
HAL Id: hal-03857705
https://hal.science/hal-03857705v2

Submitted on 28 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impredicative Observational Equality
Loïc Pujet, Nicolas Tabareau

To cite this version:
Loïc Pujet, Nicolas Tabareau. Impredicative Observational Equality. Proceedings of the ACM on
Programming Languages, 2023, Proceedings of the ACM on programming languages, 7 (POPL),
pp.74. �10.1145/3571739�. �hal-03857705v2�

https://hal.science/hal-03857705v2
https://hal.archives-ouvertes.fr

74

Impredicative Observational Equality

LOÏC PUJET, Inria, France
NICOLAS TABAREAU, Inria, France

In dependent type theory, impredicativity is a powerful logical principle that allows the definition of proposi-
tions that quantify over arbitrarily large types, potentially resulting in self-referential propositions. Impredica-
tivity can provide a system with increased logical strength and flexibility, but in counterpart it comes with
multiple incompatibility results. In particular, Abel and Coquand showed that adding definitional uniqueness
of identity proofs (UIP) to the main proof assistants that support impredicative propositions (Coq and Lean)
breaks the normalization procedure, and thus the type-checking algorithm. However, it was not known
whether this stems from a fundamental incompatibility between UIP and impredicativity or if a more suitable
algorithm could decide type-checking for a type theory that supports both. In this paper, we design a theory
that handles both UIP and impredicativity by extending the recently introduced observational type theory
TTobs with an impredicative universe of definitionally proof-irrelevant types, as initially proposed in the
seminal work on observational equality of Altenkirch et al. We prove decidability of conversion for the
resulting system, that we call CCobs, by harnessing proof-irrelevance to avoid computing with impredicative
proof terms. Additionally, we prove normalization for CCobs in plain Martin-Löf type theory, thereby showing
that adding proof-irrelevant impredicativity does not increase the computational content of the theory.

CCS Concepts: • Theory of computation→ Type theory.

Additional Key Words and Phrases: type theory, dependent types, rewriting theory, confluence, termination

ACM Reference Format:
Loïc Pujet and Nicolas Tabareau. 2023. Impredicative Observational Equality. Proc. ACM Program. Lang. 7,
POPL, Article 74 (January 2023), 26 pages. https://doi.org/10.1145/3571739

1 INTRODUCTION
In dependent type theory, a sort Ω is said to be impredicative if it is closed under dependent products
over any index type: for all types 𝐴 and functions 𝐵 : 𝐴 → Ω, the dependent product Π(𝑥 : 𝐴). 𝐵 𝑥

is in Ω. Impredicativity allows us to define self-referential propositions, which quantify over the
type Ω of all propositions and can thus be applied to themselves. In addition to providing a great
amount of proof-theoretical strength, impredicativity is a crucial ingredient in many mathematical
constructions, such as Tarski’s fixed point theorem or lattice theory [Hur et al. 2013]. On the other
side of the coin, a predicative hierarchy (𝒰𝑖)𝑖∈N requires dependent products to inhabit a higher
universe level than their domain and codomain: for all types 𝐴 : 𝒰𝑖 and functions 𝐵 : 𝐴 → 𝒰𝑗 ,
the dependent product Π(𝑥 : 𝐴). 𝐵 𝑥 is in 𝒰𝑚𝑎𝑥 (𝑖, 𝑗) . While predicatives hierarchies are easier to
model, as the universes 𝒰𝑖 can be constructed incrementally by induction on the level 𝑖 , they do
not provide all the flexibility of impredicative sorts—whether the mention of levels is explicit (as in
Agda) or implicit (as in Coq). Impredicative propositions make for an altogether more comfortable
framework, in which less universe levels have to be dealt with.

Authors’ addresses: Loïc Pujet, Inria, Gallinette Project-Team, Nantes, France; Nicolas Tabareau, Inria, Gallinette Project-
Team, Nantes, France.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
2475-1421/2023/1-ART74
https://doi.org/10.1145/3571739

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

https://doi.org/10.1145/3571739
https://doi.org/10.1145/3571739

74:2 Loïc Pujet and Nicolas Tabareau

Impredicativity is a prominent feature of the Calculus of Constructions [Coquand and Huet
1988], and by extension of Coq, but it is absent from the standard presentation of Martin-Löf type
theory (MLTT) [Martin-Löf 1975] and not available in Agda. This reluctance may be explained
by the sheer difficulty of designing models to reason about impredicative theories, and by the
numerous incompatibility results, from Hurkens [1995] paradox to the more recent proof by
Abel and Coquand [2020] that a naive implementation of uniqueness of identity proofs (UIP) via
definitionally proof-irrelevant equalities breaks Coq’s normalization algorithm on impredicative
propositions.
However, as noted by Abel and Coquand, it is not clear whether that result stems from a

fundamental incompatibility between UIP and impredicativity, or if it is an artifact of an inadequate
type-checking algorithm. Clarifying this issue seems important given the renewed interest in
definitional proof-irrelevance and UIP shown by the community in recent years, especially in the
context of observational type theories [Altenkirch et al. 2019; Pujet and Tabareau 2022; Sterling
et al. 2019]. In their seminal work on observational type theory, Altenkirch et al. [2007] defined
the observational equality as a proof-irrelevant proposition that lives in an impredicative sort,
which seems to be in tension with the counter-example of Abel and Coquand at first sight. But
the computational behavior of the observational equality is different from that of the inductive
equality, and Altenkirch et al. [2007] justified their system with an interpretation in a type theory
with induction-recursion and proof-irrelevant impredicative propositions, which they conjecture
to be normalizing. More recently, Pujet and Tabareau [2022] built a normalization model for a type
theory with an observational equality, but their system TTobs replaces the impredicative sort of
propositions with a predicative hierarchy of proof-irrelevant propositions.
In this paper, we explain how to extend this normalization model to handle an impredicative

sort of definitionally proof-irrelevant propositions, by exploiting the fact that it is never necessary
to compute with irrelevant proof terms. As a consequence, we can safely extend TTobs with
impredicativity while preserving definitional UIP and all extensionality principles that come with
an observational type theory (such as propositional or function extensionality). The resulting
system, which we call CCobs, should thus be understood as an implementation of the observational
type theory of Altenkirch et al. [2007] with a complete proof of normalization and decidability of
type-checking. This result has been formalized in Agda using the framework of Abel et al. [2018]
for inductive-recursive logical relations.1

It may come as a surprise that an inductive-recursive construction which has been designed with
predicative theories in mind can be extended to handle an impredicative sort. Indeed, modeling
impredicativity usually requires the use of reducibility candidates [Girard 1972], which do not fit
well in a proof-irrelevant logical relation. The crux of the proof is to realize that we can get away
with remarkably little structure in the interpretation of the impredicative dependent products, so
that we can define reducibility for the proof-irrelevant propositions before defining reducibility for
types by induction-recursion.

Furthermore, we show that normalization forCCobs can be carried in plainMartin-Löf type theory
with indexed inductive types, thereby showing that the impredicativity does not contribute to the
computational power of the proof-relevant fragment at all, despite the increase in logical power.
We then investigate the possibility of recovering the lost computational power by adding a proof-
relevant impredicative universe, hoping that the different computational behaviour of CCobs would
allow us to circumvent Abel and Coquand’s argument, but alas, it does not. In fact, a slightlymodified
argument shows undecidability of type-checking in presence of a proof-relevant impredicative

1The formal proof can be found at https://github.com/CoqHott/logrel-mltt/tree/impredicativity-SProp-POPL

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

https://github.com/CoqHott/logrel-mltt/tree/impredicativity-SProp-POPL

Impredicative Observational Equality 74:3

universe. Therefore, we exhibit a tradeoff between the comfort of UIP and extensionality principles,
and the possibility to extract computational information from impredicative sorts.

Finally, because our normalization proof does not imply logical consistency, we define a model of
CCobs in ZF Set theory. This shows that the computational content of CCobs can be studied without
impredicativity in the metatheory, while the study of the logical content of CCobs fundamentally
requires an impredicative metatheory.

Plan of the paper. In Section 2, we present the syntax and typing rules of CCobs, focusing on
the differences with respect to TTobs. Then, we develop the logical relation framework that shows
normalization and decidability of conversion for CCobs (Section 3). In Section 4, we show that
CCobs cannot express more integer functions as closed terms of type N → N than MLTT, by
simplifying the logical relation framework to avoid the use of induction-recursion. Finally, we show
logical consistency of CCobs in Section 5 and adapt the undecidability argument in presence of a
proof-relevant impredicative universe of Abel and Coquand [2020] to our setting in Section 6.

2 AN IMPREDICATIVE TYPE THEORYWITH OBSERVATIONAL EQUALITY
CCobs has both a predicative hierarchy of universes, that is written as 𝒰𝑖 (where 𝑖 is a natural
number) and works just like the usual universe hierarchy of Martin-Löf type theory, and an
impredicative universe Ω of strict propositions. Strict propositions are definitionally proof-irrelevant
types, which means that any two inhabitants of a strict proposition 𝐴 : Ω are always convertible.

The impredicativity ofΩ departs significantly from the predicative hierarchy of strict propositions
used in Gilbert et al. [2019], used for TTobs and implemented inAgda. Instead, it is closer to the proof-
irrelevant impredicative universe SProp of Coq. With this impredicative universe of propositions,
CCobs appears somewhat more natural than TTobs, as the observational equality can remain in Ω
even when the type on which equality is defined lives higher up in the universe hierarchy—which
means we don’t need cumulative dependent products anymore.

Apart from this fundamental difference, CCobs supports the same constructions as TTobs. It has a
notion of observational equality that can be formed on any proof-relevant type, and computes by
case analysis on the type. The observational equality is an element of Ω, but it can be eliminated
into 𝒰𝑖 by means of a cast operator between two equal types, which computes separately on each
pair of types. The non-parametric computation rules for equality and cast allow us to get function
extensionality and proposition extensionality by definition, in addition to the definitional principle
of UIP that comes with proof-irrelevant equality types.

2.1 The Syntax of CCobs

The syntax of the sorts, contexts, terms and types of CCobs is specified in Fig. 1. It is largely similar
to the syntax of TTobs, with the one difference of having only one impredicative universe Ω of
strict propositions. The theory features dependent function types (noted Π𝑠,𝑠′ (𝑥 : 𝐴). 𝐵, or simply
Π(𝑥 : 𝐴). 𝐵 when the sorts can be inferred from the context) with 𝜂-equality, natural numbers,
as well as proof-irrelevant dependent conjunctions (noted (𝑥 : 𝐴) & 𝐵), a proof-irrelevant empty
type (noted ⊥) and unit type (noted ⊤). When 𝐵 does not depend on 𝐴, we write 𝐴 → 𝐵 instead
of Π(𝑥 : 𝐴). 𝐵, and 𝐴 ∧ 𝐵 instead of (𝑥 : 𝐴) & 𝐵. The capture-avoiding substitution of a variable
𝑥 in a term 𝐴 by the term 𝑡 is noted 𝐵 [𝑥 := 𝑡]. As with TTobs, CCobs can be extended with more
primitives such as dependent sums, quotients or general inductive types, but we do not treat them
in this paper to better focus on the treatment of impredicativity in the theory.

In addition to the usual syntax ofMLTTwith proof irrelevant types, there are two new ingredients
that were introduced with TTobs, and are present in CCobs: the first one is a proof-irrelevant
observational equality type 𝑡 ∼𝐴 𝑢 that encodes equality of 𝑡 and 𝑢 at type 𝐴, and the second is an

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

74:4 Loïc Pujet and Nicolas Tabareau

𝑖, 𝑗 ∈ N Universe levels
𝑠 ::= 𝒰𝑖 | Ω Universes
Γ,Δ ::= • | Γ, 𝑥 : 𝐴 : 𝑠 Contexts
𝑡,𝑢,𝑚, 𝑛, 𝑒, 𝐴, 𝐵 ::= 𝑥 | 𝑠 Variables and Universes

| 𝜆(𝑥 : 𝐴). 𝑡 | 𝑡 𝑢 | Π𝑠,𝑠′ (𝑥 : 𝐴). 𝐵 Dependent products
| 0 | S 𝑡 | N−elim(𝑃, 𝑡,𝑢, 𝑛) | N Natural numbers
| ⟨𝑡,𝑢⟩ | fst(𝑡) | snd(𝑡) | (𝑥 : 𝐴) & 𝐵 Dependent conjunction
| ⊥−elim(𝐴, 𝑡) | ⊥ Empty type
| ∗ | ⊤ Singleton type
| 𝑡 ∼𝐴 𝑢 | refl(𝑡) | transp(𝐴, 𝑡, 𝐵,𝑢, 𝑡 ′, 𝑒) Observational equality
| cast(𝐴, 𝐵, 𝑒, 𝑡) | castrefl(𝐴, 𝑡) Type cast

Fig. 1. Syntax of CCobs

operator that casts a term 𝑡 from a type 𝐴 to another type 𝐵 given a proof of equality 𝑒 between 𝐴

and 𝐵, which is noted cast(𝐴, 𝐵, 𝑒, 𝑡).
Observational equality is quite different from the usual Martin-Löf Identity Type, which is an

inductive type that computes via the 𝐽 eliminator. Instead, observational equality 𝑡 ∼𝐴 𝑢 is better
thought of as an eliminator that reduces by case analysis on the weak head normal form of𝐴, much
like the composition operation from Cubical Type Theory [Cohen et al. 2015].

2.2 The Typing Rules of CCobs

The typing rules of CCobs are presented in Fig. 2. They are based on five judgments: ⊢ Γ (well-
formed contexts), Γ ⊢ 𝑡 : 𝐴 : 𝑠 (well-typed terms), Γ ⊢ 𝐴 : 𝑠 (well-formed types) Γ ⊢ 𝑡 ≡ 𝑢 : 𝐴 : 𝑠
(convertibility of terms), and Γ ⊢ 𝐴 ≡ 𝐵 : 𝑠 (convertibility of types). In all the judgments, 𝑠
denotes either 𝒰𝑖 or Ω. In addition to the typing judgments, we describe a weak-head reduction
strategy for proof relevant terms that we will use for our normalization procedure, which is
written Γ ⊢ 𝑡 ⇒ 𝑢 : 𝐴. Remark that because our weak-head reduction only applies to terms of a
proof-relevant type, we do not need sort annotations.
Since every universe has a type, the well-formedness judgments for types Γ ⊢ 𝐴 : 𝑠 (and

convertibility judgments of types) can be seen as special cases of typing judgements for terms
Γ ⊢ 𝐴 : 𝑠 : 𝑠 ′ for a suitable 𝑠 ′ , but we believe that keeping this distinction helps the presentation.
We use the Pure Type System presentation [Barendregt 1993] to factorize the impredicative and

predicative rules for universes and dependent function types.

Generic rules and universes. Rules Ctx-Nil, Ctx-Cons and Var describe the usual formation of
contexts and typing of variables. The only remarkable thing here is that variables of the context
are equipped with both a type and its sort.
Rule conv stipulates that type checking is done modulo conversion of types. The formation

rule for universes (Rule Univ) states that both 𝒰𝑖 and Ω are relevant types in a higher universe, as
described by the relations

𝒜(𝒰𝑖 ,𝒰𝑗) := 𝑗 = 𝑖 + 1 𝒜(Ω,𝒰𝑖) := 𝑖 = 0.
The reader should pay attention to the fact that the universe of proof-irrelevant types Ω is a
proof-relevant type. Even though the inhabitants in Ω are codes for proof-irrelevant types, the
codes themselves are computationally relevant.

Dependent products. We allow the formation of dependent products with a domain and a codomain
that have different sorts. The resulting type has the same relevance as the codomain, and in the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

Impredicative Observational Equality 74:5

Ctx-Nil

⊢ •

Ctx-Cons
⊢ Γ Γ ⊢ 𝐴 : 𝑠
⊢ Γ, 𝑥 : 𝐴 : 𝑠

Var
⊢ Γ 𝑥 : 𝐴 : 𝑠 ∈ Γ

Γ ⊢ 𝑥 : 𝐴 : 𝑠

conv
Γ ⊢ 𝑡 : 𝐴 : 𝑠 Γ ⊢ 𝐴 ≡ 𝐵 : 𝑠

Γ ⊢ 𝑡 : 𝐵 : 𝑠

Univ
⊢ Γ

Γ ⊢ 𝑠 : 𝑠 ′
𝒜(𝑠 ,𝑠′)

Π-Form
Γ ⊢ 𝐴 : 𝑠 Γ, 𝑥 : 𝐴 : 𝑠 ⊢ 𝐵 : 𝑠 ′

Γ ⊢ Π𝑠,𝑠′ (𝑥 : 𝐴). 𝐵 : ℛ(𝑠,𝑠 ′)

&-Form
Γ ⊢ 𝐴 : Ω Γ, 𝑥 : 𝐴 : Ω ⊢ 𝐵 : Ω

Γ ⊢ (𝑥 : 𝐴) & 𝐵 : Ω

Fun
Γ ⊢ 𝐴 : 𝑠 Γ, 𝑥 : 𝐴 : 𝑠 ⊢ 𝑡 : 𝐵 : 𝑠 ′

Γ ⊢ 𝜆(𝑥 : 𝐴) . 𝑡 : Π𝑠,𝑠′ (𝑥 : 𝐴) . 𝐵 : ℛ(𝑠,𝑠 ′)

App
Γ ⊢ 𝐴 : 𝑠 Γ, 𝑥 : 𝐴 : 𝑠 ⊢ 𝐵 : 𝑠 ′ Γ ⊢ 𝑡 : Π𝑠,𝑠′ (𝑥 : 𝐴). 𝐵 : ℛ(𝑠,𝑠 ′) Γ ⊢ 𝑢 : 𝐴 : 𝑠

Γ ⊢ 𝑡 𝑢 : 𝐵 [𝑥 := 𝑢] : 𝑠 ′

Pair
Γ ⊢ 𝐴 : Ω Γ, 𝑥 : 𝐴 : Ω ⊢ 𝐵 : Ω Γ ⊢ 𝑡 : 𝐴 : Ω Γ ⊢ 𝑢 : 𝐵 [𝑥 := 𝑡] : Ω

Γ ⊢ ⟨𝑡,𝑢⟩ : (𝑥 : 𝐴) & 𝐵 : Ω

Fst
Γ ⊢ 𝐴 : Ω Γ, 𝑥 : 𝐴 : Ω ⊢ 𝐵 : Ω Γ ⊢ 𝑡 : (𝑥 : 𝐴) & 𝐵 : Ω

Γ ⊢ fst(𝑡) : 𝐴 : Ω

Snd
Same premises as Fst

Γ ⊢ snd(𝑡) : 𝐵 [𝑥 := fst(𝑡)] : Ω

N-Form
⊢ Γ

Γ ⊢ N : 𝒰0

Zero
⊢ Γ

Γ ⊢ 0 : N : 𝒰0

Suc
Γ ⊢ 𝑛 : N : 𝒰0

Γ ⊢ S 𝑛 : N : 𝒰0

N-Elim
Γ,𝑚 : N ⊢ 𝐴 : 𝑠 Γ ⊢ 𝑡0 : 𝐴[𝑚 := 0] : 𝑠 Γ ⊢ 𝑡S : Π(𝑛 : N) . 𝐴[𝑚 := 𝑛] → 𝐴[𝑚 := S 𝑛] : 𝑠 Γ ⊢ 𝑛 : N : 𝒰0

Γ ⊢ N−elim(𝐴, 𝑡0, 𝑡S, 𝑛) : 𝐴[𝑚 := 𝑛] : 𝑠

⊥-Form
⊢ Γ

Γ ⊢ ⊥ : Ω

⊥-Elim
Γ ⊢ 𝐴 : 𝑠 Γ ⊢ 𝑡 : ⊥ : Ω
Γ ⊢ ⊥−elim(𝐴, 𝑡) : 𝐴 : 𝑠

⊤-Form
⊢ Γ

Γ ⊢ ⊤ : Ω

⊤-Intro
⊢ Γ

Γ ⊢ ∗ : ⊤ : Ω

Eq-Form
Γ ⊢ 𝐴 : 𝒰𝑖 Γ ⊢ 𝑡 : 𝐴 : 𝒰𝑖 Γ ⊢ 𝑢 : 𝐴 : 𝒰𝑖

Γ ⊢ 𝑡 ∼𝐴 𝑢 : Ω

Refl
Γ ⊢ 𝐴 : 𝒰𝑖 Γ ⊢ 𝑡 : 𝐴 : 𝒰𝑖

Γ ⊢ refl(𝑡) : 𝑡 ∼𝐴 𝑡 : Ω

Cast
Γ ⊢ 𝐴, 𝐵 : 𝑠 Γ ⊢ 𝑒 : 𝐴 ∼𝑠 𝐵 : Ω Γ ⊢ 𝑡 : 𝐴 : 𝑠

Γ ⊢ cast(𝐴, 𝐵, 𝑒, 𝑡) : 𝐵 : 𝑠

Cast-Refl
Γ ⊢ 𝐴 : 𝑠 Γ ⊢ 𝑡 : 𝐴 : 𝑠

Γ ⊢ castrefl(𝐴, 𝑡) : 𝑡 ∼𝐴 cast(𝐴,𝐴, refl(𝑡), 𝑡)

Transport-Ω
Γ ⊢ 𝐴 : 𝒰𝑖 Γ ⊢ 𝑡, 𝑡 ′ : 𝐴 : 𝒰𝑖 Γ, 𝑦 : 𝐴 : 𝒰𝑖 ⊢ 𝐵 : Ω Γ ⊢ 𝑢 : 𝐵 [𝑦 := 𝑡] : Ω Γ ⊢ 𝑒 : 𝑡 ∼𝐴 𝑡 ′ : Ω

Γ ⊢ transp(𝐴, 𝑡, 𝐵,𝑢, 𝑡 ′, 𝑒) : 𝐵 [𝑦 := 𝑡 ′] : Ω

Fig. 2. CCobs Typing Rules

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

74:6 Loïc Pujet and Nicolas Tabareau

proof-relevant case we ask the universe level of the dependent product to be higher than both the
level of the domain and that of the codomain. (Rule Π-Form). This is made formal by using the
function ℛ(_, _) defined as

ℛ(𝑠,Ω) := Ω ℛ(Ω,𝒰𝑖) := 𝒰𝑖 ℛ(𝒰𝑖 ,𝒰𝑗) := 𝒰𝑚𝑎𝑥 (𝑖, 𝑗) .

Rules Fun and App are the rules for the introduction of a 𝜆-abstraction and application.

Dependent conjunction, Empty and Unit types. CCobs features proof-irrelevant dependent conjunc-
tions (&-Form), an empty proposition (Rule ⊥-Form) and the true proposition ⊤ (Rule ⊤-Form).
Those type constructors are helpful as they appear in the computation rules of the observational
equality—in particular, the dependent conjunction is used to specify the observational equality
between two dependent function types, as a dependent pair of equalities between the domains and
the codomains—but we could alternatively define them via impredicative encodings.

We give a negative presentation of dependent conjunctions with one introduction rule (Rule Pair)
and two projections (Rules Fst and Snd). Note that because of proof-irrelevance, the negative and
positive presentations are completely equivalent, and we do not need any rule to account for the
computational behavior of projections, nor 𝜂-equality. Besides its formation rule (Rule ⊥-Form),
the empty type comes with an elimination principle (Rule ⊥-Elim) that can eliminate it into both
proof-irrelevant and proof-relevant types. The unit type on the other hand only has a formation
rule (Rule ⊤-Form) and a constructor ∗ (Rule ⊤-Intro). It does not require an eliminator, since the
usual one can be derived from proof irrelevance.

Natural numbers. All inductive types and quotient types defined in TTobs could be added to the
core of CCobs. Here, we only treat the type of natural numbers, as it strikes a good balance between
simplicity and illustrating how we deal with recursive constructors and large elimination. The
type N comes with a formation rule N-Form, constructors 0 (Rule Zero) and S (Rule Suc) and an
elimination/induction principle given by Rule N-Elim.

Equality and Type Casts. A central feature of CCobs is that every proof-relevant type comes
equipped with a proof-irrelevant equality type, noted 𝑡 ∼𝐴 𝑢 (Rule Eq-Form) and a canonical way
to inhabit it, with the reflexivity term refl(𝑡) (Rule Refl). Proof-irrelevant types are not equipped
with a propositional equality, as any two terms would always be propositionally equal by reflexivity.

For this equality type to be of any use, we need to be able to eliminate it as well. The usual 𝐽
eliminator from MLTT, called transp, is restricted to proof-irrelevant predicates (Rule Transport-
Ω). The elimination of equality in proof-relevant predicates is split into two parts: on the one hand,
we use the cast primitive to handle transport between two propositionally equal types (Rule Cast),
and on the other hand we can obtain a proof of equality between 𝐵 𝑥 and 𝐵 𝑦 by using transp to
show that function application preserves the equality. Concretely, we can define

ap 𝐵 𝑒 = transp(𝐴, 𝑥, 𝜆(𝑡 : 𝐴). 𝐵 𝑥 ∼ 𝐵 𝑡, refl(𝐵 𝑥), 𝑦, 𝑒)
𝐽 (𝐴, 𝑥, 𝐵,𝑦, 𝑒) = cast(𝐵 𝑥, 𝐵 𝑦, ap 𝐵 𝑒, 𝑥).

The term cast(𝐴, 𝐵, 𝑒, 𝑡) is an eliminator that reduces by case analysis on the head constructors
of the type 𝐴 and 𝐵. This will be explained in more detail in the next section. When applied to
reflexivity, cast does not compute as the identity function, but this equality is propositionally
admissible as witnessed by castrefl (Rule Cast-Refl).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

Impredicative Observational Equality 74:7

Refl
Γ ⊢ 𝑡 : 𝐴 : 𝒰𝑖

Γ ⊢ 𝑡 ≡ 𝑡 : 𝐴 : 𝒰𝑖

Sym
Γ ⊢ 𝑡 ≡ 𝑢 : 𝐴 : 𝒰𝑖
Γ ⊢ 𝑢 ≡ 𝑡 : 𝐴 : 𝒰𝑖

Trans
Γ ⊢ 𝑡 ≡ 𝑡 ′ : 𝐴 : 𝒰𝑖 Γ ⊢ 𝑡 ′ ≡ 𝑢 : 𝐴 : 𝒰𝑖

Γ ⊢ 𝑡 ≡ 𝑢 : 𝐴 : 𝒰𝑖

Red-Conv
Γ ⊢ 𝑡 ⇒ 𝑢 : 𝐴

Γ ⊢ 𝑡 ≡ 𝑢 : 𝐴 : 𝒰𝑖

𝜂-Eq
Γ ⊢ 𝐴 : 𝑠 Γ ⊢ 𝑡,𝑢 : Π𝑠 ,𝒰𝑖 (𝑥 : 𝐴). 𝐵 : ℛ(𝑠 ,𝒰𝑖) Γ, 𝑥 : 𝐴 : 𝑠 ⊢ 𝑡 𝑥 ≡ 𝑢 𝑥 : 𝐵 : 𝒰𝑖

Γ ⊢ 𝑡 ≡ 𝑢 : Π𝑠 ,𝒰𝑖 (𝑥 : 𝐴). 𝐵 : ℛ(𝑠 ,𝒰𝑖)

Proof-Irr
Γ ⊢ 𝑡,𝑢 : 𝐴 : Ω
Γ ⊢ 𝑡 ≡ 𝑢 : 𝐴 : Ω

Fig. 3. CCobs Conversion Rules (except congruence rules)

𝛽-red
Γ ⊢ 𝐴 : 𝑠 Γ, 𝑥 : 𝐴 : 𝑠 ⊢ 𝐵 : 𝒰𝑖 Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵 : 𝒰𝑖 Γ ⊢ 𝑢 : 𝐴 : 𝑠

Γ ⊢ (𝜆(𝑥 : 𝐴). 𝑡) 𝑢 ⇒ 𝑡 [𝑥 := 𝑢] : 𝐵 [𝑥 := 𝑢]

Conv-Red
Γ ⊢ 𝑡 ⇒ 𝑢 : 𝐴 Γ ⊢ 𝐴 ≡ 𝐵 : 𝒰𝑖

Γ ⊢ 𝑡 ⇒ 𝑢 : 𝐵

N-Elim-Zero
Γ,𝑚 : N ⊢ 𝐴 : 𝑠 Γ ⊢ 𝑡0 : 𝐴[𝑚 := 0] : 𝑠 Γ ⊢ 𝑡S : Π(𝑛 : N) . 𝐴[𝑚 := 𝑛] → 𝐴[𝑚 := S 𝑛] : 𝑠

Γ ⊢ N−elim(𝐴, 𝑡0, 𝑡S, 0) ⇒ 𝑡0 : 𝐴[𝑚 := 0]

N-Elim-Suc
Γ,𝑚 : N ⊢ 𝐴 : 𝑠 Γ ⊢ 𝑡0 : 𝐴[𝑚 := 0] : 𝑠 Γ ⊢ 𝑡S : Π(𝑛 : N) . 𝐴[𝑚 := 𝑛] → 𝐴[𝑚 := S 𝑛] : 𝑠 Γ ⊢ 𝑛 : N

Γ ⊢ N−elim(𝐴, 𝑡0, 𝑡S, S 𝑛) ⇒S N−elim(𝐴, 𝑡0, 𝑡S, 𝑛) : 𝐴[𝑚 := S 𝑛]

Eq-Fun
Γ ⊢ 𝐴 : 𝑠 Γ, 𝑥 : 𝐴 : 𝑠 ⊢ 𝐵 : 𝒰𝑖 Γ ⊢ 𝑓 , 𝑔 : Π(𝑥 : 𝐴) . 𝐵 : 𝒰𝑖

Γ ⊢ 𝑓 ∼Π𝐴𝐵 𝑔 ⇒ Π(𝑥 : 𝐴) . 𝑓 𝑥 ∼𝐵 𝑔 𝑥 : Ω

Eq-Ω
Γ ⊢ 𝐴 : Ω Γ ⊢ 𝐵 : Ω

Γ ⊢ 𝐴 ∼Ω 𝐵 ⇒ (𝐴 → 𝐵) ∧ (𝐵 → 𝐴) : Ω

Eq-Univ
⊢ Γ 𝐴 ∈ {N, 𝑠 }

Γ ⊢ 𝐴 ∼𝑠′ 𝐴 ⇒ ⊤ : Ω
𝒜(𝑠 ,𝑠′)

Eq-Univ-≠
⊢ Γ 𝐴, 𝐵 ∈ {N,Π𝐴.𝐵, 𝑠 } hd𝐴 ≠ hd𝐵

Γ ⊢ 𝐴 ∼𝑠′ 𝐵 ⇒ ⊥ : Ω
𝒜(𝑠 ,𝑠′)

Eq-Π
Γ ⊢ 𝐴 : 𝑠 Γ ⊢ 𝐴′ : 𝑠 Γ, 𝑥 : 𝐴 ⊢ 𝐵 : 𝑠 ′ Γ, 𝑥 : 𝐴′ ⊢ 𝐵′ : 𝑠 ′

Γ ⊢ Π(𝑥 : 𝐴) . 𝐵 ∼ℛ(𝑠 ,𝑠′) Π(𝑥 : 𝐴′) . 𝐵′ ⇒
(𝑒 : 𝐴′ ∼𝑠 𝐴) & Π(𝑎′ : 𝐴′) . 𝐵 [𝑥 := cast(𝐴′, 𝐴, 𝑒, 𝑎′)] ∼𝑠′ 𝐵′[𝑥 := 𝑎′] : Ω

Eq-zero
⊢ Γ

Γ ⊢ 0 ∼N 0 ⇒ ⊤ : Ω

Eq-Suc
Γ ⊢ 𝑛 : N : 𝒰0 Γ ⊢𝑚 : N : 𝒰0

Γ ⊢ S𝑚 ∼N S 𝑛 ⇒𝑚 ∼N 𝑛 : Ω

Eq-zero-suc
Γ ⊢ 𝑛 : N : 𝒰0

Γ ⊢ 0 ∼N S 𝑛 ⇒ ⊥ : Ω

Eq-suc-zero
Γ ⊢ 𝑛 : N : 𝒰0

Γ ⊢ S 𝑛 ∼N 0 ⇒ ⊥ : Ω

Cast-Zero
Γ ⊢ 𝑒 : N ∼𝒰0 N : Ω

Γ ⊢ cast(N,N, 𝑒, 0) ⇒ 0 : N

Cast-Suc
Γ ⊢ 𝑒 : N ∼𝒰0 N : Ω Γ ⊢ 𝑛 : N : 𝒰0

Γ ⊢ cast(N,N, 𝑒, S 𝑛) ⇒ S cast(N,N, 𝑒, 𝑛) : N

Cast-Univ
Γ ⊢ 𝑒 : 𝑠 ∼𝑠′ 𝑠 Γ ⊢ 𝐴 : 𝑠
Γ ⊢ cast(𝑠 , 𝑠 , 𝑒, 𝐴) ⇒ 𝐴 : 𝑠

Cast-Π
Γ ⊢ 𝐴,𝐴′ : 𝑠 Γ, 𝑥 : 𝐴 ⊢ 𝐵 : 𝑠 ′ Γ, 𝑥 : 𝐴′ ⊢ 𝐵′ : 𝑠 ′

Γ ⊢ 𝑒 : Π(𝑥 : 𝐴) . 𝐵 ∼𝒰𝑖
Π(𝑥 : 𝐴′). 𝐵′ : Ω Γ ⊢ 𝑓 : Π(𝑥 : 𝐴). 𝐵 𝑎 := cast(𝐴′, 𝐴, fst(𝑒), 𝑎′)

Γ ⊢ cast(Π(𝑥 : 𝐴) . 𝐵,Π(𝑥 : 𝐴′). 𝐵′, 𝑒, 𝑓) ⇒
𝜆(𝑎′ : 𝐴′). cast(𝐵 [𝑥 := 𝑎], 𝐵′[𝑥 := 𝑎′], snd(𝑒) 𝑎′, 𝑓 𝑎) : Π(𝑥 : 𝐴′) . 𝐵′

Fig. 4. CCobs Reduction Rules (except substitutions)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

74:8 Loïc Pujet and Nicolas Tabareau

whnf 𝑤 ::= 𝑁 | Π(𝑥 : 𝐴) . 𝐵 | 𝑠 | (𝑥 : 𝐴) & 𝐵 | N | ⊥ | ⊤ | 𝜆(𝑥 : 𝐴). 𝑡 | 0 | S 𝑛
neutral 𝑁 ::= 𝑥 | 𝑁 𝑡 | ⊥−elim(𝐴, 𝑒) | N−elim(𝑃, 𝑡,𝑢, 𝑁)

| 𝑡 ∼𝑁 𝑢 | 𝑁 ∼N 𝑚 | 0 ∼N 𝑁 | S𝑚 ∼N 𝑁

| 𝑁 ∼𝒰𝑖
𝐵 | N ∼𝒰𝑖

𝑁 | Π(𝑥 : 𝐴) . 𝐵 ∼𝒰𝑖
𝑁 | cast(N,N, 𝑒, 𝑁)

| cast(𝑁, 𝐵, 𝑒, 𝑡) | cast(N, 𝑁 , 𝑒, 𝑡) | cast(Π(𝑥 : 𝐴) . 𝐵, 𝑁 , 𝑒, 𝑡)
| cast(𝑤,𝑤 ′, 𝑒, 𝑡) (where𝑤,𝑤 ′ ∈ {N,Π𝐴.𝐵, 𝑠𝑖 }, hd𝑤 ≠ hd𝑤 ′)

Fig. 5. Weak-head normal and neutral forms

2.3 Conversion and Reduction to Weak-Head Normal Forms
Conversion (Fig. 3) subsumes reduction (Red-Conv), 𝜂-equality of functions (Rule 𝜂-Eq), and
proof-irrelevance (Rule Proof-Irr). It is also closed under reflexivity, symmetry, transitivity and
congruence rules (e.g. if 𝑡 ≡ 𝑡 ′ and 𝑢 ≡ 𝑢 ′ then 𝑡 𝑢 ≡ 𝑡 ′ 𝑢 ′).
Fig. 4 describes the weak-head reduction strategy for CCobs which is very similar to the weak-

head reduction for TTobs, with the exception that the impredicativity of Ω removes the need for
cumulativity. Since our reduction relation is typed, we need a rule for type conversion (Rule Conv-
Red). Rule 𝛽-red is the standard 𝛽-reduction for proof-relevant function applications, and rules N-
Elim-Zero and N-Elim-Suc are the usual computation rules for the elimination principle of natural
numbers. Then we have nine rules describing the behaviour of equality for each pair of type
constructors. First, rule Eq-Fun bakes function extensionality for the dependent products in our
system, and rule Eq-Ω provides propositional extensionality for proof-irrelevant propositions.
Rule Eq-Univ gives us reflexivity for the type of natural numbers and universes. Dually, rule Eq-
Univ-≠ corresponds to anti-diagonal cases where we can discriminate over the type constructors
and know that the equality is not possible (this rule is not strictly necessary to get a well-behaved
system, but it is a natural addition to the type theory). Rule Eq-Π states that an equality between
two dependent products consists in a pair of an equality between the domains and an equality
between the codomains up to casting of the argument in the domain. Note that the equality on
the domain is flipped so that casting is more natural for the codomain, as it is done in [Altenkirch
et al. 2007]. The four next rules deal with equality of natural numbers in the expected way. Finally,
there are four rules describing the behaviour of the cast operator between two matching type
constructors. The most interesting case is a cast between two dependent functions, which reduces
to a function that casts its argument, applies the original function and then casts back the result.
This rule performs an 𝜂-expansion on the fly, which is not an issue as 𝜂-equality is valid in CCobs.

A notion that will play a central role in our normalization procedure is that of a weak-head

normal form (whnf), which corresponds to a relevant term that cannot be reduced further (Fig. 5).
Weak-head normal forms are either terms with a constructor in head position, or neutral terms

stuck on a variable or an elimination of a proof of ⊥. In other words, neutral terms are weak-head
normal forms that should not exist in an empty context. In CCobs, inhabitants of a proof-irrelevant
type are never considered as whnf, as there is no notion of reduction of proof-irrelevant terms.

2.4 CCobs in Practice
The combination of impredicative propositions with the observational equality provide several
important reasoning principles for mathematics.

Large elimination of propositions. The universe Ω does not support large elimination of sub-
singleton inductive propositions, contrary to the universe Prop of Coq, but there are two important
propositions that can be eliminated into 𝒰. First, the eliminator of the empty proposition ⊥ applies

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

Impredicative Observational Equality 74:9

Γ ⊩ℓ 𝐴 : 𝑠 A is a reducible type of sort 𝑠 in context Γ
Γ ⊩ℓ 𝐴 ≡ 𝐵 : 𝑠 A and B are reducibly equal types of sort 𝑠 in context Γ
Γ ⊩ℓ 𝑡 : 𝐴 : 𝑠 t is a reducible term of type 𝐴, which has sort 𝑠 in context Γ
Γ ⊩ℓ 𝑡 ≡ 𝑢 : 𝐴 : 𝑠 t and u are reducibly equal terms of type 𝐴, which has sort 𝑠 in context Γ

Fig. 6. The four judgments of the logical relation

indiscriminately to all types. As a consequence, we can reason in Ω to show that a case of a pattern-
matching is not accessible inside a proof-relevant computation, as described in detail by Gilbert
et al. [2019]. The other proposition that can be eliminated into 𝒰 is the observational equality, using
the cast operator. From it, we can define the 𝐽 eliminator of Martin-Löf identity type as explained
in Section 2.2, and thus recover Leibniz’s principle of identity of indiscernibles.

Extensionality principles. The observational equality of CCobs validates three extensionality
principles that are commonplace in mathematics but not available inMLTT. First, it satisfies the
principle of uniqueness of identity proofs (UIP), since any two proofs of the same equality are
convertible by virtue of being inhabitants of a proof-irrelevant type. Second, the observational
equality provides us with the principle of function extensionality, thanks to the computation rule
Eq-Π that specifies the equality between two dependent functions. Function extensionality quickly
becomes essential when reasoning on higher-order concepts, such as monads and categories. Last
but not least, CCobs validates the principle of propositional extensionality thanks to the rule Eq-Ω.

Impredicativity of Ω. Impredicativity is the main new feature compared to the system TTobs of
[Pujet and Tabareau 2022]. As mentioned in the introduction, having impredicativity allows us to
use Ω as a complete lattice of truth values, and thus to use impredicative encodings and fixed point
theorems. Defining properties as least fixed points proved to be an important tool in the design of
compositional coinductive proofs [Hur et al. 2013]. On a more down-to-earth level, impredicativity
also simplifies the universe level management, which comes in handy in many definitions. For
instance the partiality monad

Partial (𝐴 : 𝒰𝑖) := Σ(𝑃 : Ω) . 𝑃 → 𝐴 : 𝒰𝑖

can be defined only for a single universe Ω of proposition, instead of having a family of such
partiality monads indexed by the level of the proposition to be used.

3 A LOGICAL RELATIONWITH AN IMPREDICATIVE UNIVERSE
In this section, we define a logical relation by following the strategy of Abel et al. [2018] to show
both the normalization theorem, which states that any well-typed term with a proof-relevant type
can be reduced down to a weak-head normal form by repeatedly applying the weak-head reduction
strategy, and decidability of the conversion of CCobs.
Normalization of type theories is a subtle matter: if one tries to prove it by naive induction on

the typing derivations, one quickly gets stuck on the case of the application rule because we cannot
deduce normalization of 𝑡 𝑢 from normalization of 𝑡 and 𝑢. The so-called “logical relation” is a
standard technique to generalize the induction hypothesis, so that the proof by induction on the
typing derivation goes through. Concretely, the logical relation is a complex inductive-recursive
family of predicates that collect information on types and terms in order to thoroughly characterizes
their behaviour with respect to reduction, in a way that directly implies normalization. Types and
terms that satisfy the logical relation are called reducible, and our aim is to show the fundamental

lemma, which states that every well-typed term is reducible.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

74:10 Loïc Pujet and Nicolas Tabareau

Γ ⊢ 𝑡 ≡ 𝑢 : 𝐴 : 𝑠

Fundamental
Lemma 3.1

��

Γ ⊢ 𝑡 � 𝑢 : 𝐴 : 𝑠
Soundness of

Algo. Conv.
ks

Γ ⊩𝑣ℓ 𝑡 ≡ 𝑢 : 𝐴 : 𝑠
Identity

Substitution
+3 Γ ⊩ℓ 𝑡 ≡ 𝑢 : 𝐴 : 𝑠

Escape
Lemma

KS

Fig. 7. Outline of the proof

The logical relation consists of four predicates which mirror the four typing judgments of CCobs

(cf Fig. 6), defined on a type-by-type basis. For MLTT and TTobs, the logical relation is indexed
by a level ℓ , which reflects the predicative nature of the universe hierarchy: reducibility is first
defined at level 0 to characterize terms that inhabit the smallest universe 𝒰0, then this relation is
used to define reducibility at level 1 for terms that live in 𝒰1 at most, and so on. Therefore, the
whole definition is done by induction on ℓ . This construction seems deeply incompatible with an
impredicative universe, as dependent products in Ω may mention arbitrarily large universes in
their domain while still being at the bottom of the universe hierarchy. Thus replicating the usual
definition for the impredicative universe leads to a non well-founded relation.
In this section, we show how to break out of that circularity in the case of an impredicative

universe with definitional proof-irrelevance, by defining a weaker logical relation on impredicative
types that does not require knowledge of the logical relation for the predicative hierarchy. However,
a weaker logical relation means a weaker induction hypothesis, which makes the fundamental
lemma harder to prove. We make up for this by having typing rules that have seemingly redundant
hypotheses in the typing derivations. These hypotheses are used during the proof of the fundamental
lemma, to recover information that cannot be collected in the logical relation.
In practice, the proof of the fundamental lemma requires our induction hypothesis to be stable

under substitution. This leads us to further generalize reducibility to validity, which is defined
as the closure of reducibility under substitution, and is noted with the ⊩𝑣ℓ turnstile (for instance,
valid equality of terms is written Γ ⊩𝑣ℓ 𝑡 ≡ 𝑢 : 𝐴 : 𝑠). We can then finally show that all well-typed
terms are valid by induction, which implies that they are reducible when specializing validity to
the identity substitution, and thus normalizing. Finally, to get decidability of conversion for CCobs,
we introduce the notion of algorithmic conversion, noted Γ ⊢ 𝑡 � 𝑢 : 𝐴 : 𝑠 , which is sound with
respect to conversion and for which we can show that it is implied by the reducible equality. Fig. 7
summarizes the connections between those relations.

3.1 The Logical Relation for the Predicative Hierarchy
We start by presenting the logical relation for the relevant fragment, closely following Abel et al.
[2018]; Pujet and Tabareau [2022]. For pedagogical reasons, we will present a somewhat informal
version of the logical relation where some arguments are left implicit, and refer the interested
reader to the Agda formalization. While our formal proof and the definition in [LogicalRelation.agda]

only feature three levels, it should be quite clear that the same technique works for any finite
number of levels.
The logical relation is defined by induction-recursion, as detailed in Fig. 8. The logical relation

on types is defined inductively with seven constructors, one for every base type of CCobs. Each

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

https://htmlpreview.github.io/?https://raw.githubusercontent.com/CoqHott/logrel-mltt/impredicativity-SProp-POPL/html/Definition.LogicalRelation.html

Impredicative Observational Equality 74:11

_ ⊩ℓ _ : _ : (Γ : Context) → (𝑡 : Term) → (𝐴 : Term) → (𝑠 : Sort) → Set
_ ⊩ℓ _ : _ ::= ⊩ne : ∀ Γ 𝑡 𝑠 → (Γ ⊩ne,ℓ 𝑡 : 𝑠) → Γ ⊩ℓ 𝑡 : 𝑠

| ⊩U : ∀ Γ 𝑡 𝑖 → (Γ ⊩U,ℓ 𝑡 : 𝒰𝑖) → Γ ⊩ℓ 𝑡 : 𝒰𝑖
| ⊩N : ∀ Γ 𝑡 → (Γ ⊩N,ℓ 𝑡) → Γ ⊩ℓ 𝑡 : 𝒰0
| ⊩Π : ∀ Γ 𝑡 𝑖 → (Γ ⊩Π,ℓ 𝑡 : 𝒰𝑖) → Γ ⊩ℓ 𝑡 : 𝒰𝑖
| ⊩Ω : ∀ Γ 𝑡 𝑖 → (Γ ⊩Ω,ℓ 𝑡 : 𝒰𝑖) → Γ ⊩ℓ 𝑡 : 𝒰𝑖
| ⊩∀ : ∀ Γ 𝑡 → (Γ ⊩∀,ℓ 𝑡) → Γ ⊩ℓ 𝑡 : Ω
| ⊩& : ∀ Γ 𝑡 → (Γ ⊩&,ℓ 𝑡) → Γ ⊩ℓ 𝑡 : Ω
| ⊩⊥ : ∀ Γ 𝑡 → (Γ ⊩⊥,ℓ 𝑡) → Γ ⊩ℓ 𝑡 : Ω

_ ⊩ℓ _ ≡ _ : _ : (Γ : Context) → (𝐴 : Term) → (𝐵 : Term) → (𝑠 : Sort) → {Γ ⊩ℓ 𝐴 : 𝑠} → Set
Γ ⊩ℓ 𝐴 ≡ 𝐵 : 𝑠 {⊩X} = Γ ⊩𝑋,ℓ 𝐴 ≡ 𝐵 : 𝑠 where 𝑋 ∈ {ne,U,N,Π,Ω,∀,&,⊥}

_ ⊩ℓ _ : _ : _ : (Γ : Context) → (𝑡 : Term) → (𝐴 : Term) → (𝑠 : Sort) → {Γ ⊩ℓ 𝐴 : 𝑠} → Set
Γ ⊩ℓ 𝑡 : 𝐴 : 𝑠 {⊩X} = Γ ⊩𝑋,ℓ 𝑡 : 𝐴 : 𝑠 where 𝑋 ∈ {ne,U,N,Π,Ω,∀,&,⊥}

_ ⊩ℓ _ ≡ _ : _ : _ : (Γ : Context) → (𝑡 𝑢 : Term) → (𝐴 : Term) → (𝑠 : Sort) → {Γ ⊩ℓ 𝐴 : 𝑠} → Set
Γ ⊩ℓ 𝑡 ≡ 𝑢 : 𝐴 : 𝑠 {⊩X} = Γ ⊩𝑋,ℓ 𝑡 ≡ 𝑢 : 𝐴 : 𝑠 where 𝑋 ∈ {ne,U,N,Π,Ω,∀,&,⊥}

Fig. 8. Inductive-recursive presentation of the logical relation

constructor involves an auxiliary predicate of the form Γ ⊩𝑋,ℓ 𝑡 that packs the appropriate informa-
tion for the corresponding type. The logical relations on terms and equalities are simultaneously
defined by recursion on Γ ⊩ℓ 𝐴 : 𝑠 , using more auxiliary predicates. This technically means that the
logical relation on terms and equalities should have an extra argument of type Γ ⊩ℓ 𝐴 : 𝑠 , but since
it will turn out that all proofs of Γ ⊩ℓ 𝐴 : 𝑠 give rise to equivalent judgments (cf [Irrelevance.agda]),
we freely omit this argument.

We now give the definition of all these auxiliary predicates, starting with the predicates for
neutral types.

Neutral Types.

Γ ⊢ 𝐴 ⇒∗ 𝑁 : 𝑠 neutral𝑁
Γ ⊩ne,ℓ 𝐴 : 𝑠

This rule states that 𝐴 is reducible to a neutral type: the notation Γ ⊢ 𝐴 ⇒∗ 𝑁 : 𝑠 means that 𝐴
reduces to 𝑁 in a finite number of steps (possibly zero), and that both 𝐴 and 𝑁 are well-formed
types of sort 𝑠 in context Γ. When 𝐴 is reducible to a neutral type, we define:

• Γ ⊩ne 𝐴 ≡ 𝐵 : 𝑠 if there is a neutral term𝑀 such that Γ ⊢ 𝐵 ⇒∗ 𝑀 : 𝑠 and Γ ⊢ 𝑁 ≡ 𝑀 : 𝑠 ,
• Γ ⊩ne 𝑡 : 𝐴 : 𝑠 if there is a neutral term 𝑛 such that Γ ⊢ 𝑡 ⇒∗ 𝑛 : 𝑁 ,
• Γ ⊩ne 𝑡 ≡ 𝑢 : 𝐴 : 𝑠 if there are neutral terms 𝑛,𝑚 such that Γ ⊢ 𝑡 ⇒∗ 𝑛 : 𝑁
and Γ ⊢ 𝑢 ⇒∗ 𝑚 : 𝑁 , and Γ ⊢ 𝑛 ≡𝑚 : 𝑁 .

Note that the definition of reducible neutral types and terms does not recursively call the logical
relation, thus it can be defined outside of the inductive-recursive definition.

Natural Numbers.

Γ ⊢ 𝐴 ⇒∗ N : 𝒰0

Γ ⊩N,ℓ 𝐴

When 𝐴 is reducible to N, we define:
• Γ ⊩N 𝐴 ≡ 𝐵 if Γ ⊢ 𝐵 ⇒∗ N : 𝒰0,

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

https://htmlpreview.github.io/?https://raw.githubusercontent.com/CoqHott/logrel-mltt/impredicativity-SProp-POPL/html/Definition.LogicalRelation.Irrelevance.html

74:12 Loïc Pujet and Nicolas Tabareau

• Γ ⊩N 𝑡 : 𝐴 if there is a weak-head normal form 𝑡 ′ such that Γ ⊢ 𝑡 ⇒∗ 𝑡 ′ : N and Γ ⊩Nt 𝑡
′,

which is inductively defined by

Γ ⊩Nt 0
Γ ⊩Nt 𝑡

Γ ⊩Nt S 𝑡
Γ ⊢ 𝑛 : N 𝑛 is neutral

Γ ⊩Nt 𝑛

• Γ ⊩N 𝑡 ≡ 𝑢 : 𝐴 if there are weak-head normal forms 𝑡 ′, 𝑢 ′ such that Γ ⊢ 𝑡 ⇒∗ 𝑡 ′ : N and
Γ ⊢ 𝑢 ⇒∗ 𝑢 ′ : N, and Γ ⊩Nt= 𝑡 ′ ≡ 𝑢 ′, which is inductively defined by

Γ ⊩Nt= 0 ≡ 0
Γ ⊩Nt= 𝑡 ≡ 𝑢

Γ ⊩Nt= S 𝑡 ≡ S 𝑢
Γ ⊢ 𝑛 ≡𝑚 : N 𝑛,𝑚 are neutral

Γ ⊩Nt= 𝑛 ≡𝑚

Again, those definitions do not mention the logical relation and can be defined a priori.

Predicative Universes.

Γ ⊢ 𝐴 ⇒∗ 𝒰𝑖 : 𝒰𝑖+1
Γ ⊩U,ℓ 𝐴 : 𝒰𝑖+1

𝑖<ℓ

When 𝐴 is reducible to a predicative universe, we define:
• Γ ⊩U,ℓ 𝐴 ≡ 𝐵 : 𝒰𝑖+1 if Γ ⊢ 𝐵 ⇒∗ 𝒰𝑖 : 𝒰𝑖+1,
• Γ ⊩U,ℓ 𝑡 : 𝐴 : 𝒰𝑖+1 if there is a weak-head normal form 𝑡 ′ such that Γ ⊢ 𝑡 ⇒∗ 𝑡 ′ : 𝒰𝑖 , and
Γ ⊩𝑖 𝑡 : 𝒰𝑖

(which is already defined by induction hypothesis, since 𝑖 < ℓ).
• Γ ⊩U,ℓ 𝑡 ≡ 𝑢 : 𝐴 : 𝒰𝑖+1 if there are weak-head normal forms 𝑡 ′, 𝑢 ′ such that Γ ⊢ 𝑡 ⇒∗ 𝑡 ′ : 𝒰𝑖

and Γ ⊢ 𝑢 ⇒∗ 𝑢 ′ : 𝒰𝑖 , and Γ ⊩𝑖 𝑡 : 𝒰𝑖 , Γ ⊩𝑖 𝑢 : 𝒰𝑖 , and Γ ⊩𝑖 𝑡 ≡ 𝑢 : 𝒰𝑖 .

Proof-Relevant Dependent Function Types.

Γ ⊢ 𝐴 ⇒∗ Π𝑠,𝒰𝑖 (𝑥 : 𝐹) . 𝐺 : 𝒰𝑗 ℛ(𝑠 ,𝒰𝑖) = 𝒰𝑗 Γ ⊢ 𝐹 : 𝑠
Γ, 𝑥 : 𝐹 ⊢ 𝐺 : 𝒰𝑖 ∀(𝜌 : Δ ⊑ Γ), Δ ⊩ℓ 𝐹 [𝜌] : 𝑠 ∀(𝜌 : Δ ⊑ Γ), Δ ⊩ℓ 𝑎 : 𝐹 [𝜌] : 𝑠 → Δ ⊩ℓ 𝐺 [𝜌, 𝑎] : 𝒰𝑖
∀(𝜌 : Δ ⊑ Γ), Δ ⊩ℓ 𝑎 : 𝐹 [𝜌] : 𝑠 → Δ ⊩ℓ 𝑏 : 𝐹 [𝜌] : 𝑠 → Δ ⊩ℓ 𝑎 ≡ 𝑏 : 𝐹 [𝜌] : 𝑠 → Δ ⊩ℓ 𝐺 [𝜌, 𝑎] ≡𝐺 [𝜌, 𝑏] : 𝒰𝑖

Γ ⊩Π,ℓ 𝐴 : 𝒰𝑗

This rule states that 𝐴 is reducible to a dependent function type. We introduced quite a bit of
notation here: the notation → stands for the implication in the meta-theory, i.e., the theory of
Agda. We note ∀(𝜌 : Δ ⊑ Γ) for the meta-theoretical quantification on an arbitrary well-formed
context Δ and a weakening 𝜌 that turns Δ into Γ. Applying such a weakening on the free variables
of a term 𝐹 that is a well-typed in context Γ results in a term 𝐹 [𝜌] that is well-typed in context Δ.
Given a term𝐺 in the extended context Γ, 𝑥 : 𝐹 and a term Δ ⊢ 𝑎 : 𝐹 [𝜌], we can apply 𝜌 on the free
variables of𝐺 except for 𝑥 to get a term in Δ, 𝑥 : 𝐹 [𝜌], and then substitute 𝑥 with 𝑎 to get a term in
Δ. The result is noted 𝐺 [𝜌, 𝑎].
With those notations, a term 𝐴 is reducible to a dependent function type when (i) it reduces to

Π(𝑥 : 𝐹). 𝐺 , (ii) 𝐹 is a reducible type, (iii) given any reducible term 𝑎 at type 𝐹 , 𝐺 [𝑎] is a reducible
type and (iv) when 𝑎 and 𝑏 are reducibly equal at type 𝐵, 𝐺 [𝑎] and 𝐺 [𝑏] are reducibly equal
types. Moreover, all these reducibility premises should hold under any weakening 𝜌 . Note that the
definition above defines reducibility of a type using reducibility of terms, which explains the need
for an inductive-recursive definition.

When 𝐴 is reducible to a dependent function type, we define:
• Γ ⊩Π,ℓ 𝐴 ≡ 𝐵 : 𝒰𝑗 if there are terms 𝐹 ′ and 𝐺 ′ such that
– Γ ⊢ 𝐵 ⇒∗ Π(𝑥 : 𝐹 ′). 𝐺 ′ : 𝒰𝑗 and Γ ⊢ Π(𝑥 : 𝐹). 𝐺 ≡ Π(𝑥 : 𝐹 ′). 𝐺 ′ : 𝒰𝑗

– ∀(𝜌 : Δ ⊑ Γ), Δ ⊩ℓ 𝐹 [𝜌] ≡ 𝐹 ′[𝜌] : 𝑠
– ∀(𝜌 : Δ ⊑ Γ), Δ ⊩ℓ 𝑎 : 𝐹 [𝜌] : 𝑠 → Δ ⊩ℓ 𝐺 [𝜌, 𝑎] ≡ 𝐺 ′[𝜌, 𝑎] : 𝒰𝑖 .

• Γ ⊩Π,ℓ 𝑡 : 𝐴 : 𝒰𝑗 if there is a weak-head normal form 𝑡 ′ such that

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

Impredicative Observational Equality 74:13

– Γ ⊢ 𝑡 ⇒∗ 𝑡 ′ : Π(𝑥 : 𝐹). 𝐺
– ∀(𝜌 : Δ ⊑ Γ), Δ ⊩ℓ 𝑎 : 𝐹 [𝜌] : 𝑠 → Δ ⊩ℓ 𝑡

′[𝜌] 𝑎 : 𝐺 [𝜌, 𝑎] : 𝒰𝑖

– ∀(𝜌 : Δ ⊑ Γ), Δ ⊩ℓ 𝑎 : 𝐹 [𝜌] : 𝑠 → Δ ⊩ℓ 𝑏 : 𝐹 [𝜌] : 𝑠 → Δ ⊩ℓ 𝑎 ≡ 𝑏 : 𝐹 [𝜌] : 𝑠
→ Δ ⊩ℓ 𝑡

′[𝜌] 𝑎 ≡ 𝑡 ′[𝜌] 𝑏 : 𝐺 [𝜌, 𝑎] : 𝒰𝑖 .
• Γ ⊩Π,ℓ 𝑡 ≡ 𝑢 : 𝐴 : 𝒰𝑗 if there are weak-head normal forms 𝑡 ′, 𝑢 ′ such that
– Γ ⊢ 𝑡 ⇒∗ 𝑡 ′ : Π(𝑥 : 𝐹). 𝐺 and Γ ⊢ 𝑢 ⇒∗ 𝑢 ′ : Π(𝑥 : 𝐹). 𝐺
– Γ ⊢ 𝑡 ′ ≡ 𝑢 ′ : Π(𝑥 : 𝐹). 𝐺
– Γ ⊩ℓ 𝑡 : 𝐴 : 𝒰𝑗 and Γ ⊩ℓ 𝑢 : 𝐴 : 𝒰𝑗

– ∀(𝜌 : Δ ⊑ Γ), Δ ⊩ℓ 𝑎 : 𝐹 [𝜌] : 𝑠 → Δ ⊩ℓ 𝑡
′[𝜌] 𝑎 ≡ 𝑢 ′[𝜌] 𝑎 : 𝐺 [𝜌, 𝑎] : 𝒰𝑖 .

The three definitions above make sense because we know that when𝐴 is reducible to a dependent
function type, we also know that its domain 𝐹 and codomain 𝐺 are reducible.

3.2 The Logical Relation for the Impredicative Universe
We now turn to the definition of the relation for the proof-irrelevant fragment, which must be
defined independently from the logical relation to avoid a non well-founded definition.
Since there is no computation whatsoever in proof-irrelevant types, their inhabitants don’t

interact with other terms. This allows us to give a generic definition for reducibility of terms and
term equality, that will work for any 𝑋 ∈ {⊥,∀,&} :

• Γ ⊩𝑋,ℓ 𝑡 : 𝐴 : Ω when Γ ⊢ 𝑡 : 𝐴.
• Γ ⊩𝑋,ℓ 𝑡 ≡ 𝑢 : 𝐴 : Ω when Γ ⊢ 𝑡 : 𝐴 and Γ ⊢ 𝑢 : 𝐴.

This means that if 𝐴 is in Ω, then the logical relation does not need to collect any information on
inhabitants of 𝐴, save for the fact that they are well-typed. And this applies to equality too, since
any two inhabitants of 𝐴 are always convertible.

We still need to define the reducibility of types and type equality for ⊥, impredicative dependent
products and dependent conjunctions. We do not treat the case of ⊤, since it can be encoded as
⊥ → ⊥. Additionally, note that the observational equality is not featured in the the logical relation.
This is because it does not play the role of a type constructor, but rather that of a destructor that
computes by case analysis on types. Thus the only possibility for an observational equality to be a
type in whnf is when it is a neutral type, a case that is already handled in our logical relation.

Empty type. The case of the empty type is easy, as it does not recursively call the logical relation.

Γ ⊢ 𝐴 ⇒∗ ⊥ : Ω
Γ ⊩⊥,ℓ 𝐴

When 𝐴 is reducible to the empty type, we define Γ ⊩⊥,ℓ 𝐴 ≡ 𝐵 as Γ ⊢ 𝐵 ⇒∗ ⊥ : Ω.

Impredicative Dependent Function Types. For the impredicative dependent function types, the
situation is more complex, as we can not reproduce the definition of their predicative counterpart:
it involves a recursive call to the logical relation for the domain type, which might live in a higher
universe than the dependent function type. Consequently, we go for minimalism and only collect
the fact that the domain and the codomain are well-typed.

Γ ⊢ 𝐴 ⇒∗ Π𝑠,Ω (𝑥 : 𝐹). 𝐺 : Ω Γ ⊢ 𝐹 : 𝑠 Γ, 𝑥 : 𝐹 ⊢ 𝐺 : Ω
Γ ⊩∀,ℓ 𝐴

Similarly, when 𝐴 is reducible to an impredicative dependent function type, we define reducible
equality of 𝐴 and 𝐵 as the fact that 𝐵 reduces to a convertible impredicative dependent function

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

74:14 Loïc Pujet and Nicolas Tabareau

type:
Γ ⊢ 𝐵 ⇒∗ Π(𝑥 : 𝐹 ′) . 𝐺 ′ : Ω Γ ⊢ Π(𝑥 : 𝐹). 𝐺 ≡ Π(𝑥 : 𝐹 ′). 𝐺 ′ : Ω

Γ ⊩∀,ℓ 𝐴 ≡ 𝐵

These definitions do not recursively call the logical relation, but as a result the collected invariants
are much weaker than those for relevant dependent function types. We will see in Section 3.3 how
to circumvent this problem by using apparently redundant hypothesis of the type system.

Dependent conjunctions. The definition of the logical relation for dependent conjunctions is
similar to the one for impredicative dependent function types. We define

Γ ⊢ 𝐴 ⇒∗ (𝑥 : 𝐹) & 𝐺 : Ω Γ ⊢ 𝐹 : Ω Γ, 𝑥 : 𝐹 ⊢ 𝐺 : Ω
Γ ⊩&,ℓ 𝐴

Γ ⊢ 𝐵 ⇒∗ (𝑥 : 𝐹 ′) & 𝐺 ′ : Ω Γ ⊢ (𝑥 : 𝐹) & 𝐺 ≡ (𝑥 : 𝐹 ′) & 𝐺 ′ : Ω
Γ ⊩&,ℓ 𝐴 ≡ 𝐵

The only remaining case of our definition is the impredicative universe Ω.

The Impredicative Universe.

Γ ⊢ 𝐴 ⇒∗ Ω : 𝒰0

Γ ⊩Ω,ℓ 𝐴 : 𝒰0

When 𝐴 is reducible to the impredicative universe, we define:
• Γ ⊩Ω,ℓ 𝐴 ≡ 𝐵 : 𝒰𝑖 if Γ ⊢ 𝐵 ⇒∗ Ω : 𝒰𝑖 .
• Γ ⊩Ω,ℓ 𝑡 : 𝐴 : 𝒰0 if there is a weak-head normal form 𝑡 ′ such that Γ ⊢ 𝑡 ⇒∗ 𝑡 ′ : Ω, and
Γ ⊩ℓ 𝑡 : Ω
(which is already defined as reducibility of impredicative types is defined beforehand).

• Γ ⊩Ω,ℓ 𝑡 ≡ 𝑢 : 𝐴 : 𝒰0 if there are weak-head normal forms 𝑡 ′, 𝑢 ′ such that Γ ⊢ 𝑡 ⇒∗ 𝑡 ′ : Ω
and Γ ⊢ 𝑢 ⇒∗ 𝑢 ′ : Ω, and Γ ⊩𝑖 𝑡 : Ω, Γ ⊩𝑖 𝑢 : Ω, and Γ ⊩𝑖 𝑡 ≡ 𝑢 : Ω.

3.3 The Fundamental Lemma
The fundamental lemma expresses the completeness of the logical relation with respect to typ-
ing [Fundamental.agda]. But before starting our induction, we need to generalize our hypothesis—the
logical relation—yet a bit more: we will prove reducibility under any well-formed substitution.
Following [Abel et al. 2018], we use a new instance of induction-recursion to define the notion of
validity ⊩𝑣 , which will serve as our actual induction hypothesis [Substitution.agda]. A type 𝐴 is said
to be valid in context Γ if it satisfies the following rule:

∀(𝜎 : Δ → Γ), ⊩𝑣 Δ → Δ ⊩𝑠 𝜎 : Γ →
{

Δ ⊩ℓ 𝐴[𝜎] : 𝑠
∀𝜎 ′. Δ ⊩𝑠 𝜎 ′ : Γ → Δ ⊩𝑠 𝜎 ≡ 𝜎 ′ : Γ → Δ ⊩ℓ 𝐴[𝜎] ≡ 𝐴[𝜎 ′] : 𝑠

Γ ⊩𝑣ℓ 𝐴 : 𝑠

In this definition, the notation ∀(𝜎 : Δ → Γ) means that we quantify over an arbitrary substitution
𝜎 from Δ to Γ. The context Δ is assumed to be a valid context (noted ⊩𝑣 Δ, meaning that the context
is composed of valid types) and the substitution 𝜎 is assumed to be a valid substitution (noted
Δ ⊩𝑠 𝜎 : Γ, meaning that it substitutes only reducible terms). Similarly, two valid substitutions 𝜎
and 𝜎 ′ are validly equal, noted Δ ⊩𝑠 𝜎 ≡ 𝜎 ′ : Γ, when they substitute reducibly equal terms.
There are similar notions of validity for terms, equality of types and equality of terms. For

instance, when 𝐴 is a valid type, the validity of a term 𝑡 at 𝐴 is defined as

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

https://htmlpreview.github.io/?https://raw.githubusercontent.com/CoqHott/logrel-mltt/impredicativity-SProp-POPL/html/Definition.LogicalRelation.Fundamental.html
https://htmlpreview.github.io/?https://raw.githubusercontent.com/CoqHott/logrel-mltt/impredicativity-SProp-POPL/html/Definition.LogicalRelation.Substitution.html

Impredicative Observational Equality 74:15

∀(𝜎 : Δ→Γ), ⊩𝑣 Δ → Δ ⊩𝑠 𝜎 : Γ →
{
Δ ⊩ℓ 𝑡 [𝜎] : 𝐴[𝜎] : 𝑠
∀𝜎 ′. Δ ⊩𝑠 𝜎 ′ : Γ → Δ ⊩𝑠 𝜎 ≡ 𝜎 ′ : Γ → Δ ⊩ℓ 𝑡 [𝜎] ≡ 𝑡 [𝜎 ′] : 𝐴[𝜎] : 𝑠

Γ ⊩𝑣ℓ 𝑡 : 𝐴 : 𝑠

The lemma is proven using a mutual induction on derivations for well-typed types, terms,
equality of types and equality of terms. We only present the statement on well-typed terms as
we only explain the difference from the proof of Abel et al. [2018]; Pujet and Tabareau [2022]
on the impredicative fragment. Note that because validity of a term can only be defined if the
context and the type are themselves valid, the fundamental lemma actually provides validity of
every component of the typing judgment.

Lemma 3.1 (Fundamental lemma (for terms) [Fundamental.agda]). If Γ ⊢ 𝑡 : 𝐴 : 𝑠 , then there

is a level ℓ such that ⊩𝑣 Γ, Γ ⊩𝑣ℓ 𝐴 : 𝑠 and Γ ⊩𝑣ℓ 𝑡 : 𝐴 : 𝑠 .

Proof. The theorem is proven by induction on the derivation. The only cases where the proof
differs from Abel et al. [2018]; Pujet and Tabareau [2022] is when a rule builds an inhabitant of a
proof-irrelevant type. In this case, we need to show that (i) the proof-irrelevant type is valid, and
(ii) that the term is well-typed. Showing that the term is well-typed is always straightforward, but
the validity of its type can be more difficult to obtain.
In the case of the application of functions (Rule App), the usual predicative way to get the fact

that 𝐵 [𝑥 := 𝑢] is valid is to extract it from the information collected by the validity of the dependent
function type (which is known by induction hypothesis). In the impredicative case however, we
do not get such expansive information from the validity of the dependent function type, because
validity of a type in the impredicative universe cannot recursively mention validity of the codomain.
This is precisely where the apparently redundant assumptions come into play: from the induction
hypothesis on the additional assumptions, we also know that 𝐵 is valid as a type family over 𝐴.
Since validity is defined as reducibility under any valid substitution, we can get the reducibility of
𝐵 [𝑥 := 𝑢].

□

A direct consequence of the fundamental lemma is that any well-typed term has a weak-head
normal form. Another consequence is that any closed term of type N reduces to a normal form of
type N. Thus, to obtain canonicity for the integers of CCobs, we just need to know that there is no
neutral term of type N in an empty context [Canonicity.agda].

Unfortunately, as in [Pujet and Tabareau 2022], the logical relation is not sufficient to establish this.
In fact, as we will see in Section 4, there is a good reason for that: the consistency and canonicity
theorems for CCobs have a remarkably high proof-theoretical strength due to impredicativity,
whereas the logical relation argument can be developed in a predicative meta-theory. In Section 5,
we will supplement the normalization result with a model of CCobs in an impredicative meta-theory,
from which we will deduce the consistency and canonicity theorems.

3.4 Decidability of Conversion
Besides proving weak-head normalization of well-typed terms, the main point of the fundamental
lemma is to be able to show that conversion is decidable inCCobs. To do so, we define an algorithmic
relation Γ ⊢ 𝑡 � 𝑢 : 𝐴 : 𝑠 which is supposed to simulate convertibility of two terms 𝑡 and 𝑢, while
being easier to decide [Conversion.agda]. This algorithmic conversion keeps track of the relevance
information, and uses it to either give an immediate answer in case 𝑡 and 𝑢 are irrelevant, or
compute their weak-head normal forms, then compare their head constructor, and possibly apply

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

https://htmlpreview.github.io/?https://raw.githubusercontent.com/CoqHott/logrel-mltt/impredicativity-SProp-POPL/html/Definition.LogicalRelation.Fundamental.html
https://htmlpreview.github.io/?https://raw.githubusercontent.com/CoqHott/logrel-mltt/impredicativity-SProp-POPL/html/Definition.Typed.Consequences.Canonicity.html
https://htmlpreview.github.io/?https://raw.githubusercontent.com/CoqHott/logrel-mltt/impredicativity-SProp-POPL/html/Definition.Conversion.html

74:16 Loïc Pujet and Nicolas Tabareau

the algorithm recursively in case 𝑡 and 𝑢 are relevant. Correctness of this algorithmic conversion is
direct as the rules used are subsumed by the general conversion judgement [Soundness.agda].

Showing that the algorithmic conversion is also complete is more complex. It basically amounts
to replaying the fundamental lemma with a definition of the logical relation that uses algorithmic
conversion instead of the general conversion [Completeness.agda]. In our formal proof, we follow
Abel et al. [2018] in factoring the two instances of the fundamental lemma by defininig a generic
interface for both algorithmic conversion and typed conversion, and using this interface in the
definition of the logical relation [EqualityRelation.agda].

Theorem 3.2 (Eqivalence of conversion and algorithmic conversion). Given two terms 𝑡

and 𝑢 such that Γ ⊢ 𝑡 : 𝐴 : 𝑠 and Γ ⊢ 𝑢 : 𝐴 : 𝑠 , we have that

Γ ⊢ 𝑡 ≡ 𝑢 : 𝐴 : 𝑠 ⇐⇒ Γ ⊢ 𝑡 � 𝑢 : 𝐴 : 𝑠 .

It still remains to provide a decision procedure for the algorithmic conversion [Decidable.agda].
Given two terms 𝑡 and 𝑢 well-typed at 𝐴 : 𝑠 in context Γ, we can apply the fundamental lemma
plus the reflexivity of the logical relation to get the fact that Γ ⊩ℓ 𝑡 ≡ 𝑡 : 𝐴 : 𝑠 and similarly for 𝑢.
Because reducibly equal terms are also algorithmically convertible, we have Γ ⊢ 𝑡 � 𝑡 : 𝐴 : 𝑠 (and
similarly for 𝑢). Then the decision procedure is done by double induction on the proofs that 𝑡 and 𝑢
are reflexive for the algorithmic conversion. The idea is that 𝑡 and 𝑢 are convertible if and only if
the two reflexive proofs are the same.
Note that the proof that 𝑡 is algorithmically equal to itself contains the fact that 𝑡 strongly

normalizes, because 𝑡 can be recursively put in whnf.

3.5 Removing Redundant Premises
So far, we established the fundamental lemma on a type system with many redundant premises (see
for instance the rule App). In practice, we often want to work with a more economic presentation
that for instance may lead to more efficient type-checking algorithms. Although these redundant
premises played an essential role in our proof, once the fundamental lemma is established we can
show that they can safely be removed.
First, we establish the typing validity (a.k.a. typing regularity) by combining the fundamental

lemma with the fact that reducible types are well-formed and reducible terms are well-typed:

Corollary 3.3 (Typing Validity [Syntactic.agda]). If Γ ⊢ 𝑡 : 𝐴 : 𝑠 then Γ ⊢ 𝐴 : 𝑠 and similarly, if

Γ ⊢ 𝑡 ≡ 𝑢 : 𝐴 : 𝑠 then Γ ⊢ 𝐴 : 𝑠 , Γ ⊢ 𝑡 : 𝐴 : 𝑠 and Γ ⊢ 𝑢 : 𝐴 : 𝑠 .

And now that we are equipped with this corollary, as well as some inversion lemmas that we
obtained from the logical relation, we know enough to design a more economic presentation of
CCobs. The economic type system and the proof of equivalence are spelled out in full detail in
[NonParanoidTyping.agda]. For instance, the rule for application may be reduced to

App-eco
Γ ⊢ 𝑡 : Π(𝑥 : 𝐴). 𝐵 : ℛ(𝑠,𝑠 ′) Γ ⊢ 𝑢 : 𝐴 : 𝑠

Γ ⊢ 𝑡 𝑢 : 𝐵 [𝑥 := 𝑢] : 𝑠 ′

4 ANALYSIS OF THE NORMALIZATION PROOF
The informal proof presented in Section 3, and formalized in Agda, outlines the construction of
a normalization model in a rather powerful metatheory: Martin-Löf Type Theory extended with
induction-recursion. However, in order to control the computational complexity of the proof terms
more finely, we can try to weaken this metatheory as much as possible.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

https://htmlpreview.github.io/?https://raw.githubusercontent.com/CoqHott/logrel-mltt/impredicativity-SProp-POPL/html/Definition.Conversion.Soundness.html
https://htmlpreview.github.io/?https://raw.githubusercontent.com/CoqHott/logrel-mltt/impredicativity-SProp-POPL/html/Definition.Conversion.Consequences.Completeness.html
https://htmlpreview.github.io/?https://raw.githubusercontent.com/CoqHott/logrel-mltt/impredicativity-SProp-POPL/html/Definition.Typed.EqualityRelation.html
https://htmlpreview.github.io/?https://raw.githubusercontent.com/CoqHott/logrel-mltt/impredicativity-SProp-POPL/html/Definition.Conversion.Decidable.html
https://htmlpreview.github.io/?https://raw.githubusercontent.com/CoqHott/logrel-mltt/impredicativity-SProp-POPL/html/Definition.Typed.Consequences.Syntactic.html
https://htmlpreview.github.io/?https://raw.githubusercontent.com/CoqHott/logrel-mltt/impredicativity-SProp-POPL/html/Definition.Typed.NonParanoidTyping.html

Impredicative Observational Equality 74:17

4.1 The Computational Power of CCobs

To establish a simple lower bound, we can start by noting that Martin-Löf Type Theory is a subset
of CCobs, if we include the same amount of inductive types in both systems. Indeed, dependent
products and the universes are handled in the exact same way, and Pujet and Tabareau [2022]
explain how to add basic inductive types to CCobs such as dependent sums, the inductive equality
or𝑊 -types. Therefore, a normalization proof for CCobs can also act as a normalization proof for
MLTT. And since normalization entails consistency for MLTT, it follows that our meta-theory
needs to be at least as strong asMLTT—in fact, it turns out to be exactly what we need.

Theorem 4.1. MLTT with 𝑛 + 4 universes and a general scheme of indexed inductive types can

prove normalization of CCobs
with 𝑛 universes and basic inductive types (Σ-types, W-types, identity).

We defer the proof to Section 4.2. This theorem suggests that the normalization theorem for
CCobs with the full hierarchy of universes is equivalent to normalization for MLTT over a weak
fragment of arithmetic, but a complete proof of this fact would need a strengthened version of
Theorem 4.1 that does not require general indexed inductive types. Remark that we cannot hope for a
similar result for consistency or canonicity: while consistency and canonicity forMLTT follow from
normalization, proving that CCobs is consistent requires the increased power of impredicativity.

Theorem 4.1 also provides us with some control over the integer functions of CCobs:

Corollary 4.2. Any integer function that can be expressed as a closed term of type N → N in

CCobs
can also be defined in MLTT with a general scheme for indexed inductive types.

Proof. Note that any closed term 𝑓 of type N→ N in CCobs only mentions a finite number of
universes. Thus, Theorem 4.1 provides us with a normalization function for the corresponding
fragment of CCobs, that computes a normal form when applied to 𝑓 𝑛 where 𝑛 is a closed syntactic
integer. If we compose it with a function that sends normal forms to the adequate integer, we obtain
an integer function inMLTT, and canonicity ensures that it represents the same function as the
original CCobs term. □

Corollary 4.2 might come off as a surprise, since CCobs is equipped with an impredicative
universe, and impredicativity generally adds a great deal of proof-theoretical strength! And CCobs

does possess this increased logical power, in fact. Indeed, it can represent many more functions as
Ω-valued functional relations than MLTT. But this corollary shows that there is no way to extract
them in the proof-relevant fragment, even though we have access to elimination principles for false
propositions and equalities (using casts). Thus, the logical power of impredicativity is locked inside
of Ω. This is in stark contrast with the Calculus of Inductive Constructions, in which it is possible
to define closed terms of type N→ N that leverage the power of impredicativity, using a principle
called large elimination of singleton inductive types2. We discuss this principle with more detail in
Section 6.

4.2 Fitting the Normalization Proof in MLTT
In this subsection, we give a proof of Theorem 4.1, by encoding the logical relation sketched
in Section 3 without induction-recursion. This folklore technique has already been described in
various informal settings [Abel et al. 2007; Abel and Coquand 2005; Sterling et al. 2019], but we go
a step further and provide a formalization of the argument in Agda.3 For the remainder of this
section, we work inMLTT with indexed inductive types, but no induction-recursion, and we define
2The standard technique is to use the accessibility predicate as defined in https://coq.inria.fr/library/Coq.Init.Wf.html.
3The formalization can be found in https://github.com/loic-p/logrel-mltt/tree/without-IR. It is done forMLTT and not full
CCobs, but it does not make a difference as the crux is in the definition of the relation without induction-recursion.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

https://coq.inria.fr/library/Coq.Init.Wf.html
https://github.com/loic-p/logrel-mltt/tree/without-IR

74:18 Loïc Pujet and Nicolas Tabareau

a deep embedding of CCobs. To avoid confusion between the meta-theory and the object theory,
we will use Agda-style notations for the meta-theory.

From a bird’s eye perspective, the normalization proof builds a model of CCobs in which well-
formed types are interpreted as proof-relevant predicates on untyped terms, and induction-recursion
is used to construct a universe in the model: we define the inductive predicate of reducible types
simultaneously with recursive functions that associates reducibility predicates to a reducible type.
On closer inspection, we realize that the proof still works if the reducibility predicate of a universe
lives one universe higher than the reducibility predicates of the types it contains. This allows us
to use small induction-recursion, which can be replaced by functional relations that only require
simple indexed inductive types [Hancock et al. 2013].

Fig. 9 showcases what the relation-based definition looks like. For all ℓ ≤ 𝑛, we define an inductive
relation Rℓ between a context, an untyped term 𝑡 (the reducible type), its sort, a predicate 𝑃= of
types that are convertible to 𝑡 , a predicate 𝑃𝑡 which is the reducibility predicate associated to 𝑡 ,
and a binary relation 𝑃𝑡= that encodes convertibility of terms in 𝑃𝑡 . The logical relation ⊩ℓ is then
defined in terms of Rℓ . The inductive relation features eight constructors that are each defined in
Section 3, including RΠ which recursively calls the logical relation.

Note that the logical relation is built in stages:
• We first define an inductive relation R0 that has cases for dependent products and all base
types, except for proof-relevant universes: it only accounts for inhabitants of 𝒰0.

• From R0, we define a reducibility predicate 𝑃𝒰0 for 𝒰0: a term 𝑡 is in 𝑃𝒰0 if there exist 𝑃=, 𝑃𝑡 , 𝑃𝑡=
such that 𝑅0 (𝑡, 𝑃=, 𝑃𝑡 , 𝑃𝑡=). Now that we have a predicate for 𝒰0, we can define a relation R1

that accounts for inhabitants of 𝒰1. Of course, since 𝑃𝒰0 lives in Set1, R1 will land in Set2.
• We repeat this process 𝑛 times to obtain a relation R𝑛 that handles our 𝑛 universes.

Each step of this process requires an additional meta-theoretical universe level. This is only natural,
since we are proving normalization for a theory that subsumes MLTT𝑛 , a property from which we
can deduce the consistency ofMLTT𝑛 . Therefore, Gödel’s incompleteness theorem should apply
and guarantee that we need more universes in the meta-theory than in the fragment we consider—
that is, if the general indexed inductive types do not add logical power compared to to the theory of
Martin-Löf [1975]. Note that we may in principle use only one additional meta-theoretical universe
level but because of the use of record types to pack definitions, we actually need two.

Constructing this universe of reducible types is only the first half of the normalization proof. To
complete the construction, we also need to encode validity without induction-recursion inMLTT
and prove the fundamental lemma. We do not develop this here as it uses a similar construction
and we refer the interested reader to the formalization for the full proof. We just mention that
the definition of validity requires quantification over reducible substitution which again requires
two additional meta-theoretical universe levels. In the end, we can justify 𝑛 universes using 𝑛 + 4
universes in Agda, hence the statement of Theorem 4.1.

5 SEMANTICS OF CCobs

In this section, we turn to the construction of the standard set-theoretic model of CCobs by
adapting the construction of Gratzer [2022] to our setting. This model serves two purposes: to show
consistency of our theory on the one hand, and to ensure that CCobs is a good internal language
for set theory on the other hand.

5.1 Deriving Consistency from a Model
As we already mentioned, the normalization model that we built in Section 3 is not strong enough
to obtain consistency and canonicity for CCobs. Indeed, this model interprets the proof-irrelevant

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

Impredicative Observational Equality 74:19

Rℓ : Context → Term → (Term → Setℓ+1) → (Term → Setℓ+1) → (Term → Term → Setℓ+1) →
Setℓ+2

Rℓ ::= Rne : ∀ Γ 𝑡 → (Γ ⊩ne 𝑡) → Rℓ Γ 𝑡 (Γ ⊩ne 𝑡 ≡ _) (Γ ⊩ne _ : 𝑡) (Γ ⊩ne _ ≡ _ : 𝑡)
| RU : ∀ Γ 𝑡 → (Γ ⊩U 𝑡) → Rℓ Γ 𝑡 (Γ ⊩U 𝑡 ≡ _) (Γ ⊩U _ : 𝑡) (Γ ⊩U _ ≡ _ : 𝑡)
| RN : ∀ Γ 𝑡 → (Γ ⊩N 𝑡) → Rℓ Γ 𝑡 (Γ ⊩N 𝑡 ≡ _) (Γ ⊩N _ : 𝑡) (Γ ⊩N _ ≡ _ : 𝑡)
| RΠ : ∀ Γ 𝑡 → (Γ ⊩Π 𝑡) → Rℓ Γ 𝑡 (Γ ⊩Π 𝑡 ≡ _) (Γ ⊩Π _ : 𝑡) (Γ ⊩Π _ ≡ _ : 𝑡)
| RΩ : ∀ Γ 𝑡 → (Γ ⊩Ω 𝑡) → Rℓ Γ 𝑡 (Γ ⊩Ω 𝑡 ≡ _) (Γ ⊩Ω _ : 𝑡) (Γ ⊩Ω _ ≡ _ : 𝑡)
| R∀ : ∀ Γ 𝑡 → (Γ ⊩∀ 𝑡) → Rℓ Γ 𝑡 (Γ ⊩∀ 𝑡 ≡ _) (Γ ⊩∀ _ : 𝑡) (Γ ⊩∀ _ ≡ _ : 𝑡)
| R∃ : ∀ Γ 𝑡 → (Γ ⊩& 𝑡) → Rℓ Γ 𝑡 (Γ ⊩& 𝑡 ≡ _) (Γ ⊩& _ : 𝑡) (Γ ⊩& _ ≡ _ : 𝑡)
| R⊥ : ∀ Γ 𝑡 → (Γ ⊩⊥ 𝑡) → Rℓ Γ 𝑡 (Γ ⊩⊥ 𝑡 ≡ _) (Γ ⊩⊥ _ : 𝑡) (Γ ⊩⊥ _ ≡ _ : 𝑡)

All the functions whose name contains ⊩ne , ⊩U , ⊩N , ⊩Π , ⊩∀ , ⊩& , ⊩⊥ are as defined in Section 3.

_ ⊩ℓ _ : _ : (Γ : Context) → (𝑡 : Term) → (𝐴 : Term) → (𝑠 : Sort) → Setℓ+1
Γ ⊩ℓ 𝑡 : 𝑠 = (𝑃= : Term → Setℓ) × (𝑃𝑡 : Term → Setℓ)

× (𝑃𝑡= : Term → Term → Setℓ) × (Rℓ Γ 𝑡 𝑠 𝑃= 𝑃𝑡 𝑃𝑡=)

_ ⊩ℓ _ ≡ _ : _ : (Γ : Context) → (𝐴 : Term) → (𝐵 : Term) → (𝑠 : Sort) → {Γ ⊩ℓ 𝐴 : 𝑠} → Setℓ
Γ ⊩ℓ 𝐴 ≡ 𝐵 : 𝑠 = 𝑃= 𝐵

_ ⊩ℓ _ : _ : _ : (Γ : Context) → (𝑡 : Term) → (𝐴 : Term) → (𝑠 : Sort) → {Γ ⊩ℓ 𝐴 : 𝑠} → Setℓ
Γ ⊩ℓ 𝑡 : 𝐴 : 𝑠 = 𝑃𝑡 𝑡

_ ⊩ℓ _ ≡ _ : _ : _ : (Γ : Context) → (𝑡 𝑢 : Term) → (𝐴 : Term) → (𝑠 : Sort) → {Γ ⊩ℓ 𝐴 : 𝑠} → Setℓ
Γ ⊩ℓ 𝑡 ≡ 𝑢 : 𝐴 : 𝑠 = 𝑃𝑡= 𝑡 𝑢

Fig. 9. Inductive encoding of the logical relation

proposition ⊥ as the set of syntactical terms with type ⊥, which does not grant any kind of control
over its proofs in the empty context.

This was already the case in thework of Pujet and Tabareau [2022] on TTobs, so they supplemented
their normalization proof with a model in the category of sets (presented as setoids), using induction-
recursion to interpret universes as sets of codes à la Tarski defined mutually with eliminators
and coercion functions. In that model, ⊥ is actually interpreted as the empty set, which proves
consistency of TTobs: we can use it to show that there is no term of type ⊥ in the empty context.

5.2 CCobs as an Internal Language for Sets
While the construction of Pujet and Tabareau [2022] does show consistency of TTobs, it arguably falls
short of presenting TTobs as an internal language for classical mathematics. Indeed, the inductive-
recursive construction of the universe of codes is designed to only account for the codes that come
from the syntax of TTobs. In other words, the statement

Π(𝐴 : 𝑠) (𝑥 𝑦 𝑧 : 𝐴). 𝑥 ∼𝐴 𝑦 → 𝑦 ∼𝐴 𝑧 → 𝑥 ∼𝐴 𝑧

only states transitivity of equality for sets that are built from the type formers of TTobs, when
interpreted in their model.
This state of affairs is obviously not ideal, as readers who are not willing to accept CCobs as a

new foundation of mathematics would probably be more inclined to use it if they knew that any
theorem they proved in CCobs is also true for classical set theory. Thus, instead of replicating this

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

74:20 Loïc Pujet and Nicolas Tabareau

construction in an impredicative meta-theory (to be able to interpret Ω), we seize the opportunity
to solve two problems at once, and present a model in classical set theory that gives a much more
sensible meaning to statements in CCobs while still being sufficient to show consistency.

5.3 Constructing the Set-theoretical Model
We work in ZF set theory with a countable hierarchy of Grothendieck universes V0,V1, ... We call
Ω the lattice of truth values (or in other words, the lattice of subsets of the singleton set {∗}), with
∅ as its minimal value and given 𝑝 ∈ Ω we write val 𝑝 for the associated set {𝑥 ∈ {∗} | 𝑝}. Even
though we stay in the world of set theory for the duration of this section, we remain type theorists,
and as such we use dependent products, dependent sums and inductive types in this section. They
should be understood as their standard interpretation in the set-theoretic model of type theory. In
an attempt to minimize confusion, we change our notations a little bit: we use (𝑎 ∈ 𝐴) → (𝐵 𝑎) for
the set-theoretic dependent product, (𝑎 ∈ 𝐴) × (𝐵 𝑎) for the the set-theoretic dependent sum and
𝝎 for the set-theoretic integers.

The central ingredient of our standard model is the interpratation of the proof-relevant universes
of CCobs. It is tempting to define them directly as Grothendieck universes, but unfortunately this
does not work: in CCobs, type constructors are injective with respect to the observational equality
(for instance, (𝐴 → 𝐵) ∼ (𝐴′ → 𝐵′) implies that 𝐴 ∼ 𝐴′ and 𝐵 ∼ 𝐵′) while set-theoretic function
spaces collapse too much information for this to be possible (∅ → {∗} and ∅ → 𝝎 are identical).

This is not too difficult to fix, however: we can define a hierarchy of sets U0,U1... that have the
same element as the Grothendieck universes, but decorated with labels that keep track of how they
were constructed. The most natural way to do this from a type theorist’s perspective is to build an
inductive predicate U𝜀

𝑖
over V𝑖 and then interpret the universes of CCobs as U𝑖 = (𝑋 ∈ V𝑖) × (U𝜀

𝑖
𝑋),

as described in Fig. 10. Note how the constructor cemb builds a proof of U𝜀
𝑖
𝑋 for any (small) set 𝑋 ,

so that statements that quantify over 𝒰𝑖 apply to all appropriately-sized sets of the model. This
also implies that there might be several codes for the same set: for instance (N→ N ; cemb) and
(N→ N ; cΠUU ...) are both codes for the set N→ N, but only the second one remembers that it
has been built as a function space.

Remark that the set-theoretic equality between codes matches closely the equality of CCobs: two
codes can only be equal if they pack the same witness of U𝜀

𝑖
, which means that they have been

built in the same way. Moreover, if we compare two codes of the form (𝑋 → 𝑌 ; cΠUU ...), the
equality of the second member means that the domains and the codomains of the function spaces
are equal—we recover the injectivity of the type formers.

5.4 Interpreting the Syntax of CCobs

Now that we know how to deal with the universes, it only remains to spell out the interpretation of
the full syntax of CCobs. In the standard fashion [Hofmann 1995], we define interpretation functions
that send

• a context Γ to a set JΓK, and
• a pair of a term 𝑡 and a context Γ to a set J𝑡KΓ indexed over JΓK.

Since these functions are defined on raw syntax without any guarantee of well-typedness, we cannot
expect every term to have a sensible interpretation so we need to make them partial functions. We
will be able to prove that all well-typed terms admit an interpretation a posteriori by induction on
the derivations.
As usual, contexts are interpreted as telescopes: J•K = {∗} and JΓ, 𝑥 : 𝐴K = (𝜌 : JΓK) × (J𝐴KΓ 𝜌)

when J𝐴KΓ is defined. Given 𝜌 ∈ JΓK and a variable 𝑥 that appears in Γ, we write 𝜌 (𝑥) for the
corresponding projection. The interpretation of the terms is defined in Fig. 11. The proof-relevant

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

Impredicative Observational Equality 74:21

U𝜀
𝑖

: V𝑖 → V𝑖+1
U𝜀
𝑖

::= cemb : (𝑋 ∈ V𝑖) → U𝜀
𝑖
𝑋

| cΠUU : { 𝑗, 𝑘 ∈ 𝝎 | max(𝑗, 𝑘) ≤ 𝑖} → (𝐴 ∈ V𝑗) → (𝐴𝜀 ∈ U𝜀
𝑖
𝐴)

→ (𝐵 ∈ (𝐴 → V𝑘)) → (𝐵𝜀 ∈ ((𝑎 ∈ 𝐴) → U𝜀
𝑖
(𝐵 𝑎)))

→ U𝜀
𝑖
((𝑎 ∈ 𝐴) → 𝐵 𝑎)

| cΠΩU : (𝐴 ∈ Ω)
→ (𝐵 ∈ (val 𝐴 → V𝑖)) → (𝐵𝜀 ∈ ((𝑎 ∈ val 𝐴) → U𝜀

𝑖
(𝐵 𝑎)))

→ U𝜀
𝑖
((𝑎 ∈ val 𝐴) → 𝐵 𝑎)

| cU : { 𝑗 ∈ 𝝎 | 𝑗 < 𝑖} → U𝜀
𝑖
U𝑗

| cΩ : U𝜀
𝑖

Ω

U𝑖 := (𝑋 ∈ V𝑖) × (U𝜀
𝑖 𝑋)

el : U𝑖 → V𝑖
el (𝑋 ; 𝑋𝜀) := 𝑋

Fig. 10. The universe of codes, defined with set-theoretic inductive types

fragment follows the standard interpretation of dependent type theory, and the observational
equality is interpreted as the extensional equality of set-theory. Note how the irrelevant proofs
are all interpreted as ∗, the inhabitant of the singleton set. This forces us to interpret cast as doing
nothing, and ⊥−elim(𝐴, 𝑡) is not even interpreted since it can only be formed in inconsistent
contexts, which are empty in the model.
In order to prove the soundness of our interpretation, we need to extend it to weakenings

and substitutions between contexts. Assume Γ and Δ are a syntactical contexts, and 𝐴 and 𝑡 are
syntactical terms. In case JΓ, 𝑥 : 𝐴,ΔK and JΓ,ΔK are well-defined, let 𝜋𝐴 be the projection:

𝜋𝐴 : JΓ, 𝑥 : 𝐴,ΔK → JΓ,ΔK

(®𝑥Γ, 𝑥𝐴, ®𝑥Δ) ↦→ (®𝑥Γ, ®𝑥Δ) .

In case JΓ,Δ[𝑥 := 𝑡]K and JΓ, 𝑥 : 𝐴,ΔK are well-defined, we define the function 𝜎𝑡 by:
𝜎𝑡 : JΓ,Δ[𝑥 := 𝑡]K → JΓ, 𝑥 : 𝐴,ΔK

(®𝑥Γ, ®𝑥Δ) ↦→ (®𝑥Γ, J𝑡KΓ ®𝑥Γ, ®𝑥Δ).

Lemma 5.1 (Weakening). 𝜋𝐴 is the semantic counterpart to the weakening of 𝐴: for all terms 𝑢,

when both sides are well defined, we have:

J𝑢KΓ,𝑥 :𝐴,Δ = J𝑢KΓ,Δ ◦ 𝜋𝐴
Lemma 5.2 (Substitution). 𝜎𝑡 is the semantic counterpart to the substitution by 𝑡 : for all terms 𝑢,

when both sides are well defined, we have:

J𝑢 [𝑥 := 𝑡]KΓ,Δ [𝑥 :=𝑡] = J𝑢KΓ,𝑥 :𝐴,Δ ◦ 𝜎𝑡

Theorem 5.3 (Soundness of the Standard Model).
(1) If ⊢ Γ then JΓK is defined.
(2) If Γ ⊢ 𝐴 : Ω then J𝐴KΓ 𝜌 is a proposition for all 𝜌 ∈ JΓK.
(3) If Γ ⊢ 𝐴 : 𝒰𝑖 then J𝐴KΓ 𝜌 is in U𝑖 for all 𝜌 ∈ JΓK.
(4) If Γ ⊢ 𝑡 : 𝐴 : Ω then J𝐴KΓ 𝜌 is true for all 𝜌 ∈ JΓK.
(5) If Γ ⊢ 𝑡 : 𝐴 : 𝒰𝑖 then J𝑡KΓ 𝜌 is in el (J𝐴KΓ 𝜌) for all 𝜌 ∈ JΓK.
(6) If Γ ⊢ 𝑡 ≡ 𝑢 : 𝐴 then J𝑡KΓ = J𝑢KΓ .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

74:22 Loïc Pujet and Nicolas Tabareau

J𝑥KΓ 𝜌 := 𝜌 (𝑥)
J𝒰𝑖KΓ 𝜌 := ⟨U𝑖 ; cU 𝑖⟩
JΩKΓ 𝜌 := ⟨Ω ; cΩ⟩

JΠ𝒰𝑗 ,𝒰𝑘 (𝑦 : 𝐹) . 𝐺KΓ 𝜌 :=
〈
(𝑥 ∈ el J𝐹KΓ 𝜌) → (el J𝐺KΓ,𝑥 :𝐹 ⟨𝜌 ; 𝑥⟩)

; cΠUU 𝑗 𝑘 (J𝐹KΓ 𝜌) (𝑥 ↦→ J𝐺KΓ,𝑥 :𝐹 ⟨𝜌 ; 𝑥⟩)
〉

JΠΩ,𝒰𝑘 (𝑦 : 𝐹) . 𝐺KΓ 𝜌 :=
〈
(𝑥 ∈ val J𝐹KΓ 𝜌) → (el J𝐺KΓ,𝑥 :𝐹 ⟨𝜌 ; 𝑥⟩)

; cΠΩU (J𝐹KΓ 𝜌) (𝑥 ↦→ J𝐺KΓ,𝑥 :𝐹 ⟨𝜌 ; 𝑥⟩)
〉

JΠ𝒰𝑗 ,Ω (𝑦 : 𝐹) . 𝐺KΓ 𝜌 := ∀𝑥 ∈ (el J𝐹KΓ 𝜌), J𝐺KΓ,𝑥 :𝐹 ⟨𝜌 ; 𝑥⟩
JΠΩ,Ω (𝑦 : 𝐹) . 𝐺KΓ 𝜌 := (J𝐹KΓ 𝜌) ⇒ (J𝐺KΓ,𝑥 :𝐹 ⟨𝜌 ; ∗⟩)

J𝜆(𝑥 : 𝐹) . 𝑡KΓ 𝜌 := 𝑥 ↦→ (J𝑡KΓ,𝑥 :𝐹 ⟨𝜌 ; 𝑥⟩)
J𝑡 𝑢KΓ 𝜌 := (J𝑡KΓ 𝜌) (J𝑢KΓ 𝜌)
JNKΓ 𝜌 := ⟨𝝎 ; cemb 𝝎⟩
J0KΓ 𝜌 := 0

JS 𝑡KΓ 𝜌 := S (J𝑡KΓ 𝜌)
JN−elim(𝑃, 𝑡0, 𝑡𝑆 , 𝑛)KΓ 𝜌 := 𝝎−elim(el ◦ (J𝑃KΓ 𝜌), J𝑡0KΓ 𝜌, J𝑡𝑆KΓ 𝜌, J𝑛KΓ 𝜌)

J(𝑦 : 𝐹) & 𝐺KΓ 𝜌 := (J𝐹KΓ 𝜌) ∧ (J𝐺KΓ,𝑦:𝐹 ⟨𝜌 ; ∗⟩)
J⟨𝑡,𝑢⟩KΓ 𝜌 := ∗
Jfst(𝑡)KΓ 𝜌 := ∗

Jsnd(𝑡)KΓ 𝜌 := ∗
J⊥KΓ 𝜌 := ∅ ∈ Ω

J⊥−elim(𝐴, 𝑡)KΓ 𝜌 := undefined
J𝑡 ∼𝐴 𝑢KΓ 𝜌 := J𝑡KΓ 𝜌 = J𝑢KΓ 𝜌

Jrefl(𝑡)KΓ 𝜌 := ∗
Jtransp(𝐹, 𝑡,𝐺,𝑢, 𝑡 ′, 𝑒)KΓ 𝜌 := ∗

Jcast(𝐴, 𝐵, 𝑒, 𝑡)KΓ 𝜌 := J𝑡KΓ 𝜌

Jcastrefl(𝐴, 𝑡)KΓ 𝜌 := ∗

Fig. 11. Interpretation of CCobs in the Standard Model

Proof. By induction on the typing derivations, using Lemmas 5.1 and 5.2. □

5.5 Consequences of the Model
From the soundness theorem and the interpretation of⊥ as ∅, the consistency ofCCobs is immediate:

Theorem 5.4 (Consistency). There are no proofs of ⊥ in the empty context.

Furthermore, by inspecting the normal forms provided by the normalization theorem, we realize
that cast is the only way to build a neutral term in the absence of variables. But having a stuck cast
requires having an equality proof between two incompatible types, which contradicts consistency.

Theorem 5.5. There are no neutral terms in the empty context.

From there, we deduce the canonicity theorem: all integers reduce to standard integers in the
empty context. Thus our model allows us to establish all the important meta-theoretical properties.

On the other hand, it seems difficult to measure to what extent our set-theoretic model presents
CCobs as a good internal language for sets. Compared to the universe construction of Pujet and
Tabareau [2022], we gain the property that every set belongs to a universe—meaning that theorems
which quantify over 𝒰𝑖 will apply to all sufficiently small sets. Of course, this does not prevent
us from proving some theorems that are obviously false in classical mathematics, such as the
injectivity of type formers. But we would argue that all such results are artifacts of the choice of
encodings, and not meaningful mathematical statements.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

Impredicative Observational Equality 74:23

6 CCobs WITH A PROOF-RELEVANT IMPREDICATIVE UNIVERSE HAS UNDECIDABLE
TYPE-CHECKING

The system we have presented so far has an impredicative universe Ω of proof-irrelevant proposi-
tions, which contains the observational equality and the false proposition with the corresponding
large elimination principles. In other words, Ω provides the user with a complete Heyting algebra
of truth values, as is available in Coq and Lean.
However Ω is a bit weaker than the impredicative universe Prop of the Calculus of Inductive

Constructions. Indeed, Prop allows large elimination for all the sub-singleton inductive propositions,
i.e. the propositions that have at most one constructor and whose constructor arguments all have
sort Prop. This includes equality, but also the accessibility predicate Acc from which we can derive
some constructive choice principles (as discussed in [Forster 2021]) that may come in handy for
mathematics. However, the price to pay for this additional logical power is that proof terms in Prop
are proof-relevant, and need to be reduced.

Thus one may wonder if we can add Prop to CCobs alongside the universe of strict propositions,
using the same computation rules as for the proof-relevant fragment of CCobs so that it can provide
us with more logical power while still enjoying extensionality principles. We need to be careful
though, as past experiments of adding a proof-irrelevant equality to Coq that have been mentioned
in [Gilbert et al. 2019] have resulted in the breakage of normalization [Abel and Coquand 2020].
The argument of Abel and Coquand relies on the fact that equality behaves like the usual

Martin-Löf Identity Type, which is an inductive type that computes via the 𝐽 -eliminator. In CCobs,
elimination of equality is done using the cast operator which is quite different, as it computes by
comparing the weak-head normal forms of the source and target types. Unfortunately, it turns out
that CCobs is not compatible with Prop either. In fact, we show in this section that it is possible to
use a modified version of Abel and Coquand’s argument to show undecidability of type-checking
for open terms in presence of Prop, both for CCobs and the theory of Abel and Coquand [2020].

6.1 Outline
The idea of the proof is rather simple: on the one hand, impredicativity makes it possible to give a
type to the term

Δ𝑓 := 𝜆𝑥 . 𝑓 (𝑥 𝑥)

for any well-typed function 𝑓 of type (NP → NP) → (NP → NP), which is one half of the fixed
point combinator 𝑌𝑓 := Δ𝑓 Δ𝑓 . Here NP denotes the inductive natural numbers in Prop. On the
other hand, cast can be used to convert between any two types in an inconsistent context, in a
way that does not block reduction. This allows us to apply Δ𝑓 to itself (up to a cast) and obtain an
approximation of 𝑌𝑓 . Then, using these pseudo-fixed points, we can build a term that loops through
the iterates of any integer function:

Theorem 6.1. Let 𝑔 be any closed term of type NP → NP. In an inconsistent context, one can define

a term dec𝑔 of type NP which is convertible to 0 if and only if there is a positive integer 𝑛 such that

𝑔𝑛 1 = 0, and diverges otherwise.

Of course, the existence of such an integer is not decidable in general, thus conversion and typing
are undecidable for CCobs + Prop. As an aside, note that this pseudo-fixed point operator can also
be constructed in Ω if we add proof-irrelevant natural numbers. But it does not cause any issue, as
we have a simple way to check for convertibility of proof-irrelevant terms: having the same type is
sufficient! For this reason, we never perform reduction in the proof-irrelevant layer, and need not
to worry about these potentially divergent terms.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

74:24 Loïc Pujet and Nicolas Tabareau

6.2 Definition of an Approximate Fixed Point Combinator
Let 𝑓 be a closed function of type (NP → NP) → (NP → NP). In an inconsistent context, we can
derive a term

𝑒 : Π(𝑋 𝑌 : Prop). 𝑋 ∼ 𝑌

that allows us to freely cast between any two propositions. We can use it to derive our approximate
fixpoint combinator by defining

⊥P : Prop := Π(𝑋 : Prop). 𝑋
Δ𝑓 : ⊥P → NP → NP := 𝜆(𝑥 : ⊥P). 𝑓 (𝑥 (⊥P → NP → NP) 𝑥)
Δ′
𝑓

: ⊥P := 𝜆(𝑋 : Prop). cast(⊥P → NP → NP, 𝑋, 𝑒 (⊥P → NP → NP) 𝑋,Δ𝑓)
𝑌𝑓 : NP → NP := Δ𝑓 Δ′

𝑓

Technically, it turns out that 𝑌𝑓 does not exactly behave like a fixpoint combinator because of
additional casts appearing during the reduction: a tedious but straightforward computation in
CCobs shows that

𝑌𝑓 ≡ Δ𝑓 Δ′
𝑓

⇒∗ 𝑓 (𝛼 (Δ𝑓 (𝛽 Δ′
𝑓
)))

⇒∗ 𝑓 (𝛼 (𝑓 (𝛼2 (Δ𝑓 (𝛽3 Δ′
𝑓
)))))

⇒∗ 𝑓 (𝛼 (𝑓 (𝛼2 (𝑓 (𝛼4 (Δ𝑓 (𝛽7 Δ′
𝑓
)))))))

⇒∗ ...

where 𝛼 := 𝜆(𝑥 : NP → NP). cast(NP → NP,NP → NP, 𝑒2, 𝑥) , 𝛽 := 𝜆(𝑥 : ⊥P). cast(⊥P,⊥P, 𝑒1, 𝑥)
and 𝑒1 and 𝑒2 are equalities given respectively by the first and second projection of the equality
𝑒 (⊥P → NP → NP) (⊥P → NP → NP) obtained during cast reduction.

However, this behavior is sufficient for our purposes, since all the 𝛼 disappear when the function
is applied to an actual integer. Therefore, given a closed function 𝑔 of typeNP → NP that terminates
on all integer inputs, we instantiate 𝑓 with

𝜆(𝑝 : NP → NP). 𝜆(𝑛 : NP).N−elim(NP, 0, 𝜆(𝑚 : NP). 𝑝 (𝑔 𝑚), 𝑛)

and we obtain that 𝑌𝑓 1 reduces to 0 if there exists a 𝑛 such that 𝑔𝑛 1 = 0, and diverges (for any
reduction strategy) otherwise.
By replacing cast with the transport operator derived from the elimination principle of the

inductive equality, the same result applies to the theory of Abel and Coquand [2020], even though
the reduction pattern of 𝑌𝑓 is slightly different.

6.3 Conversion is Undecidable
CCobs is expressive enough to encode Turing machines so that knowing whether there exists a 𝑛
such that 𝑔𝑛 1 = 0 is undecidable. To complete the proof of undecidability of conversion, we still
need to show that a term of type NP that diverges for all reduction strategies is not convertible to 0.
In other words, we need to show that conversion is not degenerate.

To establish this, we use a lemma of Geuvers, adapted to the Calculus of Inductive Constructions
byWerner [1994, lemma 2.19]. The lemma corresponds to a weak form of confluence: any well-typed
term 𝑡 that is 𝛽𝜂𝜄-equal to a weak head normal form 𝑡 ′ actually reduces to an 𝜂-expanded form of
𝑡 ′ for untyped 𝛽𝜄 ′ reduction, a slightly modified version of untyped 𝛽𝜄 reduction. If we take 𝑡 ′ = 0
then we obtain that a well-typed term 𝑡 that is 𝛽𝜂𝜄-equal to 0 has a normal form, and thus cannot
be divergent.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

Impredicative Observational Equality 74:25

In order to apply this lemma to CCobs, we need to extend the proof to strict propositions and
type-casting operators. The extension is not too difficult: strict propositions do not contribute to
the reduction behavior, and type-casting is very similar to an eliminator of an inductive type.

Again, a similar proof can be done in the theory of Abel and Coquand [2020].

7 CONCLUSION AND RELATEDWORK
In this paper, we presented a way to reconcile proof-irrelevant impredicativity with UIP. Our work
was born from the study of observational type theories, originating from the study of the setoid
model of type theory [Altenkirch 1999; Hofmann 1995], and having seen renewed interest by the
community in recent years [Altenkirch et al. 2019; Pujet and Tabareau 2022; Sterling et al. 2019].
This detour lead us rather far from the system that sparked the initial conundrum, which was

a straightforward extension of MLTT with definitional UIP. The system in question features an
especially interesting computation rule, which basically amounts to having a type-cast operator that
reduces whenever the source and target types are convertible instead of computing by case analysis
on the head constructor of said types. This computational behaviour trades the extensionality
principles of the observational equality for a 𝐽 operator that always reduces on reflexivity (J-on-refl),
even with open terms. Pujet and Tabareau [2022] explain how to define a proof-relevant equality
that recovers the J-on-refl computation rule in TTobs, but it would be interesting to investigate the
J-on-refl rule for the proof-irrelevant observational equality, so that we get the best of both worlds.
This was already suggested by Allais et al. [2013] in the context of Observational Type Theory.
Since we pinpointed the decidablity issues as stemming from computational impredicativity, we
expect that J-on-refl would not be a problem in a theory with proof-irrelevant impredicativity such
as CCobs.
The set-theoretic model of Section 5 fulfills everything we could expect of a “standard” model,

and ensures us that the theorems of CCobs cannot deviate too much from the mathematical canon.
However, CCobs is a constructive type theory, and as such we can hope that it has natural semantics
in a broader class of models: Grothendieck toposes. Indeed, CCobs is characterized by its extensional
equality and an impredicative universe of propositions, two features that seem to be a perfect
match for topos theory. This was first noticed by Gratzer [2022], who remarked that the model
construction that we presented in Section 5 is sufficiently general to work in any Grothendieck
topos. This makes CCobs a reasonably good internal language for toposes, but it still lacks one
important feature that is available in all toposes: the principle of unique choice. This principle, also
known as function comprehension, states that given any functional relation 𝑅 : 𝐴 → 𝐵 → Ω we can
construct a choice function for 𝑅

Π(𝑥 : 𝐴). ∃!(𝑦 : 𝐵) . 𝑅 𝑥 𝑦 → Σ(𝑓 : 𝐴 → 𝐵).Π(𝑥 : 𝐴) . 𝑅 𝑥 (𝑓 𝑥).

using the Σ-types from Pujet and Tabareau [2022] and assuming that the unique existence quantifier
is defined with the usual impredicative encoding. Unfortunately, this principle is impossible to
derive in CCobs.

REFERENCES
Andreas Abel, Klaus Aehlig, and Peter Dybjer. 2007. Normalization by evaluation for Martin-Löf type theory with one

universe. Electronic Notes in Theoretical Computer Science 173 (2007), 17–39.
Andreas Abel and Thierry Coquand. 2005. Untyped Algorithmic Equality for Martin-Löf’s Logical Framework with Surjective

Pairs. In Typed Lambda Calculi and Applications, Paweł Urzyczyn (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
23–38.

Andreas Abel and Thierry Coquand. 2020. Failure of Normalization in Impredicative Type Theory with Proof-Irrelevant
Propositional Equality. Logical Methods in Computer Science Volume 16, Issue 2 (June 2020). https://doi.org/10.23638/
LMCS-16(2:14)2020

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

https://doi.org/10.23638/LMCS-16(2:14)2020
https://doi.org/10.23638/LMCS-16(2:14)2020

74:26 Loïc Pujet and Nicolas Tabareau

Andreas Abel, Joakim Öhman, and Andrea Vezzosi. 2018. Decidability of Conversion for Type Theory in Type Theory.
Proceedings of the ACM on Programming Languages 2, POPL, Article 23 (Jan. 2018), 29 pages. https://doi.org/10.1145/
3158111

Guillaume Allais, Conor McBride, and Pierre Boutillier. 2013. New Equations for Neutral Terms: A Sound and Complete
Decision Procedure, Formalized. In Proceedings of the 2013 ACM SIGPLAN Workshop on Dependently-typed Programming

(Boston, Massachusetts, USA) (DTP ’13). ACM, New York, NY, USA, 13–24. https://doi.org/10.1145/2502409.2502411
T. Altenkirch. 1999. Extensional equality in intensional type theory. In Proceedings. 14th Symposium on Logic in Computer

Science (Cat. No. PR00158). 412–420. https://doi.org/10.1109/LICS.1999.782636
Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, and Nicolas Tabareau. 2019. Setoid type theory - a syntactic translation.

InMPC 2019 - 13th International Conference on Mathematics of Program Construction (LNCS, Vol. 11825). Springer, 155–196.
https://doi.org/10.1007/978-3-030-33636-3_7

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. 2007. Observational equality, now!. In Proceedings of the

Workshop on Programming Languages meets Program Verification (PLPV 2007). 57–68. https://doi.org/10.1145/1292597.
1292608

HP Barendregt. 1993. Lambda calculi with types. In Handbook of logic in computer science (vol. 2) background: computational

structures. 117–309.
Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2015. Cubical Type Theory: a constructive interpretation

of the univalence axiom. In 21st International Conference on Types for Proofs and Programs (21st International Conference

on Types for Proofs and Programs, 69). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Tallinn, Estonia, 262. https:
//doi.org/10.4230/LIPIcs.TYPES.2015.5

Thierry Coquand and Gérard Huet. 1988. The calculus of constructions. Information and Computation 76, 2 (1988), 95–120.
https://doi.org/10.1016/0890-5401(88)90005-3

Yannick Forster. 2021. Church’s Thesis and Related Axioms in Coq’s Type Theory. In 29th EACSL Annual Conference

on Computer Science Logic (CSL 2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 183), Christel Baier
and Jean Goubault-Larrecq (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 21:1–21:19.
https://doi.org/10.4230/LIPIcs.CSL.2021.21

Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. 2019. Definitional Proof-Irrelevance without K.
Proceedings of the ACM on Programming Languages 3 (Jan. 2019), 1–28. https://doi.org/10.1145/3290316

Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des coupures dans l’arithmétique d’ordre supérieur.
(1972). Thèse de Doctorat d’État, Université de Paris VII.

Daniel Gratzer. 2022. An inductive-recursive universe generic for small families. https://doi.org/10.48550/ARXIV.2202.05529
Peter Hancock, Conor McBride, Neil Ghani, Lorenzo Malatesta, and Thorsten Altenkirch. 2013. Small Induction Recursion.

In Typed Lambda Calculi and Applications, Masahito Hasegawa (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
156–172.

Martin Hofmann. 1995. Extensional concepts in intensional type theory. Ph. D. Dissertation. University of Edinburgh.
Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. 2013. The Power of Parameterization in Coinductive Proof.

In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Rome, Italy)
(POPL ’13). Association for Computing Machinery, New York, NY, USA, 193–206. https://doi.org/10.1145/2429069.2429093

Antonius J. C. Hurkens. 1995. A Simplification of Girard’s Paradox. In Proceedings of the Second International Conference on

Typed Lambda Calculi and Applications (TLCA ’95). Springer-Verlag, Berlin, Heidelberg, 266–278.
Per Martin-Löf. 1975. An Intuitionistic Theory of Types: Predicative Part. In Logic Colloquium ’73, H.E. Rose and J.C.

Shepherdson (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 80. Elsevier, 73 – 118. https://doi.org/10.
1016/S0049-237X(08)71945-1

Loïc Pujet and Nicolas Tabareau. 2022. Observational Equality: Now For Good. Proceedings of the ACM on Programming

Languages 6, POPL (Jan. 2022), 1–29. https://doi.org/10.1145/3498693
Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. 2019. Cubical Syntax for Reflection-Free Extensional Equality. In

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019) (Leibniz International

Proceedings in Informatics (LIPIcs), Vol. 131), Herman Geuvers (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 31:1–31:25. https://doi.org/10.4230/LIPIcs.FSCD.2019.31

Benjamin Werner. 1994. Une Théorie des Constructions Inductives. Theses. Université Paris-Diderot - Paris VII. https:
//tel.archives-ouvertes.fr/tel-00196524

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 74. Publication date: January 2023.

https://doi.org/10.1145/3158111
https://doi.org/10.1145/3158111
https://doi.org/10.1145/2502409.2502411
https://doi.org/10.1109/LICS.1999.782636
https://doi.org/10.1007/978-3-030-33636-3_7
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.4230/LIPIcs.CSL.2021.21
https://doi.org/10.1145/3290316
https://doi.org/10.48550/ARXIV.2202.05529
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1145/3498693
https://doi.org/10.4230/LIPIcs.FSCD.2019.31
https://tel.archives-ouvertes.fr/tel-00196524
https://tel.archives-ouvertes.fr/tel-00196524

	Abstract
	1 Introduction
	2 An Impredicative type theory with observational equality
	2.1 The Syntax of CCobs
	2.2 The Typing Rules of CCobs
	2.3 Conversion and Reduction to Weak-Head Normal Forms
	2.4 CCobs in Practice

	3 A logical relation with an Impredicative universe
	3.1 The Logical Relation for the Predicative Hierarchy
	3.2 The Logical Relation for the Impredicative Universe
	3.3 The Fundamental Lemma
	3.4 Decidability of Conversion
	3.5 Removing Redundant Premises

	4 Analysis of the Normalization Proof
	4.1 The Computational Power of CCobs
	4.2 Fitting the Normalization Proof in MLTT

	5 Semantics of CCobs
	5.1 Deriving Consistency from a Model
	5.2 CCobs as an Internal Language for Sets
	5.3 Constructing the Set-theoretical Model
	5.4 Interpreting the Syntax of CCobs
	5.5 Consequences of the Model

	6 CCobs with a Proof-Relevant Impredicative Universe has Undecidable Type-Checking
	6.1 Outline
	6.2 Definition of an Approximate Fixed Point Combinator
	6.3 Conversion is Undecidable

	7 Conclusion and Related Work
	References

