 4 , [65, 8] 4 , [85, 10] 4 .

  Magma exhaustive search. So we get Table1(in the last column we have the lower bound of Theorem 1.5 and the upper bound given by Theorem 1.6, unless otherwise specified).

		
		
	1 1 1 1
	which has the shortest length in dimension 3, by Outer Inner Concatenated	Shortest length

Table 2 :

 2 Best known linear codes satisfying Outer AB condition concatenated with simplex codes Remark 2.11.

	4 [11, 5, 6] 4 [3, 2, 2] 2 [3, 2, 2] 2 [15, 6, 8] 4 [3, 2, 2] 2 [21, 7, 11] 4 [3, 2, 2] 2 [23, 8, 12] 4 [3, 2, 2] 2 [16, 5, 11] 9 [4, 2, 3] 3	[27, 8, 10] 2 [33, 10, 12] 2 [45, 12, 16] 2 [63, 14, 22] 2 [69, 16, 24] 2 [64, 10, 33] 3	21 ≤ n ≤ 36 27 ≤ n ≤ 45 33 ≤ n ≤ 55 39 ≤ n ≤ 65 45 ≤ n ≤ 74 36 ≤ n ≤ 72
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Note that

Consider m n = nn-1 q 0

, so that dn wn ≥ 1 -mn nn > 1 -1 q 0 . By Corollary 2.9 there exists a minimal [n n (q 2h 0 -1)/(q 0 -1), 2k n h, ≥ q 2h-1 0 n n (1 -1/q 0 )] q 0code D n .

The family D n is asymptotically good since the relative minimum weight and the rate are larger than q 2h-2 0 (q 0 -1) 2 • q 2h 0 -1 and 2h(q 0 -1) • (m n -g n + 1) (q 2h 0 -1) • n n > 2h(q 0 -1)

whenever n ≥ 3. Note that, the assumption h ≥ 2 is necessary to have 1 q 0 -1

In PG(K n -1, q 0 ) there exists a strong blocking sets of size at most q 0 (q 4 0 -1)(q 0 + 1) 4(q 2 0 -q 0 + 1)

Proof. The claim follows considering h = 2 in Theorem 3.2.

Example 3.4. Let q 0 = 2 and h = 3, so that q = 8. We consider the function field T = F 64 (x, y) with y 2 + y = x 2 x+1 . The genus of T is 49. In this case the set S of points in T lying over the places that split completely in T /F 64 (x) has cardinality 448. Take any P ∈ S. Consider m = 223, so that the divisor G = 223P and k = 223 -49 + 1 = 175 (but any k between 49 and 175 may also be chosen). The AG code C = C(G, Q∈S\{P }Q ) is a [447, 175, ≥ 224] 64 . Next, we concatenate with the [START_REF] Beutelspacher | On Baer subspaces of finite projective spaces[END_REF][START_REF] Alfarano | Linear cutting blocking sets and minimal codes in the rank metric[END_REF][START_REF] Ashikhmin | Minimal vectors in linear codes[END_REF] 2 simplex code, so that we obtain a minimal [3129, 525, ≥ 896] 2 code.

Note that, following the proof of Theorem 3.2, it is readily seen that the sum of the rate and the relative distance of the concatenation of C n with the simplex code is lower bounded by

In order to maximize it one can choose inner codes different from the simplex one, as shown in the next example.

Example 3.5. The RT4 in [START_REF] Calderbank | The geometry of two-weight codes[END_REF]Figure 1b] is a two weight code over F q 0 with parameters n = (q 5 0 -1)(q 2 0 + 1)/(q 0 -1), h = 10, d = q 6 0 , w = q 6 0 + q 4 0 . Also, d w =

, one gets that the concatenation of C n (as in Theorem 3.2) with the code RT4 is still minimal over q 0 . Also, the rate of D n is lower bounded by

10(q 0 -1) q 10 0 (q 5 0 -1)(q 2 0 + 1) (q 7 0 (q 2 0 -q 0 + 1) -2) ≃ 10 q 7 0 , which is less than the corresponding value for the simplex code in dimension 10. Note that the relative minimum weight is larger than q 3 0 -q 2 0 +q 0 -1 q 3 0 , and

which is larger than (4).

Remark 3.6. Example 3.5 shows that if one is interested in minimal codes maximizing the sum of the rate and the relative minimum weight the choice of the simplex code as inner code is not always the best.

Theorem 3.7. Suppose that there exists an [ n, 2h, d] q 0 code I, and denote by

Then there exists a family of minimal codes with rate at least 2hǫ n . Proof. Consider the code C n as in Theorem 3.2. Choose n and m n such that

By our assumption on D, such a value m n exists. Since

ary code by the AB condition. Therefore,

Corollary 3.8. Suppose that there exists an [ n, 2h, d] q 0 code I, and denote by D := d w . Let

In PG(K h,n -1, q) there exists a strong blocking set of size at most n 2hǫ K h,n . Remark 3.9. Corollary 3.8 provides an upper bound on the minimum size of strong blocking sets. Note that since D ≥ 1, ǫ < 1 q 0 -1 q h 0 -1 . On the other hand, by [2, Corollary 3.7], since I is not a constant weight code,

The minimum for the upper bounds on minimal strong blocking set (considering also ǫ ≃ 1 2q 0 ) is roughly n(q 2h 0 -1)q 0 n(q 2h-1 0

whenever n >> q 0 . This shows that in principle there is room for improvement in the bound provided by Corollary 3.3 if a suitable code I exists.

Remark 3.10. It would be interesting to search for [n, 2h, d] q 0 codes I maximizing the quantity

4 Application to ρ-saturating sets

As a byproduct of our constructions of short minimal codes, we present results on ρ-saturating sets of small size, which have deep connections with strong blocking sets [START_REF] Davydov | Linear nonbinary covering codes and saturating sets in projective spaces[END_REF].

Definition 4.1. A set S ⊆ PG(k-1, q) is called ρ-saturating if for any point Q ∈ PG(k-1, q)\S there exist ρ + 1 points P 1 , . . . , P ρ+1 ∈ S such that Q ∈ P 1 , . . . , P ρ+1 and ρ is the smallest value with this property. Let s q (k -1, ρ) denote the smallest size of a ρ-saturating set in PG(k -1, q).

Recall that the covering radius of an [n, n -k] q code is the least integer R such that the space F n q is covered by spheres of radius R centered on codewords. It is easy to prove (see [START_REF] Davydov | Linear nonbinary covering codes and saturating sets in projective spaces[END_REF]) that a linear [n, n-k] q code has covering radius R if every element of F k q is a linear combination of R columns of a generator matrix of the dual code (that is the orthogonal space with respect to the Euclidean inner product), and R is the smallest value with such a property. Thus the correspondence presented in Section 1.2 specializes to a correspondence between (R -1)saturating sets of size n in PG(k -1, q) and the dual of [n, n -k] q codes of covering radius R.

A connection between strong blocking sets and ρ-saturating sets is the following. 

Recently, improvements on the upper bound on the minimum size of a ρ-saturating set have been obtained in [START_REF] Davydov | New covering codes of radius R, codimension tR and tR + R 2 , and saturating sets in projective spaces[END_REF][START_REF] Denaux | Constructing saturating sets in projective spaces using subgeometries[END_REF]. Theorem 4.3 ([18]). The following bound on the minimum size of a ρ-saturating in PG(k -1, q ρ+1 ) holds

In particular, for ρ = k -2,

The approach described in Section 3.2 yields an explicit construction of small saturating sets. We use the same notation:

• q 0 be a prime power and h ≥ 2 an integer;

• N h,n := (q h(n+1) 0 -q hn 0 -1);

• λ h,n := (q nh/2 0 -1) 2 , if 2 | n;

(q (n+1)h/2 0 -1)(q (n-1)h/2 0 -1), if 2 ∤ n;

• K n := 4

N h,n -1 q 0 -4λ h,n + 4.

Theorem 4.4. In PG(K n -1, q Kn-1 ) there exists an explicit construction of (K n -2)-saturating set of size at most q 0 (q 4 0 -1)(q 0 + 1) 4(q 2 0 -q 0 + 1)

• K n ≤ q 0 • q 3 0 + 2q 2 0 + q 0 -1 4