

A Light Transformer-Based Architecture for Handwritten Text Recognition

Killian Barrere, Yann Soullard, Aurélie Lemaitre, Bertrand Coüasnon

► To cite this version:

Killian Barrere, Yann Soullard, Aurélie Lemaitre, Bertrand Coüasnon. A Light Transformer-Based Architecture for Handwritten Text Recognition. Reconnaissance des Formes, Image, Apprentissage et Perception (RFIAP) 2022, Jul 2022, Vannes, France. hal-03857723

HAL Id: hal-03857723 https://hal.science/hal-03857723v1

Submitted on 17 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. A Light Transformer-Based Architecture for Handwritten Text Recognition

Killian Barrere Yann Soullard Aurélie Lemaitre Bertrand Coüasnon

RFIAP, Vannes 8th July 2022

IntuiDoc research team, Univ. Rennes, CNRS, IRISA, France

Introduction	Our Architecture	Experiments	Conclusion
●O		0000	O
Handwritten T	ext Recognition		

Introduction ⊙●	Our Architecture	Experiments 0000		Conclusion O
Transformer for I	Handwritten Text Re	cognition		
Existing approaches	5 [Kang et al. 2020, Singh et	al. 2021]		Output Probabilities
 Transformer la 	yers to model the language	e		
• Big architect	ures to obtain state-of-the	-art results		Add & Norm
Problem			Foed Forward	Add & Norm
• Require a lot	of data to be trained			Add & Norm
 Few annotated 	l data in handwritten recog	gnition (10k lines)	Attention	Multi-Head Attention
● ⇒ Additional	data to perform well		Positional Encoding	Positional Encoding
			Input Embedding	Output Embedding
Our proposition			Inputs	Outputs (shifted right)
Light archited	cture to perform well wit	th few data	Original Tra	insformer
• Hybrid loss to	ease the training		[Vaswani et	al. 2017]

• Hybrid loss to ease the training

Introduction	Our Architecture	Experiments	Conclusion
00	•00	0000	O
Our Light Tra	nsformer Architecture		

Introduction	Our Architecture	Experiments	Conclusion
00	•00	0000	O
Our Light Tra	nsformer Architecture		

Introduction	Our Architecture	Experiments	Conclusion
	000		
Our Light Tr	ansformer Architecture		

Introduction	Our Architecture	Experiments	Conclusion
00	•00	0000	O
Our Light Tra	nsformer Architecture		

Introduction 00		Our Architecture ○●○		Experiments 0000	Conclusion O
A Light Archi	tecture				
How to make	a smaller ⁻	Transformer			
Convolution Big backbon \Rightarrow Only 5 co	e (i.e. Resl	Vet18)	Up to	rons in Transformer la > 1,024 neurons nly 256 neurons	lyers
		Encoder:		Decoder: Transformer Decoder Crc Loss Potional Dense	

Positional

Encoding

without teacher forcing

Target Transcription (shifted right) Characters already predicted when training when testing / training

"<sos>A MOVE to stop Mr. Gaitskell from" =

with teacher forcing

Character

Embedding

256

Transformer

Encoder Layers

x 4

* *

Add & Norm +

Self

Multi-Head

. . .

Positional Encoding

Я

Textline Image

resized to fixed height and padded to fixed width

Introduction 00	Our Architecture 0●0	Experiments 0000	
A Light Archit	ecture		
How to make	a smaller Transformer		
Convolution	al backbone	Neurons in Transformer layers	5
Big backbone	: (i.e. ResNet18)	Up to 1,024 neurons	

 \Rightarrow Only 5 convolutional layers

 \Rightarrow Only 256 neurons

In total

100M parameters

 \Rightarrow 6.9M parameters

Potential benefits

- Faster to train compared to other Transformer-based architecture
- Does not require additional data to be trained efficiently

Conclusion

Introduction	Our Architecture	Experiments	Conclusion
00	00●	0000	O
Hybrid Loss			

$$\mathcal{L} = \lambda \cdot \mathcal{L}_{\textit{CTC}} + (1 - \lambda) \cdot \mathcal{L}_{\textit{CE}}$$

Hybrid loss [Michael et al. 2019]

- Connectionist Temporal Classification (CTC) for the Encoder
- Cross Entropy (CE) for the Decoder

Potential benefits

- Help to train deep layers with gradients from both losses
- Faster convergence

Introduction 00	Our Arch 000	itecture		periments 000	Conclusion O
Data used					
• IAM o	without additional dataset (modern En augmentation techr	glish, 10,363 line	s, 76k worc	ls)	
	a sit earthbo	und fonight, Tr	out. l'ue	got a queer	
+ here	have be	en ouly	two	occasions	OL
Our synthe	etic data (to compa	re with other tra	nsformers)		
 Articl 	es from Wikipedia (21,350 articles, 6	6M words)		

- Handwritten fonts (32 fonts)
- Random deformations / augmentations

Nearby Loon Hountain has long drawn skiers, and in recent Justinian I sends a Byzantine army (30,000

Introduction	Our Architecture	Experiments	Conclusion
00	000	0●00	O
Benefits of Using a L	ight Architecture		

Different sizes of our architecture

- Light Transformer: 6.9M params.
- Large Transformer: 28M params.

Architecture	IAM		$IAM + S_{2}$	IAM + Synth. Data	
	CER (%)	WER (%)	CER (%)	WER (%)	
Our Light Transformer	5.70	18.86	4.76	16.31	
Our Large Transformer	5.79	19.67	4.87	17.67	

- Our light architecture is **competitive**
- Our light architecture might be **trained faster**

Introduction	Our Architecture	Experiments	Conclusion
00	000	0000	O
Interest of the	Hybrid Loss		

Killian Barrere

- **CE only**: Cross-Entropy loss after the decoder
- Hybrid: CTC after the encoder and CE after the decoder

Loss	IAM		$IAM + Synth. \ Data$		
Function(s)	CER (%)	WER (%)	CER (%)	WER (%)	
CE only	10.29	26.36	6.76	19.62	
Hybrid (CTC + CE)	5.70	18.86	4.76	16.31	

- Faster convergence
- Crucial with few data
- Important with synthetic data

Introdu 00	duction Our Architecture 000		Experiments 000●	Conclusion O
Cor	mparison with the state of the ar	t		
	Model Architecture	# params.	IAM CER (%)	IAM + Synth. Data CER (%)
	CRNN + LSTM [Michael et al. 2019]		5.24	
	FCN [Yousef et al. 2020]	3.4M	4.9	
	VAN (line level) [Coquenet et al. 2022]	1.7M	4.95	
	Transformer [Kang et al. 2020]	100M	7.62	4.67
	FPHR Transformer [Singh et al. 2021]	28M		6.5
	Forward Transformer [Wick et al. 2021]	13M	6.03	
	Bidi. Transformer [Wick et al. 2021]	27M	5.67	
	Our Light Transformer-based	6.9M	5.70	4.76

Introdu 00	ction Our Architecture	nitecture		Conclusion O
Cor	mparison with the state of the ar	t		
	Model Encoder	# params.	IAM CER (%)	IAM + Synth. Data CER (%)
	CPNN - ISTM [Michael at al 2019]		5.24	
	Compared with other Transformers:	3.4M	4.9	
		1.7M	4.95	
	Transformer [Kang et al. 2020]	100M	7.62	4.67
	FPHR Transformer [Singh et al. 2021]	28M		6.5
	Forward Transformer [Wick et al. 2021] Bidi. Transformer [Wick et al. 2021]	13M 27M	6.03 5.67	
	Our Light Transformer-based	6.9M	5.70	4.76

Introdu 00	ction Our Architecture		Experiments 000●	Conclusion O
Cor	mparison with the state of the art	t		
	Model Encoder	# params.	IAM CER (%)	IAM + Synth. Data CER (%)
	CRNN + LSTM [Michael et al. 2019]		F 04	
	FCN [Yousef et al. 2020]	Beneficial Content of		
	VAN (line level) [Coquenet et al. 2022]	1.		ulu
	Transformer [Kang et al. 2020]	100M	7.62	4.67
	FPHR Transformer [Singh et al. 2021]	28M		6.5
	Forward Transformer [Wick et al. 2021] Bidi. Transformer [Wick et al. 2021]	13M 27M	6.03 5.67	
	Our Light Transformer-based	6.9M	5.70	4.76

Introduo 00	ction Our Architecture		Experiments 000●	Conclusion O
Cor	nparison with the state of the ar	t		
	Model Encoder	# params.	IAM CER (%)	IAM + Synth. Data CER (%)
	CRNN + LSTM [Michael et al. 2019]		5.24	
	FCN [Yousef et al. 2020]	3.4M	4.9	ate-of-the-art results with synthetic data
	VAN (line level) [Coquenet et al. 2022]	1.7M	4.95	June 1 Synthetic Gata
	Transformer [Kang et al. 2020]	100M	7.62	4.67
	FPHR Transformer [Singh et al. 2021]	28M		6.5
·	Forward Transformer [Wick et al. 2021] Bidi. Transformer [Wick et al. 2021]	13M 27M	6.03 5.67	
	Our Light Transformer-based	6.9M	5.70	4.76

Killian Barrere Light Transformer for Handwritten Text Recognition

Introdu 00	ction Our Architecture		Experiments 000●	Conclusion O
Cor	mparison with the state of the art	t		
	Model Encoder	# params.	IAM CER (%)	IAM + Synth. Data CER (%)
	CRNN + LSTM [Michael et al. 2019]		5.24	
	EVIN LYOUSET ET AL ZUZUI	While being a light Transforn		
	VAN (line level) [Coquenet et al. 20		4.95	
	Transformer [Kang et al. 2020]	100M	7.62	4.67
	FPHR Transformer [Singh et al. 2021]	28M		6.5
	Forward Transformer [Wick et al. 2021] Bidi. Transformer [Wick et al. 2021]	13M 27M	6.03 5.67	
	Our Light Transformer-based	6.9M	5.70	4.76

Introdu 00	ction Our Architecture 000		Experiments 000●	Conclusion O
Cor	mparison with the state of the ar	t		
	Model Encoder	# params.	IAM CER (%)	IAM + Synth. Data CER (%)
	CRNN + LSTM [Michael et al. 2019]		5.24	
	FCN [Yousef et al. 2020]	3.4M	4.9	
	VAN (line level) [Coquenet et al. 2022]	1.7M	4.95	
	Transformer [Kang et al. 2020]	100M	7.62	4.67
	FPHR Transformer [Singh et al. 2021]	28M		6.5
	Forward Transformer [Wick et al. 2021]	13M	6.03	
	Bidi. Transformer [Wick et al. 2021]	27M	5.67	
	Our Light Transformer-based	6.9M	5.70	4.76

00	000	0000	•
Conclusion			
Our Contributio	on		
A light Transfe	ormer architecture, trained	with a hybrid loss	
• Faster to	train than other Transformer	S	
Good result	Its without additional data	1	

• State-of-the-art results with synthetic data

Future Works: Historical Documents

- Ability of Transformers to model the language is crucial
- Very few annotated data \Rightarrow our light Transformer architecture

Find the paper in

- DAS 2022 (A Light Transformer-Based Architecture for Handwritten Text Recognition)
- HAL: https://hal.archives-ouvertes.fr/hal-03685976v1

C

State of the Art: From RNN to Transformer

Usual approaches: Convolutional Recurrent Neural Networks (CRNN)

- Convolutional layers + recurrent layers
- \Rightarrow Lack of parallelism / slow training speed

Fully Convolutional Networks [Ingle et al. 2019, Yousef et al. 2020, Coquenet et al. 2021]

- Composed of convolutional layers, no recurrent layers
- \Rightarrow Faster training speed, but might be hard to learn long-range contexts

Multi-Head Attention (Transformer layers) [Vaswani et al. 2017]

- Able to learn long-range context
- Strong parallelism
- ⇒ Good alternative but require a lot of training data

A l'inférence : Decoding séquentiel

CER and WER

Definition

- CER: Character Error Rate
- WER: Word Error Rate
- Edit distance between prediction and groundtruth

$$CER = \frac{I+D+S}{N}$$

/ Number of InsertionsDNumber of DeletionsSNumber of SubstitutionsNLength of the ground-truth

Without the decoder

Without the decoder

Killian Barrere Light Transformer for Handwritten Text Recognition

Without the decoder

 CRNN with Transformer instead of recurrent layers

Architecture	# params.	IAM		IAM + S	ynth. Data
	CER (%)	WER (%)	CER (%)	WER (%)	
CRNN (Baseline) Our Encoder only	1.7M 3.2M	6.14 5.93	23.26 22.82		

Without the decoder

 CRNN with Transformer instead of recurrent layers

$\textbf{Recurrent} \Rightarrow \textbf{Transformer}$

- More parameters
- Lower error rates
 - Better context

Architecture	# params.	IAM		$IAM + Synth. \ Data$	
			WER (%)	CER (%)	WER (%)
CRNN (Baseline) Our Encoder only	1.7M 3.2M	6.14 5.93	23.26 22.82	5.66 6.15	21.62 24.02

Without the decoder

 CRNN with Transformer instead of recurrent layers

$\textbf{Recurrent} \Rightarrow \textbf{Transformer}$

- More parameters
- Lower error rates
 - Better context
- Worse with synthetic data (may not generalize well)

With the decoder

With the decoder

Ability to model the language

- Lower error rates
- Stronger impact on the WER

Benefits more from synthetic data

• More data to learn the language