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NON-LINEAR KDV EQUATIONS
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Abstract. In this work, approximate analytic solutions for different types of KdV equations
are obtained using the homotopy analysis method (HAM). The convergence control parameter
h helps us to adjust the convergence region of the approximate analytic solutions. The solutions
are obtained in the form of power series. The obtained solutions and the exact solutions are
shown graphically, highlighting the effects of non-linearity. We have compared the approximate
analytical results which are determined by HAM, with the exact solutions and shown graphically
with their absolute errors. By choosing an appropriate value of the convergence control param-
eter, we can obtain the solution in few iterations. All the computations have been performed
using the software package MATHEMATICA.

Mathematics Subject classification 2010: 65H20, 90C30

1. Introduction

Many nonlinear physical phenomena arise in various fields of engineering and science such
as fluid dynamics, nuclear reactor dynamics, plasma physics, biology, optical fibres and solid
state physics. To describe these complex physical phenomena, nonlinear differential equations
play a significant role. Therefore, obtaining the solutions of these nonlinear equations is a topic
of great interest in the study of many fields of science. To better understand the working of
the physical problem, mathematical model came into picture in the form of nonlinear PDEs.
The solutions of partial differential equations give the detailed summary about the nature of
phenomena involved. Many numerical and analytical methods have been derived to deal with
these kind of scientific problems.

We need to adopt an effective and powerful method to investigate such type of mathematical
model which gives the solutions upholding to physical reality. In most of the analytic techniques,
linearization of the system is the main topic to focus on, and also, it is assumed that the nonlin-
earities are relatively insignificant. Sometimes, these assumptions made a strong affect on the
solutions in respect to the real physics of the phenomena involved. Thus, finding the solutions
of nonlinear ODEs and PDEs is still a significant problem. For this, we need new techniques
to develop approximate and exact solutions. In the recent years, many powerful methods such
as differential transform method [17], Adomian decomposition method [4, 14], Homotopy per-
turbation method [1, 6, 19], Variational iteration method [27, 28], Modified variational iteration
method [24], F-expansion method [3], Hirota bilinear method [22], G’/G-expansion method [10],
tanh-coth method [13], Lie symmetry method [8, 18, 11, 25], B-spline collocation method [16]
are used to determine the approximate or exact analytical solutions of nonlinear PDEs.

Key words and phrases. KdV equations, Homotopy analysis method, Approximate series solutions, Conver-
gence control parameter, Symbolic computation.
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One of the powerful and important methods for solving nonlinear problems is the homotopy
analysis method (HAM). To propose a general analytic method for nonlinear problems, Liao [21])
first proposed the idea of the homotopy in the field of topology, called as Homotopy Analysis
Method (HAM) [9, 20, 21, 29]. Whether small parameters exist or not, the validity of the HAM
is independent due to the homotopy. Therefore, the homotopy analysis method can overcome
the limitations and restrictions of perturbation techniques (see [6, 7]). The HAM provides the
valuable series solution with minimum number of calculations and avoids the discretization of
domain and unrealistic assumptions. These series solution expressions always exist in terms
of parameter h. The convergence region and the convergence region for every solution can be
obtained easily by the parameter h which is called the convergence control parameter.

In this paper, our aim is to solve KdV equations of fifth-order by using HAM. The general
form of KdV equation can be written as follows (see [12, 23, 30]):

ut ± u5r = F (r, t, u, u2, ur, u2r, u3r). (1.1)

where u(r, t) is the function of r and t, which represent the space and time variables, respectively.
The KdV equation generally occurs in the theory of shallow water waves [15] and magneto-
acoustic waves [5] in a plasma. Researchers have studied the travelling wave solutions of fifth-
order KdV equations over the last decades which do not vanish on infinity. The KdV equation
has been the topic of extensive research in recent years [2, 12]. We have considered the following
three well-known forms of the KdV equation (see [12, 26]):

ut + ur + u2u2r + uru2r − 20u2u3r + u5r = 0, (1.2)

ut + uur − uu3r + u5r = 0, (1.3)

ut + uur + u3r − u5r = 0, (1.4)

Eqs. (1.2) and (1.3) are known as KdV equations and Eq. (1.4) is known as Kawahara equation.
The research paper is arranged as follows: Basic idea of HAM is presented in brief in section

2. In section 3, the proposed method is applied to obtain the solutions of three different types
of KdV equations of fifth-order with the initial conditions. In section 4, the convergence of
the obtained solutions are discussed. A comparison is made between the exact solutions and
obtained solutions. Absolute errors of the solutions are shown in the Tables 1, 2 and 3. In the
last section, a short summary of results is presented.

2. Basics Concepts of Homotopy Analysis Method

We consider the nonlinear differential equation given as follows:

M [u(r, t)] = 0, (2.1)

where M is a non-linear operator.
Let θ be a homotopy parameter and ξ be a function of θ, then we have

Dn(ξ) =
1

n!

∂nξ(r, t; θ)

∂θn

∣∣∣∣
θ=0

, where n ≥ 0, (2.2)

where Dn(ξ) denotes the nth-order homotopy derivative of ξ (see [21]). Now, the deformation
equation of zero-order is constructed as:

(1− θ)N [ξ(r, t; θ)− u0(r, t)] = θ ℏH(r, t)M [ξ(r, t; θ)], (2.3)

where N is the auxiliary linear operator, ξ(r, t; θ) denotes an unknown function, ℏ is a non-zero
auxiliary parameter, θ is an embedding parameter whose value lies in the interval [0, 1], H is a
non-zero auxiliary function and u0 is the initial guess of u.
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Now, the function ξ(r, t; p) is expanded in the Taylor’s series about p = 0 in the following
manner:

ξ(r, t; θ) = u0(r, t) +
∞∑
n=1

un(r, t)θ
n, (2.4)

where

un(r, t) = Dn(ξ). (2.5)

If we properly select the value of auxiliary parameter ℏ, initial guess u0, non-zero auxiliary
function H and auxiliary linear operator N , then the series (2.4) converges for θ = 1. Now, after
some manipulation, we get the nth-order deformation equation as follows:

N [un(r, t)− σn un−1(r, t)] = ℏHRn(un−1, r, t), (2.6)

where

Rn(un−1, r, t) = Dn−1(M [ξ(r, t; θ)]) =
1

(n− 1)!

∂n−1ξ(r, t; θ)

∂θn−1

∣∣∣∣
θ=0

(2.7)

and

σn =

{
0, n ≤ 1;
1, n > 1.

Now, the components un(r, t) for n ≥ 1 can be calculated from Eq. (2.6) with the initial
conditions of the original problem.

It is worth noting that we have a liberty to choose the value of the parameters ℏ and M
in the HAM, which provides a simple way to select and adjust the rate of convergence of the
approximate analytic solution.

3. Applications of HAM

Example 1:

-2.0 -1.5 -1.0 -0.5 0.5 1.0

-2

2

4

Fig. 1 The h-curve for Eq. (3.1) obtained by the third order approximation.
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We take the following fifth-order KdV equation:

ut + ur + u2u2r + uru2r − 20u2u3r + u5r = 0, (3.1)

with initial condition

u(r, 0) =
1

r
, (3.2)

The exact solution of the Eq. (3.1) is as follows:

u(r, t) =
1

(r − t)
. (3.3)

Now, for applying HAM to the equation Eq. (3.1), we define the following linear operator:

N [ξ(r, t; θ)] =
∂ξ(r, t; θ)

∂t
, (3.4)

having the property N [c] = 0,( c = constant ). With the help of Eq. (3.1), we define non-linear
operator M such that

M [ξ(r, t; θ)] = ξt + ξr + ξ2ξ2r + ξr ξ2r − 20ξ2ξ3r + ξ5r. (3.5)

With the help of above equation, we construct the zero-order deformation equation as follows:

(1− θ)N [ξ(r, t; θ)− u0(r, t)] = θ ℏH(r, t)M [ξ(r, t; θ)]. (3.6)

From the above equation, we can see that for θ = 0 and θ = 1, ξ(r, t; 0) = u0(r, t) and ξ(r, t; 1) =
u(r, t), respectively.
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(a)Approximate Solution
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(b)Exact Solution
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(c)Absolute Error |ueract − uapprorimate|

Fig. 2 Solution profiles of the equation (3.1): (a) approximate solution (b) exact solution (c)
absolute error |uexact − uapprorimate|.
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Differentiating the deformation Eq. (3.6) n-times with respect to θ, we obtain the nth-order
deformation equation as follows:

N [un(r, t)− σn un−1(r, t)] = ℏH Rn(un−1), (3.7)

with the initial condition un(r, 0) =
1
r , where

Rn(un−1) =
∂un−1

∂t
+

∂un−1

∂r
+

n−1∑
k=0

n−1−k∑
j=0

ukuj
∂2un−1−k−j

∂r2

+
n−1∑
k=0

∂uk
∂r

∂2un−1−k

∂r2
− 20

n−1∑
k=0

n−1−k∑
j=0

ukuj
∂3un−1−k−j

∂r3
+

∂5un−1

∂r5
. (3.8)

For convenience, we select the value of the auxiliary function H = 1 and parameter ℏ = h.
Therefore, the solution of the deformation equation becomes

un(r, t) = σnun−1(r, t) + hN−1Rn(un−1, r, t).

The third order approximate series solution of equation (3.1) is as follows:

u(r, t) =

3∑
k=0

uk(r, t)

=
1

r
− h3t

r2
− 3h2t

r2
− 3ht

r2
+

2h3t2

r3
+

3h2t2

r3
− h3t3

r4
. (3.9)

Example 2:

-2.0 -1.5 -1.0 -0.5 0.5 1.0
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Fig. 3 The h-curve for Eq. (3.10) obtained by the 5th order approximation.

We take the following fifth-order KdV equation:

ut + uur − uu3r + u5r = 0, (3.10)

with initial condition

u(r, 0) = er, (3.11)
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The exact solution of the Eq. (3.10) is given by

u(r, t) = er−t. (3.12)

Now, for applying HAM to the differential equation Eq. (3.10), we define the following linear
operator:

N [ξ(r, t; θ)] =
∂ξ(r, t; θ)

∂t
, (3.13)

with the property N [c] = 0,( c = constant). With the help of Eq. (3.10), we define non-linear
operator M such that

M [ξ(r, t; θ)] = ξt + ξξr − ξξ3r + ξ5r. (3.14)

With the help of above equation, we construct the zero-order deformation equation as follows:

(1− θ)N [ξ(r, t; θ)− u0(r, t)] = θ ℏH(r, t)M [ξ(r, t; θ)]. (3.15)

From the above equation, we can see that for θ = 0 and θ = 1, ξ(r, t; 0) = u0(r, t) and ξ(r, t; 1) =
u(r, t), respectively.
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(a)Approximate Solution
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(b)Exact Solution
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Fig. 4 Solution profiles of the equation (3.10): (a) approximate solution (b) exact solution (c)
absolute error |uexact − uapprorimate|.

Differentiating the zero-order deformation Eq. (3.15) n-times with respect to θ, we obtain the
nth-order deformation equation as follows:

N [un(r, t)− σn un−1(r, t)] = ℏH Rn(un−1), (3.16)
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with the initial condition un(r, 0) = er, where

Rn(un−1) =
∂un−1

∂t
+

n−1∑
k=0

uk
∂un−1−k

∂r
−

n−1∑
k=0

uk
∂3un−1−k

∂r3
+

∂5un−1

∂r5
. (3.17)

For convenience, we select the value of the auxiliary function H = 1 and parameter ℏ = h.
Therefore, the solution of the deformation becomes

un(r, t) = σnun−1(r, t) + hN−1Rn(un−1, r, t).

Hence, the 5th order approximate series solution of equation (3.10) is obtained as

u(r, t) =
5∑

k=0

uk(r, t)

= er + 5erht+ 10erh2t+ 10erh3t+ 5erh4t+ erh5t+ 5erh2t2 + 10erh3t2

+
15erh4t2

2
+ 2erh5t2 +

erh3t3

3
+

5erh4t3

2
+ erh5t3 +

5erh4t4

24
+

erh5t4

6
+

erh5t5

120
. (3.18)

Example 3:

-2.0 -1.5 -1.0 -0.5 0.5 1.0

-0.004

-0.003

-0.002

-0.001

0.001

0.002

Fig. 5 The h-curve for Eq. (3.19) obtained by the 3rd order approximation.

We consider the following fifth-order KdV equation

ut + uur + u3r − u5r = 0, (3.19)

with initial condition

u(r, 0) =
105

169
Sech4

[
1

2
√
13

(r − a)

]
, (3.20)

The exact solution of the Eq. (3.19) is given as follows:

u(r, t) =
105

169
Sech4

[
1

2
√
13

(r − 36t

169
− a)

]
. (3.21)

Now, for applying HAM to the equation Eq. (3.19), we define the following linear operator:

N [ξ(r, t; θ)] =
∂ξ(r, t; θ)

∂t
, (3.22)
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with the property N [c] = 0, (c = constant). With the help of Eq. (3.19), we define non-linear
operator M such that

M [ξ(r, t; θ)] = ξt + ξξr + ξ3r − ξ5r. (3.23)

With the help of above equation, we construct the following zero-order deformation equation:

(1− θ)N [ξ(r, t; θ)− u0(r, t)] = θ ℏH(r, t)M [ξ(r, t; θ)]. (3.24)

From the above equation, we can see that for θ = 0 and θ = 1, ξ(r, t; 0) = u0(r, t) and ξ(r, t; 1) =
u(r, t), respectively.

0.0
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(a)Approximate Solution
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(b)Exact Solution
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8
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2. ´ 10 -7

3. ´ 10 -7

u

(c)Absolute Error |ueract − uapprorimate|

Fig. 6 Solution profiles of the equation (3.19): (a) approximate solution (b) exact solution (c)
absolute error |uexact − uapprorimate|.

Differentiating the zero-order deformation Eq. (3.24) n-times with respect to θ, we obtain the
nth-order deformation equation as follows:

N [un(r, t)− σn un−1(r, t)] = ℏH Rn(un−1), (3.25)

with the initial condition un(r, 0) =
105
169Sech

4

[
1

2
√
13
(r − a)

]
, where

Rn(un−1) =
∂un−1

∂t
+

n−1∑
k=0

uk
∂un−1−k

∂r
+

∂3un−1

∂r3
− ∂5un−1

∂r5
. (3.26)
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For convenience, we select the value of the auxiliary function H = 1 and parameter ℏ = h.
Therefore, the solution of the deformation becomes

un(r, t) = σnun−1(r, t) + hN−1Rn(un−1, r, t).

Hence, the third order approximate series solution of equation (3.19) is obtained as

u(r, t) =
3∑

k=0

uk(r, t)

=
315

676
Sech6

[
r − 2

2
√
13

]
− 408240

62748517
h2t2Sech6

[
r − 2

2
√
13

]
− 272160

62748517
h3t2Sech6

[
r − 2

2
√
13

]
+

105

676
Cosh

[
3(r − 2)

2
√
13

]
Sech7

[
r − 2

2
√
13

]
+

204120

6748517
h2t2Cosh

[
3(r − 2)

2
√
13

]
Sech7

[
r − 2

2
√
13

]
+

136080

6748517
h3t2Cosh

[
3(r − 2)

2
√
13

]
Sech7

[
r − 2

2
√
13

]
− 11340

28561
√
13

htTanh

[
(r − 2)

2
√
13

]
Sech6

[
r − 2

2
√
13

]
− 11340

28561
√
13

h2tTanh

[
(r − 2)

2
√
13

]
Sech6

[
r − 2

2
√
13

]
− 3780

28561
√
13

h3tTanh

[
(r − 2)

2
√
13

]
Sech6

[
r − 2

2
√
13

]
+

8981280

10604499373
√
13

h3t3Tanh

[
(r − 2)

2
√
13

]
Sech6

[
r − 2

2
√
13

]
− 11340

28561
√
13

htCosh

[
(r − 2)

2
√
13

]
Sech6

[
r − 2

2
√
13

]
Tanh

[
(r − 2)

2
√
13

]
− 11340

28561
√
13

h2tCosh

[
(r − 2)

2
√
13

]
Sech6

[
r − 2

2
√
13

]
Tanh

[
(r − 2)

2
√
13

]
− 3780

28561
√
13

h3tCosh

[
(r − 2)

2
√
13

]
Sech6

[
r − 2

2
√
13

]
Tanh

[
(r − 2)

2
√
13

]
− 3265920

10604499373
√
13

h3t3Cosh

[
(r − 2)

2
√
13

]
Sech6

[
r − 2

2
√
13

]
Tanh

[
(r − 2)

2
√
13

]
. (3.27)

4. Convergence Analysis and Numerical Solution

Table 1 Comparison of absolute errors between the exact solutions and approximate solutions
of 3rd, 4th and 5th order of equation (3.1) obtained by HAM for h = −1 and different values of
t and r.

t x E3 E4 E5

2 3.289474E-6 1.644737E-7 8.223684E-9
0.1 4 1.001603E-6 2.504006E-9 6.260020E-11

6 1.307805E-8 2.179675E-10 3.632789E-12
2 2.977941E-4 4.466912E-5 6.700368E-6

0.3 4 8.551520E-6 6.413640E-7 4.810230E-8
6 1.096491E-6 5.482456E-8 2.7412281E-9
2 2.604167E-3 6.510417E-4 1.627604E-4

0.5 4 6.975446E-5 8.719308E-6 1.089913E-6
6 8.768238E-6 7.306865E-7 6.0890541E-8
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Table 2 Comparison of absolute errors between the exact solutions and approximate solutions
of 3rd, 4th and 5th order of equation (3.10) obtained by HAM for h = −1 and different values
of t and r.

t x E3 E4 E5

-2 5.528044E-7 1.109263E-8 2.652004E-12
0.1 -4 7.481430E-8 1.500865E-9 3.588969E-13

-6 1.012502E-8 2.031120E-10 4.857226E-14
-2 4.306649E-4 2.609172E-6 5.659489E-9

0.3 -4 5.829181E-6 3.523471E-7 7.659286E-10
-6 7.888936E-7 4.768494E-8 1.036572E-10
-2 3.199317E-4 3.250396E-5 1.973652E-7

0.5 -4 4.332475E-5 4.372223E-6 2.671048E-8
-6 5.863368E-6 5.917160E-7 3.614871E-10

Table 3 Comparison of absolute errors between the exact solutions and approximate solutions
of 3rd, 4th and 5th order of equation (3.19) obtained by HAM for h = −1 and different values
of t and r.

t x E3 E4 E5

2 1.103910E-10 5.551115E-16 4.440892E-16
0.1 4 2.344447E-11 2.745581E-13 3.330669E-16

6 5.741696E-11 3.574918E-14 2.220446E-16
2 8.941089E-9 6.286083E-13 6.286083E-13

0.3 4 1.943460E-9 6.669609E-11 6.805667E-14
6 4.644709E-9 8.9594445E-12 3.149486E-13
2 6.898125E-8 1.347233E-11 1.347233E-11

0.5 4 1.553945E-8 8.582410E-10 1.398881E-12
6 3.578978E-8 1.181518E-10 7.344014E-12

Here, we calculate the numerical results and absolute errors from third to fifth order approxi-
mations. The Absolute error is defined as:

En = |uexact −
n∑

k=0

uk|. (4.1)

The approximate series solutions of the Eqs. (3.1), (3.10) and (3.19) are given by Eqs. (3.9),
(3.18) and (3.27), respectively. The convergence of these obtained series solutions by the HAM
strongly depend upon the value of the parameter h, called h-curve. The h-curves obtained by
the HAM for selecting the range of values of h, which is admissible to our problem, are shown
in Figures 1, 2 and 3. In Figures 1, 2 and 3, we have taken the convergence region for which
the h-curve is parallel or almost parallel to the h-axis. So, we have taken h = −1.0 for our
analysis as this is the most suitable value for our problems. We should note that if we choose
an appropriate initial guess and linear operator, then by only few terms, we can get accurate
approximations. However, if the the auxiliary linear operator and the initial guess are not good
enough but reasonable, still we can get convergent solutions by properly selecting the value
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u H 1, tL
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(a)
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0.585
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0.595

(c)

Fig. 7 The results obtained by HAM for different values of h for Eps. (3.1), (3.10) and (3.19)
as figure (a), (b) and (c), respectively; black line for h = −0.1, red line for h = −0.01, purple
line for h = −1 and blue line for exact solution.

of parameter h. Figures 7(a)-7(c) show the results obtained by HAM for different values of
parameter h. Here, blue line shows the exact solution while black, red and purple lines show
the approximate solutions for h = −0.1,−0.01,−1, respectively. We can see that h = −1 is the
best value of h as for this value, our solutions converge to the exact solutions.

For the analysis of our results, we have taken the value of constant a = 2 in Eq. (3.20).
We have compared our obtained approximate results with the known exact results given by
Eqs. (3.3), (3.12) and (3.21). The approximate solutions, exact solutions and absolute errors for
our problems are shown graphically in Figures 4, 5 and 6. On the basis of comparison between
obtained results and known results, absolute errors are shown by Tables 1, 2, and 3. From error
analysis, we can conclude that our results are in good agreements with the known results and
have a very high accuracy. Also, it may be noted that as we increase the order of approximation,
accuracy of the solutions increases.

5. Conclusion

In this work, the HAM is applied to obtain the approximate analytical solutions of three
different types of KdV equations of fifth-order arising in many areas of science like mathematical
physics, fluid dynamics etc. Approximate series solutions are obtained by the HAM. In Figures
4, 5 and 6, the approximate and exact solutions are shown together with absolute errors. By
the error analysis (see Table 1, 2, 3) which is made between known exact results and obtained
approximate results, it can be concluded that the obtained results have a very high accuracy. On
the basis of this study, we have found that the HAM is very powerful and effective method in the
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numerical methods for solving non-linear PDEs as it gives the liberty of controlling the rate of
approximate series and the convergence region. This method does not depend upon linearization
or any kind of physically unrealistic assumptions. The method is capable of reducing the volume
of the computational work and maintaining the high accuracy of the numerical results. Thus, it
can be used to solve other higher order nonlinear integer and fractional order equations. HAM
has many applications in the field of engineering, mathematical science and physics for solving
a large class of non-linear partial differential equations.
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