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Ultrasound shear wave elastography was developed the past decade, bringing

new stiffness biomarker in clinical practice. This biomarker reveals to be of

primarily importance for the diagnosis of breast cancer or liver fibrosis. In

muscle this biomarker become much more complex due to the nature of the

muscle itself: an anisotropic medium. In this manuscript we depict the

underlying theory of propagating waves in such anisotropic medium. Then

we present the availablemethods that can consider and quantify this parameter.

Advantages and drawbacks are discussed to open the way to imagine new

methods that can free this biomarker in a daily clinical practice.
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1 Introduction

At the end of the 20th century, static elastography was developed to enhance biological

tissues characterization and medical diagnosis for pathological tissues (Ophir et al., 1991). It

was inspired from the first clinical gesture of the physician, the manual palpation. It relied on

the fact that the stiffness felt by the physicianwould translate themalignant nature of the tissue.

Strain elastography was based on Hooke’s law, that links Young’s modulus (i.e. the stiffness E)

to the applied stress (σ) and the observed strain (ε) in an isotropic and purely elastic media: E =

σ/ε. Some studies have been performedwith this technique onmuscle (Akagi et al., 2011; Chino

et al., 2012; Chino et al., 2014) However, the applied stress was difficult to quantify and, in

practice, only strain profile was known leading to qualitative information. To overcome this

limitation, the so-called shear wave elastography (SWE) based on shear wave propagation was

developed. This approach assumes that, for a quasi-incompressible elastic solid, the shear wave

speed (VS) is related to the shear modulus (µ) and to the Young’s modulus by the following

relationship: E = 3µ = 3ρVS
2, where ρ is the density of biological tissues (~1,100 kg/m3).

Numerous ultrasound-based shear wave elastography techniques were developed based on this

physical hypothesis. These techniques involved twomain basic steps: i) generating shear waves

within a tissue and ii) imaging their propagation to retrieve their speed (Ophir et al., 1991a;

Sarvazyan et al., 1995; Nightingale et al., 2002; Gennisson et al., 2003; Sandrin et al., 2003;

Palmeri et al., 2008;McAleavey et al., 2009).With these “dynamic” techniquesmuscle has been
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widely investigated (Nordez et al., 2008; Akagi and Takahashi, 2013;

Alfuraih et al., 2018; Hirata et al., 2020). Nonetheless, in order to

solve the inverse problem (i.e. image tissue’s elasticity from shear

wave velocity estimation), all these methods assume, in first

approximation, that tissues are isotropic, quasi-incompressible

and purely elastic media. However, this is not the case for

muscles which can be modeled as transverse isotropic solid since

they are composed of a random distribution of parallel fibers around

one axis of symmetry (Eby et al., 2013). As a result, shear waves

propagate faster along the muscle fibers than across the fibers

(Gennisson et al., 2003; Miyamoto et al., 2015; Alfuraih et al.,

2017). Thus, the link between Young’s modulus and shear waves

speed is no more valid and the stiffness must be quantified by the

estimation of two shear moduli, µ// and µ⊥, along and

perpendicularly to the fibers respectively (Royer et al., 2011). In

order to improve tissue characterization and potentially medical

diagnosis, it is then important to define new biomarkers such as

anisotropy. As an example, because shear wave speed is linearly

related to muscle force (Hug et al., 2015), estimating muscle

anisotropic behavior would be of particular interest to better

characterize muscle behavior and adaptation to various

phenomena, such as training or disuse. In neuromuscular

diseases, such as Duchenne myopathy, changes in the muscle

molecular organization (Zemła et al., 2021) could certainly lead

to modification of mechanical properties that could impact

anisotropy. In this review, we focus on the possible ways to

quantify anisotropy after considering theoretical aspects of shear

wave propagation in a transverse isotropic medium. Then, an

overview of the main dynamic ultrasound-based SWE techniques

that have been developed from one-dimensional (1D) (one value) to

three-dimensional (3D) (stiffness volume) shear wave imaging is

presented and discussed with special emphasis on the developments

made to include anisotropy as a new biomarker for physicians.

2 Shear wave propagation in
transverse isotropic medium

Most muscles often present a random distribution of fibers

oriented in the same direction, which implies a symmetry about

the fiber orientation. Because of this symmetry, muscles are

usually modeled as a transverse isotropic (TI) tissue, i.e. a

tissue whose physical properties (e.g. stiffness) are symmetric

with respect to an axis that is normal to the plane of isotropy.

In the limit of small displacements, the stress-strain

relationship in an anisotropic tissue is linear and can be

described by Hooke’s law

σ ij� Cijklεkl (1)

where σij is the stress tensor, εkl is the infinitesimal strain tensor,

Cijkl is the fourth-order stiffness tensor. In Eq. 1 summation over

repeated indices is implied (i.e. Einstein’s summation notation).

In a TI tissue, based on symmetry, the eighty-one entries of the

stiffness tensor are reduced to only five and Eq. 1 can be

expressed using Voigt’s notation as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�
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C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66
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(2)

with C66 � (C11 − C12)/2. It is important to mention that in Eq. 2

the symmetry axis of the material (i.e. given by the direction of

muscle fibers) is oriented parallel to x̂3. Eq. 2 can also be

expressed in terms of the Young’s moduli (EL, ET), Poisson’s

ratios (]LT, ]TT) and shear moduli (μL, μT), as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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1/ET −]TT/ET −]LT/EL 0 0 0
−]TT/ET 1/ET −]LT/EL 0 0 0
−]LT/EL −]LT/EL 1/EL 0 0 0

0 0 0 1/μL 0 0
0 0 0 0 1/μL 0
0 0 0 0 0 1/μT
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(3)

where μT � 1
2ET/(1 + ]TT) and the subscripts L andT correspond

to the longitudinal and transverse directions relative to the to the

symmetry axis, respectively.

A smart way to non-invasively measure the mechanical

properties of TI tissue is to use wave propagation, since as in

isotropic tissues, the wave speed is directly linked to the tissue’s

stiffness constants or equivalently to the tissue’s Young and shear

moduli. The fundamental difference between isotropic and TI

tissue is that the wave speed will depend not only on the direction

of propagation but also on the wave polarization. Particularly, the

elastic wave propagation in TI tissue is governed by a set of linear

equations known as “Christoffel equations” which relate wave

speed, propagation direction, polarization and mechanical

properties.

Let us consider a TI tissue that obeys Hooke’s law. In the

absence of body forces a disturbance propagating within the

medium will obey the following wave equation

ρ
z2ui

zt2
� Cijkl

z2ul

zxjzxk
(4)

Where ui (i = 1, 2, 3) denotes the components of the

displacement field and ρ is the material density assumed to be

constant (~1,100 kg/m3). Under plane wave decomposition, a

monochromatic plane wave of the form ui( �r, t) � uo exp[i( �k. �r −
ωt)] where the wave amplitude is uo, �k denotes the wave vector

and ω is the frequency is a non-trivial solution of Eq. 4 if the

following secular equation is satisfied:

∣∣∣∣Cijklkjkl − ρω2δik
∣∣∣∣ � 0 (5)
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Eq. 5 can be rewritten in terms of the phase velocity v � ω/k,

the direction cosines ni (i = 1, 2, 3) and the Christoffel matrix

Γik � Cijklnjnl as ∣∣∣∣Γik − ρv2δik
∣∣∣∣ � 0 (6)

Eq. 6 corresponds to the eigenvalue equation for matrix Γ and

is known as the Christoffel equation. From Eq. 2, we may now

write Γ in the particular case of a TI tissue:

Γ � ⎛⎜⎜⎝C11n
2
1 + C66n

2
2 + C44n

2
3 (C11 + C66)n2n1 (C44 + C13)n1n3

(C11 + C66)n2n1 C66n
2
1 + C11n

2
2 + C44n

2
3 (C44 + C13)n2n3

(C44 + C13)n1n3 (C44 + C13)n2n3 C44n
2
1 + C44n

2
2 + C33n

2
3

⎞⎟⎟⎠
(7)

In what follows we will consider some examples of particular

interest for shear wave elastography in muscles.

i) �n � (1, 0, 0): For this case there are three different phase

velocities (i.e. three different eigenvalues) given by v1 �
�����
C11/ρ

√
,

v2 �
�����
C66/ρ

√
and v3 �

�����
C44/ρ

√
with eigenvectors ê1 � (1, 0, 0),

ê2 � (0, 1, 0) and ê3 � (0, 0, 1), respectively. The first eigenvector
corresponds to a pure longitudinal mode propagating at the

speed of ultrasound while the second and third eigenvector

correspond to pure shear modes with phase velocities given

by the shear moduli μT and μL, respectively. Consequently,

the shear anisotropy can be measured by propagating shear

waves in depth and using a source that favors each mode, as

it is depicted in Royer et al., 2011.

ii) �n � (0, sin (ϕ), cos (ϕ) ): For this example, an evident

solution to Eq. 6 is:

ρv2 � C66sin
2(ϕ) + C44cos

2(ϕ) (8)

with eigenvector ê1 � (1, 0, 0), thus, corresponding to a “pure”

shear wave which is the mode often used in most shear wave

elastography techniques applied to skeletal muscle. This mode is

termed shear horizontal mode (SH) in the sense that the wave

polarization vector ê1 is perpendicular to the plane formed by the

material symmetry axis and wave propagation direction. As it

will be seen below there are other ways to generate a SH mode.

It is important to point out that the velocity given by Eq. 8

corresponds to the phase velocity of the wave which is not the

magnitude measured by many elastography techniques. Many

elastography techniques measure the time of flight of a wave

packet through a known distance to compute the wave velocity.

This corresponds to the group velocity of the wave packet. In a

non-dispersive isotropic medium, the phase and group velocities

are identical. However, in a TI tissue the phase and group velocity

along the same direction are not necessarily equal. From Eq. 8 it

can be shown that the group velocity vg obeys the following

equation (Wang et al., 2013):

ρv2g � C44C66

C44sin2(ϕ) + C66cos2(ϕ) (9)

iii) �n � (sin (θ), 0, cos(θ)): This corresponds to the case of

shear wave elastography being applied to pennate muscle,

particularly, when wave propagation vector forms an angle

with the fiber orientation. In this example the eigenvalues are

given by:

ρv21,3 �
1
2
[Γ11 + Γ33 ∓

���������������
(Γ33 − Γ11)2 + 4Γ2

13

√ ] (10)

(where the minus sign corresponds to the first eigenvalue) and:

ρv22 � Γ22 � C66sin
2(θ) + C44cos

2(θ) (11)

The second eigenvalue corresponds to a pure shear wave, i.e.

with eigenvector parallel to x̂2 while the first and third

eigenvalues correspond to a quasi-shear and a quasi-

longitudinal wave. In the incompressibility limit the phase

velocity for the quasi-shear mode reduces to (Rouze et al., 2013):

ρv21 � μL + (EL

ET
μT − μL)sin 2(2θ)

� C44 + (C33C11 − C2
13

4(C11 − C66) − C44)sin 2(2θ) (12)

and its polarization is purely transverse. It is important to point

out that the incompressibility limit, shear wave propagation in

TIT only depends on three mechanical properties: μL, μT and the

anisotropy ratio of the Young’s moduli EL
ET
. Thus, all three

parameters required to characterize an incompressible TI

material can be measured by observing shear wave

propagation in the material. Finally, in the recent work of

(Rouze et al., 2019) and (Caenen et al., 2020) the following

terminology was used to describe both transverse modes: a SH

mode (i.e. defined in Eq. 11) and the shear vertical (SV) mode

which is defined by a wave polarization vector parallel to this

plane (i.e. mode corresponding to the first eigenvalue in the

incompressibility limit).

In the next parts, we will describe the most representative

work allowing the quantification of biological tissues anisotropy

using ultrasound elastography techniques, from 1D to 3D

elastography in transverse isotropic medium.

3 Anisotropy quantification by
elastography methods

3.1 1D elastography

1D elastography is, to our knowledge, the first dynamic

ultrasound elastography technique that was developed to

quantify elastic anisotropy through the use of the shear

elasticity probe (Gennisson et al., 2003). The idea was to

change the polarization of shear waves to measure the shear

modulus along and perpendicular to fibers. Gennisson et al.

(2003) proposed to use a rod fixed on a vibrator to increase the

energy of shear waves perpendicularly to its axis of percussion.

Then, by placing the probe parallel or perpendicular to the

muscle fibers, the shear waves speed could be retrieved by
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following the theoretical part described in Section 2 (Eq. 8). This

allow the quantification of muscle stiffness ex vivo (Gennisson

et al., 2003) and in vivo (Gennisson et al., 2005). This device is

presented in Figure 1A on an in vivo experiment on the biceps

brachii. Figure 1B displays the device allowing the estimation of

the elastic non-linear shear parameters in an acoustoelasticity

experiment by quantifying the apparent anisotropy induced by a

uniaxial stress applied on the medium (Catheline et al., 2003).

To improve this 1D approach, Chatelin et al. (2014a)

proposed a new remote shear wave elasticity probe for

anisotropy investigation based on radiation force of a focused

ultrasound beam. The previous mini-shaker that generates shear

waves on the shear elasticity probe was replaced by a focused

transducer that will create remotely and locally within the muscle

a shear wave source (Sarvazyan et al., 1998). Closely to this

focused transducer, 8 single transducers were smartly placed to

track the shear wave propagation parallel and perpendicular to

the muscle fibers (Tanter et al., 2016). Taking advantage of this

first prototype, Pedreira et al. (2021) recently developed a new

compact probe to investigate stiffness anisotropy of the

myocardium. The transducer is composed of five concentric

annular elements and three lateral elements. The annular

elements allow the generation of an acoustic radiation force at

a chosen depth and display the M-mode images of the region of

interest for a better positioning of the probe. Lateral elements are

angularly spaced at 120° to estimate the local displacement in the

medium around the pushing zone. Shear velocities along and

across the fibers are finally assessed thanks to the ellipse fitting of

the propagating shear wave using Eq. 9.

3.2 2D elastography

Complementary to 1D elastography, 2D elastography

devices were developed using different approaches. As for

1D elastography, multiple shear wave sources were proposed

leading to different 2D elastography methods, most of which

are presented here:

3.2.1 Transient elastography
In 2004, Catheline proposed to adapt 1D transient

elastography to anisotropic measurements in 2D. A plate was

fixed on a mini-shaker to generate 2D plane shear waves in a

muscle. Shear waves were then caught in 2D by an ultrafast

ultrasound probe composed of 128 channels. By placing the

shaking plate along or perpendicular to muscle fibers, they

deduced both shear moduli along two axes of an ex vivo

muscle (Catheline et al., 2004).

3.2.2 Supersonic shear imaging
The development of the Supersonic Shear Imaging (SSI)

technique (Bercoff et al., 2004) is a major breakthrough in the

field of 2D elastography. Briefly, this technique consists in

generating shear waves by using the acoustic radiation force

and catching their propagation by using ultrafast imaging that

allows an imaging frequency up to 20 kHz. Gennisson et al.

(2010) were, to our knowledge, the first to quantify muscle

anisotropy in 2D. Two muscles were studied: human biceps

brachii and brachialis, which are fusiform muscles parallel to

each other. Stiffness of both muscles were measured during

isometric contractions and passive extensions (Figure 2) by

using two probe positions: parallel and perpendicular to the

fibers. In this specific case the shear wave group velocity was

investigated as described in the theoretical part Section 2. Shear

waves group velocity was measured at different levels of isometric

contraction. As a result, sets of shear wave group velocity maps of

two adjacent muscles oriented differently with different degrees

of stress (isometric contraction and passive extension) were

produced in both orientations of the shear wave propagation.

The relationship between elasticity and anisotropy was then

studied. The authors found that shear wave group velocity

progressively decreased as the probe was more and more

FIGURE 1
(A) 1D shear elasticity probe applied in vivo on the biceps brachii to quantify stiffness anisotropy by rotating the rod fixed on themini-shaker. (B)
Apparent anisotropy quantified with two 1D shear elasticity probe in an acoustoelasticity experiment on agar-gelatin phantom.
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perpendicular to muscle fibers. More so, experimentally it was

observed that this decrease was even more pronounced in the

contracted state than in the relaxed state. It was thus deduced that

the evaluation of muscle anisotropy would be more evident in the

contracted state than the relaxed one. Through these

measurements, the muscle anisotropic mechanical properties

can be assessed with a complete set of quantitative data.

In 2012, to validate the use of the SSI method as a tool to

quantify anisotropy, Lee et al. (2012a); Lee et al. (2012b)

investigated myocardium fiber orientation. Myocardium is

structured in distinct layers with varying orientations across

the heart wall (Streeter and Bassett 1966; Streeter et al., 1969).

In this work, the ultrasonic probe was placed at the surface of an

ex vivomyocardium and rotated around a single axis (Figure 3A).

Shear waves were generated by using acoustic radiation force and

shear wave velocities were measured for different depths within

the myocardium for each angle of rotation (Figure 3B). By

looking at the maximum velocity as a function of the angle

for each depth, the muscle fiber orientation was retrieved. Results

were compared to diffusion tensor imaging by using magnetic

resonance imaging, a technique allowing the tracking of fibers

orientation in space. A good agreement between the two

FIGURE 2
Shear wave velocity maps of the biceps brachii for passive extension of the elbow with different angle (from 90° to 165° with 25° step) along the
fibers (A) and perpendicularly to the fibers (B).

FIGURE 3
(A) Probe positioning regarding the myocardium wall. The probe can rotate following the Z axis, depth of the myocardium wall. (B) Fiber
orientation for each depth of the myocardium wall, in percentage of the wall thickness.
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techniques showed that this ultrasonic approach, so-called elastic

tensor imaging, can be proposed for the assessment of the fiber

structure in muscle.

Following the same method of a pushing beam followed by

an ultrafast acquisition, Urban et al. (2015) used in 2016 a

transesophageal ultrasonic probe to generate in an ex vivo

myocardium shear waves. By using an ultrafast device, they

quantified shear wave velocity at different frequencies (50,

100 and 200 Hz) for different angle of the probe regarding the

muscle fibers (from 0° to 170° with 9° increment). They found that

low frequencies yield low sensitivity to the fiber’s orientation and

the true wave speeds in the layers was underestimated. By using

excitations at higher frequencies, a better estimation of the fiber

orientation and more accurate shear wave speeds measurement

was possible. This work provided the understanding that the

anisotropy factor is clearly better determined at high shear wave

frequencies.

3.2.3 Shear wave ultrasound vibrometry
In 2009, Chen et al. proposed to investigate anisotropy in an

ex vivo muscle by using the Shear wave Dispersion Ultrasound

Vibrometry (SDUV) technique. The basic principle of SDUV is

to generate a harmonic shear wave by an ultrasound beam (i.e.,

push), and its propagation is monitored by a separate ultrasound

beam (i.e., detection beam). The shear wave speed is calculated

from its phase measured at 2 different locations separated by a

known distance along its traveling path (Chen et al., 2009). The

results of this study were compared with finite element

simulations. This technique was also used to measure the

viscoelastic properties of ex vivo bovine and porcine striated

muscles (Urban et al., 2009; Urban and Greenleaf, 2009). In these

studies, the measurements were performed along and across the

muscle fibers. As an example, in the bovine muscle tissue, the

shear modulus values retrieved were µ// = 29 kPa and µ⊥ =

12 kPa, measured along and across the muscle fibers,

respectively. In the porcine muscle tissue, the values were µ//
= 12.7 kPa and µ⊥ = 5.3 kPa, measured along and across the

muscle fibers, respectively. The studies showed an anisotropic

ratio of about 2–3 when performing the ratio of shear waves

speed along and across muscle fibers.

3.2.4 Acoustic radiation force impulse—shear
wave speed

In parallel to the development of supersonic shear imagine

technique, Nightingale et al. (2003) proposed in 2003 to use

acoustic radiation force impulse as a source for shear wave

generation. The principal difference with supersonic imagine

was the way to image the propagation of shear waves by using

parallel beamforming over a small number of tracking lines close

to the pushing beam. In 2013, Rouze et al. (2013) developed a

finite element simulation of shear wave propagation in an

incompressible transversely isotropic medium opening the

way to use the ARFI-SWS technique in studies. Recently,

Rouze et al. (2020) investigated a new modeling technique

using the Green’s tensor method to better characterize this

anisotropy (Rouze et al., 2020). The Green’s tensor is

expressed with an analytic expression of SH mode and an

integral expression of SV mode which allow to reduce the

number of numerical integrals by a factor up to 109,

significantly lessening computational complexity. The SV and

SH propagation mode were defined by the relative orientation of

waves polarization with respect to the plan formed by waves

propagation and material symmetry axis. This method is able to

provide the three parameters that characterize an incompressible

and TI material: the longitudinal µ// and transverse µ⊥ shear

modulus, and the tensile anisotropy χE (the ratio between the

Young’s modulus parallel and the Young’s modulus

perpendicular to the fibers) following an ARFI-SWS. Taking

advantage of this modeling method, ultrasonic rotational 3D

elasticity imaging was developed to fully characterize muscle

mechanical properties (Knight et al., 2021). To estimate the three

mentioned parameters, both SH and SV are measured by rotating

the probe in 3D. Regarding the modes, only χE has an impact on

the SV propagation. In vivo human experiments were conducted

on the vastus lateralis, a pennate muscle. That allows to

experimentally identify group SH and SV velocity using the

Radon sum algorithm (Rouze et al., 2010). By fitting these

experimental values to Eqs. 11, 12, all three transverse

isotropic material parameters were computed.

3.3 3D elastography

To palliate the problem of being restrained to a 1D linear

transducer that move or rotate to get a full 2D elastography

volume, Wang et al. (2013) combined a spherical transducer,

used to generate a shear wave by ARFI, with a 2-D matrix

array to image shear wave propagation. By imaging the

propagation of the shear wave plane by plane in a

sequential way, they were able to synthetically reconstruct

the shear wave propagation in the entire volume. One

advantage of this technique is that the pushing beam is

maintained at the same location while the tracking beams

are shifted in different directions, which effectively allows for

the quantification of the elastic anisotropy. However, because

acquisitions must be repeated sequentially to acquire the full

volume, the technique yields a low volumetric frame rate and

as such is limited in presence of motion due, e.g., to breathing

or pulsatility. In Provost et al. (2014) developed further away

the concept of ultrafast ultrasound imaging to 2D matrix

array by designing a 3D ultrafast ultrasound device driving

1,024 channels. With intuitive beamforming reconstruction

applied to the small aperture of 2D matrix array, Provost et al.

(2014) proposed new ways to image the full volume of large

organs in real time such as the heart. Later, Gennisson et al.

(2015) took advantage of this new ultrafast device to proposed
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the first full 3D shear wave elastography probe with an

ultrafast ultrasound device. Therefore, shear wave

propagation can be induced and imaged in three-

dimensions, and tissue stiffness can be estimated in a full

volume. Experiments were performed in an isotropic breast

phantom dedicated to elastography and in vivomeasurements

were also performed on a healthy volunteer in the upper right

quadrant of the breast. Correia et al. (2018) then showed that

anisotropy was quantifiable with this approach in three-

dimensions, at high volume rate and in a few minutes of

post-processing. The technique was evaluated numerically in

simulated transverse isotropic model with different degrees of

stiffness and anisotropy. They showed good results in weakly

transversely isotropic media (PVA phantoms, Chatelin et al.,

2014b) and quantification of low fractional anisotropy (<
0.34) was validated with numeric simulation.

4 Discussion

Shear wave ultrasound elastography is an important

research field and has been growingly used in a variety of

clinical settings over the last 15 years. It has provided a set of

ultrasound methods allowing the noninvasive assessment of

tissue stiffness in vivo. Several studies have shown that tissue

stiffness is of great value for medical diagnosis. These

advantages should certainly lead to new applications of

shear wave elasticity imaging, not only for diagnosis but

also for the follow-up of tissue mechanical properties in a

wide range of population, whether it is athletes or patients

affected with neuromuscular dystrophies to name a few. The

real-time capability of some of these shear wave techniques

also allowed the development of 3D elastography imaging that

should facilitate the clinical use for detection, therapy

planning and monitoring in the routine clinical practice.

In all these approaches, tissues are assumed to be isotropic

and the variation of the shear modulus in biological tissues

offers a contrast that is potentially more interesting than

conventional ultrasound. This was possible because

researchers have decrypted the underlying physics of each

shear wave elastography method to understand their

advantages and physical limitations. In this paper, we have

highlighted the available shear wave elastography methods

which brought effective tools that was enhanced to define new

biomarker such as anisotropy. We depicted the methods for

muscular elastic anisotropy characterization from the

simplest in 1D to the more complex in 3D.

All methods have their advantages, such low cost in 1D

elastography (Pedreira et al., 2021) or full characterization in 3D

elastography (Correia et al., 2018), and drawbacks, such as the

rotation step in 2D (Gennisson et al., 2010), but all allow the

determination of tissue anisotropy. Globally, only the simplest

case of anisotropy, TI medium were examined. This anisotropy is

easily investigable in fusiform muscle such as biceps brachii.

Otherwise, muscles have diverse arrangements which are much

more complicated than parallel structures (fusiform) with

notably higher anisotropic degree, namely, circular muscles

(orbicularis oris muscle), convergent muscles (pectoralis

major) or bipennate muscle (rectus femoris), etc. Further

research on different muscle models is essential to achieve a

powerful method of 3D elastography that considers all the

possible muscle anisotropies. Finally, all available elastography

methods are unable to provide information on the orientation of

the fibers in the elevation dimension (shear waves are always

polarized in this axis of the ultrasound). This issue must be

carefully studied to improve the 3D elastic maps.

For this biomarker, anisotropy, to be clinically relevant and

usable, its quantification needs to be facilitated. For example, 2D

elastography can be used to quantify tissue anisotropy in 3D by

performing multiple recordings with various probe angle. In the

case of fusiformmuscle, if the probe is placed parallel to fibers, with

a rotation around the axis defined by the ultrasound beam it is

possible to determine the fiber orientation with only shear wave

velocity measurements. However, in pennate muscle shear wave

velocity measurements must be supplemented with Bmode

acquisition in order to retrieve fiber orientation. Here 3D

rotation is definitively needed as demonstrated by Knight et al.,

2021. However, probe rotation is a major drawback and is not

applicable to a muscle with constantly changing contraction levels.

3D elastography appears to bridge the gap between these

limitations and what is expected from clinicians but still

requires expensive device that are rarely if ever available in a

clinical setting. So the last solution would be to use a 2D device that

is fast enough to asses locally anisotropy but limits the

measurement to one point, which can be a problem for full

muscle characterization in specific pathologies such as

myopathies. Considering all these advantages and drawbacks of

these techniques, the ultimate goal would be to find a way to

quantitatively estimate muscle anisotropy in real time in a 2D

imaging plane without moving the probe.

5 Conclusion

Over the last 20 years, ultrasound elastography have been

massively studied and deployed in various clinical and scientific

settings. Beside stiffness, ultrasound elastography allows the

assessment of tissue anisotropy, whether by performing multiple

acquisitions using 1D or 2D elastography, or a single acquisition

using 3D elastography. Tissue anisotropy may be a very relevant

biomarker of tissue mechanical properties and could improve our

understanding of muscle adaptations during aging, training, or

diseases. Further developments should mainly focus on the

implementation of readily available ultrasound elastography

sequences that would allow clinicians and specialist to monitor

tissue anisotropy on a daily basis.
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