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Abstract. In this paper, we study the electromagnetic response of a cold

plasma with dissipation ν > 0 in a general slab geometry (plasma density
n0(x) and background magnetic field B0(x)~e3). We express the behavior of

the electromagnetic field ( ~E, ~H) (at a given frequency ω) in the neighborhood

of the hybrid resonance xh solution of ω = ωh(x). This generalizes to any in-
cident wave vector (k1, k2, k3) the result obtained by Despres, Imbert-Gerard

and Lafitte in the normal incidence case (the incoming electromagnetic field
has its wave vector belonging to the orthogonal plane to ~e3, id est k3 = 0),

hence treating a fully coupled system of ODEs of order 4. This is done by

deducing from the complete system of ODEs an integro-differential system
which differential part contains a regular singular point at ν → 0+. This new

system is then solved in the neighborhood of this regular singular point using

the variation of parameters method.
In the oblique incidence case at the limit ν → 0+, we observe that (E2, E3, H2, H3)

are integrable in the neighborhood of xh uniformly in ν → 0+, while the most

singular term of the limit of ε0E1 when ν → 0+ is proportional to

[P.V.(
1

x− xh
)− iπsign(∂xωh(xh))δxh + a ln(x− xh)+].

1. Introduction

Following the seminal work of White and Chen [?], we study the electromagnetic

field in a cold plasma under the influence of a strong magnetic field ~B0 = B0(x)~ez
(such that ∇. ~B0 = 0). This plasma is inhomogeneous, the density of electrons is
n0(x), depending only also on x. The functions n0(x), B0(x) are assumed to be
locally analytic.
From the given functions B0(x), n0(x) and the constants e,m, ε0, (−e is the charge
of the electron, m is its mass and ε0 is the permittivity of the vacuum) one ob-
serves that two quantities of interest appear in this equation, which have both the
dimension of a frequency:

(1.1) ωc(x) =
eB0(x)

m
,ωp(x) =

√
e2n0(x)

ε0m
,

These two frequencies are respectively called the cyclotron frequency and the plasma
frequency.
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From these two frequencies, one defines the upper hybrid frequency

(1.2) ωh(x) =
√
ω2
p(x) + ω2

c (x).

The aim of the present paper is to study, in the framework of the cold plasma model,
the response of the plasma under an electromagnetic wave of frequency ω, that is
the electromagnetic field in the neighborhood of a point xh such that ωh(xh) = ω,
generalizing previous works as [?], [?].
Let us review the model used throughout the paper. The cold plasma model as-
sumes that the ions and the electrons follow the classical law of motion (accelera-
tion is equal to the magnetic force). Collisions are, nevertheless, taken into account
through a dissipation parameter ν (expressed in s−1 and small with respect to the
characteristic time of motion). Further, electroneutrality of the plasma is assumed.
As the mass of the ions is much larger than the mass of electrons, one also neglects
the velocity of ions in the plasma density current ~j.
The motion of electrons is thus characterized by the linearized equation (hence the
name of ’cold model’)

(1.3) ∂t~v + ν~v = − e

m
( ~E + ~v ∧ ~B0),

and the current density is given through

(1.4) ~j = −en0(x)~v.

The electromagnetic field ( ~E, ~B0 + ~B) is given through the Maxwell equations with
a source current density

(1.5) ∇∧ ~E = −∂t ~B,∇∧ ~B = ε0µ0∂t ~E + µ0
~j.

We assume that the electromagnetic field has a given frequency ω > 0:

( ~E, ~B)(x, y, z, t) = e−iωt( ~E(x, y, z), ~B(x, y, z)),

and we introduce ων = ω + iν.
Throughout the paper, we shall use ~E, ~B (and ~H) for the components of the
electromagnetic field or for related fields.
Usual studies of this problem rely on the construction of the effective dielectric

tensor εν (see Section 2.1). The resulting PDE on ~E writes

(1.6) ∇∧∇ ∧ ~E =
ω2

c2
εν(x) ~E.

As (n0, B0) depend only on x, and as it is done in [?], [?], one assumes that the
incident electromagnetic field outside the plasma is

(1.7) ( ~E, ~B)(x, y, z) = ei(k2y+k3z)( ~E(x), ~B(x)),

where (k2, k3) are the (y, z) components of the wave vector ~k of the electromag-
netic field in the vacuum, such that k22 + k23 ≤ ε0µ0ω

2. This assumption is in fact a
consequence of the theorem of propagation of singularities for the Maxwell system
of equations in R3 × Rt.
In a previous paper, Despres, Imbert-Gérard and Lafitte [?] studied the so called
ordinary and extraordinary modes of this plasma in the case k3 = 0. This case is

called the normal incidence case because ~k = (k1, k2, 0) is normal to ~B0. This work
followed a first study of Despres, Imbert-Gérard and Weder [?] on slab geometry,
where a particular form of n0(x) was assumed.
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One of the main advantages of the normal incidence case is that the resulting sys-
tem of ODEs consists in two decoupled systems of ODE of order 2. The system on
(E2, B3) contains the extraordinary mode, and the system on (E3, B2) corresponds
to the ordinary mode.
One of the novelties of [?] was to bypass the computation of the effective dielec-
tric tensor, hence avoiding a singularity for the ordinary mode (there is amplitude
growth but not a mathematical singularity), still observing the singularity for the
extraordinary mode. Bypassing this computation was done by expressing the cur-
rent ~j and the first component of the electric field E1 in terms of other components
of the electromagnetic field. This trick applies here as well.
Two assumptions are used in this paper, for ω given:

(A0) There exists a unique xh ∈ R such that ωh(x) = ω ⇔ x = xh,

(A1) ∂xωh(xh) 6= 0.

Introduce

(1.8) Dν(x) = ω2
c (x) +

ων
ω
ω2
p(x)− ω2

ν .

Under assumptions (A0),(A1), the unique solution ofD0(x) = 0 is xh and ∂xD0(xh) 6=
0. The point xh is the unique resonance. Moreover Despres, Imbert-Gérard
and L. proved in [?] the local existence and uniqueness of Xν ∈ C, satisfying
Dν(Xν) = 0, and, for k2 = 0, the existence of three analytic functions aν1 , b

ν
1 , c

ν
1

such that U = (E2, iωB3)T satisfies:

U ′ =
1

x−Xν

(
aν1(x) bν1(x)
cν1(x) −aν1(x)

)
U,

where the matrix

(
aν1(x) bν1(x)
cν1(x) −aν1(x)

)
is smooth in the neighborhood of Xν , with

the relation (aν1(Xν))2 + bν1(Xν)cν1(Xν) = 0 (the matrix

(
aν1(x) bν1(x)
cν1(x) −aν1(x)

)
is of

rank 1 at x = Xν).
Note that Xν = xh + iθν +O(ν2) and θ is of the sign of ∂xωh(xh).
All solutions were then calculated in a neighborhood of xh, using the Bessel function
of the first kind J0 and the Bessel function of the second kind Y0, both being
solutions of zJ ′′ + J ′ + zJ = 0, given by

J0(z) =
∑
p≥0

(− z
2

4 )p

(p!)2
, Y0(z) =

2

π
ln(

z

2
)J0(z) + T0(z),

T0 being an even analytical function described in [?], ln z being given classically by
ln |z|+ i arg z. Observe that z(Y ′0J0 − J ′0Y0) = 2

π . These special functions are used
also in the present paper.
We treat in the present paper the case called Oblique Incidence, namely k2k3 6= 0.

In this case, the system on ( ~E, ~H,~j), ~H = µ−10
~B, is transformed, using (1.7), into a

system of ordinary differential equations on U = (ε0E2, ik2H3 − ik3H2, ε0(ik2E3 −
ik3E2), H3)T :

(1.9) U ′ =Mν(x)U ,

supplemented with relations calculating E1, E3, H1, H3 (as well as ~j).
When considering the limit ν → 0+, the system becomes a system of singular ODEs
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of order 4, which is not separable into ordinary and extraordinary modes, as it is
mentioned in paragraph (c) of the Introduction of [?]. It is stated in [?] that one
needs to take into account Landau damping via the Vlasov equation, and that one
needs to study the normal modes of the system. Furthermore, the authors mention
that the problem of oblique incidence is not interesting because no new effects of
wave amplification occur if k3 6= 0. However, the rigorous proof of this assertion is
not present in [?] or in the references therein.
We prove that the authors are correct by noticing that no new effects of wave
amplification occur at other points and provide a rigorous mathematical proof of
the amplification result in this more complicated set-up. In addition, we can, thanks
to the present paper,

• confirm that the point xh is a singularity of the system and wave amplifi-
cation occurs at this point,
• extend some of the results of [?] in the case (k2, k3), k2k3 6= 0,
• give a precise representation of the electromagnetic field in the neighbor-

hood of xh.

For ν > 0 small, one has

(1.10) Mν(x) =
1

x−Xν

(
P ν 0
0 0

)
+Rν(x),

where P ν is a constant matrix of rank 1, Rν is analytic in the neighborhood of Xν ,
the projection of Rν(Xν) on the image of P ν and on the image of the matrix (P ν)T

being non zero (which ensures that the system is coupled). In the limit ν → 0+,
the system has a singular point xh.
Introduce bν(x) = (x − Xν)Mν

12(x) and aν(x) = (x − Xν)Mν
11(x) and obtain δν

through (3.10). Let

(1.11)

Be1(x) =

( √
bν(x)J0(λ

√
x−Xν)

δν(x)J0(λ
√
x−Xν) + λ

√
x−Xν

2
√
bν(x)

J ′0(λ
√
x−Xν)

)

B̃e2(x) =

( √
bν(x)Y0(λ

√
x−Xν)

δν(x)Y0(λ
√
x−Xν) + λ

√
x−Xν

2
√
bν(x)

Y ′0(λ
√
x−Xν)

)
.

Define, for λ = λν , of positive real part, given below by (3.3):

(1.12) Mν
2 (x) =

(
Beν1(x) Beν2(x)

)
,

with

(1.13) Beν2(x) =

( √
bν(x)Y ∗0 (λν ,

√
x−Xν)

δν(x)Y ∗0 (λν ,
√
x−Xν) + λ

√
x−Xν

2
√
bν(x)

(Y ∗0 )′(λν ,
√
x−Xν)

)
,

where Y ∗0 (λν ,
√
x−Xν) = π−1 ln(x −Xν)J0(λν

√
x−Xν) + T0(λν

√
x−Xν). It is

important to use this function for representing the singular solutions because of the
fact that one does not have the equality 2 ln(λν

√
x−Xν) = 2 lnλν+ln(x−Xν).

Observe that the relation z(Y ′0(z)J0(z)−J ′0(z)Y0(z)) = 2
π (which is also valid for Y ∗0

because Y ∗0 differs from Y0 by a function proportional to J0) implies detMν
2 (x) =

π−1.
As the equation (1.10) is singular at xh for ν = 0, we have to modify the Cauchy
data at x = xh for (1.9) in order to have an uniform in ν result. Instead of writing
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the Cauchy data for the components (E2, E3, H2, H3), we consider the following
condition

(1.14)


ε0E2

ik2H3 − ik3H2

ε0(ik2E3 − ik3E2)
H2

 (xh) =

(
Mν

2 (xh) 0
0 I

)
A0

B0

C
D

 ,

where (A0, B0, C,D) is given in C4. Note that one chooses the notations (A0, B0)
for quantities which are not values of the fields ε0E2, ik2H3 − ik3H2 at any point,
while C,D are the actual values at xh of the quantities (ε0(ik2E3 − ik3E2), H3).
Note in addition that B0 has nothing to do with the imposed magnetic field, and
is an arbitrary constant.
We prove in the present paper the

Theorem 1.1. There exists δ > 0 such that, for all 0 < |ν| ≤ δ, the unique solution

( ~E ∧~e1, ~H ∧~e1) of (1.9) in [xh− δ, xh + δ] satisfying the partial Cauchy data (1.14)
is given through

ε0E2

ik2H3 − ik3H2

ε0(ik2E3 − ik3E2)
H2

 (x) =

(
Mν

2 (x) 0
0 I

)
R(x, ν)


A0

B0

C
D

 ,

where R is a C1 matrix for x ∈ [xh − δ, xh + δ], for all ν ∈ [−δ, 0[∪]0, δ] satisfying
R(xh, ν) = Id for all ν ∈ [−δ, δ]. In addition, R is continuous at (xh, 0).

This Theorem proves that the singular contribution when ν → 0+ (i.e. a non
C0 solution at ν = 0 and x→ xh) appears only through the action of Mν

2 .

Remark 1.1. The matrix Mν
2 (xh) contains terms of the form 1

π ln(xh − Xν) =
1
π [ln |xh−Xν |+ i arg(xh−Xν)], hence is singular when ν → 0+. As a consequence,
A0

B0

C
D

 being given independent on ν does not ensure that (E2, E3, H2, H3) is

bounded uniformly in ν at xh (even worse E2, H2, H3 are merely in L1). We need to
impose the modified Cauchy data (1.14) in order to track, uniformly in ν, continuous

quantities, such as R(x, ν)


A0

B0

C
D

.

This Remark leads to the following definition:

Definition 1.1. One calls

ln(x− xh)+ = ln(x− xh), x > xh, ln(xh − x) + iπsign(i∂νXν |ν=0), xh > x.

In a similar way one calls

ln(xh − x)− = ln(xh − x), x < xh, ln(x− xh)− iπsign(i∂νXν |ν=0), xh < x.

It will be observed in Lemma 3.7 that the limit of ln(x −Xν) when ν → 0+ is
ln(x− xh)+ and the limit of ln(Xν − x) when ν → 0+ is ln(xh − x)−.

We deduce the following
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Theorem 1.2. Under the same hypotheses as in Theorem 1.1, for each ν > 0 and
for each (C,D) there exists ζν ∈ R given by (3.37), ζν = O(ν ln ν), (Kν , eν) ∈ R2

given in (3.38) which limit is non zero when ν → 0+, δν ∈ R, δν = O(ν
3
2 ) and two

C0(B(xh, δ)) functions Rν1 and Rν0 such that, for all x ∈ [xh − δ, xh + δ], ν ∈]0, δ]

ε0E1(x) =
Kν(B0 − ζν) + δν

x−Xν
+ [(B0 − ζν)eν +Rν0(x)] ln(x−Xν) +Rν1(x).

This second result allows us to use the absorption principle limit when ν → 0+
for (E2, ik2H3 − ik3H2, ik2E3 − ik3E2, H2, E1). This is stated in Theorem 4.1, and
this result is similar to the one obtained in [?].
This singular behavior can also being captured through the value of the electro-
magnetic field at a point x1, such that |x1 − xh| ≥ δ

2 :

Proposition 1.1. Let x1 ∈ [xh + δ
2 , xh + δ]. Assume (A1, B1, C1, D1) ∈ C4,

independent of ν and assume that

(1.15)


ε0E2

ik2H3 − ik3H2

ε0(ik2E3 − ik3E2)
H3

 (x1) =


A1

B1

C1

D1

 .

The quantities (Aν , Bν , Cν , Dν) given by
Aν
Bν
Cν
Dν

 =

(
Mν

2 (x1)−1 0
0 I

)
R(x1, ν)−1


A1

B1

C1

D1


have a finite limit when ν → 0+.

One has also

Proposition 1.2. A similar result holds for x1 ∈ [xh − δ, xh − δ
2 ].

Observe that

Remark 1.2. The behavior, in the neighborhood of xh, of the electromagnetic field
satisfying the Cauchy condition (1.15) is deduced from the given value of the field
at a point x1 at finite distance of xh.

The method that we develop in this paper for obtaining Theorems 1.1 and 1.2
amounts to studying, in the neighborhood of the point xh, a system of ODEs whose
coefficients have a singularity at xh for ν = 0. This type of studies dates back to
Budden [?], p476 or Weyl [?] where for both authors, the problem boils down to an
ODE of order 2 (the Budden problem).
We were able, in previous studies, to reduce rigorously a system of ODEs of or-
der greater than 2 to a block-diagonal equivalent system of ODEs. For example,
using the fact that the singularity at xh can be considered as a high frequency
limit through a suitable change of variable, we obtained in [?] (for the study of
the instability of a detonation profile) a linearized system of the form hU ′ = ΘU
that we studied in the high frequency regime h → 0. This was performed by
block-diagonalizing Θ to deduce a block-diagonal equivalent system after further
conjugation. In the study of the ablation growth rate in [?], one of the key argu-
ments was to prove that, in the neighborhood of a singularity at −∞ of the same
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type, one could boil down the problem to a representation using a solution of a
singular ODE (namely the confluent hypergeometric equation).
In the present paper, we observe that the eigenvalues of the matrix Mν , depend-
ing on k2, k3, x, ω, ων , are ±ks(x),±kr(x), where ks(x) has an infinite limit for
(x, ν)→ (xh, 0), while kr is regular in a complex neighborhood of (xh, 0). This ren-
ders the case studied here more complicated than the case studied in [?], because
the eigenvector matrix is both complicated and singular.
We propose here to treat successively the regular then the singular part of the
system. The regular part of the system gives (ε0(ik2E3 − ik3E2), H3) in terms of
(ε0E2, ik2H3 − ik3H2). Plugging this relation into the singular part of the system
leads to an integro-differential equation on (ε0E2, ik2H3 − ik3H2).
We use in this paper the variation of parameters method initiated in [?], namely
constructing approximate solutions with the same singular behavior as the solutions
obtained in [?] but we apply this method to an integro-differential system, which
is a powerful tool, as this method applies for example for all system of ODEs of the
form (1.10). Note that the numerical analysis of the hybrid mode with a manufac-
tured solution (see the talk of A. Nicolopoulos at WAFU, 2017 or at Waves, 2017
[?]) is presented through a toy model that may be treated also with the methods
of the present paper.
The cold plasma model in the oblique incidence case appears already in [?], and
the authors assert that the TM mode has not an accessible resonance. They prove
this assertion only in the limit B0 large, reverting to an ODE where they neglect
terms small with respect to B0 even if they may be singular at xh (see equations
(59) and (65) of [?]). Note that the case B0 large cannot be adressed in the present
paper because it would lead to a point x̃h close to a cyclotron frequency.
In order for this paper to be self-contained, we derive this system of equations for

( ~E, ~H,~j) in Section 2 and deduce from it a system of ODEs of the form (1.10).
We then choose an approximate fundamental solution for studying this integro-
differential system and obtain in Section 3 the representation of all solutions of the
system of ODEs of order 4.

2. Cold plasma model

We consider here the real physical problem (namely coupling the equation for

the current ~j with Maxwell equations in the cold plasma approximation).

2.1. Physical equations. In this section, we assume that the frequency is known,
equal to ω. Indeed, all quantities shall depend on (x, ω). The equation on the

electric current ~j reads:

(−iω + ν)~j =
e2n0(x)

m
~E − eB0(x)

m
~j ∧ ~e3,

that is

(2.1) (−iω + ν)~j = ω2
p(x)ε0 ~E − ωc(x)~j ∧ ~e3.

In previous papers ([?], [?]) one studied points of interest in the plasma, namely the
cyclotron resonances (points xc such that ωc(xc) = ω) and the hybrid resonances
(points xh such that ω2

c (xh) + ω2
p(xh) = ω2). We proved that, in the limit ν → 0+,

the electromagnetic field is not singular at xc (hence it is not a resonance but an
artificial singularity created by the dielectric tensor which links the electric current
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to the electric field (see forthcoming studies [?])). The equation for the electric
current is coupled with Maxwell’s equations

(2.2) ∇∧ ~E = iωµ0
~H,∇∧ ~H = ~j − iωε0 ~E.

One considers electromagnetic waves of the form (1.7), and ( ~E(x), ~H(x),~j(x)) is
a solution of a system of first order differential equations in x. For convenience,
we still keep the notation ∂x for the derivative with respect to x and we omit the
dependency on x in ωp and in ωc.

2.2. Physics revisited: cut-off points, resonances and turning points. This
work gives more precise ideas on the notions of cut-off and resonances in the case
of B0 and n0 depending only on x. Indeed, cut-off frequencies and resonances are,
by definition in the Physics literature, obtained for B0, n0 constants, not taking
into account the spatial dependency. Let us observe for the moment that
the cut-off points described in the Physics literature do not correspond to the cut-
off points of the system of ODEs obtained after Fourier transform in (y, z), while
Physics resonances correspond to resonances also for this system of ODEs, as we
see below.
Most of the textbooks in Plasma Physics use the dielectric tensor approach, in

which the current ~j is expressed in terms of ~E through the relation ~j = σ ~E (σ

being called the conductivity tensor). See for example Stix [?]. One thus deduces

∇ ∧ ~H = (σ − iωε0Id) ~E. Let the dielectric tensor ε being equal to Id+ i
ε0ω

σ and
introduce

S = 1−
ωνω

2
p

ω(ω2
ν − ω2

c )
, P = 1−

ω2
p

ω2
ν

, D = −
ωcω

2
p

ω(ω2
ν − ω2

c )
.

Denoting by

ε =

 S iD 0
−iD S 0

0 0 P

 ,

the system on ~E writes, when ~E is expressed in a basis of the form (~a,~e3 ∧ ~a,~e3),
with ~a.~e3 = 0

(2.3) ∇∧∇ ∧ ~E =
ω2

c2

 S iD 0
−iD S 0

0 0 P

 ~E.

Physics textbooks begin by assuming that ωp and ωc are independent on x. System
(2.3) is a constant coefficient system, hence one can perform the Fourier transform

(replacing ∇ by ~k). The relation on ~k for which this system has a non trivial
solution yields:

F (n0, B0, k1, k2, k3, ω) := det(~k ∧ ~k ∧ .+ ω2

c2

 S iD 0
−iD S 0

0 0 P

) = 0.

This is called the dispersion relation.

Physics textbooks give the following expression: F (n0, B0, k1, k2, k3, ω) = (ω
2

c2 P −
k21)[(ω

2

c2 S − |~k|
2)(ω

2

c2 S − k
2
3) − (ω

2

c2 D)2] − ω4

c4 k
2
1k

2
3(ω

2

c2 S − |~k|
2), from which one de-

duces the definitions of cut-off points and resonance points (see [?] for example).
When n0 and B0 depend only on x, this dispersion relation is a relation between
x, k1, k2, k3, ω.
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Definition 2.1. A cut-off point x0 for the plasma characterized by (n0(x), B0(x), ω)
is a solution of F (n0(x0), B0(x0), 0, 0, 0, ω) = 0.
A resonance for the plasma characterized by (n0(x), B0(x), ω) is a point x0 such that
there exists a sequence (xn0 , k

n
1 , k

n
2 , k

n
3 ) satisfying F (n0(xn0 ), B0(xn0 ), kn1 , k

n
2 , k

n
3 , ω) =

0, xn0 → x0 and ||kn1 , kn2 , kn3 || → +∞.

Note that we used a dispersion relation obtained in the case of constant coeffi-
cients to deduce definitions and properties in the case n0, B0 depending on x.
One then performs the Fourier transform in y, z of the system on (E,B, j), to de-
duce the system of ODEs (stated below in (2.13)). We observe that the eigenvalues
k1(x) solve

F (n0(x), B0(x), k1(x), k2, k3, ω) = 0.

For each (k2, k3, ω), we call also solution of the dispersion relation a value of
(x, k1) such that F (n0(x), B0(x), k1, k2, k3, ω) = 0. Note that

Dν = (ω2
c − ω2

ν)S.

Definition 2.2. Let k2, k3, ω be given and consider the limit ν = 0.
Assume x0 is a point such that there exist (xn0 , k

n
1 ), solution of the dispersion rela-

tion, with xn0 → x0 and |kn1 | → ∞. It is a resonance for the problem.
Assume x0 is a point such that (x0, 0) is a solution of the dispersion relation. It is
not a cut-off for the problem except when (k2, k3) = (0, 0). Points (x0, 0) solution
of the dispersion relation are turning points for the system of ODEs.

2.3. Derivation of the system of ordinary differential equations. Let us
rewrite all the equations which are needed, in the suitable order, after using the
relation ~j = ~j(x)eik2y+ik3z as well:

(2.4)



ik3E1 − ∂xE3 = iωµ0H2

∂xE2 − ik2E1 = iωµ0H3

ik3H1 − ∂xH3 = j2 − iωε0E2

∂xH2 − ik2H1 = j3 − iωε0E3

ik2E3 − ik3E2 = iωµ0H1

−iωνj3 = ε0ω
2
pE3

j1 − iωε0E1 = ik2H3 − ik3H2

−iωνj1 + ωcj2 = ε0ω
2
pE1

−ωcj1 − iωνj2 = ε0ω
2
pE2.

Observe that only four of the nine equations exhibit a derivative in x, (H ′2, E
′
2, H

′
3, E

′
3).

We express j1, j2, E1 through the last three equations of the system (2.4), and re-
place the resulting quantities in the first four equations, leading to a system of
ODEs on E2, E3, H2, H3. After a straightforward but tedious calculation, one ob-
tains, using Notation (1.8)

(2.5)

Dνj1 =
ωνω

2
p

ω (ik2H3 − ik3H2)− ωcω2
pε0E2

Dνj2 = −ωcω
2
p

iω (ik2H3 − ik3H2)− (iων +
ω2
p

iω )ω2
pε0E2

Dνε0E1 = −ω
2
c−ω

2
ν

iω (ik2H3 − ik3H2)− ωcω
2
p

iω ε0E2.

The singularity at Xν for the electric current which was identified as the key
tool for the study of the problem is common to the framework of this paper and
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to the framework of [?]. No other singularity occurs here in the matrix, hence no
other resonance is present.
Define Aν , Bν , Cν through

(2.6) Aν(x) = −
ωc(x)ω2

p(x)

iωDν(x)
, Bν(x) =

ω2
ν − ω2

c (x)

iωDν(x)
, Cν(x) =

ω2
p(x)(iων +

ω2
p(x)

iω )

Dν(x)
.

We deduce from (2.5) the equalities

(2.7) ε0E1 = Aνε0E2 +Bν(ik2H3 − ik3H2), j2 = −Cνε0E2 +Aν(ik2H3 − ik3H2).

Lemma 2.1. The coefficients Aν , Bν , Cν are singular at x = Xν . They depend
only on x, ω, ν. Moreover (A2

ν + BνCν) × (x − Xν) is bounded for (x, ν) in a
neighborhood V of (xh, 0) in C2.

Introduce the values

aν = −
ωcω

2
pk2

ωD′ν
, bν =

k2((ων)2 − ω2
c )

ωD′ν

evaluated at x = Xν . The boundedness of (x −Xν)((Aν(x))2 + Bν(x)Cν(x)) is a
consequence of

−ω2
cω

4
pω
−2 +

ω2
p

ω
(ων −

ω2
p

ω
)((ων)2 − ω2

c ) =
ω2
p

ω2
[−ω2

cω
2
p + (ωων − ω2

p)(ω2
ν − ω2

c )],

equal to
ω2
p

ω2ωων [ω2
ν −ω2

p
ων
ω −ω

2
c ], which is equal to 0 when x = Xν . The assertions

of Lemma 2.1 are proven.
The system of equations (2.4) implies the

Lemma 2.2. Let T,R being given respectively by ik2H3 − ik3H2, ik2E3 − ik3E2.
There exists three matrices G11(x, ν), G12(x, ν), G22(x, ν), depending on x, ν and
the constants k2, k3, ω, given by (2.12) below, bounded in V such that the system of
ODEs deduced from (2.4) is
(2.8)

ε0E2

T
ε0R
H2


′

=

 ik2

(
Aν Bν
Cν −Aν

)
+G11(x, ν) G12(x, ν)

−G12(x, ν) G22(x, ν)




ε0E2

T
ε0R
H2

 .

The matrix Mν is thus

(2.9) Mν(x) =

 ik2

(
Aν Bν
Cν −Aν

)
+G11(x, ν) G12(x, ν)

−G12(x, ν) G22(x, ν)

 .

Proof. Using (2.7) in the first four equation of (2.4), one obtains

(2.10)
∂x(ε0E2) = ik2Aνε0E2 + ik2Bν(ik2H3 − ik3H2) + iωµ0ε0H3

∂xH3 = k3
ωµ0

(ik2E3 − ik3E2) + Cνε0E2 −Aν(ik2H3 − ik3H2) + iωε0E2

∂x(ε0E3) = ik3Aνε0E2 + ik3Bν(ik2H3 − ik3H2)− iωµ0ε0H2

∂xH2 = −(iω +
ω2
p

iων
)ε0E3 + k2

ωµ0
(ik2E3 − ik3E2).
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This system is equivalent to

(2.11)


∂x(ε0E2) = ik2Aνε0E2 + ik2BνT + i ωc2H3

∂xT = Cνik2ε0E2 −Aνik2T + iωε0ik2E2 + (iω +
ω2
p

iων
)ε0ik3E3

∂x(ε0R) = ω
c2 (k2H2 + k3H3)

∂xH2 = −(iω +
ω2
p

iων
)ε0E3 + k2

ωµ0
R,

expressing H3, E3 with, respectively, T,H2 and R,E2. For simplicity, denote by

(2.12)

G11(x) =

(
0 − iω

k22c
2

(iω +
ω2
p

iων
)
k23
k22

+ iω 0

)
,

G12(x) =

(
0 iωµ0ε0

k3
k2

k3
k2

(iω +
ω2
p(x)

iων
) 0

)
,

G22(x) =

(
0

k22+k
2
3

k2
ωµ0ε0

k2
ωµ0ε0

− ω
k2

+
ω2
p

k2ων
0

)
.

One deduces
(2.13)

∂x

(
ε0E2

T

)
= [ik2

(
Aν Bν
Cν −Aν

)
+G11(x)]

(
ε0E2

T

)
+G12(x)

(
ε0R
H2

)
,

∂x

(
ε0R
H2

)
= −G12(x)

(
ε0E2

T

)
+G22(x)

(
ε0R
H2

)
.

This ends the proof of Lemma 2.2 hence the expression of the matrix Mν .
Introduce

(2.14)

(
aν(x) bν(x)
cν(x) −aν(x)

)
= (x−Xν)[ik2

(
Aν Bν
Cν −Aν

)
+G11(x, ν)],

that is

(2.15)
aν(x) = ik2Aν(x)(x−Xν), bν(x) = ik2(x−Xν)Bν(x) + ω

c2k2
(x−Xν),

cν(x) = ik2(x−Xν)[Cν + (iω +
ω2
p

iων
)
k23
k22

+ iω].

The last assertion of Lemma 2.1 is equivalent to a2ν + bνc
ν(Xν) = 0. One has

Lemma 2.3. The point xh is the unique resonance of the oblique incidence cold
plasma model for ν = 0 according to Definition 2.2.

Proof of Lemma 2.3. Assume ν = 0 and x 6= xh. It is equivalent to say that
(x, k1, k2, k3) is solution of the dispersion relation and to say that

det[

 ik2

(
A0 B0

C0 −A0

)
+G11(x, 0) G12(x, 0)

−G12(x, 0) G22(x, 0)

− ik1Id4] = 0.

Indeed, a solution (x, k1, k2, k3) of the dispersion relation is a value of (k1, k2, k3)
for which the system (2.4) with ν = 0 and where the coefficients ωc and ωp are
frozen at x, ∂x being replaced by ik1 has a non trivial solution.
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The modal system (where ∂x is replaced by ik1) is

(2.16)



ik3E1 − ik1E3 = iωµ0H2

ik1E2 − ik2E1 = iωµ0H3

ik3H1 − ik1H3 = j2 − iωε0E2

ik1H2 − ik2H1 = j3 − iωε0E3

ik2E3 − ik3E2 = iωµ0H1

−iωj3 = ε0ω
2
pE3

j1 − iωε0E1 = ik2H3 − ik3H2

−iωj1 + ωcj2 = ε0ω
2
pE1

−ωcj1 − iωj2 = ε0ω
2
pE2.

It is equivalent to

(2.17)



ik3E1 − ik1E3 = iωµ0H2

ik1E2 − ik2E1 = iωµ0H3

ik3H1 − ik1H3 = j2 − iωε0E2

ik1H2 − ik2H1 = j3 − iωε0E3

ik2E3 − ik3E2 = iωµ0H1

−iωj3 = ε0ω
2
pE3

D0j1 =
ωω2

p

ω (ik2H3 − ik3H2)− ωcω2
pε0E2

D0j2 = −ωcω
2
p

iω (ik2H3 − ik3H2)− (iω +
ω2
p

iω )ω2
pε0E2

D0ε0E1 = −ω
2
c−ω

2

iω (ik2H3 − ik3H2)− ωcω
2
p

iω ε0E2.

As x 6= xh, one deduces j1, j2, E1 from the last three equations, and, consequently
(2.16) is equivalent to
(2.18)

ik1


ε0E2

T
ε0R
H2

 =

 ik2

(
A0 B0

C0 −A0

)
+G11(x, 0) G12(x, 0)

−G12(x, 0) G22(x, 0)




ε0E2

T
ε0R
H2


ik2E3 − ik3E2 = iωµ0H1

−iωj3 = ε0ω
2
pE3

D0j1 =
ωω2

p

ω (ik2H3 − ik3H2)− ωcω2
pε0E2

D0j2 = −ωcω
2
p

iω (ik2H3 − ik3H2)− (iω +
ω2
p

iω )ω2
pε0E2

D0ε0E1 = −ω
2
c−ω

2

iω (ik2H3 − ik3H2)− ωcω
2
p

iω ε0E2.

If the system

ik1


ε0E2

T
ε0R
H2

 =

 ik2

(
A0 B0

C0 −A0

)
+G11(x, 0) G12(x, 0)

−G12(x, 0) G22(x, 0)




ε0E2

T
ε0R
H2


has only a trivial solution, then (E2, ik2H3− ik3H2, H2, ik2E3− ik3E2) is zero. As
k3 is not zero, E3 = 0 and H3 = 0. As D0(x) 6= 0 thanks to x 6= xh, j1 = j2 = 0,
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E1 = 0. Finally, using ik2E3 − ik3E2 = iωµ0H1,−iωj3 = ε0ω
2
pE3, j3 = 0 and

H1 = 0, hence a trivial solution. When k3 6= 0, the non trivial solutions of (2.16)
are deduced from non trivial solutions of

ik1


ε0E2

T
ε0R
H2

 =

 ik2

(
A0 B0

C0 −A0

)
+G11(x, 0) G12(x, 0)

−G12(x, 0) G22(x, 0)




ε0E2

T
ε0R
H2

 .

Resonances (as defined by Definition 2.2) are then points x0 such that there exists
a sequence (kn1 , x

0
n) such that ikn1 is an eigenvalue of

M0(x0n) =

 ik2

(
A0(x0n) B0(x0n)
C0(x0n) −A0(x0n)

)
+G11(x0n, 0) G12(x0n, 0)

−G12(x0n, 0) G22(x0n, 0)

 ,

where x0n → x0 and |kn1 | → +∞.
On the other side, values of (k1, x) such that P (n0(x), B0(x), k1, k2, k3) = 0 are
given by a quadratic equation on k21 which coefficients depend on (x, k2, k3, ω), the
coefficient of (k21)2 being D0(x). This expression extends to the case ν 6= 0.
As a consequence, there exists two functions, smooth in V, non zero at Xν , denoted
respectively by rν and mν , such that the solutions of P (n0(x), B0(x), k1, k2, k3) = 0

are ±kr(x) = ±
√
rν(x) (regular) and ±ks(x) = ±

√
mν(x)
Dν(x)

(singular at Xν). As

eigenvalues of (2.11) are for x 6= xh and ν = 0 are solutions of P = 0, the eigenvalues

of M0(x) are thus, for x 6= xh, equal to ±
√
r0(x),±

√
m0(x)
D0(x)

. Hence, for any

sequence of points x0n converging to xh, the sequence
√

m0(x0
n)

D0(x0
n)

goes to infinity,

hence xh is a resonance of the problem. No other point x0 is associated to an
infinite limit of an eigenvalue, hence Lemma 2.3 is proven.

Remark 2.1. Thanks to (2.6), the functions ik2(x−Xν)Aν(x), ik2(x−Xν)Bν(x)
have aν , bν as limits when x→ Xν , hence

ik2Aν(x)− aν
x−Xν

, ik2Bν(x)− bν
x−Xν

are bounded in a complex neighborhood of Xν (excluding Xν) and can be extended
at Xν . System (2.13) is of the form1 (1.9) where P ν is the constant coefficient
matrix of rank 1

(2.19) P ν =


aν bν 0 0
−aν aνbν −aν 0 0

0 0 0 0
0 0 0 0

 .

As the eigenvalue-eigenvector decomposition does not lead to a simple behavior
of the solution near Xν , we develop a new method, treating successively the regular
part and the singular part. This is done in Section 3.

1The procedure described in [?] does not apply to this system in the neighborhood of the point

Xν , because there is no splitting of the eigenvalues in the neighborhood of this point (the unique

eigenvalue of P ν is zero). One could have used block-diagonalization techniques, separating the
singular and regular eigenvalues in the neighborhood of xh but, after inspection, the eigenvectors

are extremely complicated.
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3. Resolution of System (2.8)

One observes that, in Lemma 2.2, the ordinary differential equations on (ε0E2, T )
have coefficients Aν , Bν , Cν which have a singularity at Xν , while the ordinary
differential equations on (ε0R,H2) have regular (uniformy bounded) coefficients.
Hence one calls in the sequel singular unknowns the quantities (ε0E2, T ) and
regular unknowns the quantities (ε0R,H2).

3.1. Reduction to a system of two integro-differential equations. Previous
work of the author([?]) use this transformation into an integro-differential system.
We express (ε0R,H2) in terms of (ε0E2, T ), and we use the result for obtaining an
integrodifferential system on (ε0E2, T ).
Denote by Uxh the fundamental solution of

∂x

(
ε0R
H2

)
= G22(x)

(
ε0R
H2

)
such that Uxh(xh) = Id. Its expression is obtained in Lemma 5.1.
System (2.13) implies

(3.1)

(
d(ε0E2)
dx

dT
dx

)
= [ik2

(
Aν Bν
Cν −Aν

)
+G11(x)]

(
ε0E2

T

)
−G12(x)

∫ x
xh

(Uxh(x))(Uxh(y))−1G12(y)

(
ε0E2

T

)
(y)dy

−G12(x)Uxh(x)W 0.

The operator Uxh is explicit in the case of a toy model presented in the literature
(for example [?], following closely the ideas of the slab geometry model of [?]), on
which numerics are possible. Let us describe this model. One chooses, in equation
(1.6), the following effective dielectric tensor:

εν =

 x+ iν −iδ 0
iδ x+ iν 0
0 0 γ

 .

Note that this model is suitable only for small values of x.
One thus considers (1.6) with ω2µ0 = 1, ε0 = 1 and the above dielectric tensor.

Introducing ~B given by i−1∇∧ ~E, the Maxwell equations write:

(3.2)



ik3E1 − ∂xE3 = iB2

∂xE2 − ik2E1 = iB3

ik3B1 − ∂xB3 = −i(iδE1 + (x+ iν)E2)
∂xB2 − ik2B1 = −iγE3

ik2E3 − ik3E2 = iB1

ik2B3 − ik3B2 = −i((x+ iν)E1 − iδE2)

Two relations do not involve derivatives here, hence we reduce to a system of 4
equations with 4 unknowns, that we choose to be T = ik2B3 − ik3B2, E2, B1, B2.
The system on B1, B2 is

(3.3)
∂xB1 = −ik2B2 − ik3B3 = −ik2B2 − k3

k2
(T + ik3B2)

∂xB2 = ik2B1 + γE3 = ik2B1 − γ
k2

(ik3E2 + iB1).

It is a constant coefficient linear system on (B1, B2) with source terms expressed
in terms of (T,E2). In this simple case, Uxh is explicit and one expresses B1, B2 in
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terms of T,E2 and of B1(0), B2(0). (Lemma 3.1, of which the proof is left to the
reader). This result leads to an integrodifferential system similar to (3.1), it is then
solved using the general method.

Introduce θ =
√
k22 + k23

√
γ
k22
− 1 for γ > k22 (which is always true if γ = 1 because

k22 + k23 ≤ 1).

Lemma 3.1. Let

(
C+

C−

)
= 1

2

(
−(θk2)−1 (γ − k22)−1

(θk2)−1 (k22 − γ)−1

)(
B1(0)
B2(0)

)
.

The solution of (3.3) is equal to(
B1

B2

)
= C+e

iθx

(
−θk2
γ − k22

)
+ C−e

−iθx
(

θk2
γ − k22

)
+ 1

2 i
k3
k2

∫ x
0
eiθ(x−y)( γ

θk2
E2(y) + i

γ−k22
T (y))dy

(
−θk2
γ − k22

)
+ 1

2 i
k3
k2

∫ x
0
e−iθ(x−y)(− γ

θk2
E2(y) + i

γ−k22
T (y))dy

(
θk2

γ − k22

)
.

3.2. An approximate fundamental matrice for (3.1). In this Section, we
construct an approximate fundamental matrix Mν

2 (x), from which one deduces a

Volterra equation obtained for ~C = (Mν
2 (x))−1

(
ε0E2

T

)
. Recall that (aν(x), bν(x), cν(x))

are given in (2.14). The fundamental matrix Mν
2 (x) that shall be used in the proof

of the main result below is given by (1.12). We present its construction and show
that it is associated with a C0 kernel in the Volterra equation.
Let λ be any complex number and let γν be given by (3.12).

Lemma 3.2. Let C, S be two constants. The functions

(
ũ
ṽ

)
= CBe1(x) +

SBe2(x) are solutions of the system

d

dx

(
ũ
ṽ

)
=

1

x−Xν

(
aν(x) bν(x)
cν(x) −aν(x)

)(
ũ
ṽ

)
+ γν(x)

(
0 0
1 0

)(
ũ
ṽ

)
.

Proof of Lemma 3.2. As the second order singular system writes

(3.4) (x−Xν)u′ = aν(x)u+ bν(x)v, (x−Xν)v′ = cν(x)u− aν(x)v,

one deduces

(3.5) v =
(x−Xν)u′ − aν(x)u(x)

bν(x)
.

We replace into the equation for v, one obtains

(x−Xν)
d

dx
(
(x−Xν)u′

bν(x)
) = [cν(x) +

(aν(x))2

bν(x)
+

d

dx

aν(x)

bν(x)
]u.

To avoid complicatedness, assume <bν(Xν) > 0 (this can be achieved by considering

−v instead of v in the system). If one writes u =
√
bν(x)U , the equation on U is

(3.6) (x−Xν)
d

dx
((x−Xν)U ′) + (x−Xν)U ′ + kν(x)U = 0

where

kν(x) =
√
bν(x−Xν)

d

dx
(
x−Xν

bν
d

dx
(
√
bν)) + bνcν(x) + (aν(x))2 + bν

d

dx
(
aν(x)

bν(x)
).
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Equation (3.6) has a regular singular point at Xν hence an approximate solution
can be expressed by means of the Bessel functions. The aim of what follows is
to construct the approximate solutions of (3.6) and to perform the variation of
parameters method.
For this purpose, consider ũ and U0 given by

(3.7) ũ(x) =
√
bν(x)[CJ0(λ

√
x−Xν) + SY0(λ

√
x−Xν)] :=

√
bν(x)U0(x).

We have the identity

d

dx
(
(x−Xν)ũ′

bν(x)
) =

d

dx
(
(x−Xν)(

√
bν(x))′

bν(x)
)U0 +

1√
bν(x)

((x−Xν)U ′′0 + U ′0).

As U0 solves

(x−Xν)U ′′0 + U ′0 = −λ
2

4
U0,

one deduces

(3.8) (x−Xν)
d

dx
(
(x−Xν)ũ′

bν(x)
) = (x−Xν)[

d

dx
(
(x−Xν)(

√
bν(x))′

bν(x)
)− λ2

4
√
bν(x)

]U0.

Use then the relation (3.5) to define the function ṽ:

(3.9) ṽ =
1√
bν(x)

(x−Xν)U ′0 +
(x−Xν)(

√
bν(x))′ − aν(x)

bν(x)
U0.

If one introduces the quantity

(3.10) δν(x) =
(x−Xν)(bν)′(x)

2(bν)
3
2 (x)

− aν(x)

(bν)
1
2 (x)

,

one checks that

ũ(x) =
√
bν(x)[CJ0(λ

√
x−Xν) + SY0(λ

√
x−Xν)]

ṽ(x) = δν(x)[CJ0(λ
√
x−Xν) + SY0(λ

√
x−Xν)]

+(x−Xν)
√
bν(x) λ

2
√
x−Xν

[CJ ′0(λ
√
x−Xν) + SY ′0(λ

√
x−Xν)],

which rewrites

(3.11)

(
ũ
ṽ

)
= CBe1(x) + SBe2(x),

where Be1, Be2 are the fundamental solutions standing for the Bessel solution of
the first of second kind, introduced in (1.11), where λ is to be chosen below.
Compute then

I = (x−Xν)
d

dx
(ṽ(x)) + aν ṽ(x).

One has

I = (x−Xν) d
dx ( (x−Xν)ũ′

bν(x) − aν(x)
bν(x) ũ) + aν( (x−Xν)ũ′

bν(x) − aν(x)
bν(x) ũ)

= (x−Xν) d
dx ( (x−Xν)ũ′

bν(x) )− [(x−Xν)(a
ν(x)
bν(x) )′ + (aν(x)2

bν(x) ]ũ.

Use (3.8) to deduce

I = (x−Xν)[
d

dx
(
(x−Xν)(

√
bν(x))′

bν(x)
)−
√
bν(x)(

aν(x)

bν(x)
)′)− λ2

4
√
bν(x)

]U0−
(aν(x))2

bν(x)

√
bν(x)U0.
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Observe then that the relation ((aν)2 + bνcν)(Xν) = 0 implies that there exists
βν(x) such that

cν(x) +
(aν)(x))2

bν(x)
= (x−Xν)βν(x).

Define
(3.12)

γν(x) =
1√
bν(x)

[
d

dx
(
(x−Xν)(

√
bν(x))′

bν(x)
)−
√
bν(x)(

aν(x)

bν(x)
)′)− λ2

4
√
bν(x)

]− βν(x).

Oe has I = (x − Xν)γν(x)
√
bν(x)U0(x), hence dṽ

dx + aν ṽ−cν ũ
x−Xν = γν ũ. Along with

(3.7) and (3.9), this proves Lemma 3.2.
Consider now

(3.13) r(x) =
γν(x)

x−Xν

One has thus the two identities:

(3.14)
dũ
dx = aν(x)ũ+bν(x)ṽ

x−Xν
dṽ
dx = cν(x)ũ−aν(x)ṽ

x−Xν + (x−Xν)r(x)ũ(x).

It is then fundamental to observe

Lemma 3.3. Let λν being given by (3.15) below. There exists a constant Λ such
that for all |ν| ≤ Λ the function r defined by (3.13) is continuous in the complex
neighborhood B(xh, δ).

The function r has a finite limit when x→ Xν (by taking the limit in the complex
plane) if and only if λ = λν such that γν(Xν) = 0, that is

(3.15)
λ2ν
4

=
(bν)′

2bν
(Xν)− (

aν

bν
)′(Xν)− limx→Xν

bνcν + (aν)2

x−Xν
.

One then deduces that r is smooth. This ends the proof of Lemma 3.3.
From now on, we will omit the subscript ν in λν except when considering the limit
ν → 0.
Using (3.11) and (2.14), one observes that the ODE satisfied by Be1 is
(3.16)

(Be1)′(x)− [ik2

(
Aν Bν
Cν −Aν

)
+G11(x)]Be1(x) = (x−Xν)r(x)

(
0 0
1 0

)
Be1(x).

Observe thatBe2 satisfies also (3.16). One deduces thatMν
2 =

(
Be1(x) Be2(x)

)
satisfies

(Mν
2 )′(x)− [ik2

(
Aν Bν
Cν −Aν

)
+G11(x)]Mν

2 (x) = (x−Xν)r(x)

(
0 0
1 0

)
Mν

2 (x).

Remark 3.1. A simple fundamental solution associated with the reduced system

d

dx

(
u0
v0

)
=

1

x−Xν

(
aν bν

− (aν)
2

bν
−aν

)(
u0
v0

)

is Mν
1 (x) =

(
bν ln(x−Xν) bν

1− aν ln(x−Xν) −aν

)
.

This matrix is used in the computation of manufactured solutions of the cold plasma
equations (see [?], [?]), and it is another approximate solution of (3.4).
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Let Θ∗ν be the matrix

(3.17) ik2

(
Aν Bν
Cν −Aν

)
− 1

x−Xν

(
aν bν

− (aν)
2

bν
−aν

)
+G11(x) = Θ∗ν(x).

It is bounded in the neighborhood of Xν , uniformly in ν. System (3.4) rewrites

d

dx

(
u
v

)
=

1

x−Xν

(
aν bν

− (aν)
2

bν
−aν

)(
u
v

)
+ Θ∗ν(x)

(
u
v

)
.

From the identity

(Mν
1 )′(x) =

1

x−Xν

(
aν bν

− (aν)
2

bν
−aν

)
Mν

1 (x),

Mν
1 is an approximate solution for (3.4).

The additional feature of the present paper is that we replace Θ∗ν by (x−Xν)r(x)

(
0 0
1 0

)
which, in addition to being bounded, is 0 at the singular point.

3.3. Contraction argument. Define the integral operator T ν on (C1(R))2

(3.18)

T ν(f)(x) =
∫ x
xh

(y −Xν)(M2(y))−1
(

0 0
1 0

)
M2(y)r(y)f(y)dy

−
∫ x
xh

(M2(y))−1G12(y)Uxh(y)
∫ y
xh

(Uxh(z))−1G12(z)M2(z)f(z)dzdy.

A key ingredient of our study is the following contraction result:

Proposition 3.1. Let |ν| ≤ Λ, Λ small enough.
There exists δ > 0 such that T ν is a contraction on (C1([xh − δ, xh + δ])2, with a
constant independent on ν.

Proof of Proposition 3.1. We observe that the entries of

(x−Xν)(Mν
2 (y))−1

(
0 0
1 0

)
Mν

2 (y)

are continuous functions for (x, ν) ∈ [xh − δ, xh + δ] × [−δ, δ], (the most singular
terms which appear here are (x−Xν)(ln(x−Xν))2). The contraction lemma is thus
a classical result for the first part of the operator (involving r). The C1 behavior
of the solutions comes from the fact that, uniformly in ν ≥ 0, f →

∫ x
xh
kν(y)f(y)dy

maps C1 to C1 when one considers a function kν which is continuous for (x, ν) ∈
V (xh, 0). It is classical to get that the derivative of T (f) :=

∫ x
xh
kν(y)f(y)dy is

(T (f))′(x) = kν(x)f(x) hence (T (f))′ is continuous.

One has

Lemma 3.4. There exists δ > 0, such that for all p, p1 > 1 there exists a constant
C∗ with, for x ∈ [xh − δ, xh + δ]

|T ν(x)| ≤ C∗|x− xh|
1
p (|xh −Xν |+ |x− xh|

1
p1 ).
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Proof of Lemma 3.4. Assume f in C0. The first estimate deals with
∫ x
xh

(y −
Xν) ln(y − Xν)M(y)f(y)dy, because one reduces the problem to such integrals.
Note that∫ x

xh

(y−Xν) ln(y−Xν)f(y)dy =

∫ x

xh

(y−xh) ln(y−Xν)f(y)dy+(xh−Xν)

∫ x

xh

ln(y−Xν)f(y)dy.

Using the Holder inequality, it is thus bounded by

C||f ||∞[|(
∫ x

xh

|y−xh|pdy)
1
p +|xh−Xν |(|

∫ x

xh

dy|)
1
p ] ≤ C ′|xh−x|

1
p [|xh−Xν |+|xh−x|].

The second term of the estimate is the estimate of the contribution of the regular
term. It deals with integrals of the form∫ x

xh

ln(y −Xν)

∫ y

xh

ln(z −Xν)dzdy := J.

Using the Holder inequality for (p, q) such that 1
p + 1

q = 1, one has

|
∫ y

xh

ln(z −Xν)dz| ≤ (|
∫ y

xh

| ln(z −Xν)|qdz|)
1
q (|
∫ y

xh

1pdz|)
1
p ≤ C|y − xh|

1
p ,

hence one gets

|
∫ x

xh

ln(y −Xν)

∫ y

xh

ln(z −Xν)dzdy| ≤ C|
∫ x

xh

| ln(y −Xν)||y − xh|
1
p dy|.

Applying again the Holder inequality with (p1, q1) such that 1
p1

+ 1
q1

= 1 and

integrating, we obtain the estimate, thanks to
∫ x
xh

(y − xh)
p1
p dy = (1 + p1

p )−1(x −
xh)1+

p1
p for xh < x and a similar equality for x < xh:

|
∫ x

xh

ln(y −Xν)

∫ y

xh

ln(z −Xν)dzdy| ≤ CC1|x− xh|
1
p+

1
p1 .

Combining the two inequalities, for all p, p1 > 1 there exists a constant C∗ such
that

C∗|x− xh|
1
p [|x− xh|

1
p1 + |xh −Xν |]

Note that the the entries of matrix used for constructing T ν , id est the continuity
of (x − Xν) ln(y − Xν), allows us to consider C1 solutions of (I − T ν)−1(f0). It
is an improvement of the Volterra operator that one would obtain with
the manufactured solution when f0 is a function belonging to C1 locally in the
neighborhood of xh, the coupling term being automatically in C1 thanks to the C0

behavior of Mν
2 .

As the point xh is a singular point for the system when ν = 0, even if the system
has analytic coefficients for x ∈ [xh − δ, xh + δ] for all ν > 0, one constructs in this
paper another Volterra operator T ν∗ , which corresponds to selecting the values of
(ε0E2, T ) at x∗ 6= xh in the variation of parameters method. This is done in the
next subsection.

3.4. Variation of parameters methods. The aim of this Section is to prove the
following Proposition. Let us fix a point x∗, |x∗ − xh| ≥ δ

4 . Using the contraction
T ν∗ defined by (3.19) (similar to T ν), the inverse of (Id − T ν∗ ) being

∑
n≥0(T ν∗ )n,

one can find all the components of the electromagnetic field for ν > 0 in terms of
(ε0R,H2) evalated at xh and (ε0E2, T ) evaluated at x∗.
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One deduces that (Mν
2 (xh))−1

(
ε0E2

T

)
(xh) is bounded for 0 < ν < δ and has

a finite limit when ν → 0+, even if (Mν
2 (xh))−1 is singular when ν → 0+.

This leads to the unique solution of the system of ODEs of Lemma 2.2,

(Mν
2 (x))−1

(
ε0E2

T

)
,

(
ε0R
H2

)
being given at xh.

Consider x∗ ∈ B(xh, δ) and define
(3.19)

T ν∗ (f)(x) =
∫ x
x∗

(y −Xν)(M2(y))−1
(

0 0
1 0

)
M2(y)r(y)f(y)dy

−
∫ x
x∗

(M2(y))−1G12(y)Uxh(y)
∫ y
xh

(Uxh(z))−1G12(z)M2(z)f(z)dzdy.

The operator T ν∗ is also a contraction on C1([xh− δ, xh+ δ]) for |ν| ≤ Λ. From now
on, we replace Λ and δ by min(Λ, δ) and one denotes it by δ.

Proposition 3.2. Denote by (A∗, B∗)T = (Mν
2 (x∗))−1((ε0E2(x∗), T (x∗))T . As-

sume (ε0R,H2) is given at xh.

(1) The singular unknowns in the system of Lemma 2.2 are given by(
ε0E2

T

)
= Mν

2 (x)(I − T ν∗ )−1(

(
A∗

B∗

)
)(x)

−Mν
2 (x)(I − T ν∗ )−1(

∫ x
x∗

(Mν
2 )−1(z)G12(z)Uxh(z)dz)

(
ε0R
H2

)
(xh).

(2) The regular unknowns in the system of Lemma 2.2 are then given by(
ε0R
H2

)
= Uxh(x)

(
ε0R
H2

)
(xh)

−Uxh(x)
∫ x
xh

(Uxh)−1(y)Mν
2 (y)(I − T ν∗ )−1dy

(
A0

B0

)
−Uxh(x)

∫ x
xh

((Uxh)−1G12M
ν
2 )(y)(I − T ν∗ )−1

∫ y
x∗

((Mν
2 )−1G12Uxh)(z)dzdy(

(
ε0R
H2

)
(xh))(z)dz)(x).

Proof. One uses the variation of parameters on the approximate fundamental solu-
tions. Introduce

(3.20)

(
ε0E2

T

)
(x) = Mν

2 (x)

(
A(x)
B(x)

)
.

The first step is to obtain
(3.21)(

ε0R
H2

)
(x) = Uxh(x)[

(
ε0R
H2

)
(xh)−

∫ x

xh

(Uxh)−1G12M
ν
2 (y)

(
A
B

)
(y)dy].

Introduce Θν(x) = (x−Xν)r(x)

(
0 0
1 0

)
.

The system on (A,B) becomes:



HYBRID SINGULARITY IN OBLIQUE INCIDENCE 21

(
A′(x)
B′(x)

)
= (Mν

2 (x))−1Θν(x)Mν
2 (x)

(
A(x)
B(x)

)
−(Mν

2 (x))−1G12(x)
∫ x
xh

(Uxh(x))(Uxh(y))−1G12(y)Mν
2 (y)

(
A(y)
B(y)

)
dy

−(Mν
2 (x))−1G12(x)Uxh(x)(

(
ε0R(xh)
H2(xh)

)
).

Using the operator T ν∗ defined above, one obtains(
A(x)
B(x)

)
=

(
A∗

B∗

)
+T ν∗ (

(
A
B

)
)(x)−

∫ x

x∗
((Mν

2 )−1G12Uxh)(z)

(
ε0R
H2

)
(xh)dz.

The operator T ν∗ is a contraction, hence this system has a unique solution in
C1([xh − δ, xh + δ]) given by(
A(x)
B(x)

)
= (Id−T ν∗ )−1[

(
A∗

B∗

)
−
∫ x

x∗
((Mν

2 )−1G12Uxh)(z)

(
ε0R
H2

)
(xh)dz](x),

hence obtaining
(3.22)(
ε0E2

T

)
(x) = Mν

2 (x)
[
(Id−T∗)−1[

(
A∗

B∗

)
−
∫ x

x∗
(M(z))−1G12(z)Uxh(z)(

(
ε0R
H2

)
(xh))dz](x)

]
for x ∈ [xh − δ, xh + δ].

The expression of

(
ε0R
H2

)
is obtained by replacing (3.22) in (5.2). This ends the

proof of Proposition 3.2.
We then deduce the unique solution with given data at x∗ for (ε0E2, T ) and given
data at xh for (ε0R,H2). This is expressed in the following fundamental Lemma:

Lemma 3.5. Let (ε0R(xh), H2(xh)) = (C,D) be given. Define(
A∗

B∗

)
= (Mν

2 (x∗))−1
(
ε0E2

T

)
(x∗)

and denote by (ε0E2, T, ε0R,H2) be the unique solution constructed through Propo-
sition 3.2.

i) The value

(
Aν
Bν

)
= (Mν

2 (xh))−1
(
ε0E2

T

)
(xh) exist for all ν 6= 0 and has a

finite limit when ν → 0+.
ii) For all (A0, B0) ∈ C2, there exists (A∗, B∗) ∈ C2 such that (ε0E2(x∗), T (x∗))T =

Mν
2 (x∗)(A∗, B∗)T imply that the limit, when ν → 0+, of (Mν

2 (xh))−1
(
ε0E2

T

)
(xh)

is (A0, B0) (uniform continuity with respect to initial conditions for the problem on
(A,B)T for ν ≥ 0).

Proof. We have the equality(
Aν
Bν

)
= (Id− T ν∗ )−1[

(
A∗

B∗

)
−
∫ xh

x∗
(Mν

2 (z))−1G12(z)Uxh(z)

(
C
D

)
dz](xh).

Use Lemma 3.7, item i), below.
The limit, when ν → 0+, in L1 of ln(y−Xν) being ln(y− xh)+ and the limit when
ν → 0+ in L1 of ln(Xν − y) being ln(xh − x)− one may compute the limit of the
matrix Mν

2 when ν → 0+. In this limit, three types of terms appear: the function
ln(x−Xν), the coefficients bν , aν , δν , and and the functions J0, T0, R0, Z0. As these
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four functions are analytic in z2, the limit when ν → 0 is expressed in terms of
z2 = λ20(x−xh). The limit of (bν , aν , δν) is smooth and yields (b0, a0, δ0). Call then

M0,+
2 the limit of Mν

2 when ν → 0+ in L1([xh − δ, xh + δ]). One deduces the limit

of the operator T ν∗ when ν → 0+. It can be denoted by T 0,+
∗ . It is a continuous

operator from C1([xh − δ, xh + δ]) to itself. We consider then the limit ν → 0+ in
the equality at the beginning of this proof to deduce the limit of (Aν , Bν) in terms
of A∗, B∗, C,D, called (A0, B0).

Remark 3.2. Let ln(x−xh)− = ln(x− xh)+ and notice that this is limν→0− ln(x−
Xν). The same limit is performed when ν → 0− and one replaces ln(x − xh)+ by
ln(x− xh)− as well as ln(xh − x)− by ln(xh − x)+.

The second item comes from a careful study of this relation, solving the system
on (A∗, B∗), (Aν , Bν) being given. Moreover, as the limit when ν → 0+ of this
relation is

(Id− T 0,+
∗ )

(
A0

B0

)
=

(
A∗

B∗

)
−
∫ xh

x∗
(M0,+

2 (z))−1G12(z)Uxh(z)

(
C
D

)
dz,

one obtains (A0, B0). As there exists C0 independent of ν such that |T ν(f)(xh)| and

|
∫ xh
x∗

(M0,+
2 (z))−1G12(z)Uxh(z)

(
C
D

)
dz| are bounded by C0|x∗−xh|, for C0|x∗−

xh| < 1, one deduces (A∗, B∗) depending on ν in terms of (Aν , Bν , C,D).
Proof of Theorem 1.1. Lemma 3.5, item ii) allows us to use, uniformly in ν > 0,
this argument to construct the unique solution using the operator T ν on C1([xh −
δ, xh + δ]) defined by (3.18) to rewrite Proposition 3.2 as well as Lemma 3.5. to
obtain the expression of the solution of (1.10): Consider (A0, B0, C,D) ∈ C4, and
assume (ε0R,H2)(xh) = (C,D) and, for ν > 0,

(Mν
2 )−1(xh)

(
ε0E2

T

)
(xh) =

(
A0

B0

)
.

One obtains, through Proposition 3.2 and through the second item of Lemma 3.5,
which gives (A∗, B∗) (values of Mν

2 (x∗)(ε0E2, T )T (x∗)),(
ε0E2

T

)
(x) = Mν

2 (x)(I − T ν∗ )−1(

(
A∗

B∗

)
)(x)

−Mν
2 (x)(I − T ν∗ )−1(

∫ x
xh

(Mν
2 )−1(z)G12(z)Uxh(z)dz)(x)

(
C
D

)
.

The regular unknowns are then given by
(3.23)(

ε0R
H2

)
= Uxh(x)

(
C
D

)
− Uxh(x)

∫ x
xh

((Uxh)−1G12M
ν
2 )(y)

(
A
B

)
(y)dy

= Uxh(x)

(
C
D

)
− Uxh(x)

∫ x
xh

(Uxh)−1(y)(I − T ν∗ )−1Mν
2 (y)dy

(
A∗

B∗

)
−Uxh(x)

∫ x
xh

((Uxh)−1G12M
ν
2 )(y)(I − T ν∗ )−1(

∫ .
xh

((Mν
2 )−1G12(z)Uxh(z))dz)dy

(
C
D

)
.

Once this solution is well defined for all ν > 0, revert to expression (3.21). The
system on (A,B)T yields (by integrating from xh to x instead of integrating from
x∗ to x and by using (A,B)T (xh) = (A0, B0)):(
A(x)
B(x)

)
=

(
A0

B0

)
+T ν(

(
A
B

)
)(x)−

∫ x

xh

((Mν
2 )−1G12Uxh)(z)

(
ε0R
H2

)
(xh)dz.
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One then deduces the equality(
A(x)
B(x)

)
= (I−T ν)−1(x)

(
A0

B0

)
−(I−T ν)−1[

∫ x

xh

((Mν
2 )−1G12Uxh)(z)

(
ε0R
H2

)
(xh)dz](x).

This allows us to introduce the matrices

R11(x, ν) = (I−T ν)−1(x),R12(x, ν) = −(I−T ν)−1(

∫ .

xh

(Mν
2 )−1(z)G12(z)Uxh(z)dz)(x),

R21(x, ν) = −Uxh(x)

∫ x

xh

(Uxh)−1(y)(I − T ν)−1Mν
2 (y)dy,

R22(x, ν) = Uxh(x)(Id−
∫ x

xh

((Uxh)−1G12M
ν
2 )(y)(I−T ν)−1(

∫ .

xh

((Mν
2 )−1G12(z)Uxh(z))dz)dy).

These are C1 2× 2 matrices on the (complex) ball B(xh, δ). One has
ε0E2

T
ε0R
H2

 (x) =

(
Mν

2 0
0 Id

)(
R11 R12

R21 R22

)
A0

B0

C
D

 .

Denoting by R the matrix

(
R11 R12

R21 R22

)
, this ends the proof ot Theorem 1.1.

Proposition 1.1 follows. Let


A1

B1

C1

D1

 be given independent of ν, and let


Aν0
Bν0
Cν

Dν

 = R(x1, ν)−1
(

(Mν
2 (x1))−1 0

0 Id

)
A1

B1

C1

D1

 .

We observe that the limit of Mν
2 (x1) and of R(x1, ν) exist when ν → 0+, hence the

result.

3.5. Proof of Theorem 1.2. The Bessel functions J0 and Y0 have to be studied
carefully. One knows that J0 and T0 are even analytical functions, hence J ′0 and T ′0
are odd hence there exists Z0, R0, H0, even analytical functions such that J ′0(z) =
zZ0(z) and T ′0(z) = zR0(z), J0(z)−1 = z2H0(z). Note that J0(0) = 1, Z0(0) = − 1

2 ,

T0(0) = γ
2π , R0(0) = γ−1

π , where γ is the Euler constant.

One has the equality, for z2 = λ2ν(x−Xν)

z(A∗J ′0(z)+B∗(Y ∗0 )′(z)) =
1

π
B∗J0(z)+z2[

1

π
B∗Z0(z) ln(x−Xν)+A∗Z0(z)+B∗R0(z)].

In all what follows, remember that all the functions J0, T0, R0, Z0 are expressed as
analytic even sequences

∑
p≥0 apz

2p and are evaluated at z2 = λ2ν(x − Xν). To
simplify notations, we will denote these quantities suppressing the argument there-
after. We use the function Y ∗0 (λν ,

√
x−Xν) and modify the analytical functions

accordingly.
Our aim is to compute the leading order term of (ε0E2, T, εR,H2) and, finally, of E1
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through the third equality of (2.5), that is−iωDν(x)ε0E1 =

(
ε0E2

T

)
.

(
ωcω

2
p

ω2
c − ω2

ν

)
.

As

(
ε0E2

T

)
is given by (3.20), one deduces that

−iωDν(x)ε0E1 =

(
A
B

)
.(Mν

2 (x))T
(

ωcω
2
p

ω2
c − ω2

ν

)
.

We begin with the following Lemma

Lemma 3.6. Let ψ(x, ν), analytic in a neighborhood of (xh, 0). One has the identity∫ x
xh
ψ(y, ν) ln(y −Xν)dy = (

∫ x
Xν

ψ(y, ν)dy) ln(x−Xν)

+
∫ x
xh

∫ 1

0
∂xψ(Xν + t(y −Xν))dtdy

− ln(xh −Xν)
∫Xν
xh

ψ(y, ν)dy.

This Lemma ensures that all the integrals that occur in our analysis are of the
form φν(x) ln(x−Xν) + µν(x). We may start the estimates.
In all what follows, we keep, for simplicity, the notation λ instead of λν given in
(3.15). Notice that detMν

2 (y) = π−1. Introduce M̃ν
2 (z), M̂ν

2 (z), which contain only
terms which are regular in z, uniformly for ν ≥ 0:

Mν
2 (z) = 1

π ln(z −Xν)

(
0

√
bν(z)J0

0 δν(z)J0 + λ2

2
√
bν(z)

(z −Xν)Z0

)
+ M̃ν

2 (z),

(Mν
2 (z))−1 = ln(z −Xν)

(
δν(z)J0 + λ2

2
√
bν(z)

(z −Xν)Z0 −
√
bν(z)J0

0 0

)
+ M̂ν

2 (z),

One needs, in addition, the regular term of Mν
2 for the evaluation of E1:

M̃ν
2 (x) =

( √
bνJ0

√
bνT0

δνJ0 + λ2(x−Xν)Z0

2
√
bν

δνT0 + λ2(x−Xν)R0

2
√
bν

+ J0
π
√
bν

)
.

From (2.6), one deduces

bν(x)ωcω
2
p − aν(x)(ω2

c − ω2
ν)

x−Xν
= (Bν(x)−i ω

k2c2
)ωcω

2
p−Aν(x)(ω2

c−ω2
ν) = −i ω

k2c2
ωcω

2
p,

which implies, using (3.10), that there exists ζν , smooth on B(xh, δ) such that
(3.24)

ωcω
2
p

√
bν+(ω2

c−ω2
ν)δν(x) = (x−Xν)[(ω2

c−ω2
ν)

b′ν(x)

2b
3
2
ν (x)

−i
ωωcω

2
p

k2c2b
1
2
ν (x)

] = (x−Xν)ζν(x).

Denote by V ν(x) the vector

(3.25) V ν(x) :=

(
vν1 (x)
vν2 (x)

)
= ζν(x)

(
J0
T0

)
+
λ2(ω2

c − ω2
ν)

2
√
bν(x)

(
Z0

R0

)
.

One has the identity
(3.26)

(Mν
2 (x))T

(
ωcω

2
p

ω2
c − ω2

ν

)
=

ω2
c−ω

2
ν

π
√
bν(x)

J0

(
0
1

)
+(x−Xν)[V ν(x) + 1

π ln(x−Xν)vν1 (x)

(
0
1

)
].
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The second preliminary calculation concerns the term (Mν
2 (y))−1G12(y). Define

(3.27)

αν(x) = −
√
bν(z)(1−

ω2
p

ωων
)J0, β

ν(x) = ε0µ0(δν(z)J0 +
λ2

2
√
bν(z)

(z −Xν)Z0).

One has

(3.28) (Mν
2 (x))−1G12(x) = M̂ν

2 (x)G12(x) + iω
k3
k2

ln(x−Xν)

(
αν(x) βν(x)

0 0

)
,

hence introducing the regular matrix Υ such that Uxh(x)− I = (x− xh)Υ(x)∫ x
xh

((Mν
2 )−1G12Uxh)(y)dy =

∫ x
xh

[(M̂ν
2G12Uxh)(y)dy

+iω k3k2

∫ x
xh

ln(y −Xν)dy

(
αν βν

0 0

)
(xh)

+iω k3k2

∫ x
xh

(y − xh) ln(y −Xν)

(
αν(y)−αν(xh)

y−xh
βν(y)−βν(xh)

y−xh
0 0

)
dy

+iω k3k2

∫ x
xh

(y − xh) ln(y −Xν)(

(
αν βν

0 0

)
Υ)(y)dy.

Let

ενa(x) =
1

2

∫ x

xh

(y−xh) ln(y−Xν)[

(
αν(y)−αν(xh)

y−xh
βν(y)−βν(xh)

y−xh
0 0

)
+(

(
αν βν

0 0

)
Υ)(y)]dy.

It satisfies the inequality, for 0 ≤ ν ≤ δ and x ∈ [xh−δ, xh+δ], |ενa(x)| ≤ C|x−xh|
3
2 .

Let us define the matrix mν(x), analytic, satisfying mν(xh) = 0:

mν(x) =

∫ x

xh

M̂ν
2 (x)G12(y)Uxh(y)dy.

One has
(3.29)∫ x

xh
(Mν

2 (y))−1G12(y)Uxh(y)dy = iω k3k2

∫ x
xh

ln(y −Xν)dy

(
αν βν

0 0

)
(xh)

+mν(x) + 2iω k3k2 ε
ν
a(x).

The inequality on ενa comes from the Cauchy-Schwartz inequality applied to∫ x
xh

(y − xh) ln(y −Xν)Gν(y)dy, through∫ x
xh
|y − xh|| ln(y −Xν)|dy ≤ (

∫ x
xh
|y − xh|2dy)

1
2 (
∫ x
xh

(ln(y −Xν))2dy)
1
2

= 3−
1
2 |x− xh|

3
2 (
∫ x
xh

(ln(y −Xν))2dy)
1
2 .

Let Sν = Cαν(xh) +Dβν(xh). The equality (3.29) yields

(3.30)

∫ x
xh

((Mν
2 )−1G12Uxh)(y)dy

(
C
D

)
= iω k3k2S

ν
∫ x
xh

ln(y −Xν)dy

(
1
0

)
+[mν(x) + ενa(x)]

(
C
D

)
.

Remark that Lemma 3.6 allows us to rewrite (3.29) as

(3.31)

∫ x

xh

(Mν
2 (y))−1G12(y)Uxh(y)dy = (x−Xν) ln(x−Xν)

(
Ãν(x)

0

)
+ B̃ν(x),

where the vector Ãν and the matrix B̃ν are analytic in x (and no longer analytic
in ν). In means in particular that all the terms containing ln(x − Xν) have been
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collected in the matrix (x−Xν) ln(x−Xν)

(
Ãν(x)

0

)
. One observes that, however,

there exists an analytic function Kν such that
(3.32)

B̃ν(Xν)− iω k3
k2

ln(x−Xν)

∫ Xν

xh

(
αν(y) βν(y)

0 0

)
Uxh(y)dy =

∫ x

xh

Kν(y)dy.

Recall that(
A(x)
B(x)

)
=

(
A0

B0

)
−
∫ x

xh

(Mν
2 (z))−1G12(z)Uxh(z)

(
C
D

)
dz − T ν

(
A(x)
B(x)

)
.

For simplicity, introduce εν1(x), εν2(x), εν2(x) such that
εν1(x) = mν(x)

(
C
D

)
,

εν2(x) = T ν
(
A(x)
B(x)

)
+ ενa(x)

(
C
D

)
:= εν3(x) + ενa(x)

(
C
D

)
.

One finally obtains

(3.33)

(
A(x)
B(x)

)
=

(
A0

B0

)
− iω k3

k2
Sν
(

1
0

)∫ x

xh

ln(z −Xν)dz − (εν1 + εν2)(x),

with the estimates, in [xh − δ, xh + δ] uniformly in ν ≥ 0

|εν1 | ≤ C|x− xh|,
εν2(x)

x− xh
belongs to C0([xh − δ, xh + δ]), |εν3(x)| ≤ C|x− xh|

3
2 .

Use Mν
2 (x)

(
1
0

)
= M̃ν

2 (x)

(
1
0

)
. One deduces

(
ε0E2

T

)
= 1

π ln(x−Xν)B0

( √
bν(x)J0

δν(x)J0 + λ2

2
√
bν(x)

(x−Xν)Z0

)
+M̃ν

2 (x)[

(
A0

B0

)
− iω k3k2S

ν
∫ x
xh

ln(z −Xν)dz

(
1
0

)
]−Mν

2 (x)(εν1 + εν2)(x).

We have a more precise estimate. Using Ãν , B̃ν , define

sν(x) = B0

( √
bν(x)J0

δν(x)J0 + λ2

2
√
bν(x)

(x−Xν)Z0

)

−[

(
0

√
bν(x)J0

0 δν(x)J0 + λ2

2
√
bν(x)

(x−Xν)Z0

)
B̃ν + π(x−Xν)M̃ν

2 (x)

(
Ãν

0

)
]

(
C
D

)
.

There exists a vector rν , analytic in x, such that

(3.34)

(
ε0E2

T

)
=

1

π
ln(x−Xν)sν(x) + rν(x)−Mν

2 (x)εν3(x).

Indeed,(
ε0E2

T

)
= 1

π ln(x−Xν)[B0

( √
bν(x)

δν(x)J0 + λ2

2
√
bν(x)

(x−Xν)Z0

)
− B̃ν(x)

(
C
D

)
]

+M̃ν
2 [

(
A0

B0

)
− B̃ν(x)

(
C
D

)
]−Mν

2 T ν
(
A
B

)
(x).
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The expression of sν and of εν3 lead to Equality (3.34). The estimate

(3.35) |
(
ε0E2

T

)
− 1

π
sν(Xν) ln(x−Xν)− rν(Xν)| ≤ C|x−Xν |

1
2

follows.
Note that

sν(Xν) = B0

( √
bν(Xν)
δν(Xν)

)
−
(

0
√
bν(Xν)

0 δν(Xν)

)
B̃ν(Xν)

(
C
D

)
.

Observe then that

(
ε0R
H2

)
= Uxh(x)

(
ε0R
H2

)
(xh)−Uxh(x)

∫ x
xh
U−1xh G12(y)

(
ε0E2

T

)
dy,

hence for all α < 1, one has

(3.36)

(
ε0R
H2

)
=

(
ε0R
H2

)
(xh) +O(|x− xh|α).

Calculation of the super singular term. One is then left with the estimation of the
’super singular term’, namely E1 because one needs to divide by Dν(x). For this
purpose, we plug (3.33) in (3.26) and we notice that

[

(
Ãν(x)

0

)(
C
D

)
].
ω2
c − ω2

ν

π
√
bν(x)

J0

(
0
1

)
= 0.

Hence

−iωDνε0E1 =
ω2
c−ω

2
ν

π
√
bν(x)

[J0.B0 − J0
(

0
1

)
.B̃ν(x)

(
C
D

)
]

+(x−Xν)[V ν .

(
A0

B0

)
+ 1

πv
ν
1 (x) ln(x−Xν)B0]

−(x−Xν)B̃ν
(
C
D

)
.[V ν(x) + 1

π ln(x−Xν)vν1 (x)

(
0
1

)
]

−(x−Xν)2 ln(x−Xν)

(
Ãν(x)

0

)(
C
D

)
.[V ν(x) + 1

π ln(x−Xν)vν1 (x)

(
0
1

)
],

−[
ω2
c−ω

2
ν

π
√
bν(x)

J0

(
0
1

)
+ (x−Xν)(V ν(x) + 1

π ln(x−Xν)vν1 (x)

(
0
1

)
)]T ν

(
A
B

)
(x)

Define Dν
1 (x) := Dν(x)

x−Xν =
∫ 1

0
D′ν(Xν + t(x−Xν))dt and the constants

(3.37) ζν = B̃ν(Xν)

(
C
D

)
.

(
0
1

)
,

(3.38) Kν =
ω2
c (Xν)− ω2

ν

πD′ν(Xν)
√
bν(Xν)

, eν =
1

π
(D′ν(Xν))−1(ζν(Xν)

γ

2π
+
λ2(ω2

c − ω2
ν)

2
√
bν(Xν)

).

One used that eν = 1
π (D′ν(Xν))−1vν1 (Xν), where vν1 is given by (3.25) and that Kν

is the limit, when x→ Xν , of (Dν
1 (x))−1

ω2
c−ω

2
ν

π
√
bν(x)

.

Introduce

εν(x) = [
ω2
c − ω2

ν

π
√
bν(x)

J0

(
0
1

)
+(x−Xν)(V ν(x)+

1

π
ln(x−Xν)vν1 (x)

(
0
1

)
)]T ν

(
A
B

)
(x).

Introduce δν = εν(Xν). One has δν = O(|Xν − xh|
3
2 ). One checks that ζν =

O(ν ln ν) thanks to (3.32) and
∫Xν
xh

Kν(y)dy = O(ν). There exist an analytic func-

tion Rν0(x) such that Rν0(Xν) = 0 and a C0 function Rν1(x) (in which one collects
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all the terms of order at least O(|x−Xν |
1
2 )) such that

(3.39) −iωε0E1 =
Kν(B0 − ζν) + δν

x−Xν
+

1

π
[eν(B0−ζν)+Rν0(x)] ln(x−Xν)+Rν1(x).

This equality is a consequence of J0.B0 − J0
(

0
1

)
.B̃ν(x)

(
C
D

)
(Xν) = B0 − ζν

and of the existence of R̃ν00, continuous, such that

ω2
c − ω2

ν

π
√
bν(x)Dν

1 (x)
[J0.B0−J0

(
0
1

)
.B̃ν(x)

(
C
D

)
]−Kν(B0−ζν) = (x−Xν)R̃ν00(x).

Collecting all the terms containing ln(x−Xν), and observing that the leading order

term is associated with vν1 (x), given by (3.25), with vν1 (Xν) = ζν(Xν) γ2π+
λ2(ω2

c−ω
2
ν)

2
√
bν(Xν)

,

the value of its coefficient at Xν being also B0−ζν , one denotes by Rν0 what is left in

the coefficient of ln(x−Xν). One has finally εν(x)−εν(Xν)
x−Xν bounded and continuous,

hence is added to the term Rν1(x). Theorem 1.2 is proven.
In the next paragraph, we study the limit of the terms appearing in all the quan-
tities.
Evaluation of the singular integrals. We have the two following Lemmas

Lemma 3.7. i) The limit in L1([xh − δ, xh + δ]) of ln(x − Xν) is the function
ln(x− xh), x > xh, ln(xh − x) + iπsign(i∂νXν |ν=0), x < xh.
This limit is denoted by ln(x− xh)+, x 6= xh (as in [?]).
ii) One has, in D′,

limν→0+

1

x−Xν
= P.V.(

1

x− xh
)− isign(i∂νXν |ν=0)δxh .

iii) The limit in D′ of

∫ x
xh

ln(y−Xν)dy
x−Xν is ln(x−xh)+. This limit is valid in L1([xh−

δ, xh + δ]).

iv) One has limν→0+

∫ x
xh

(y−Xν) ln(y−Xν)dy
x−Xν = O(|x− xh|

1
p ) for all p > 1.

Observe in addition that T ν(f)(x)− T ν(f)(Xν) = O(|Xν − xh|
1
p ) for all p > 1.

Proof of Lemma 3.7. Item i) is a consequence of the fact that

Xν = xh + iν

∫ 1

0

(−i∂νXντdτ).

Hence, for x < xh, x−Xν = (xh − x)[−1 + i ν
xh−x

∫ 1

0
(i∂νXντdτ)], hence the result.

Item ii) is a classical result of distribution theory, using

1

x−Xν
=

x−<Xν + i=Xν

(x−<Xν)2 + (=(Xν))2

and using the change of variable x − <Xν = |=Xν |t in the integral < 1
x−Xν , ψ >,

which leads, with ψ(x+<Xν) = ψp(x)+xψimp(x), to the expression
∫
R
x2ψimp(x)
x2+(=ν)2 dx+∫

R
|=Xν |=Xνψp(t|=Xν |)
|=Xν |2(1+t2) dt, with ψp(0)→ ψ(xh).

Let us prove the point iii). The derivative of (y−Xν) ln(y−Xν) with respect to y
is ln(y −Xν) + 1, hence one has the identity
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ln(x−Xν) =
(xh −Xν) ln(xh −Xν)

x−Xν
+
x− xh
x−Xν

+

∫ x
xh

ln(y −Xν)dy

x−Xν
.

The distribution 1
x−Xν converges to P.V.( 1

x−xh ) + isδxh (s given above), hence,

as the sequence of numbers (xh − Xν) ln(xh − Xν) converges to 0, the first term
converges to 0.
The function x−xh

x−Xν converges to 1 in the distribution sense (product of (x − xh)

and of 1
x−Xν , which limit is P.V.( 1

x−xh )− iπsign(∂xωh(xh))δxh).

The point iv) comes from the identity∫ x
xh

(y−Xν) ln(y−Xν)dy
x−Xν = 1

2 (x−Xν) ln(x−Xν)− 1
2
(xh−Xν) ln(xh−Xν)

x−Xν
− 1

4
(x−xh)(x−xh−2Xν)

x−Xν ,

hence

limν→0+

∫ x
xh

(y −Xν) ln(y −Xν)dy

x−Xν
=

1

2
(x− xh) ln(x− xh)+ +

1

4
(x− xh),

hence the result.

4. Expression of the electromagnetic field in the neighborhood of
the hybrid resonance

Assume that, in the vacuum (which is a region with no surrounding magnetic
field and no plasma hence ωc = ωp = 0, assumed to be x > C, C large enough),
the electromagnetic wave is a plane wave

( ~E0, ~B0)e
ik2y+ik3z+i

√
ω2

c2
−k22−k23x,

with k2 6= 0 (oblique incidence, not parallel to the direction of the background
magnetic field).
Deduce from the Cauchy problem on (E2, E3, H2, H3) the electromagnetic field

ε0E2

ik2H3 − ik3H2

ε0(ik2E3 − ik3E2)
H2

 at x1 ∈ [xh + δ/2, xh + δ], and assume it is independent

on ν (this is not true and one should perform the proof with a kernel, smooth
uniformly in ν ≥ 0 when the wave reaches the boundary of the plasma but we skip
this step, taking into account the linearity of the equations). Introduce

Aν0
Bν0
Cν

Dν

 = R(x1, ν)−1
(

(Mν
2 (x1))−1 0

0 Id

)
ε0E2

ik2H3 − ik3H2

ε0(ik2E3 − ik3E2)(x1)
H2

 ,

which limit at ν → 0+ is equal to


A0

B0

C
D

. Observe moreover that Kν and eν

have a limit when ν → 0.
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Theorem 4.1. • One has, in C0([xh − δ, xh + δ]),

limν→0+

(
ε0(ik2E3 − ik3E2)

H2

)
(x) =

(
ε0R
H2

)
(xh) + o(|x− xh|

1
2 ).

• One has, in L1([xh − δ, xh + δ]),

limν→0+

(
ε0E2

(ik2H3 − ik3H2)

)
(x) =

1

π
B0

( √
b0(xh)
δ0(xh)

)
ln(x− xh)+ + o(1).

• One has, in D′(]xh − δ, xh + δ[),

limν→0+(ε0E1) =
iB0

ω
[K0(P.V.(

1

x− xh
)−iπsign(∂xωh(xh))δxh)+

2

π
e0 ln(x−xh)+]+O(1),

where O(1) is a C0([xh − δ, xh + δ]) function.

The proof of this theorem uses Proposition 1.2 as well as the results proven in
Section 3 of [?] (Theorem 1) where such limits are thoroughly studied in detail. The
limits studied in Lemma 3.7 are used on (3.34) and on (3.36) for (E2, H3, E3, H2)
(and H1 thanks to (2.4)) to obtain the first limits.
The limit of the expression of ε0E1 obtained in Theorem 1.2 is calculated using
item ii) of Lemma 3.7.
This ends the proof of Theorem 4.1.

Observe that b0 =
√
−k2(ωp(xh))

2

ωD′0(xh)
,K0 = k−12

√
b0, δ

0(xh) = −ωc(xh)
√
b0. Denote by

P 0
1 = iB0

ω K0 = iB0

√
b0

ωk2
.

Remark 4.1. There exists f ∈ L1([xh− δ, xh + δ]) and g ∈ (C0(([xh− δ, xh + δ]))2

such that

limν→0+(ε0E1) = P 0
1 (P.V.(

1

x− xh
)− iπsign(∂xωh(xh))δxh) + f

and

limν→0+

(
ε0E2

(ik2H3 − ik3H2)

)
(x) = ik2P

0
1

(
−1

ωc(xh)

)
ln(x− xh)+ + g.

When one captures the principal term (distribution of order 1) in ε0E1, one deduces
the principal term (element of L1) of E2, ik2H3 − ik3H2.

5. Annex

The aim of this Section is to write explicitly the fundamental matrix for the
system of ODE on ε0R, T .
Consider aij(x) such that

G22(x) =

(
a11(x) a12(x)
a21(x) a22(x)

)
.

Even though in the system considered, aii(x) = 0, we keep the generality in order
to show how to construct a fundamental matrix associated with U ′ = G22(x)U .
In all what follows, we shall denote by x∗ a point in the interval [xh − δ, xh + δ],
where δ is a small constant. We introduce the following notations:
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Definition 5.1. Let K be the integral operator

K(u)(x) = e
∫ x
x∗ a22(z)dz

∫ x

x∗
u(y)e−

∫ y
x∗ a22(z)dzdy

In addition, define V(u) the inverse Volterra operator given by the unique2 solution
of

V(u)(x) = u(x) + e
∫ x
x∗ a11(s)ds

∫ x

x∗
e−

∫ y
x∗ a11(s)dsa12(y)K(a21V(u))(y)dy.

Introduce the functions
(5.1)

F = R(x∗)e
∫ x
x∗ a11(s)ds +H2(x∗)e

∫ x
x∗ a11(s)ds

∫ x
x∗
e−

∫ y
x∗ a11(s)dsa12(y)e

∫ y
x∗ a22(s)dsdy

G1 =
∫ x
x∗
e
∫ x
y
a11(s)dsf1(y)dy

G2 =
∫ x
x∗
e
∫ x
y
a11(s)ds[a12(y)K(f2)(y)]dy

We rely on the following

Lemma 5.1. Denote by Ux∗ the fundamental solution (which is a matrix) of the
system U ′ = G22(x)U with the Cauchy data Ux∗(x

∗) = Id. Denote by U1, V1, U2, V2
the entries of Ux∗ , such that

Ux∗ =

(
U1 V1
U2 V2

)
.

(1) Let u0 be given by W 0
1 + W 0

2

∫ x
x∗
a12(y)e−

∫ y
x∗ a22(z)dzdy. The components

Ui, Vi are given by

V(u0)e
∫ x
x∗ a11(y)dy = W 0

1U1(x) +W 0
2U2(x),

K(a21(W 0
1U1 +W 0

2U2)) +W 0
2 e

∫ x
x∗ a22(y)dy = W 0

1 V1(x) +W 0
2 V2(x).

(2) The system dW
dx = G22

ν (x)W + f , such that W (x∗) = W 0 complex number
given, has a unique solution

(5.2) W (x) = Ux∗(x)W 0 +

∫ x

x∗
(Ux∗(x))(Ux∗(y))−1f(y)dy.

(3) The expression of W = (ε0R,H2)T is given as follows in terms of f =
(f1, f2)T :

(5.3)

{
ε0R(x) = V(F +G1 +G2)
H2(x) = H2(x∗)exp(

∫ x
x∗
a22(z)dz) +K(a21R+ f2)(x)

LAGA, Institut Galilée, Université Paris 13, Sorbonne Paris Cité 99, avenue J.B.

Clément, 93430 Villetaneuse, France

2Note that this relation imposes V(u)(x∗) = u(x∗)


