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Abstract

Differential privacy provides a theoretical framework for processing a dataset about n
users, in a way that the output reveals a minimal information about any single user. Such
notion of privacy is usually ensured by noise-adding mechanisms and amplified by several
processes, including subsampling, shuffling, iteration, mixing and diffusion. In this work,
we provide privacy amplification bounds for quantum and quantum-inspired algorithms. In
particular, we show for the first time, that algorithms running on quantum encoding of a
classical dataset or the outcomes of quantum-inspired classical sampling, amplify differential
privacy. Moreover, we prove that a quantum version of differential privacy is amplified by
the composition of quantum channels, provided that they satisfy some mixing conditions.

1 Introduction

Differential Privacy (DP) [1, 2] is a rigorous mathematical framework for preserving the in-
formation of each individual in a dataset while enabling to analyse and process the dataset.
Intuitively, a differentially private algorithm can learn a statistical property of a dataset con-
sisting of n users, yet it leaks almost nothing about each individual user. Such mechanisms are
of great interest and importance when dealing with sensitive data like hospital data, banks, so-
cial media, etc. Apart from privacy-preserving data analysis, differential privacy has also found
several applications in other fields of computer science such as machine learning [3, 4, 5, 6],
statistical learning theory [7, 8, 9, 10], mechanism design [11].

Since its introduction, multiple analytical tools for the design of private data analyses have
been developed [12, 13, 14, 15]. Most commonly, these mechanisms exploit techniques like adding
noise to the final output or randomizing the input. A loose analysis of complex mechanisms
built out of these blocks can be conducted with simple tools, such as basic composition rules
and robustness to post-processing. However, the inherent trade-off between privacy and utility
in practical applications ignited the development of more refined rules leading to tighter privacy
bounds. A trend in this direction is to show that several sources of randomness amplify the
guarantees of standard DP mechanisms. In particular, DP amplification results have been
shown for subsampling, iteration, mixing and shuffling [16, 17, 18, 19].

Given the major influence of quantum computing and quantum information in the past
decades over different areas of computer science, an interesting question is whether quantum and
quantum-inspired algorithms can enhance differential privacy. This question becomes specifically
more relevant with the availability of Noisy Intermediate Scale Quantum devices (NISQ) today
[20]. The noisy nature of these devices (also previously exploited by [21]) on one hand, and
the potential capabilities of quantum algorithms, on the other hand, make such quantum or
hybrid quantum-classical mechanisms, an interesting subject of study from the point of view
of differential privacy. Furthermore, the connection between machine learning and differential
privacy suggests that answering this question can lead to intriguing insights into the capabilities
of quantum machine learning.
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Differential privacy has been extended to quantum computation in [22] and [23]. One of the
main challenges in translating the definition of DP in the quantum setting is to characterise the
notion of neighbouring quantum states. Recall that, in the classical setting, two neighbouring
datasets differ in at most one single entry. In the two mentioned works, the adopted definitions of
neighbouring quantum states are significantly different, and are respectively based on bounded
trace distance and single-register measurements. For the purpose of this paper, we follow the
definition of [22]. Moreover, quantum private PAC learning has been defined in [24], and a
quantum analog of the equivalence between private classification and online prediction has been
shown in [10].

Our contributions. In this paper, we initiate a systematic study of differential privacy am-
plification in quantum and quantum-inspired algorithms. We provide three types of results.
Section 3 provides privacy amplification results when the (classical) data is encoded into a
quantum state. Informally, we first show that quantum encoding of classical datasets leads to
approximate classical differential privacy. Moreover, we show that a quantum DP operation
performed on the quantum encoding of a classical dataset satisfies also classical DP, under some
suitable assumptions. These two primary results show a general application of quantum infor-
mation and quantum encoding for differential privacy and can be employed further to design
sophisticated differentially private mechanisms both in the classical and quantum setting. More-
over, we prove that the composition of quantum encoding with noisy mechanisms such as the
Laplace and Gaussian mechanisms amplifies differential privacy.

Similarly, Section 4 investigates the case of quantum-inspired algorithms, a family of classical
algorithms equipped with an ℓ2-norm sampling oracle. We show that differential privacy, both in
the exact and approximate setting, is amplified via quantum-inspired subsampling, establishing
the concrete amplification bounds.

Finally, our last results concern quantum differential privacy. As for classical DP, quantum
DP is preserved under post-processing [22]. In Section 5, we show an amplification result for
the post-processed quantum channel S ◦ T , provided that T satisfies a quantum analog of the
Dobrushin or the Doeblin condition. This is yet another general result that relies on the con-
traction property of quantum channels and can be exploited to enhance differential privacy. We
expand this result by finding explicit bounds for differential privacy under the mentioned condi-
tion for the composition of two well-known quantum channels, namely the generalized amplitude
damping channel and depolarizing channel. Furthermore, we show that the Dobrushin condition
together with unitality provides pure quantum differential privacy.

2 Preliminaries

We start by introducing notation and concepts that will be used throughout the paper.

Quantum information. We briefly review the basic concepts in quantum information that
we will use throughout the paper. A d-dimensional pure state is a unit vector in C

d, written in
ket notation as

|ψ〉 =
d

∑

i=1

αi |i〉 .

Here |1〉 , . . . , |d〉 is an orthonormal basis for C
d, and the αi’s are complex numbers called am-

plitudes satisfying |α1|2 + · · ·+ |αd|2 = 1. The notation |·〉 reminds of the fact that the Hilbert
space has an inner product 〈·, ·〉, which for Hilbert spaces describing quantum systems is denoted
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as 〈·|·〉. The left side of the inner product 〈ψ| is the conjugate transpose of the quantum state
|ψ〉. Then the unit-norm condition can be expressed succinctly as 〈ψ|ψ〉 = 1.

In general, we may also have classical probability distributions over pure states. This sce-
nario is captured by the formalism of mixed states, which generalises all the states in quantum
mechanics including pure states. Mixed states are conveniently described by density matrices.
Formally, a d-dimensional mixed state ρ is a d × d positive semidefinite matrix that satisfies
Tr(ρ) = 1. Equivalently, ρ is a convex combination of outer products of pure states with them-
selves:

ρ =

d
∑

i=1

pi |ψi〉 〈ψi| ,

where pi ≥ 0 and
∑

i pi = 1. In the special case where pi = 1, we obtain a pure state ρ = |ψi〉 〈ψi|.
Several norms and distance measures can also be defined for general quantum states. Given a
Hermitian matrix A with eigenvalues λ1, . . . , λk, its trace norm is defined as ||A||tr := 1

2

∑d
i=1 λi.

The trace norm induces the trace distance ||ρ− σ||tr = Tr(|ρ− σ|)/2. For a pair of pure states,
the trace distance can be linked to their inner product,

|| |ψ〉 〈ψ| − |φ〉 〈φ| ||tr =
√

1− | 〈ψ|φ〉 |2. (1)

A superoperator S maps a mixed state ρ to the mixed state S(ρ) =
∑k

i=1BiρB
†
i , where

B1, . . . , Bk can be any matrices satisfying
∑k

i=1B
†
iBi = I. This is the most general (norm-

preserving) mapping from mixed states to mixed states allowed by quantum mechanics. If

we drop the norm-preserving condition and we let
∑k

i=1B
†
iBi � I, then we call S a quantum

operation. Quantum operations act linearly on mixed states, in the sense that for any a, b ∈ C,
S(aρ + bσ) = aS(ρ) + bS(σ). Moreover, quantum operations are non trace-increasing. For any
hermitian matrix A, ||S(A)||tr ≤ ||A||tr. In particular, ||S(ρ)− S(σ)||tr ≤ ||ρ− σ||tr.

The most general class of measurements to perform on mixed states are the POVMs (Positive
Operator Valued Measures). In the POVM formalism, a measurementM with possible outcomes
1, 2, . . . k is given by a list of d × d positive semidefinite matrices E1, . . . , Ek, which satisfy
∑

iEi = I. The measurement rule is:

Pr[M(ρ) returns outcome i] = Tr(Eiρ).

Notably, trace distance has also the following physical interpretation

||ρ− σ||tr = max
M

Pr[M(ρ) accepts]− Pr[M(σ) accepts], (2)

where the maximum is taken over all possible two-outcome measurements. We also define the
infinity norm of a matrix A as the maximum of the absolute row sum value as follows,

||A||∞ = max
i

n
∑

j

|aij |, (3)

Furthermore, we need to define the operator infinity norm or ℓ∞-norm. The vector space
ℓ∞ is a sequence space whose elements are the bounded sequences. The ℓ∞ space in a Banach
space with respect to the following norm,

||x||∞ = sup
n

|xn|, (4)

The operator norm on the Hilbert space is defined over the space of bounded linear operators
as,

||O||∞ = sup ||Ox|| : ∀||x|| ≤ 1, (5)

We also note that for the operator norms, ||.||1 is the dual norm of ||.||∞ [25].
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Differential privacy. In the standard model of differential privacy, a trusted curator collects
the raw data of the individuals and is responsible for their privacy. On the contrary, in the local
model the curator is possibly malicious, and hence each individual submits their own privatized
data. More formally, consider a statistical dataset, i.e. a vector x = (x1, . . . , xn) over a domain
X, where each entry xi ∈ X represents information contributed by a single individual. datasets
x and x′ are neighbors if xi 6= x′i for exactly one i ∈ [n]. We denote the neighbor relation with
x ∼ x′. A randomized algorithm A is (ε, δ)-differentially private if for any two neighbor datasets
x, x′ and for every subset F of the possible outcomes of A we have

Pr[A(x) ∈ F ] ≤ eε Pr[A(x′) ∈ F ] + δ.

We denote as pure differential privacy the special case where δ = 0, while in the most
general case we have approximate differential privacy. One popular method to ensure (ε, 0)-
DP is the Laplace mechanism. Given a function f : X n −→ Rk we define its ℓ1-sensitivity as
∆ = maxx∼x′ |f(x′)− f(x)|. The Laplace mechanism consists in adding a random perturbation
η to f(x), where η ∼ Laplace(∆/ε) := ε

2∆
exp

(

−|η| ε
∆

)

.
An additional widely-used method is the Gaussian mechanism, that ensures (ε, δ)-DP. Given

a function f as defined above, the Gaussian mechanism consists in adding a random perturbation

η to f(x), where η ∼ N (0, σ2) := 1√
2πσ2

exp
(

− η2

2σ2

)

and σ2 = 2 ln(1.25/δ)∆2/ε2.

We now turn our attention to the local model. Following the notation used in [7], we say
that a randomized algorithm over datasets is (ε, δ)-local differentially private if it’s an (ε, δ)-
differentially private algorithm that takes in input a dataset of size n = 1.

The most common mechanism for local differential privacy is randomized response (RR). For
a dataset x = (x1, . . . , xn) ∈ {0, 1}n, each user xi outputs a random bit zi, such that zi = xi
with probability eε+δ

1+eε
and zi = 1−xi with probability 1−δ

1+eε
. It is easy to see that any algorithm

run on z = (z1, . . . , zn) is (ε, δ)-local differentially private.
Interestingly, differential privacy is related to several desired learnability properties, including

robustness, stability and generalization. Concerning robustness to adversarial examples, we
recall here the result stated in (Lemma 1, [26]). Let Bp(r) := {α ∈ R

n : ||α||p ≤ r} be the
p-norm ball of radius r. For a given classification model f and a fixed input x ∈ R

n, an
attacker is able to craft a successful adversarial example of size L for a given p-norm if they find
α ∈ Bp(L) such as f(x + α) 6= f(x). The attacker thus tries to find a small change to x that
will significantly change the predicted label. Now, suppose that a randomized function A, with
bounded output A(x) ∈ [0, b], b ∈ R

+, satisfies (ε, δ)-DP. Then the expected value of its output
meets the following property:

∀α ∈ Bp(1) : E(A(x)) ≤ eεE(A(x+ α)) + bδ

where the expectation is taken over the randomness in A.
Following the approach proposed in [22], we say that a quantum operation E is (τ, ε, δ)-

quantum differentially private (QDP), if for every POVM M , for all subset S of the possible
outcomes, and for all inputs ρ, σ such that ||ρ− σ||tr ≤ τ ,

Pr[M(E(ρ)) output is in S] ≤ eε Pr[M(E(σ)) output is in S] + δ. (6)

Theorem 1 (Proposition 1, [22]). Let E be a quantum operation that is (τ, ε, δ)-QDP. Let F be
an arbitrary quantum operation. Then the composition of E and F

F ◦ E : ρ 7→ F(E(ρ))

is (τ, ε, δ)-QDP.
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3 Amplification by quantum encoding

In quantum computation, a classical dataset x ∈ X can be mapped to a quantum state with
a data-encoding feature map, also referred as quantum encoding, that is a classical-to-quantum
transformation

φ(x) = |φ(x)〉 〈φ(x)| = ρ(x).

Given a dataset x = (x1, . . . , xn), where each xi is a binary string, one of the most common
information encoding strategy is the basis encoding, which is described by a uniform superposi-
tion of computational basis states

x 7→ 1√
n

n
∑

i=1

|xi〉 .

For a complex value dataset x ∈ C
n, it’s convenient to adopt the amplitude encoding,

x 7→
n
∑

i=1

xi |i〉 .

We always assume that the input vector x is normalised as ||x||2 =
∑

i |xi|2 = 1. For convenience,
we set the following parameter, that will be employed in the following.

Γ(x) := max
j

|xj |2. (7)

For a dataset x ∈ [0, 2π]n we can define the rotation encoding,

x 7→
1

∑

q1...qn=0

n
∏

k=1

cos(xk)
qk sin(xk)

1−qk |q1, . . . , qk〉 .

As noted in [27], a quantum encoding gives rise to a quantum kernel, which is the inner
product between two data-encoding feature vectors. For any x, x′ ∈ X , the quantum kernel
induced by φ is

κφ(x, x
′) = ||ρ(x)ρ(x′)||tr = | 〈φ(x)|φ(x′)〉 |2. (8)

Since we are dealing with differential privacy, quantum kernels evaluated on neighbor inputs are
of particular interest. To this end, we define the quantum minimum adjacent kernel

κ̂φ := min
x∼x′

κφ(x, x
′).

The expressions of κφ and κ̂φ for the quantum encodings defined above can be found in Table (1).
We refer to [27] for more details and more examples of quantum kernels.

We observe that the minimum adjacent kernels allows us to connect the quantum and classical
definition of differential privacy.

Lemma 1 (Quantum-to-classical DP). Let x ∈ X and let A be a quantum algorithm that takes
as input only ρ(x) = |φ(x)〉 〈φ(x)| and perform a (

√

1− κ̂φ, ε, δ)-QDP quantum operation E on
ρ(x). Then A ◦ ρ is (ε, δ)-DP.

Proof. Let x, x′ two neighbouring datasets and |φ(x)〉 , |φ(x′)〉 their corresponding encodings.
By definition, their trace distance is upper bounded by the minimum adjacent kernel,

||ρ(x)− ρ(x′)||tr ≤
√

1− | 〈φ(x)|φ(x′)〉 |2 :=
√

1− κφ(x, x′) ≤
√

1− κ̂φ.

5



Table 1: Quantum kernels and quantum minimum adjacent kernels for several quantum encod-
ings. Here δx,y is the Kronecker function and Γ(x) is the parameter defined in Eq. (7).

Encoding φ κφ(x, x
′) κ̂φ

Basis encoding
∑

i δxi,x
′

i
1− 1/n

Amplitude encoding |x†x′|2 1− Γ(x)
Rotation encoding

∏

i | cos(xi − x′i)|2 0

Algorithm 1 Composition of quantum encoding and a noise-adding mechanism

Input: a dataset x = (x1, . . . , xn), a POVM M with outcomes in {0, 1}, a distribution D
for i = 1 to m do

Perform the feature map x 7→ ρ(x) = |φ(x)〉 〈φ(x)|
Apply M to ρ(x) and store the output in yi

end for

Compute the mean µ = 1

m

∑m
i=1 yi and output O = µ+ η, where η ∼ D.

By definition of quantum differential privacy, for any measurement M , and for any subset S of
the possible outcomes,

Pr[M(E(ρ(x))) output is in S] ≤ eε Pr[M(E(ρ(x′))) output is in S] + δ.

Since quantum DP is robust to post-processing (Theorem 1), the former inequality implies that
the algorithm A ◦ ρ is (ε, δ)-DP.

Moreover, we can show that if κ̂φ is larger than 0, then any quantum algorithm that accesses
solely the quantum encoding of a classical dataset satisfies approximate differential privacy.

Lemma 2 (Approximate DP by quantum encoding). Let x ∈ X and let A be a quantum
algorithm that takes as input only ρ(x) = |φ(x)〉 〈φ(x)|. Then A ◦ ρ is (0,

√

1− κ̂φ)-DP.

Proof. Since differential privacy is preserved under post-processing, we can assume that A con-
sists of a quantum operation S followed by a POVM measurement M . Let F be a subset of the
possible outcomes of M . We define the two-outcome measurement M ′ such that M ′ runs M
and accepts if the resulting outcome is in F , otherwise it rejects. Plugging Eq. (8) and Eq. (1)
into Eq. (2), we get the following bound:

Pr[M(S |φ(x)〉) ∈ F ]− Pr[M(S |φ(x′)〉) ∈ F ]
= Pr[M ′(S |φ(x)〉) accepts]− Pr[M ′(S |φ(x′)〉) accepts]

≤ ||S(ρ(x)) − S(ρ(x′))||tr ≤ ||ρ(x)− ρ(x′)||tr =
√

1− | 〈φ(x)|φ(x′)〉 |2 ≤
√

1− κ̂φ.

Thus the algorithm A ◦ ρ is (0,
√

1− κ̂φ)-DP.

So far we have shown that quantum encodings inherently provide approximate differential
privacy, under some suitable assumptions. In the following, we study the interaction of quantum
encoding and classical noise-adding mechanisms, as sketched in Algorithm (1). In particular,
we show DP amplification results for the Laplace and Gaussian mechanisms.
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Theorem 2 (Composition of quantum encoding and Laplace mechanism). Let x,m,M, ρ be
as in Algorithm (1). Let D = Laplace(1

ε
(
√

1− κ̂φ + t)) for any t ≥ 0. Then Algorithm (1) is
(ε, 0)-DP with exponentially high probability in t and m.

Proof. Let x, x′ be two neighbouring datasets. Denote as y′i and µ
′ the outcomes of M on input

ρ(x′) and their mean, respectively. First, we make the following observation

|E[M(ρ(x)) −M(ρ(x′))]| = |Pr[M(ρ(x)) = 1]− Pr[M(ρ(x′)) = 1]| ≤
√

1− κ̂φ.

We apply now the Chernoff-Hoeffding’s bound

Pr

[∣

∣

∣

∣

∣

1

m

m
∑

i=1

yi − E[M(ρ(x))]

∣

∣

∣

∣

∣

≥ t

2

]

≤ 2e−mt2 .

Thus with probability 1− 4e−mt2 the means µ and µ′ are within an additive factor t+
√

1− κ̂φ.
Since η ∼ Laplace((t+

√

1− κ̂φ)/ε), we have that for any z ∈ R,

Pr[µ+ η = z] ≤ eε Pr[µ′ + η = z]

with probability at least 1 − 4e−mt2 . In other words, a Laplace perturbation of parameter
(t+

√

1− κ̂φ)/ε ensures (ε, 0)-DP with high probability in t and m.

Theorem 3 (Composition of quantum encoding and Gaussian mechanism). Let x,m,M, ρ be
as in Algorithm (1). Let D = N (0, σ2) where σ2 = 2 ln(1.25/δ)(

√

1− κ̂φ + t)2/ε2 for any t ≥ 0.
Then Algorithm (1) is (ε, δ)-DP with exponentially high probability in t and m.

Proof. Let x, x′ be two neighbouring datasets. Denote as y′i and µ
′ the outcomes of M on input

ρ(x′) and their mean, respectively. By applying the same arguments of the proof of Theorem 2,
we show that, with probability 1 − 4e−mt2 the means µ and µ′ are within an additive factor
t+

√

1− κ̂φ.
Since η ∼ N (0, σ2) with σ2 = 2 ln(1.25/δ)(

√

1− κ̂φ + t)2/ε2, we have that for any z ∈ R,

Pr[µ+ η = z] ≤ eε Pr[µ′ + η = z] + δ.

with probability at least 1− 4e−mt2 . So we proved that a Gaussian perturbation of parameter
σ2 ensures (ε, δ)-DP with high probability in t and m.

We can obtain explicit privacy amplification bounds by combining the values of κ̂φ in
Table (1) with the results of this section. Remark that, unlike the basis and the amplitude
encoding, the rotation encoding provides no privacy amplification, as κ̂φ = 0 in that case.

4 Amplification by quantum-inspired sampling

In quantum-inspired algorithms [28, 29, 30, 31], we simulate the measurement of |x〉⊗m in the
computational basis and process the outcomes with a classical algorithm. Quantum-inspired
subsampling generalizes the uniform subsampling. Indeed, uniform subsampling can be recov-
ered as a special case when Γ(x) = 1/n.

We will show the intuitive fact that quantum-inspired subsampling amplifies DP. The proof
closely follows the one of (Problem 1.b, [32]) for uniform subsampling, but we include it here
for completeness. Given a normalised vector x = (x1, . . . , xn) ∈ C

n, let |x〉 := ∑n
i=1 xi |i〉 be the

amplitude encoding defined in the previous section.
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Theorem 4 (DP amplification by quantum-inspired sampling). For any x ∈ C
n, let s =

(s1, . . . , sm) be the measurement outcomes in the computational basis of |x〉⊗m. Denote S as
the sampling mechanism that maps x into s. Let A be a (ε, δ)-DP algorithm that takes only s
as input. Then A′ = A ◦ S is (ε′, δ′)-DP, with ε′ = log(1 + (eε − 1)Γ(x)m) and δ′ = δΓ(x)m.

Proof. We will use T ⊆ {1, . . . , n} to denote the identities of the m-subsampled elements
s1, . . . , sm (i.e. their index, not their actual value). Note that T is a random variable, and
that the randomness of A′ := A ◦ S includes both the randomness of the sample T and the
random coins of A. Let x ∼ x′ be adjacent datasets and assume that x and x′ differ only on
some row t. Let s (or s′) be a subsample from x (or x′) containing the rows in T . Let F be an
arbitrary subset of the range of A). For convenience, define p = Γ(x)m. Note that, by definition
of quantum amplitude encoding and by union bound,

Pr[i ∈ T ] ≤ mPr[|x〉 collapses to state |i〉] = |xi|2 ≤ mΓ(x) := p

To show (log(1 + p(eε − 1)), pδ)-DP, we have to bound the ratio

Pr[A′(x) ∈ F ]− pδ

Pr[A′(x′) ∈ F ]
≤ pPr[A(s) ∈ F |i ∈ T ] + (1− p) Pr[A(s) ∈ F |i 6∈ T ]− pδ

pPr[A(s′) ∈ F |i ∈ T ] + (1− p) Pr[A(s′) ∈ F |i 6∈ T ]

by p(1 + (eε − 1)). For simplicity, define the quantities

C = Pr[A(s) ∈ F |i ∈ T ]

C ′ = Pr[A(s′) ∈ F |i ∈ T ]

D = Pr[A(s) ∈ F |i 6∈ T ] = Pr[A(s′) ∈ F |i 6∈ T ].

We can rewrite the ratio as

Pr[A′(x) ∈ F ]− pδ

Pr[A′(x′) ∈ F ] =
pC + (1− p)D − pδ

pC ′ + (1− p)D
.

Now we use the fact that, by (ε, δ)-DP, C ≤ min{C ′,D}+ δ. Plugging all together, we get

pC + (1− p)D − pδ ≤ p(eεmin{C ′,D}) + (1− p)D

≤ p(min{C ′,D}+ (eε − 1)min{C ′,D}) + (1− p)D

≤ p(C ′ + (eε − 1)(pC ′ + (1− p)D)) + (1− p)D

≤ (pC ′ + (1− p)D) + p(eε − 1))(pC ′ + (1− p)D) ≤ (1 + p(eε − 1))(pC ′ + (1− p)D),

where the third-to-last line follow from min{x, y} ≤ αx + (1 − α)y for every 0 ≤ α ≤ 1. To
conclude the proof, we rewrite the ratio and get the desired bound.

Pr[A′(x) ∈ F ]− pδ

Pr[A′(x′) ∈ F ]
≤ 1 + p(eε − 1).

If we don’t require A to be (ε, δ)-DP, we obtain the following corollary as a special case
of Theorem 4.

Corollary 1 (Approximate DP by quantum-inspired sampling). For any x ∈ C
n, let s =

(s1, . . . , sm) be the measurement outcomes in the computational basis of |x〉⊗m. Denote S as the
sampling mechanism that maps x into s. Let A be an algorithm that takes only s as input. Then
A ◦ S is (0,Γ(x)m)-DP.
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5 Amplification by quantum evolution

In this section, we look at quantum operations and how they can amplify differential privacy.
First, we show a general result regarding the QDP amplification for distance-decreasing quantum
operations and then we explore some explicit examples for certain classes of quantum channels.
To establish our results, we first need to characterize quantum channels, in terms of the quantum
analogs of the classical mixing conditions introduced in [33, 34].

Definition 1. Let T : H −→ H′ be a quantum operation and γ ∈ [0, 1]. We say that T is:

1. γ-Dobrushin if

sup
ρ6=σ

||T (ρ)− T (σ)||tr
||ρ− σ||tr

≤ γ.

2. γ-Doeblin if there exists a quantum operation T ′ : H −→ H′ such that T ′(X) = Tr[X]Y for
some Y ∈ H′ and T − γT ′ is positive.

We remark that the ηTr(T ) := inf{γ : T is γ-Dobrushin}, where ηTr(T ) is the quantum
Dobrushin coefficient introduced in [35, 25].

Lemma 3 (adapted from [36], Theorem 8.17). Let T be a γ-Doeblin quantum operation with
γ ∈ [0, 1]. Then T is a (1− γ)-Dobrushin quantum operation.

Thus, we show that a post-processed quantum channel S ◦ E amplifies quantum differential
privacy, provided that T is γ-Dobrushin.

Theorem 5. Let E be a γ-Dobrushin quantum operation and let S be a (τ, ε(τ), 0)-QDP quantum
operation, where ε : R+ → [0, 1]. Then S ◦ E is (τ, ε(γτ), 0)-QDP.

Proof. Let σ and ρ two states such that ||ρ− σ||tr ≤ τ . By definition of γ-Dobrushin, the trace
distance between E(ρ) and E(σ) can be upper bounded as follows.

||E(ρ)− E(σ)||tr ≤ γ||ρ− σ||tr ≤ γτ.

The channel S is (γτ, ε(γτ), 0)-QDP, thus, for any measurement M ,

Pr[M(S(E(ρ)) ∈ F ] ≤ exp(ε(γτ)) Pr[M(S(E(σ)) ∈ F ].

The inequality above shows that S ◦ E is (τ, ε(γτ), 0)-QDP.

To better demonstrate the application of this result, we give some explicit examples for
different quantum channels. First, we recall the definitions of some relevant quantum operations
[37]. The generalized amplitude damping channel for a single qubit is defined as

EGAD(ρ) =
3

∑

k=0

EkρE
†
k

in the 2-dimensional Hilbert space H2, where

E0 =
√
p

[

1 0
0

√
1− γ

]

, E1 =
√
p

[

0
√
γ

0 0

]

,

E2 =
√

1− p

[√
1− γ 0
0 1

]

, E3 =
√

1− p

[

0 0√
γ 0

]

.
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and p and γ are two parameters. The phase damping channel for a single qubit is defined by
the operator-sum representation

EPD(ρ) = E0ρE
†
0 + E1ρE

†
1

in the 2-dimensional Hilbert space H2, where

E0 =

[
√
1 0

0
√
λ

]

, E1 =

[

0 0

0
√
λ

]

.

Thus we can compose the channels above to define the phase-amplitude damping channel

EPAD(ρ) = EGAD(EPD(ρ)).

As shown in [22], the phase-amplitude damping channel is (d, ε, 0)-QDP, with

ε := ln

(

1 +
2d

√
1− γ

√
1− λ

1−√
1− γ

√
1− λ

)

(9)

The depolarizing channel corresponds to the quantum operation

EDep = p
I

D
+ (1− p)ρ

where D is the dimension of the state Hilbert space and p is the probability parameter. As
shown in [22], the depolarizing channel is (d, ε, 0)-QDP, with

ε := ln

(

1 +
1− p

p
dD

)

.

The following result characterizes a family of Dobrushin quantum operation.

Lemma 4 ([25], Theorem 6.1). Let ΦT be a quantum operation such that

1. ΦT (I) = I (ΦT is unital),

2. ΦT : I+w · σ → I+ (Tw) · σ where T is a real matrix with ||T ||∞ ≤ 1, where || · ||∞ is the
operator norm.

Then ΦT is ||T ||∞-Dobrushin.

Interestingly, the Dobrushin condition and unitality ensure quantum pure differential privacy,
as we show in the following theorem.

Theorem 6. Let Φ be a quantum operation in the 2-dimensional Hilbert space H2, such that

1. Φ(I) = I (Φ is unital),

2. Φ is γ-Dobrushin.

Then Φ is (d, log(1 + 2dγ), 0)-QDP.

10



Table 2: The channels below satisfies (d, ε, 0)-QDP with the ε values shown in the table. We
denoted as Φγ an arbitrary γ-Dobrushin unital channel.

Channel ε Reference

EDep ln
(

1 + 1−p
p
dD

)

[22]

EPAD ln
(

1 + 2d
√
1−γ

√
1−λ

1−
√
1−γ

√
1−λ

)

[22]

Φγ ln(1 + 2dγ) Theorem 6

EPAD ◦ EDep (1 − p) ln
(

1 + 2d
√
1−γ

√
1−λ

1−
√
1−γ

√
1−λ

)

Theorem 7

Proof. Consider two arbitrary qubit states ρ1, ρ2 and set ||ρ1 − ρ2||tr := d. The γ-Dobrushin
condition can be restated as follows:

||Φ(ρ1)− Φ(ρ2)||tr ≤ γ||ρ1 − ρ2||tr = γd.

Given an arbitrary POVM M = {Mm}, we want to bound the following quantity

Tr{Φ(ρ1)Mm}
Tr{Φ(ρ2)Mm} − 1

First, we upper bound the numerator:

Tr{Φ(ρ1)Mm} − Tr{Φ(ρ2)Mm} = Tr{(Φ(ρ1)− Φ(ρ2))Mm} ≤ dγTr{Mm}.

Since ρ2 is a qubit state, can write ρ2 =
1
2
(I+ r · σ) for a Bloch vector r.

Tr{Φ(ρ2)Mm} = Tr

{

1

2
Φ(I+ r · σ)Mm

}

≥ 1

2
Tr{Φ(I)Mm} =

1

2
Tr{Mm},

where we used unitality in the last inequality. Putting all together, we get

Tr{Φ(ρ1)Mm}
Tr{Φ(ρ2)Mm} − 1 ≤ dγTr{Mm}

1
2
Tr{Mm} = 2dγ.

Thus the channel Φ is log(1 + 2dγ)-QDP.

Tr{Φ(ρ1)Mm}
Tr{Φ(ρ2)Mm} ≤ eε,

where ε := ln(1 + 2dγ).

Finally, we show how Theorem 5 can be used to derive privacy amplification bounds for the
composition of several channels.

Theorem 7. The composition of the depolarizing channel and the phase-amplitude damping
channel EPAD ◦ EDep is (d, ε, 0)-QDP, where

ε = (1− p) ln

(

1 +
2d

√
1− γ

√
1− λ

1−√
1− γ

√
1− λ

)

.

Proof. We use the fact that the depolarizing channel EDep satisfies the Dobrushin condition. This
can be shown either by direct computation or by observing that EDep satisfies the hypothesis
of Lemma 4 with ||T ||∞ = 1 − p. Then we can combine Eq. (9) with Theorem 5 to derive the
desired bound for the composed channel EPAD ◦ EDep.
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6 Discussion and future work

We have undertaken a systematic study of differential privacy amplification in quantum and
quantum-inspired algorithms. Our work is the first to reason about quantum encodings through
the lens of differential privacy, laying the foundation for further analysis. Prior to this work,
the choice of the encoding was motivated mainly by expressiveness, efficiency and robustness to
experimental noise [38, 39]. Due to the intimate relation between DP, algorithmic stability and
robustness to adversarial examples, our results suggest new criteria for the choice of quantum
encodings. Previous work explored the relation between experimental noise, quantum differential
privacy and robustness. The tighter bounds presented in our paper can be used to improve the
result of [21], taking into account the composition of several mechanisms.

In the future, it would interesting to provide similar amplification results for the notion
of quantum differential privacy employed in [23]. As previously mentioned, in the quantum
setting, different definitions of neighbouring quantum states lead to different notions for quantum
differential privacy. Thus, understanding the relationship between these notions is of both
theoretical and practical interest. To this end, one could also adopt the variety of quantum
distances available in the quantum information literature. One of the best candidates for this
purpose is the quantum Wasserstein distance introduced in [40], which generalises the notion
of neighbouring quantum states of [23]. Furthermore, the relation between the contraction
coefficient of quantum channels and DP which we have explored in this paper can also be
studied alternatively with this distance due to the contractivity results proved in [40].

Another interesting future direction would be to expand our composition results and the
previous work of [22] on the differential privacy of specific quantum channels, to more general
classes of quantum operations, in term of their general characteristics such as contraction co-
efficients or channel capacity. On this note, a good candidate would be to study the effect of
the class of LOCC (Local Operations and Classical Communication) operations on both classi-
cal and quantum differential privacy. This class is of particular interest due to its relation to
entanglement, which is another non-classical and unique property of the quantum world to be
studied in the context of differential privacy.

Finally, as a follow up of our theoretical results, we aim to investigate the experimental
implementation, their feasibility, and their application using the available NISQ devices. Ex-
perimental noise is among the major limitations of current architectures. Yet, demonstrating
that such noise provides beneficial properties, such as privacy and robustness, could shape the
pathway for new applications.

Acknowledgements. We thank Vincent Cohen-Addad, Alex B. Grilo, Nai-Hui Chia and
Brian Coyle for useful discussions.
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