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Droplets can be levitated by their own vapour when placed onto a superheated plate
(the Leidenfrost effect). It is less known that the Leidenfrost effect can likewise be
observed over a liquid pool (superheated with respect to the drop), which is the
study case here. Emphasis is placed on an asymptotic analysis in the limit of small
evaporation numbers, which indeed proves to be a realistic one for millimetric-sized
drops (i.e. where the radius of the drop is of the order of the capillary length). The
global shapes are found to resemble ‘superhydrophobic drops’ that follow from the
equilibrium between capillarity and gravity. However, the morphology of the thin
vapour layer between the drop and the pool is very different from that of classical
Leidenfrost drops over a flat rigid substrate, and exhibits different scaling laws. We
determine analytical expressions for the vapour thickness as a function of temperature
and material properties, which are confirmed by numerical solutions. Surprisingly, we
show that deformability of the pool suppresses the chimney instability of Leidenfrost
drops.

Key words: condensation/evaporation, drops, lubrication theory

1. Introduction
A drop can be prevented from merging with a liquid bath when the bath is heated

above the saturation temperature. Recently, such Leidenfrost drops have regained
attention (Maquet et al. 2016) after the first reports by Hickman (1964b), who more
than half a century ago referred to these drops as ‘boules’. Figure 1 gives an example
of such a large water drop that is prevented from contacting a pool of water. The
evaporation gives rise to a thin vapour layer between the drop and the pool, and the
corresponding vapour flow induces a pressure that keeps the drop separated from the
pool.

Naturally, one tries to compare these ‘boules’ to drops levitated above a heated
plate. The latter have been studied in great detail (Wachters, Bonne & van Nouhuis

† Email address for correspondence: m.a.j.vanlimbeek@utwente.nl
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FIGURE 1. A Leidenfrost drop of water floating on a water bath that is heated to a few
degrees above the saturation temperature. The drop, also referred to as a ‘boule’, has a
radius of 7 cm, which is 25 times the capillary length. (Reprinted with permission from
Hickman (1964b) ‘Floating drops and liquid boules’. Copyright 2016 American Chemical
Society.)

1966; Bernardin & Mudawar 1999; Biance, Clanet & Quéré 2003; Quéré 2013) since
the first report by Leidenfrost (1756) centuries ago. Since then various studies have
focussed on features as shape oscillations (Holter & Glasscock 1952; Ryuji & Ken
1985; Strier et al. 2000; Snezhko, Ben Jacob & Aranson 2008; Brunet & Snoeijer
2011; Bouwhuis et al. 2013; Ma, Liétor-Santos & Burton 2017), drop mobility on
ratchets or gradients (Linke et al. 2006; Lagubeau et al. 2011; Würger 2011; Sobac
et al. 2017), dynamics during drop impacts (Chandra & Avedisian 1991; Tran et al.
2012; Shirota et al. 2016) and the Leidenfrost temperature (Baumeister & Simon
1973; van Limbeek et al. 2016).

Of particular interest is the shape of such Leidenfrost drops. When viewed from the
side, a Leidenfrost drop above a plate resembles a sessile drop that makes a contact
angle of 180◦ with the substrate (Biance et al. 2003; Snoeijer, Brunet & Eggers
2009; Quéré 2013; Sobac et al. 2014). The vapour layer prevents a direct contact
so that the droplet is maintained in a perfectly non-wetting, ‘superhydrophobic’ state.
Intriguingly, it is only fairly recently that the morphology of the thin vapour layer
below the drop has been revealed. Experimentally, the shape was characterised by
interferometry by Burton et al. (2012), showing that the thickness of the vapour layer
is not uniform. This is sketched in figure 2(a), where one observes a large vapour
pocket near the centre of the drop and a thin ‘neck’ near its edge. For large drop
radii, the base of the drop can even penetrate up to the top, enabling vapour to escape
by a ‘chimney instability’ (Biance et al. 2003; Snoeijer et al. 2009). Even prior to
experiments, the details of the layer below levitated drops were predicted from a
hydrodynamic analysis (Duchemin, Lister & Lange 2005; Lister et al. 2008; Snoeijer
et al. 2009), with a more complete description of the evaporation developed by Sobac
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FIGURE 2. (Colour online) Sketches of a Leidenfrost drop levitated above a hot plate
(a) and above a hot pool (b) based on numerical simulations. The resulting shapes are
essentially ‘superhydrophobic drops’ (solid lines), with an underlying thin vapour layer
(dashed lines). The insets provide a detailed zoom of the geometry of the vapour layer,
revealing a striking difference between the two cases.

et al. (2014). In the limit of small evaporation numbers (a capillary number based on
an evaporation velocity scale), one indeed finds the neck to be asymptotically thinner
than the vapour film at the centre, and scaling laws characterising such vapour
pockets were established. One of the salient features is that the vapour pressure that
carries the weight of the drop is nearly uniform below the drop: owing to the viscous
resistance to vapour flow, the pressure falls abruptly across the thin neck to reach the
atmospheric pressure.

Leidenfrost drops on a pool exhibit very different morphologies (Maquet et al.
2016). A typical numerical result is shown in figure 2(b). Globally the drop can still
be considered in a ‘superhydrophobic’ state, but now on a deformable pool rather
than on a flat substrate. The shape of the vapour layer, however, is very different
from Leidenfrost drops on such a substrate: the vapour layer is nearly uniform and
exhibits oscillations before passing a thin neck. A strong connection can be made to
the film drainage problem for drop coalescence (Jones & Wilson 1978; Yiantsios &
Davis 1990). In that context, a drop is floating on a pool as well while the gravity
forces the two bodies to merge eventually. Although the film drains over time, and
is not replenished by evaporation, the deformability of the pool results in a thin
gas layer (Jones & Wilson 1978) with a morphology reminiscent of those found for
the Leidenfrost drop. Also, the numerical analysis of Maquet et al. (2016) showed
no indication of a chimney instability for Leidenfrost drops on a pool, even for
drops considerably larger than the capillary length. The difference in gap spacing is
importance as it determines the vapour generation.

Note that the case by Maquet et al. (2016) is actually slightly different from the
boule case by Hickman (1964b) in the following regard. In the former (Leidenfrost)
case, the evaporative heat flux is limited by heat conduction across the vapour gap
from the superheated pool surface (non-volatile) to the drop surface being maintained
at the saturation temperature, evaporation proceeding from the drop surface. In the
latter (boule) case, the two liquids being the same, both surfaces of the vapour
gap find themselves at the same, saturation temperature, while the evaporative heat
flux is rather limited by heat transport from the superheated bulk of the pool, with
evaporation eventually taking place from the surface of the pool.
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In the present paper, a baseline consideration will explicitly be adapted to the former
case (Maquet et al. 2016), whereas the boule case will be only mimicked by choosing
equal densities and surface tensions of the two liquids. While it is just a numerical
solution of the problem that was provided by Maquet et al. (2016) in the theoretical
part of their work, here we aim at a detailed exploration of the physics and structure
of the phenomenon by means of asymptotic methods.

Our investigation of Leidenfrost drops on a pool will be based on a matched
asymptotics analysis in the limit of small evaporation numbers where the vapour
generation vanishes. We compute the detailed structure of the vapour layer as
in figure 2, and establish the scaling laws for the thickness as a function of the
material properties and the superheat. In § 2 we formulate the problem and sketch the
asymptotic structure, which is worked out in detail in § 3. The boules of Hickman
are discussed at the end of that section. Analytical results are obtained in the limit
of large drops, explaining why, indeed, there is no chimney instability above a pool.
The results are generalised in § 4 for the case of smaller drops and differing liquids,
showing that the scaling laws are robust. The paper closes with a discussion in § 5.

2. Formulation
In this section we first present a set of equations that describe a steady Leidenfrost

drop levitated above a liquid pool. This part follows the ideas presented in Maquet
et al. (2016), although the problem is formulated in terms more amenable to our
present analysis. We then sketch how the equations are solved by means of matched
asymptotic expansions.

2.1. Model
We first need to establish a convenient representation of the drop-on-pool geometry
shown in figure 2(b). The problem consists of two axisymmetric liquid domains, the
drop and the pool, which we describe by the position of their respective liquid–vapour
interfaces z = h (for the drop) and z = e (for the pool), where the z axis points
vertically upwards with z= 0 corresponding to the unperturbed pool surface far away
from the drop. These are defined in more detail in figure 3. While h and e in principle
provide a full description of the geometry, we also introduce the thickness of the
vapour layer t. This is convenient for describing the flow inside the thin vapour layer
below the drop, where the two interfaces are essentially parallel.

Following previous theoretical developments on levitated drops (Jones & Wilson
1978; Lister et al. 2008; Snoeijer et al. 2009; Sobac et al. 2014; Maquet et al. 2016),
we consider the upper surfaces of the liquid drop and pool to be at hydrostatic
equilibrium while the flow of the produced vapour is treated in the lubrication
approximation. We first compute the vapour pressure Pv by approaching it from the
side of the pool,

Pv =−ρpge+ γpκe. (2.1)

Here we introduced the pool density ρp and surface tension γp, while the κe is the
curvature of the pool interface. The first term represents the hydrostatic pressure inside
the pool, while the curvature term is the Laplace pressure jump due to surface tension.
Note that the hydrostatic pressure inside the pool was taken to be −ρpge, i.e. the
atmospheric pressure was set to zero. Similarly, we obtain an expression for the Pv
from the side of the drop

Pv = k− ρdgh− γdκh, (2.2)
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FIGURE 3. (Colour online) Sketch of a drop on a pool. Different zones are identified
which are used for the asymptotic analysis for E� 1, R� 1 for identical fluid properties
(Γ = 1, P = 1). The dominant force balances in the inner/outer regimes are indicated
as capillary (γ ), viscous (ηv) and gravitational (g). Also defined are the vapour-layer
thickness t, which is the separation between the drop interface h and the pool interface e,
and s and n, which denote the orientation of the curvilinear coordinate system. Note that
in the case of non-equal properties the thickness is also determined by the mechanical
properties of both the drop and pool denoted by the subscripts ‘d’ for drop and ‘p’ for
pool.

where ρd, γd, κh represent the droplet density, surface tension and curvature and k is
an integration constant. Equations (2.1), (2.2) give two separate expressions for Pv,
which in the lubrication approximation for thin layers must be identical. Therefore
(2.1), (2.2) can also be seen as a relation between h and e.

We now turn to the flow inside the vapour layer. It will be shown that for
sufficiently small evaporation rates the gap thickness t is asymptotically small,
justifying the use of the lubrication theory. We therefore consider the reduced Stokes
equation for the parallel velocity u,

∂sPv = ηv∂nnu, (2.3)

where s is the curvilinear coordinate along the layer, while n is the coordinate
perpendicular to the vapour film (see figure 3). Owing to the small gas viscosity
ηv, we here assume that no flow is induced inside the drop and the pool. As a
consequence, we can solve (2.3) with no-slip boundary conditions at n= 0 and n= t,
yielding a parabolic profile

u= 6ū
(

n
t
−

n2

t2

)
, (2.4)

where we introduced the thickness-averaged velocity

ū=−
t2∂sPv
12ηv

. (2.5)

Note that for an infinite drop slip could occur despite the significant viscosity contrast,
since the ratio between the drop and film thickness is also large. In that case, the
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factor 1/12 changes, depending on the slip length. Only a fully resolved numerical
simulation of the Navier–Stokes equations in drop, film and pool will give insight into
this effect, which is beyond the scope of this study. Here we stick with the no-slip
assumption, frequently used in the literature (Wachters et al. 1966; Hinch & Lemaitre
1994; Quéré 2013; Maquet et al. 2016; Janssens, Koizumi & Fried 2017).

The lubrication problem is closed using the axisymmetric continuity equation,

rṫ+ ∂s(rtū)= rj, (2.6)

where r is the distance from the symmetry axis and ṫ is a time derivative; in the
remainder we will look for (quasi-)steady states (the evaporation time of the drop
being much greater than the relaxation time of an initially deposited drop to its quasi-
steady shape and in particular the viscous relaxation time in the vapour layer) so that
time derivatives can be omitted. The source term j on the right-hand side of (2.6) is
due to the flux of vapour generated by evaporation, which modelled by Fourier’s law
can be expressed as (Maquet et al. 2016)

j=
ε

t
with ε =

kv1T
Lρv

. (2.7)

In this expression kv and ρv respectively are the vapour thermal conductivity and
density, L the latent heat of evaporation and 1T the temperature difference between
the pool and the drop (the superheat). The result deviates here from the description of
the drainage problem: while the source term is absent in the drainage problem, similar
effects occur due to the thinning of the gap driving the gas flow. Note that in the
case of the boules of Hickman, the pool is superheated and evaporating, which can be
modelled using Newton’s law of cooling: j= h1T/(Lρv), where h (superheated) pool
temperature far away from the drop (Bejan 1993). In this case, j is approximately
constant along the film. For now, we focus on the Leidenfrost case of (2.7). The
consequences of this different mechanism of vapour generation will be discussed in
(§ 3.5).

Thus, the vapour film is described by

−
1

12ηv r
∂s(rt3∂sPv)=

ε

t
(2.8)

in conjunction with (2.1) and (2.2), which are three coupled equations for the vapour
pressure Pv and respectively for the droplet and pool surface profiles h and e. These
equations need to be complemented by geometric expressions (see appendix A for
more details) for the interface curvatures κe,h, for r as a function of s, viz. (∂se)2 +
(∂sr)2 = 1, and for the thickness of the vapour layer, viz.

t(s) ∂sr= h(s)− e(s). (2.9)

At the exit from the vapour film, where it joins the ambient atmosphere and where
its thickness t asymptotically diverges, the drop and pool surfaces are expected to
attain equilibrium static shapes, described by

Pv = 0, (2.10)

with (2.2) and (2.1), respectively. It may be useful to regard (2.10) as a degenerate
form of (2.8) as t→∞. It is matching with such static shapes that is imposed in
one way or another (to be specified at each concrete occurrence) as the boundary
conditions there.
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Asymptotic theory for a Leidenfrost drop on a liquid pool 1163

As for other boundary conditions, no singularity at the symmetry axis (i.e. at r= 0)
is imposed. Finally, the pool surface attains its unperturbed level e= 0 far away from
the drop (as r→∞).

The constant parameter k entering the problem by means of (2.2) is eventually the
one quantifying the size of the droplet, and in this sense could be taken as one of the
system parameters in the analysis (along with the material properties of the liquids
and the superheat). However, we shall rather prefer to quantify the size more directly
by means of the radius of the droplet’s vertical projection, R. Hence, with R as a
system parameter, k now becomes yet another unknown to be determined. Most cases
however yield no closed form for R(k), hence k is used in the numerical calculations
to converge the problem towards a certain desired drop size R.

For the time being, we shall keep the formulation in dimensional form. Appropriate
non-dimensionalisations will rather be introduced later on in a context-specific way.
However, one can already establish that the results are ultimately governed by four
dimensionless parameters, which can be chosen as

Γ =
γp

γd
, P =

ρp

ρd
, R=

R
λc
, Ẽ =

ηvε

ρdgλ3
c

. (2.11a−d)

The first two are the ratios of surface tension and density of the pool and the
liquid. The third parameter R is the dimensionless radius of the drop, scaled by the
capillary length λc= (γd/ρdg)1/2. Finally, the evaporation-induced viscous vapour flow
is quantified by the evaporation number Ẽ , proportional to the value of the superheat.
Note that a key dimensionless number Ẽ naturally appears upon substituting (2.2) into
(2.8) and normalising all the length variables with λc (Sobac et al. 2014; Maquet et al.
2016).

2.2. Asymptotic approach

The values of the evaporation number Ẽ encountered in practice are typically rather
small (Snoeijer et al. 2009; Celestini, Frish & Pomeau 2012; Sobac et al. 2014;
Maquet et al. 2016). This is what eventually justifies the very structure of the
problem assumed in § 2.1: a thin vapour layer between the substrate (here the pool),
where the lubrication approximation is applicable, and equilibrium shapes of liquid
surfaces (drop and pool) beyond the thin vapour layer. Direct computations of the
Leidenfrost problem carried out under this premise confirm its self-consistency for
both flat solid substrates (Snoeijer et al. 2009; Sobac et al. 2014) and deformed
liquid ones (Maquet et al. 2016). Essential deviations from this scheme are only
encountered, on the one hand, for sufficiently small drops, well below the capillary
length (Celestini et al. 2012; Sobac et al. 2014). In the present paper, we shall deal
only with drops larger than this (see below), and hence encounter no such limitation.
On the other hand, the scheme breaks down on the verge of the chimney instability
(Snoeijer et al. 2009; Sobac et al. 2014), which, as already anticipated, will not be
encountered in the present case of a liquid substrate the same mechanical properties
as the drop.

Thus, in fact, the formulation provided in § 2.1 already tacitly implies Ẽ� 1. Direct
numerical computation for such a ‘full’ formulation can be realised e.g. using an
approach largely similar to Sobac et al. (2014) and Maquet et al. (2016). Here it is
just rendered geometrically more elaborate in order to handle large deformations of
the pool surface, see appendix A for more details.
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However, Ẽ�1 also opens the way to a systematic asymptotic analysis, consistently
and thoroughly exploiting this limit. This is actually what the present paper is about.
As is typically the case, such an asymptotic analysis will permit further insight into
the physics of the problem. Here we shall in particular be interested in further details
as far as the structure of the vapour layer is concerned. Importantly, this will also
permit us to establish the scaling with Ẽ of various quantities of interest. In the case
of a flat solid substrate, such a program has been realised e.g. by Snoeijer et al. (2009)
and Sobac et al. (2014). As already stated, we anticipate essential differences in the
case of the liquid substrate we are concerned with in the present paper. The hereby
obtained asymptotic results will be validated against the direct numerical simulation
mentioned earlier in the framework of the full formulation of § 2.1, while highlighting
similarities and differences with the description of the drainage problem.

With the expected asymptotically small vapour-layer thickness t in the limit of small
evaporation numbers Ẽ � 1, one actually realises that the shape of our Leidenfrost
drop must be asymptotically close to that of an equilibrium ‘superhydrophobic’ drop.
The shape of the latter is governed by the static balance between surface tension and
gravity. Namely, in this superhydrophobic configuration, the liquid–liquid interface is
determined by (2.1) and (2.2) with e≡ h and formally possesses an interfacial tension
γdp ≡ γp + γd; the liquid–gas interface is described by (2.2) with (2.10) for the drop
itself, and by (2.1) with (2.10) for the pool; at the contact (triple) line, the slopes of all
the three interfaces coincide, and a contact angle of 180◦ results from the side of each
of the liquids (see appendix B for the computation method). It is important to note
that the picture in terms of a superhydrophobic drop refers to a large-scale description:
in the actual non-equilibrium configuration, the ‘contact line’ in fact represents the
position of a thin neck region through which the vapour escapes to the surrounding
atmosphere.

Once the superhydrophobic shape is known, the leading-order pressure distribution
governing the vapour flow in (2.8) can immediately be drawn from (2.1), or
equivalently from (2.2). This distribution will clearly not be constant in the pool
case, with an appreciably non-flat surface, i.e. we end up with ∂sPv 6= 0 independently
(to leading order) of the actual vapour-layer profile t(s). This is in stark contrast to
a drop on a flat rigid substrate, for which ∂sPv 6= 0 does depend upon t(s) (i.e. upon
a higher-order approximation in terms of Ẽ � 1). We shall see that this is the key
factor giving rise to different vapour-layer structures and scalings for the two types
of substrate, typical for drops on deformable surfaces (Jones & Wilson 1978; Maquet
et al. 2016).

However, a common feature between the two types of substrate is that Pv will not
be continuous across the ‘triple line’, i.e. across the thin neck region through which
the vapour escapes from below the drop. This is due to a mismatch in curvature on
both sides of the neck, where Pv exhibits a jump from Pv > 0 under the drop to the
ambient value Pv = 0. In experiments however Pv will be continuous, which will be
discussed in more detail in § 3.2.2. The appearance of this thin neck allows us to
introduce and exploit the following hierarchy of length scales

tn� t0� λc ∼ R, (2.12)

where t0 and tn are, respectively, the typical vapour layer thicknesses outside and
inside the neck region. Such a presence of separate distinguished regions with different
spatial scales means that we resort to matched asymptotic expansions as the most
appropriate asymptotic method for the problem at hand. Overall, it turns out that the
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problem can be split into the following regions, indicated schematically in figure 3. At
large scales, there are two outer regions: region 1 below the drop, and region 2 above
the drop and pool. In the limit of vanishing t, these outer solutions will precisely
correspond to superhydrophobic drops on a liquid pool. As already mentioned, these
are equilibrium solutions that can be computed from the static balance between surface
tension and gravity. These two outer regions are connected by a smaller inner region,
which is nothing other than the earlier mentioned neck region. It will turn out that no
direct matching between the outer and inner regions is possible in the vapour layer,
and so yet another, intermediate region is implied, which is also marked in figure 3.

As already pointed out, the expected completely new type of solution and the
Ẽ-scalings for the vapour layer basically owe themselves to the substrate surface
deformability. Note however that, for smaller drops, R< λc (R< 1), the pool surface
becomes increasingly flat (Maquet et al. 2016). Therefore, for sufficiently small drops,
the appropriate asymptotic theory is likely to involve other smallness parameters apart
from Ẽ , viz. a geometric one characterising the small substrate non-flatness. Another
kind of limitation for smaller drops and related to the mentioned intermediate region
will be pointed out in § 4.1. However, in essence, we shall consider drops that are
not sufficiently large to be beyond the scope of the present paper.

Furthermore, a large part of our analysis (§ 3) will be dedicated to very large drops,
R� λc (R� 1). The expected hierarchy of length scales (2.12) then rewrites as

tn� t0� λc� R. (2.13)

Besides, inspired by the boules of Hickman (1964a), we launch the analysis by
considering liquids with equal properties, Γ = 1 and P = 1. Mathematically, this
gives rise to the simplest possible configuration (the associated superhydrophobic
drop assuming a hemispherical shape), where analytical solutions are possible and
which is a good starting point for developing the essence of our asymptotic approach.
Subsequently, in § 4, we extend our analysis to smaller drops, R∼ λc (R∼ 1), and to
non-equal liquid properties, Γ 6= 1 and/or P 6= 1.

3. A large drop on a pool with the same mechanical properties
Here we perform a detailed analysis of a situation resembling the ‘boules’ of

Hickman (1964b), shown in figure 1. In this case the pool and the drop have equal
density and surface tension, i.e. Γ =P = 1. The boules formed are much larger than
the capillary length, R� 1, and below we will consider the asymptotics for small
evaporation numbers, E� 1.

3.1. Outer region 1: below the drop
3.1.1. The droplet shape

The outer shape of the drop and pool can be obtained by combining (2.1) and (2.2):

0= k− ρg(h− e)− γ (κh + κe), (3.1)

where we assumed identical material properties γ = γd = γp and ρ = ρd = ρp. We
anticipate the gap thickness, t∼ h− e, to be much smaller than the radius, in which
case κh' κe. The hydrostatic term can also be neglected when t∼ (h− e)� 4γ /ρgR∼
λ2

c/R, a condition that is much more severe and will be monitored for our solution a
posteriori. Equation (3.1) then further simplifies,

0= k− 2γ κh, (3.2)
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œ

d(x) p(x)

R

Drop

Pool x

y

1.25
1.00
0.75
0.50
0.25

0 π/8 π/4 3π/8 π/2

t¡

œ (rad)

(a) (b) (c)

FIGURE 4. (Colour online) A sketch of outer region 1 is shown in (a). Since the shape
below the drop reduces to a hemisphere, we adopt a spherical coordinate system where the
gap thickness t depends on the angle θ . (b) The local Cartesian coordinate system around
θ =π/2, which is used for the analysis of the thin neck region at the exit of the vapour
layer. The drop and pool interfaces are expressed as d(x) and p(x) respectively, while the
vapour thickness reads t= d− p. The vapour thickness profile (3.9), non-dimensionalised
using the scale of (3.5), is represented in (c).

imposing a shape of constant curvature. Below we will find that the matching
condition requires the outer solution to be a perfect hemisphere. Hence, we can
identify k= 4γ /R, where R is the maximum radius of the drop.

3.1.2. The vapour thickness
The spherical geometry of the outer solution, and thus of the vapour layer, suggests

that the analysis of the lubrication flow will be most easily expressed using spherical
coordinates (see figure 4). In this coordinate system, the lubrication equation (2.8)
reads

−
1

12ηvR2 sin θ
∂θ
[
sin θ t3 ∂θPv

]
=
ε

t
. (3.3)

This equation needs to be complemented by an equation for the pressure gradient P′v,
for example (2.2), which in spherical coordinates simplifies to ∂θPv =−ρgR sin θ . The
lubrication equation can then be expressed as

1
2t3 sin θ

∂θ [t3 sin2 θ ] =
6ηvεR
ρgt4

. (3.4)

In this expression we have collected all dimensional parameters on the right-hand side,
to form a dimensionless ratio.

The above expression invites us to introduce a dimensionless thickness t̃ = t/t∗,
where the characteristic scale for the thickness reads

t∗ =
(

6ηvRε
ρg

)1/4

= λc E1/4, (3.5)

where a (modified) evaporation number

E =
6ηvRε
ρdgλ4

c

=
6R
λc

Ẽ (3.6)
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has been introduced, as it naturally occurs in this form in the present R� 1 context.
Inserting this rescaling into (3.4) and working out the derivatives gives

t̃3∂θ t̃=
2
[
1− t̃4 cos θ

]
3 sin θ

, (3.7)

which is a first-order ordinary differential equation (ODE) for the profile of the vapour
layer t̃(θ). The solution to this equation can be cast in closed form

[
t̃(θ)
]4
=

8
∫ θ

0
dx (sin x)5/3

3(sin θ)8/3
=

8
15

1
(sin θ)8/3

×

(
π1/2Γ

(
1
3

)
Γ
(

5
6

) − cos θ
(

2 2F1

[
1
2
,

2
3
,

3
2
, (cos θ)2

]
+ 3(sin θ)2/3

))
. (3.8)

Here, we imposed a non-singular behaviour at the symmetry axis, only possible
with t̃0 ≡ t̃(0)= 1, which was anticipated in the definition in (3.5). Here Γ (x) is the
gamma function, 2F1 is a generalised hypergeometric function (Weisstein 2017) and
this expression was obtained using Mathematica. The functional form is different
here compared to the film drainage problem, as the present source term has a 1/t
dependence, while in the latter case it is a function of θ (Jones & Wilson 1978).
When plotting the solution (3.8), one observes that the vapour thickness is nearly
constant, see figure 4(c). It very mildly increases from t̃ = 1 at θ = 0, to a slightly
larger value at θ =π/2 (the exit of the gap):

t̃exit = 23/415−1/4π1/8

(
Γ
(

1
3

)
Γ
(

5
6

))1/4

≈ 1.22386 · · · . (3.9)

Comparing the vapour film with that of a drop on a heated plate, we find that the
film only mildly changes towards the free atmosphere. For a drop on a plate, a much
stronger scaling was found for the dependency of the vapour thickness, depending on
both the radius and evaporation number (Sobac et al. 2014). As a result, the global
evaporation rate is much higher for the present case as the drop is close to the heat
source throughout the vapour gap.

3.1.3. Summary and comparison to numerical solution
An important set of analytical results has thus been obtained. First, we found that

the immersed part of the drop takes a hemispherical shape. Second, the vapour-layer
thickness at the axis below the drop is given by t̃0= 1. Third, the profile of the vapour
layer in the outer zone is characterised by a single, universal profile, given by the
expression (3.8). For the matching to the neck region (see figure 4), an important
result is the thickness at the ‘gap exit’ at θ =π/2, for which the analytical expression
(3.9) is found. In dimensional form, we thus obtain the relevant thicknesses

t0 = λcE1/4, texit = 1.22386 · · · λcE1/4. (3.10a,b)

These results were obtained under the assumption of the hierarchy of scales (2.13),
which is self-consistent as long as

E1/4
� 1�R� E−1/4. (3.11)
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¬ c

10-6 10-4

e

1

4

FIGURE 5. (Colour online) Results for the central thickness t0 ≡ t(0) of the vapour layer
versus the evaporation number for a drop of R=10λc on a pool having the same properties
as the drop. The data points (numerical solution to the full problem) approach the curve
t0 = λcE1/4 obtained by asymptotic methods in the limit of small E .

Note the latter, strong inequality arising from neglecting the hydrostatic pressure
difference across the vapour gap (t� λ2

c/R). To validate these findings, we compared
the results to numerical solutions of the full problem formulated in § 2.1 (see also
appendix A). Indeed, it is observed that for large drop volumes the immersed part
of the droplet approaches a perfect hemisphere. In figure 5 we provide a further
quantitative test, by plotting the central thickness t0 for a droplet of radius R= 10λc.
Upon reducing the evaporation number E , the numerical result perfectly approaches
the prediction (3.10). Moreover, note that the last inequality (3.11) is well satisfied
in the given range of E . Evaluating t0 for the experimental conditions of figure 1, we
obtain t0 ≈ 70 µm.

3.2. Outer region 2
3.2.1. Puddle solutions

We now turn to the second outer region, describing the top of the droplet and
of the pool. In this range the vapour is no longer confined to a thin gap, so that
viscous effects are completely negligible here. As a consequence, the pool and drop
are described by (2.1) and (2.2) with Pv = 0. We further note that the constant
k→ 0 for large drops. This implies that, even though the azimuthal curvature has the
opposite sign for the drop and for the pool, its contribution is negligible. Therefore,
the profiles of the drop and pool become mirror images of each other.

The solutions that result from these equations are the classical puddle solutions,
for which the curvature increases linearly with depth. For explicit forms we refer to
Landau & Lifshitz (1959) and De Gennes, Brochard-Wyart & Quéré (2013).

3.2.2. Mismatch with outer solution 1
Importantly, the puddle solution exhibits a finite curvature at the droplet’s edge,

namely κ = 21/2/λc. This value of the curvature is obtained since, by symmetry,
the puddle approaches the neck region vertically. This is to be contrasted with the
curvature in the other outer region, below the drop, for which the curvature was
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0 0.5 1.0

Decreasing Ó

˚̂

x̂

�2

�2

1.0

0.5

0

-0.5

FIGURE 6. (Colour online) The interface curvature κ in the neck region, obtained
numerically from (3.15) for various evaporation rates E . A distinctive jump in curvature
can be seen, indicating a sharp pressure jump through the thin neck. The dashed line
shows the puddle solution for outer region 2.

found to be 1/R. For large drops, we thus find a ‘mismatch’ in curvature near the
exit of the vapour layer. This implies that the problem requires an inner zone that
smoothly joins the two outer regions. The matching is illustrated in figure 6, where
we present a numerical solution to the problem (details are given in the paragraphs
below). The centre panel provides a detailed view of the droplet and pool profiles,
and reveals a thin neck that is connected to the outer vapour layer. The curvature
of these profiles are presented in figure 6, for various values of E . The dashed line
corresponds to the puddle solution; the numerical profiles smoothly join the puddle
to the vapour film of vanishing curvature at x̂= 0.

3.3. Inner region: the neck profile
3.3.1. Matching conditions and numerical solution

By inspection of figure 6, the thin neck region represents a small vertical zone
around θ =π/2. We therefore adopt a local Cartesian coordinate system, as sketched
in figure 4, where gravity acts along the x-axis towards x < 0. In this coordinate
frame, we describe the drop interface as d(x) and the pool interface as p(x). The gap
thickness is then expressed as t(x)= d(x)− p(x) and its curvature κt(x)= κd(x)− κp(x).
The expressions for the pressure in the film from (2.1) and (2.2), for equal liquid
properties and k= 0, can be written as

Pv =−ρgx− γ κd
Pv =−ρgx+ γ κp.

}
(3.12)

Taking the difference of these equations, one finds κd = −κp = κt/2, resulting in a
symmetric deformation for both d and p. Equation (2.8) then becomes

1
12ηv

∂x

[
t3∂x

[
ρgx+

1
2
γ ∂xxt

]]
=
ε

t
≈ 0, (3.13)
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where we used the small slope representation of the curvature κt = t′′ for consistency
with the lubrication approximation. Since we expect the local vapour generation in
the small inner region to be negligible compared to the total generated flux, we can
also drop the right-hand side. Since we expect the total generated flux to mainly come
from the outer region 1 (verifiable a posteriori), we can neglect the flux contribution
from the inter region and hence drop the right-hand side in the framework of the
leading-order approximation. Ultimately the gap profile needs to be matched to that
of the puddle shape d(x). It is therefore convenient to express the lubrication profile
by d(x)= t(x)/2, and non-dimensionalise all lengths by λc:

d̂=
d
λc
=

t
2λc

, x̂=
x
λc
. (3.14a,b)

With this, we obtain after integrating (3.13) once:

d̂′′′ =
c3

d̂3
− 1, (3.15)

where c is an integration constant. This equation describes the shape of the drop
interface inside the neck region, which is also found in the drainage problem, where
c is changing with time as the film thins.

The problem is closed by the matching conditions to the outer regions 1 and 2,
respectively corresponding to negative and positive limits of x̂. The curvature of outer
region 1 scales as 1/R, which in dimensionless variables gives d̂′′ ∼ 1/R and is thus
asymptotically small for large drops, implying d̂′(−∞)= d̂′′(−∞)= 0. Therefore, we
require that d̂(−∞) approaches a constant value, which according to (3.15) can be
equated to c. This thickness must ultimately match the ‘exit’ thickness of outer zone
1, leading to the condition

texit

2
= d(−∞)H⇒ c=

1
2
· 1.22386 · · · E1/4. (3.16)

The boundary condition for positive x̂ comes from matching the curvature of the
puddle solution, which in scaled units reads d̂′′ =

√
2 (see § 3.2). We numerically

solved (3.15) subject to these boundary conditions.
The resulting neck profiles are presented figure 7 for different values of E ,

corresponding to different gap thickness according to (3.16). One can observe that
reducing the flux E leads to a localisation of the neck region, both in terms of
thickness and lateral extent. To highlight these trends we have reported the profiles
on two panels with double logarithmic scales, centred around the position x̂n of the
minimum neck thickness (see caption for details). The same data were used to show
the mismatch in curvature in figure 6. It is interesting to note that the profiles are
strongly reminiscent of dimple profiles observed in dip coating (Snoeijer et al. 2008),
which are indeed governed by an equation similar to (3.15). Apart from the dimple,
the dip-coating solutions also exhibit the oscillations seen in figure 7(a), which were
analysed in detail by Benilov et al. (2010).

3.3.2. Self-similar solution for the neck region
Based on our numerical results we observe that the neck region near position x̂n

becomes increasingly localised for small E , while the neck thickness d̂n is found to
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x̂ = x̂n x̂ - x̂n-(x̂ - x̂n)

x̂ > x̂n

d̂

FIGURE 7. (Colour online) Neck profiles obtained from numerical solution of (3.15)
for various vapour-layer thicknesses d̂(−∞) ∼ E1/4 for the case of equal drop and pool
properties and large drops (R � λc). The double logarithmic representation of the two
panels, with an inverse log-scale centred around the neck position x̂ = x̂n, reveals the
details of the thin neck region and the oscillations upon approaching the vapour film.
The dotted line indicates the location of the oscillations, scaling as d̂ ∼ (x̂n − x̂)3. The
dashed line shows the puddle solution for outer region 2, exhibiting a d̂∼ (x̂− x̂n)

2 upon
approaching the neck.

decrease. This is in direct analogy to the neck region for both settling drops and
normal Leidenfrost drops above a rigid surface (Yiantsios & Davis 1990; Snoeijer
et al. 2009; Sobac et al. 2014). Owing to the smallness of d̂ inside this region, (3.15)
reduces to

d̂3d̂′′′ = c3, (3.17)

which means that the gravity is subdominant with respect to viscosity and surface
tension. Indeed, equation (3.17) is identical to the neck equation studied, first by
Wilson & Jones (1983) in the context of film draining and later by Snoeijer et al.
(2009) in the case of Leidenfrost drops, which admits similarity solutions

d̂(x)= cα T(ζ ), with ζ =
x̂− x̂n

cβ
. (3.18)

Inserting this ansatz into (3.17) gives

T3T ′′′ = 1 and 4α − 3β = 3. (3.19a,b)

The exponents α,β can be determined from a matching condition for ζ�1, for which
the shape of the pool d̂(x)' (x̂− x̂n)

2/
√

2 must be approached, regardless of the value
of c. This implies for large ζ ,

cα T(ζ )' cα ζ 2/
√

2= cα−2β (x̂− x̂n)
2/
√

2, (3.20)

hence, α − 2β = 0. Combined with (3.19), this gives the exponents α = 6/5 and
β = 3/5.
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FIGURE 8. (Colour online) The neck region exhibits a self-similar structure, captured by
the similarity function T(ζ ) given by the dashed line (a). The other curves represent
numerical profiles of the neck shown in figure 7 for different c, scaled according to
T = d̂/c6/5 and ζ = (x̂− x̂n)/c3/5. Each of these profiles corresponds to a dot in (b), where
the straight solid line corresponds to the similarity law (3.21). The case of equal drop and
pool properties and large drops (R� λc).

While for large positive ζ we can impose the asymptotic boundary condition T ′′ '
√

2, we still need to provide the asymptotics for negative ζ . We now show that the
matching to the film region implies T ′′ ' 0 as the missing boundary condition. The
matching to the film can in principle be obtained from a detailed analysis of the
oscillatory approach to the thin film, in the spirit of the work on dip coating (Wilson
& Jones 1983; Benilov et al. 2010). Here we focus only on the first oscillation, which
is sufficient for the present purpose. The typical slope of the neck solution d̂′∼ c3/5

∼

E3/20 must be compared to that of the first bump. This bump has its own thickness
scale δ̂b and lateral scale ˆ̀b, such that we demand δ̂b/ ˆ̀b∼ E3/20. For the approach of
the bump we argue that all terms in (3.15) are involved, such that d̂′′′ must be of order
unity, or δ̂b/ ˆ̀

3
b ∼ E0. This scaling indeed gives the correct estimation for the position

of the first oscillations in figure 7(a) (dotted line). Combining these two equations on
δ̂b and ˆ̀b we find δ̂b∼ E9/40 and ˆ̀b∼ E3/40. The final step is to evaluate the curvature
of the bump δ̂b/ ˆ̀

2
b ∼ E3/40, which as anticipated, vanishes for small E .

In summary, we expect the neck to be governed by a similarity solution T(ζ ),
which can be computed from (3.19) subject to boundary conditions T ′′(−∞)= 0 and
T ′′(∞)=

√
2. The numerical solution is given in figure 8, represented as a dashed line.

The other curves correspond to the profiles of figure 7, scaled according to (3.18).
We observe a collapse onto the similarity solution as the value of c∼ E1/4 is reduced.
The relation for the minimum neck thickness can now be found by determining the
minimum of the similarity function, which we numerically find to be Tn = 1.147 · · · .
Hence, we find

d̂n = 1.147 · · · c6/5, (3.21)
which provides the minimum thickness at the neck, as confirmed in figure 8(b).

3.4. Summary
Let us now conclude the analysis for E� 1, R� 1 for the case where the drop and
the pool consist of the same liquid (Γ = 1, P = 1). We first recall the expressions for
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the vapour-layer thickness below the centre of the drop (t0) and the vapour thickness
as it approaches the neck (texit):

t0 = λcE1/4, texit = 1.22386 · · · λcE1/4. (3.22a,b)

These can now be complemented by the minimum thickness of the neck

tn = 2λcd̂n = 1.272 · · · λcE3/10, (3.23)

which was obtained using (3.16) and (3.21). The hierarchy of scales (2.13) is indeed
satisfied and the approach is self-consistent as long as

E3/10
� E1/4

� 1�R� E−1/4, (3.24)

which completes the analysis.

3.5. Hickman’s boules
We now briefly discuss the original boules of Hickman, where the vapour is
generated from the superheated pool. As anticipated in § 2, the vapour generation
can be described by Newton’s law of cooling: j = h1T/(Lρv), where h is the
heat transfer coefficient and the temperature difference now defined based on the
(superheated) pool temperature far away from the drop (Bejan 1993). In this case, j
is approximately constant along the gap. Therefore, proceeding in a similar manner
as discussed before in § 3 we now obtain for the vapour thickness in outer region 1:

1
2 sin θ

∂θ
[
sin2 θ t3

]
=

6jηvR
ρg

. (3.25)

This is the equivalent of (3.4), now adapted to the Hickman boule. Solving this
equation yields

t(θ)=
(

2
1− cos θ

sin2 θ

)1/3 (6jηvR
ρg

)1/3

. (3.26)

From this we deduce the (non-dimensional) vapour-layer thickness below the centre of
the drop (t̃0= t̃(0)) and the vapour thickness as it approaches the neck (t̃exit = t̃(π/2)):

t̃(0)=
(

6jηvR
ρgλ3

c

)1/3

, t̃(π/2)= 1.25992 · · ·
(

6jηvR
ρgλ3

c

)1/3

. (3.27a,b)

An important consequence of this result is that the thickness t scales as 1T1/3,
which is fundamentally different from the 1T1/4 scaling found previously. This new
scaling law caries through to the thickness of the neck, according to tneck ∼ t0

6/5
∼

1T2/5, see § 3.3.2.

4. Finite drop sizes and differing liquids
Until now we have studied the structure of infinitely large Leidenfrost drops on

a liquid bath of equal physical properties. It is of course interesting to extend the
results to smaller-sized drops and to systems of different liquids. In the limit of small
evaporation, E� 1, one still finds that the vapour layer is asymptotically thin. Hence,
the global shape of the drop is expected to be a ‘superhydrophobic’ drop on a pool,
governed by hydrostatics. Exploiting this idea, we demonstrate that the various scaling
laws for the vapour layer are robust, as is confirmed by solving the full problem
numerically.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
0.

30
.1

86
.6

1,
 o

n 
31

 Ja
n 

20
19

 a
t 0

6:
48

:0
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
10

25

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.1025


1174 M. A. J. van Limbeek, B. Sobac, A. Rednikov, P. Colinet and J. H. Snoeijer

0 1 2 3 4 5

1.0

0.5

0

-0.5

-1.0

-1.5

-2.0

-2.5

Full numerics
Outer region 1 asymptotics

Full numerics Leidenfrost
Superhydrophobic drop

r̂

ẑ
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FIGURE 9. (Colour online) Profiles calculated for equal property liquids, R= 3 and E =
8.64× 10−8. Both the superhydrophobic drop calculation and the numerical simulation of
the full problem yield a spherical cap solution of curvature 2/Rc for the gap geometry, in
agreement with (3.2). Note that for finite-sized drop Rc 6=R and the neck is positioned
at θn = 1.01.

4.1. Finite drop size
Let us first focus on finite-sized drops, while keeping Γ = P = 1. The size of the
drop can be tuned by the value of k appearing in (2.2), and a numerical example is
presented in blue in figure 9. In this particular case the droplet radius R = R/λc =

3 (as seen from above); in general, a relation R(k) can be established numerically
(cf. appendix A). Comparing the droplet shape to that of the very large drops in
figure 3, one finds that the immersed part of the drop still resembles a spherical cap,
but the position of the neck has clearly shifted, resulting in the fact that drop radius
R is now smaller than the (dimensionless) radius of curvature of the spherical cap,
which we define as Rc. The inset shows details of the vapour layer, which also has
a similar structure as compared to large drops at small E .

These features can be understood in detail. First, we compare the full numerical
solution to the reduced (hydrostatic) calculation for the superhydrophobic drop, as
described in § 2.2 (and in more detail in appendix B). The latter is shown as the
red dashed curve in figure 9, indeed giving an excellent description of the global
shape. As a second step, one can use this global shape to predict the gap thickness.
Namely, the superhydrophobic drop provides Pv assuming a negligible back influence
of the vapour film profile on Pv; this is valid except for the relatively narrow neck
and intermediate regions where the capillary (Laplace) pressure due to vapour film
deformation is important. Inserting this pressure profile into the lubrication equation
(2.8), one can obtain the vapour-layer profile. The result is shown as the red dashed
curve in the inset of figure 9 and indeed manifests an excellent quantitative agreement,
outside the neck region and in the oscillatory intermediate region.

The same asymptotic analysis as for the infinite drop can be applied. However, care
must be taken that the oscillation visible in the inset of figure 9 does not extend all
the way to the centre of the drop; otherwise there would be no flat ‘outer region’
below the drop. Hence, we need the width of the bump, ˆ̀b∼ E3/40 to remain smaller
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than R. We therefore postulate a new hierarchy of length scales in the case of finite
drop sizes, namely

tn� t0� `b� R, (4.1)

which is the same as t̂n� t̂0� ˆ̀b�R, resulting in

E3/10
� E1/4

� E3/40
�R. (4.2)

Based on these observations we can now revisit the analysis for the vapour layer.
For equal material properties and small evaporation numbers, equation (3.2) is still
valid so that the immersed part of the drop has a constant curvature. For the numerical
example in figure 9 we find λcκh = 2 × 0.29 = 2/Rc. Also, the lubrication equation
(3.7) is still valid. However, since the expression for Pv involves Rc rather than R,
we need to adapt the expression for t∗ = t0 accordingly. With this, equation (3.5) and
the first expression (3.10) simply become

t∗ = t0 = λc

(
Rc

R

)1/4

E1/4, (4.3)

where the ratio Rc/R can be calculated from the corresponding superhydrophobic
drops. When computing the thickness of the very thin neck, i.e. the position where the
drop and pool are the closest, one should take into account two further effects due to
the finite drop size. First, the neck is no longer positioned at θ =π/2: in the example
in figure 9 we find θn= 1.01, which will lead to a small change in the thickness at the
‘exit’ of the outer region, texit, in view of the weak variation of t with theta. Second,
the matching of the neck to the upper surface of the droplet will be modified, since
the droplet’s curvature will change with respect to the value for an infinitely large
drop. Since all these factors have to be evaluated numerically, we here just give the
scaling of the neck thickness

tn ∼ λc

(
Rc

R

)3/10

E3/10. (4.4)

We also note that the prefactor in this law exhibits some dependence on R when
R ≈ 1, and therefore the scaling t̂n ∼ R3/10 may not actually hold for R ≈ 1. This
explains why the apparent scaling identified by Maquet et al. (2016) was rather t̂n ∼

R1/4 for the range of radii studied there.
In summary, we conclude that the structure of the present asymptotic analysis

and the resulting scaling laws remain the same for finite-sized drops, provided that
the undulations near the neck do not penetrate a large fraction of the gap length
(i.e. provided that the intermediate region stays significantly shorter than the outer
region 1). This being satisfied, in the case of equal liquid properties one can even
compute the prefactors, provided that Rc and θn are determined by considering the
corresponding superhydrophobic drop. Note that the (dimensional) drop size R appears
both in E and in the prefactors of (4.3) and (4.4). Hence, as already mentioned, one
observes a pure scaling relation in terms of R only in the large drop limit, although
this is limited to the case of equal liquid properties.

We close the discussion by considering the case when Γ = γp/γd 6= 1 and
P = ρp/ρd 6= 1, i.e. when the drop and pool consist of different liquids. This
is for example the case for the ethanol drops on a silicone oil pool studied by
Maquet et al. (2016). Note that the immersed shape is now no longer expected to
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be a spherical cap due to the generally different densities of the two liquids. As a
consequence, we will no longer be able to proceed in fully analytical terms as before.
However, asymptotic analyses can still be carried out if we rely on the numerical
solution for the equilibrium (static) shape of the associated superhydrophobic drop,
which is expected to constitute the leading-order approximation for the Leidenfrost
drop shape. (That is possessing the same size R and liquid properties as our
Leidenfrost drop, the liquid–liquid interfacial tension being equal to γd + γp.)
The scaling laws t0 ∼ λcẼ1/4 and tn ∼ λcẼ3/10 will eventually be recovered, the
prefactors being determined numerically through the associated superhydrophobic
drop characteristics. We formalise these points below.

We use λc as the length scale and ρdgλc= γd/λc as the pressure scale to introduce
dimensionless variables, marked by a hat,

ŝ=
s
λc
, r̂=

r
λc
, ẑ=

z
λc
, P̂v =

Pv
ρdgλc

, (4.5a−d)

similar to earlier used t̂ = t/λc. Here r is the cylindrical radial coordinate (distance
to the symmetry axis), s the arc length (counting from the symmetry axis) along the
liquid–liquid interface of the associated superhydrophobic drop in the meridional cross-
section, while z is the vertical Cartesian coordinate (cf. figure 3). In the outer region 1
considered in the framework of our present asymptotic scheme (cf. figure 3 and § 3),
equation (2.8) for the vapour gap thickness then rewrites to leading order as

−
1

12r̂
∂ŝ

(
r̂t̂3∂ŝP̂v

)
=

Ẽ
t̂
, (4.6)

where the pressure in the vapour gap P̂v(ŝ) and the geometric characteristics r̂(ŝ)
are a priori given functions, known from the associated superhydrophobic drop
consideration (cf. appendix B). The solution to (4.6), non-singular at the symmetry
axis ŝ= 0, can be written as

t̂4
=

16Ẽ
∫ ŝ

0
r̂4/3(−P̂′v)

1/3 dŝ

(−r̂ P̂′v)4/3
, (4.7)

the prime denoting a derivative with respect to ŝ. The thickness at the symmetry axis,
t̂0 = t̂(0), and at the exit, t̂exit = t̂(ŝCL), can then be inferred as

t̂0 =

(
−

6 Ẽ
P̂′′v(0)

)1/4

, t̂exit =

2 Ẽ1/4

(∫ ŝCL

0
r̂4/3(−P̂′v)

1/3 dŝ

)1/4

[−r̂(ŝCL)P̂′v(ŝCL)]1/3
, (4.8a,b)

where ŝCL is the value of the arc length at the contact line of the associated
superhydrophobic drop (known a priori, cf. appendix B). We note that the consideration
only makes sense provided that P̂′v < 0 for all 0< ŝ< ŝCL and P̂′′v(0) < 0, which turns
out to be indeed the case for a superhydrophobic drop. We also note that the results of
§ 3 with a hemispherical shape and of § 4.1 with a spherical cap shape are recovered
from here with dŝ=R dθ , P̂′v =−sin θ , r̂=R sin θ and ŝCL =R θCL. Equations (4.7)
and (4.8) confirm once again that the scaling in terms of E established in § 3 for the
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vapour gap thickness in this outer region 1, namely t̂=O(Ẽ1/4) including t̂0=O(Ẽ1/4)

and t̂exit =O(Ẽ1/4), is indeed robust.
We next turn to the inner region (cf. figure 3), also referred to as the neck region,

the consideration of which follows the same asymptotic scheme as § 3. We introduce
a local Cartesian coordinate x (and its dimensionless version x̂= x/λc) parallel to the
slope at the contact line of the associated superhydrophobic drop and pointing away
from the vapour film. In this local Cartesian system, the drop and pool surfaces are
described by d̂(x̂) and p̂(x̂), respectively, and t̂= d̂− p̂ and dx̂≈ dŝ. Similar to § 3, the
vapour pressure P̂v in the neck region (unlike the earlier considered outer region 1)
is no longer given by the associated superhydrophobic drop but is rather coupled to
the local vapour gap profile. Owing to the expected small size of the neck region,
the leading-order contribution in ∂x̂P̂v will be due to the capillary (Laplace) pressure
associated with the first curvature of the drop and pool surfaces, i.e. P̂′v ≈ −d̂′′′ and
P̂′v ≈ Γ p̂′′′. The latter two expressions must be equal, hence d̂′′′ ≈−Γ p̂′′′. Using this
fact, as well as t̂= d̂ − p̂, we express P̂′v ≈−(Γ/(1+ Γ ))t̂

′′′. Using this in (4.6) and
recalling, on the one hand, that it is planar geometry that holds to leading order in the
neck region, and on the other hand, that the local evaporation flux Ẽ/t̂ is negligible
relative to the flux from the remainder of the vapour gap passing through the neck
region (cf. § 3.3), one obtains

1
12

Γ

1+ Γ
∂x̂
(
t̂3∂x̂x̂x̂ t̂

)
= 0 , (4.9)

where the prefactor is kept for later convenience.
As in § 3.3, we shall look for solutions of this equation subject to boundary

conditions t̂′′(−∞)= 0 whilst t̂′′(+∞)= κ̂1h,CL− κ̂1e,CL, where κ̂1h,CL and κ̂1e,CL are the
(known) first curvatures of the upper drop and pool surfaces at the contact line of
the associated superhydrophobic drop (appendix B). Recall that in the particular case
of large drops with the same liquid properties (cf. § 3.3), we have κ̂1h,CL =

√
2 and

κ̂1e,CL = −
√

2 resulting from the puddle solution, and giving rise to t̂′′(+∞) = 2
√

2
in present terms.

To account for the flux coming from the interior of the vapour gap, against
which the local flux Ẽ/t̂ was neglected when writing (4.9), we integrate (4.9) from
x̂ = −∞ to a finite value of x̂. In doing so, we take into account that the quantity
(1/12)(Γ/(1+ Γ ))t̂3∂x̂x̂x̂ t̂|x̂=−∞, which is actually the dimensionless volume flux per
unit length at the entrance to the neck region, must match the corresponding flux from
the outer region 1 (the contribution from the intermediate region being negligible to
leading order similar to § 3). Thus, it must be equal to the dimensionless volume flux
per unit length at the exit from the outer region 1:

1
r̂(ŝCL)

∫ ŝCL

0
r̂
Ẽ
t̂

dŝ=
1

12
t̂3
exit[−P̂′v(ŝCL)], (4.10)

the latter equality being written on account of (4.6) integrated over the outer region 1.
Here recall that t̂exit is given by (4.8), while r̂(ŝCL) and P̂′v(ŝCL) are values known from
the associated superhydrophobic drop consideration (appendix B). We thereby finally
arrive at the following equation for the vapour gap thickness in the inner (neck) region:

t̂3 t̂′′′ =
1+ Γ
Γ

t̂3
exit[−P̂′v(ŝCL)], (4.11)
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which is a first integral of (4.9) accounting for the mentioned flux condition. A
rescaling

t̂= A2/5B−3/5 T, x̂= A1/5B−4/5 ζ , A≡
1+ Γ
Γ

t̂3
exit[−P̂′v(ŝCL)], B≡

κ̂1h,CL − κ̂1e,CL
√

2
(4.12a−d)

reduces equation (3.17) with the earlier mentioned boundary conditions to the problem
T3T ′′′ = 1 with T ′′(−∞) = 0 and T ′′(+∞) =

√
2 already considered in § 3.3. In

particular, for the minimum neck thickness, Tn = 1.147 was obtained, which here
yields

t̂n = 1.147
(

1+ Γ
Γ

t̂3
exit[−P̂′v(ŝCL)]

)2/5 (
κ̂1h,CL − κ̂1e,CL
√

2

)−3/5

. (4.13)

As t̂exit =O(Ẽ1/4) in accordance with (4.8), whereas the other quantities in (4.13) are
just O(1), we see that t̂n = O(Ẽ3/10), which confirms the robustness of the earlier
established scaling law for the neck thickness (cf. § 3).

With the Ẽ scaling (power) laws themselves confirmed, we recall that the prefactors
at the asymptotic results such as (4.7), (4.8) and (4.13) depend exclusively on
characteristics of the associated superhydrophobic drop. The latter are computed
numerically as described in appendix B and subsequently used in (4.7), (4.8) and
(4.13) to complete the present asymptotic consideration. The results are illustrated
below together with their comparison with the full Leidenfrost numerics (the latter
realised as described in appendix A).

Figure 10 shows results for a drop of R = 3 with non-equal material properties
inspired from Maquet et al. (2016). We see that the global Leidenfrost drop and pool
shapes are still close to those of the associated superhydrophobic drop, as expected.
The morphological structure of the vapour gap is still the same as noted earlier in
the case of equal material properties. The asymptotic results for the outer region 1
capture well the film thickness distribution in the central part, although at larger Ẽ
the waviness from the intermediate region penetrates closer to the symmetry axis.
For the thickness values in the centre and at the neck, we once again obtain a
good agreement between the asymptotic and the full numerical approaches, although
the agreement slightly deteriorates at larger Ẽ (especially for t̂n). Importantly, the
asymptotic scalings t̂0 ∼ Ẽ1/4 and t̂n ∼ Ẽ3/10 are seen to still be well reproduced by
the full numerics. We note that the straight lines in figure 10(d) are the asymptotic
predictions with no fitting involved: the prefactors were determined directly from the
associated superhydrophobic drop analysis.

Some of the cases shown in figures 9 and 10 are taken up for a further parametric
study in figures 11 and 12, partly aimed at testing the limits of the applicability of
the present asymptotic scheme. In particular, the results of figure 10 corresponding
to the larger evaporation number value (Ẽ = 2.3 × 10−7) are extended in figure 11
to some other drop radius values. While the Leidenfrost drops are seen to still be
close to the superhydrophobic shapes in all cases shown, the present asymptotic results
cease to be valid for smaller drops as far as the outer region 1 and t̂0 are concerned.
This is especially true for the smallest drop displayed, with R= 1.5. It can clearly be
observed from figure 11(b) that such a change in the vapour gap morphology is related
first of all with the violation of the part l̂n�R of the presumed hierarchy of length
scales (4.1). This violation occurs for larger Ẽ as R is decreased, when the wavelength
of the intermediate region undulations becomes comparable with the size of the drop,
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FIGURE 10. (Colour online) Global drop shapes (a,b) and vapour gap thicknesses
(c distributions along the arc length of the pool surface; d values in the centre and at the
neck as functions of Ẽ). Results for R=3 and the material properties resembling those for
an ethanol drop on a silicone oil pool (Maquet et al. 2016). In particular, P = 1.244 and
Γ = 1.156. The (a,b) are for Ẽ = 4.8× 10−9 (1T = 1 K) and Ẽ = 2.3× 10−7 (1T = 40 K),
respectively. And so are the lower and upper curves in (c). The arc length ŝ is along the
pool surface in the full numerics, while along the superhydrophobic drop–pool interface
in the outer region 1 asymptotics.

as already discussed at the end of § 4.1. At smaller Ẽ however (e.g. at Ẽ = 4.8× 10−9

used earlier in figure 10), the present asymptotic scheme is still found to work rather
satisfactorily in the central part of the drop even for R as low as R= 1.5 (the result
not shown).

A no less remarkable result of figure 11 is some deterioration of the agreement
between asymptotics and full numerics observed for large R (viz. R = 10) as
compared to R = 3 as far as the gap thickness in the centre (i.e. t̂0) is concerned.
There is a good reason for that. Indeed, it is clear that, quite unlike a superhydrophobic
drop over a pool with equal liquid properties, a drop of a differing liquid will tend to
adopt a puddle-like shape as R is increased (here limiting consideration to the case
P > 1, of a lighter drop; a heavier one will merely sink for sufficiently large R). For
such a puddle, which the drop with R= 10 of figure 11 already much resembles, it
is not only the upper surface that flattens, but also the immersed one. The present
asymptotic scheme breaks down in the presence of a flattened part of the immersed
surface, for which the P̂′v and P̂′′v values to be used in (4.7) and (4.8) vanish and the
driving force of the flow P̂′v is no longer accurately estimated by the superhydrophobic
drop. The length scale at which such flattening occurs is the (dimensionless) capillary
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FIGURE 11. (Colour online) Extension of the part of the results of figure 10 pertaining
to Ẽ = 2.3 × 10−7 (still with P = 1.244, Γ = 1.156) to a number of drop radii, R =
1.5, 2, 3, 10. In (b), the correspondence between each curve and the R value can
reasonably be guessed from the right ending of the former.

0 1 2 3 4 0 1 2 3 4

2
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-1

-2
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0.08
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0.04

0.02

0

r̂ ŝ

t̂ẑ

(a) (b)

FIGURE 12. (Colour online) Extension of the results of figure 9 to a number of pool-to-
drop density ratios P = 0.8, 2, 40 (otherwise still for R= 3, Γ = 1 and Ẽ = 4.8× 10−9,
which corresponds to E = 8.64× 10−8). As P is increased, the drop mounts in (a), while
the curves in (b) get shorter from the right (the overall arc length of the vapour gap
decreases).

length of the immersed surface
√
(1+ Γ )/(P − 1). Hence the present asymptotic

scheme is expected to work in an optimal way when R.
√
(1+ Γ )/(P − 1), i.e. for

sufficiently small drops. The drop with R= 10 of figure 11 is already relatively large
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Asymptotic theory for a Leidenfrost drop on a liquid pool 1181

in this regard, hence the mentioned agreement deterioration. Note that this concerns
a relatively larger value Ẽ = 2.3 × 10−7. For a smaller value Ẽ = 4.8 × 10−9, the
agreement still proves to be excellent even for R= 10 (the result not shown). Note
also that for a system with P = 1, the capillary length of the immersed surface goes
to infinity (the surface itself assuming the form of a spherical cap), and hence such
a limitation on the maximum drop radius is lifted.

In figure 12, we take up the case of figure 9 (with R=3, Γ =1 and Ẽ =4.8×10−9)
and explore how the phenomenon is affected by the variation of the density ratio
P . We see that, as long as the pool surface deformation remains appreciable
(e.g. for P = 0.8, 2), the expected morphological features remain in place. In
particular, this is still the case at P = 0.8, for nearly the maximum possible
immersed-surface deformation: we are then on the verge of the disappearance of
a floating drop configuration for P slightly below P = 0.8, when a drop with
R = 3 and Γ = 1 becomes too heavy to remain on the pool surface. The fact
that such disappearance happens practically simultaneously (in terms of P) for the
Leidenfrost and superhydrophobic drops can serve as yet another confirmation of a
close relationship between these two configurations. On the other hand, while perhaps
not physically relevant, the interest of the case P=40 is that the pool surface becomes
essentially flat: hence we should thereby approach the case of a Leidenfrost drop
above a (flat) solid. Indeed, the vapour film profile for P = 40 is seen (cf. figure 12b)
to more closely resemble that typical for a flat solid substrate (Snoeijer et al. 2008;
Burton et al. 2012; Sobac et al. 2014), with the present asymptotic scheme yielding
an appreciable error with respect to the full numerics. The reason for such an error
can be traced back to the fact that, under the conditions when the vapour gap
thickness becomes comparable to (or even larger than) the deviation of the immersed
surface from the horizontal, the pressure distribution P̂v(ŝ) can no longer be taken
as t̂-independent as assumed from the superhydrophobic drop considerations. There
must rather be a feedback between P̂v(ŝ) and t̂(ŝ) such as that which exists in the
case of a flat solid substrate (Snoeijer et al. 2008; Sobac et al. 2014). Note also that
a similar observation can actually be attributed to the flattened parts (if any) of the
immersed surface even if the latter is not flattened overall (cf. the above discussion
of the drop with R= 10 of figure 11). Finally, an increase of the pool-to-drop surface
tension ratio Γ will lead to similar effects of pool surface flattening as those due to
an increase of P .

Thus, for differing liquids too, the scalings t̂0 ∼ Ẽ1/4 and t̂n ∼ Ẽ3/10 are still robust
and work in a reasonable interval of small Ẽ values for sufficiently large drops
(R � l̂n) in the general case of significantly curved pool surfaces. However, the
particular cases when the immersed superhydrophobic drop surface undergoes a
strong overall (for too large P and/or Γ ) or partial (for too large R) flattening must
realistically be excluded from the applicability domain of the present asymptotic
scheme. Indeed, such applicability would then just be expected for extremely small
values of Ẽ , which are of no practical interest. In contrast, the pure scaling in terms
of R underscored in § 4.1 makes actually no sense here (for differing liquids) due
to a morphological difference between the superhydrophobic drop shapes in the limit
of large R: a hemisphere for equal liquid properties, and a puddle for differing
ones (assuming a lighter drop, P > 1) with further adverse consequences due to the
mentioned partial flattening of the immersed surface.
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5. Conclusion

Leidenfrost drops on a superheated liquid pool were studied in the limit of small
evaporation numbers Ẽ , the latter proportional to the superheat 1T and determined
by both the thermal and hydrodynamic properties of the system. The pool surface
being deformed under the drop, the vapour gap was found to be of quite a different
morphology as compared to that of Leidenfrost drops deposited on a superheated flat
plate. The reason is that, for a curved substrate, there exists an a priori given driving
pressure gradient in the vapour layer, determined by the associated superhydrophobic
drop configuration and independent to leading order of the gap thickness distribution.
In contrast, for a flat substrate, the pressure gradient is fully determined by the
variation of the gap thickness.

As shown in detail in figure 3, three main asymptotic regions are identified to
describe the thin gap of vapour between the droplet and the liquid pool. This is unlike
the case for the Leidenfrost drop on a flat substrate, for which only two regimes
appear.

First, an outer region is identified, which is asymptotically the longest one of the
three. Its longitudinal extent is comparable to the size of the drop. The vapour gap
thickness in this region, scaling as O(Ẽ1/4), only marginally varies relative to its value
at the symmetry axis. This is quite different from the outer region in the vapour gap
over a flat substrate, which appears in the form of a vapour pocket, wide in the centre
and narrowing towards the edges (Snoeijer et al. 2009; Sobac et al. 2014), with a
thickness scaling as O(Ẽ1/6) (Sobac et al. 2014). It is such difference in morphology
that is behind the expected suppression of the chimney instability for large Leidenfrost
drops over a liquid pool, unlike their counterparts over a flat substrate (Snoeijer et al.
2009). An analytical solution for the thickness profile in the outer region was found
in the case of large drops with the same liquid properties as the pool. In the case
of smaller drops and/or differing properties, such a solution is expressed through
numerically determined characteristics of the associated superhydrophobic drop.

Second, we identified an inner (neck) region at the exit from the vapour gap, the
only one that bears a great resemblance to the corresponding region for Leidenfrost
drops on a flat substrate (Snoeijer et al. 2009; Sobac et al. 2014). The neck thickness
is here found to scale as O(Ẽ3/10), which is close to the O(Ẽ1/3) obtained for a flat
substrate (Sobac et al. 2014). The longitudinal extent of the neck scales as O(Ẽ3/20)

(cf. O(Ẽ1/6) for a flat substrate). A self-similar structure was found for the neck profile,
which turns out the be governed by the same universal solution as for the Leidenfrost
drop on a rigid substrate. The scaling laws and the self-similar shape showed excellent
agreement with the full numerical solution.

Third, the peculiarities of the outer region morphology over a curved pool surface
yet require the existence of an intermediate region to join the inner (neck) and outer
ones. In contrast, no such intermediate region is present in the vapour gap over a
flat substrate (Snoeijer et al. 2009; Sobac et al. 2014), where the outer and inner
regions directly match one another. The vapour gap profile in this intermediate region
turns out to be in the form of stationary capillary waves (undulations) springing from
the neck and decaying towards the outer region. The largest bump, next to the neck,
scales as O(Ẽ9/40) in thickness, and O(Ẽ3/40) in longitudinal extent. It is partly an
excessive penetration of the undulations into the outer region that, for small but finite
Ẽ , limits the applicability of our asymptotic scheme as far as sufficiently small drops
are concerned.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
0.

30
.1

86
.6

1,
 o

n 
31

 Ja
n 

20
19

 a
t 0

6:
48

:0
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
10

25

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.1025


Asymptotic theory for a Leidenfrost drop on a liquid pool 1183

On the one hand, the robustness of our analysis was tested in the realm of finite-
sized (but not too small) drops and differing liquids with a largely positive outcome,
provided that the parameters are such that the pool surface remains essentially curved.
On the other hand, the case of a large drop with the same liquid properties as the pool
stands out as the ideal baseline for our asymptotic scheme and for which a large part
of the analysis was carried out. Importantly, for these large Leidenfrost drops, pure
scaling relations can be established in terms of the drop radius R too, and not just
in terms of Ẽ (a size-independent quantity). To recover their due form, it suffices to
replace Ẽ in the earlier mentioned scaling relations with a modified (size-dependent)
evaporation number defined in the present paper as E = 6 ẼR/λc.

It is worth mentioning that the ‘boules’ described by Hickman (1964b), reproduced
in figure 1, exhibit slightly different scaling laws. This is due to the different way
the vapour is generated, which for the Hickman boules comes from the superheated
pool. This is to be contrasted with ‘usual’ Leidenfrost case, for which the drop is
evaporating. The main feature is that t∼1T1/3 as opposed to 1T1/4.

Finally, we found that the configuration of a flat substrate can here be recovered
in the case of strongly differing liquid properties and hence a gradual change can in
principle be realised between the two systems. However, as far as the details of a
gradual transition between the asymptotic paradigms of flat and curved substrates are
concerned, they remain a subject of future studies.
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Appendix A. Numerical approach to the full problem
Here we provide details of the numerical approach used to solve the full problem

formulated in § 2.1. In essence, the approach is similar to the one used by Sobac et al.
(2014), Maquet et al. (2016), the modifications being largely of a geometric nature
aimed at dealing with strongly curved substrates. We shall work in dimensionless
terms by using λc as the length scale and ρdgλc = γd/λc as the pressure scale. The
thereby obtained dimensionless variables are marked by hat, as e.g. in (4.5a–d).

The only exception to this hat rule is the drop radius R, for the dimensionless
version of which we already have a notation R, cf. (2.11). Nonetheless, expecting
no confusion in the reader, the hats will be omitted in the remainder of this appendix
for the sake of brevity, whereas they are still retained for the same quantities in the
main body of the text.

A.1. General equations
Then equations (2.1), (2.2), (2.8) and (2.10) adopt the following dimensionless forms:

Pv = k− h− κh (everywhere), (A 1)
Pv =−P e+ Γ κe (everywhere), (A 2)
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Pv = 0 (outside vapour layer), (A 3)

−
1

12
∂s
[
rt3∂sPv

]
= r

Ẽ
t

(vapour layer). (A 4)

When incorporating the latter (lubrication) equation in our numerical scheme, we shall
aim at incurring a lubrication approximation error as low as O(δ2) in terms of a thin-
film smallness parameter δ= 1/t∂st. This is normally automatically the case for a flat
substrate. However, for a curved substrate (as the pool surface here), O(δ) errors may
easily occur unless care is taken. We shall eventually use the following form of that
equation:

−
1

12
∂se

[
rh + re

2
t3

(
1+

1
2
κ1et
)
∂sePv

]
= rh

Ẽ
t (1+ κ1et)

(vapour layer). (A 5)

As used previously with κh and κe, the subscripts ‘h’ and ‘e’ are used for the
geometric quantities pertaining to the drop and pool surfaces, respectively, whereas
κ1 denotes the first curvature. As an independent variable, s, we have now chosen
for definiteness the one along the pool surface, s ≡ se. The form of (A 5) can be
understood using a differential identity dse = dsh (1+ κ1et) valid up to and including
O(δ), where κ1et is an O(δ) correction with respect to unity. As the evaporation
goes on from the drop surface while se is the arc length along the pool surface, the
evaporation term on the right-hand side is accordingly modified by a factor dsh/dse.
Besides, it is rh that is used there. In contrast, for the flux in the vapour film with a
symmetric lubrication profile (no-slip conditions at both surfaces), it is most precise
to base it on the middle surface (in between the drop and the pool). Hence there is a
factor (1+ (1/2)κ1et) (with a halved correction) modifying ∂sePv and (rh + re)/2 for
the radial coordinate on the left-hand side of (A 5). Note that the curvature quantities
κ are here defined as positive when the surfaces are concave towards the drop (see
also below).

Equation (A 5) together with both (A 1) and (A 2) is applied inside the vapour layer,
up until the patching point located at se= se,patch. The choice of the patching point will
be specified in more detail later on. Equation (A 3) is applied beyond the patching
point to determine the equilibrium shapes of the upper part of the drop, together with
(A 1), and of the remainder of the pool surface, together with (A 2).

The following geometric relations hold:

∂shh= sin ϕh, ∂shrh = cos ϕh, κh = κ1h +
sin ϕh

rh
, κ1h = ∂shϕh, (A 6a−d)

∂see= sin ϕe, ∂sere = cos ϕe, κe = κ1e +
sin ϕe

re
, κ1e = ∂seϕe, (A 7a−d)

where ϕ is the angle between the tangential along the surface pointing away from
the axis underneath the drop and the horizontal pointing away from the axis. For
definiteness, the vapour-layer thickness t will be measured and the coordinate lines
se= const. will be defined exactly along the orthogonals to the pool surface. Then we
can also write

h− e= t cos ϕe, re − rh = t sin ϕe. (A 8a,b)

The arc length s for each surface is counted from the axis underneath the drop,
where we have se = sh = re = rh = ϕh = ϕe = 0. We expect ϕh = π at the axis at the
top of the drop, whereas once again ϕe = 0 at the unperturbed pool surface far away
from the drop.
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A.2. Upper part of the drop
When solving for the upper, equilibrium part of the drop, one can get rid of the
variable sh in the corresponding system of (A 1), (A 3) and (A 6) and render this
part of the formulation in terms of an independent variable ϕh (expected to vary
monotonically in the interval of interest) and the dependent variables h and rh. We
shall just shift the origin of h to the top of the drop for later convenience. One
obtains

∂ϕhH =
sin ϕh

κh,top −H − sinϕh/rh
, ∂ϕhrh =

cos ϕh

κh,top −H − sinϕh/rh
, (A 9a,b)

where
h= htop +H, (A 10)

with htop and κh,top > 0 being the h and curvature values, respectively, at the top of
the drop. We also note that the constant k appearing in (A 1) is hereby expressed as

k= htop + κh,top. (A 11)

The solution of the Cauchy problem (A 9) with the boundary condition H = 0 and
rh=0 at ϕh=π (removable singularity in (A 9)) can be obtained by standard numerical
methods, the integration proceeding towards ϕh <π.

The parameter κh,top is actually the one determining the size (radius R) of the drop.
The formal equation on κh,top, once a system parameter R is specified, is

max
0<ϕh<π

rh(ϕh, κh,top)=R. (A 12)

We note that in the cases when the patching point is located below the drop’s equator
(typically when the pool surface deformation is not too large), equation (A 12) can be
solved immediately in the framework of the present equilibrium treatment of the upper
part of the drop. Otherwise, equation (A 12) carries over to the vapour-layer problem
to be considered in § A.4.

The parameter htop, on the other hand, is the one determining the vertical shift of
the drop, but not immediately affecting its shape. It is an unknown that carries over
to the vapour-layer problem below.

For later use (see § A.4), to distinguish from the corresponding dependent variables
in the vapour layer, we shall attribute a subscript ‘upper’ to the solution H(ϕh, κh,top)
and rh(ϕh, κh,top) obtained in the present subsection to yield

Hupper(ϕh, κh,top) and rh,upper(ϕh, κh,top), (A 13a,b)

presumed to be known functions in what follows and applied down to the patching
point.

A.3. Pool surface free from the drop
Similarly to § A.2, equations (A 2), (A 3) and (A 7) describing the equilibrium shape
of the pool surface beyond the patching point can be rendered in the form

∂ϕee=
sin ϕe

P Γ −1e− sinϕe/re
, ∂ϕere =

cos ϕe

P Γ −1e− sinϕe/re
. (A 14a,b)

Equations (A 14) are numerically integrated towards ϕe > ϕe0 starting from
numerics-adapted boundary conditions e=C K0(P1/2Γ −1/2re) and ϕe=−CP1/2Γ −1/2K1
(P1/2Γ −1/2re) formulated at some numerically small ϕe = ϕe0 (numerically large
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re = re0). Here K0 and K1 are modified Bessel functions of the second kind. Such
boundary conditions are inferred from (A 3) with (A 2) by implying small pool
surface deformations, when the curvature is given by κe = ∂

2
re

e+ r−1
e ∂ree, and the true

boundary condition e = 0 and ϕe = 0 as re →∞. To the hereby obtained solution
e(ϕe, C) and re(ϕe, C), we append for later convenience (as in § A.2) a distinctive
subscript, here ‘free’, to yield

efree(ϕe,C) and re,free(ϕe,C), (A 15a,b)

which are presumed to be known functions in what follows, applied down to the
patching point. The constant C is an unknown carrying over to the vapour-layer
problem. We note that efree and re,free are also functions of a system parameter P Γ −1,
but an explicit argument list shall here be limited to the variables and the unknown
constants.

A.4. Vapour layer
When solving the problem in the vapour layer, we treat se as an independent variable
in the interval 0< se< se,patch. Its value at the patching point, se,patch, is an unknown of
the problem. Thirteen other variables entering the formulation (A 1), (A 2), (A 5)–(A 8)
are taken as dependent (viz. h, e, t, rh, re, sh, ϕh, ϕe, Pv, κh, κe, κ1h, κ1e). Note the
possibility of formally writing ∂sh= (∂sesh)

−1∂se in (A 6). For k in (A 1), equation (A 11)
is still implied.

Overall, we have an eighth-order ODE algebraic problem as written. The boundary
conditions at se = 0 are sh = re = ϕe = ϕh = ∂sePv = 0 (rh = 0 then formally following
from the second algebraic equation (A 8)). At the patching point se = se,patch, we
have Pv = 0, h = Hupper(ϕh, κh,top) + htop, rh = rh,upper(ϕh, κh,top), e = efree(ϕe, C),
re= re,free(ϕe,C), where the functions marked by the subscripts ‘upper’ and ‘free’ are
regarded known from § A.2 and § A.3, respectively.

On the other hand, we still need a precise definition of the choice of the patching
point, arbitrary within certain reasonable limits in our present scheme. We define it by
setting the slope difference between the drop and pool surfaces at a sufficiently large
prefixed value 1ϕ (typically between 30◦ and 90◦), viz. ϕh − ϕe =1ϕ at se = se,patch,
which serves as yet another boundary condition. We verify a posteriori the results not
being too sensitive to such a choice.

Thus, the number of the boundary conditions used (eleven) can be seen to exceed
by three the differential order of the problem, which is justified given that there are
also five unknown constants (se,patch, htop, κh,top, k and C) to be determined but so far
only two equations, (A 11) and (A 12), formulated for them.

The vapour-layer problem is discretised by means of second-order finite differences
at a uniform grid. The dependent variables are all defined only at the grid points
themselves. The second-order ODE is discretised at the internal grid points, the
first-order ODEs at the mid-points (the nonlinear terms being averaged between
their values at the adjacent grid points), whereas the distributed algebraic equations
hold at all grid points (due to a removable singularity in the third equations (A 6)
and (A 7), they are replaced at the first grid point with κh = 2κ1h and κe = 2κ1e).
The boundary conditions are applied at the corresponding first or last grid points.
The thereby obtained system of nonlinear algebraic equations for the values of the
dependent variables at the grid points and the unknown constants, complemented yet

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
0.

30
.1

86
.6

1,
 o

n 
31

 Ja
n 

20
19

 a
t 0

6:
48

:0
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
10

25

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.1025


Asymptotic theory for a Leidenfrost drop on a liquid pool 1187

by equations (A 11) and (A 12), is solved with the help of the FindRoot command
in Mathematica, which finalises the solution for the vapour layer. On the other hand,
as soon as the values of the constants (se,patch, htop, κh,top and C) are obtained, the
shape of the upper part of the drop is eventually given by (A 13) applied for ϕh
in the interval ϕh

∣∣
se=se,patch

< ϕh 6 π, where the definition (A 10) must be taken into
account. The shape of the pool surface not covered by the drop is eventually given
by (A 15) for ϕe in the interval 0 6 ϕe <ϕe|se=se,patch .

Appendix B. Superhydrophobic drop computation
In the present appendix, we proceed in the same non-dimensionalisation and with

the same convention on hat omission as in the previous one (see the beginning of
appendix A).

The solutions (A 13) and (A 15) for the upper part of the drop and for the drop-
free part of the pool surface obtained in the context of a Leidenfrost drop actually
hold verbatim in the context of a superhydrophobic drop. However, they must now
be applied up until the contact (triple) line thereof, and not until a patching point,
which is here non-existent. Equations (A 11) and (A 12) and the representation (A 10)
are still applicable too.

For the drop–pool interface (the interfacial tension γd+ γp) in the framework of our
superhydrophobic drop, we have

e≡ h, re ≡ rh, ϕe ≡ ϕh, κe ≡ κh. (B 1a−d)

The governing system of equations for this interface, a counterpart of (A 9) and (A 14)
for the other two interfaces, can be derived by equating the expressions (A 1) and
(A 2) on account of (B 1) and using geometric considerations similar to those used
there. One finally arrives at

∂ϕhH=
sin ϕh

κh,bottom −
1−P
1+ Γ

H−
sin ϕh

rh

, ∂ϕhrh =
cos ϕh

κh,bottom −
1−P
1+ Γ

H−
sin ϕh

rh

, (B 2a,b)

where
h= hbottom +H (B 3)

and
κh,bottom =

κh,top + (htop − hbottom)+P hbottom

1+ Γ
, (B 4)

the subscript ‘bottom’ referring to quantities at the very bottom of the drop (at the
symmetry axis). The newly introduced quantities hbottom and κh,bottom are unknowns to
be determined from the overall problem.

The system (B 2) is numerically integrated starting from the boundary condition
H = 0 and rh = 0 at ϕh = 0 towards ϕh > 0. To the hereby obtained solution
H(ϕh, κh,bottom) and rh(ϕh, κh,bottom) we append for later distinction a subscript ‘lower’
to yield

Hlower(ϕh, κh,bottom) and rh,lower(ϕh, κh,bottom), (B 5a,b)
presumed to be known functions in what follows.

At the contact (triple) line, we must have continuity of all the three interfaces as
well as of their corresponding slopes. On account of (A 10), (A 13), (A 15), (B 3) and
(B 5), this leads to the following equations:

htop +Hupper(ϕCL, κh,top)= efree(ϕCL,C)= hbottom +Hlower(ϕCL, κh,bottom),

rh,upper(ϕCL, κh,top)= re,free(ϕCL,C)= rh,lower(ϕCL, κh,bottom),

}
(B 6)
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where ϕCL is the slope at the contact line (another unknown of the problem), common
to all the three interfaces.

Finally, we have a system of seven algebraic equations, (A 11), (A 12), (B 4) and
(B 6), for seven unknown constants, k, htop, κh,top, hbottom, κh,bottom, C and ϕCL, which
is solved numerically. Once the values of the constants are known and account is
taken of the definitions (A 10) and (B 3), the eventual shape of the superhydrophobic
drop and the adjacent free pool surface is given by (A 13) used for ϕCL 6 ϕh 6 π,
(A 15) used for 0 6 ϕe 6 ϕCL, and (B 5) used for 0 6 ϕh 6 ϕCL. Once the shape
is known, the vapour pressure (in an imaginary infinitesimal gap between the
two liquids) is given either by (A 1) or, equivalently, by (A 2), hence a known
distribution Pv(ϕh). The arc length sh(ϕh) along the interface between the two liquids,
required in the formulation of § 4, can be determined by a posteriori integrating
∂ϕhsh=

√
(∂ϕhrh,lower)2 + (∂ϕhHlower)2 and implying sh= 0 at the symmetry axis. In this

way, we can express Pv and rh,lower as functions of sh, which we symbolically rewrite
below in the notations to be used in § 4:

P̂v(ŝ), r̂(ŝ), (B 7a,b)

i.e. with a hat restored (cf. the beginning of appendix A) and subscripts ‘h’ and ‘lower’
dropped. The value of this arc length at the contact line, sh(ϕCL), will likewise be
denoted as ŝCL in § 4.
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