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SPECTRAL ANALYSIS OF THE INCOMPRESSIBLE VISCOUS
RAYLEIGH-TAYLOR SYSTEM IN R3

OLIVIER LAFITTE AND TIòN-TÀI NGUYôN

Abstract. The linear instability study of the viscous Rayleigh-Taylor model
in the neighborhood of a laminar smooth increasing density profile ⇢0px3q
amounts to the study of the following ordinary differential equation of order
4:

´ �
2r⇢0k2� ´ p⇢0�1q1s “ �µp�p4q ´ 2k2�2 ` k

4
�q ´ gk

2
⇢

1
0�, (0.1)

where � is the growth rate in time, k is the wave number transverse to the
density profile.

In the case of ⇢1
0 • 0 compactly supported, we provide a spectral analysis

showing that in accordance with the results of [8], there is an infinite sequence
of non trivial solutions p�n,�nq of (0.1), with �n Ñ 0 when n Ñ `8 and
�n P H

4pRq. In the more general case where ⇢
1
0 ° 0 everywhere and ⇢0

converges at ˘8 to finite limits ⇢˘ ° 0, we prove that there exist finitely non
trivial solutions p�n,�nq of (0.1). The line of investigation is to reduce both
cases to the study of a self-adjoint operator on a compact set.
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1. Introduction

The Rayleigh–Taylor (RT) instability, studied first by Lord Rayleigh in [19] and
then Taylor [20] is well known as a gravity-driven instability in two semi-infinite
inviscid and incompressible fluids when the heavy one is on top of the light one.
It has attracted much attention due to both its physical and mathematical impor-
tance. Two applications of worth mentioning are implosion of inertial confinement
fusion capsules [13] and core-collapse of supernovae [18]. For a detailed physical
comprehension of the RT instability, we refer to three survey papers [10, 21, 22].
Mathematically speaking, for the inviscid and incompressible regime in the neigh-
borhood of a smooth density profile, the classical RT instability was investigated
by Lafitte [12], Guo and Hwang [4] and Helffer and Lafitte [8].

In this paper, we pay attention to the viscous RT instability. One of the first
studies on the viscous RT can be seen in the book of Chandrasekhar [1, Chapter
X] considering two uniform viscous fluid separated by a horizontal boundary and
generalizing the classical result of Rayleigh and Taylor. We are concerned with
the following Navier–Stokes equation describing the motion of a nonhomogeneous
incompressible viscous fluid in the presence of a uniform gravitational field in R3,

$
’&

’%

Bt⇢` divp⇢~uq “ 0,

Btp⇢~uq ` divp⇢~u b ~uq ` rP “ µ�~u ´ ⇢~g,

div~u “ 0,

(1.1)

where t • 0, x “ px1, x2, x3q P R3. The unknowns ⇢ :“ ⇢px, tq, ~u :“ ~upx, tq and
P :“ P px, tq denote respectively the density, the velocity and the pressure of the
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fluid, while µ ° 0 is the viscosity coefficient and ~g :“ p0, 0, gq, g ° 0 being the
gravitational constant.

Let ⇢0 ° 0 be a C1-function depending only on x3 and let P0 be another function
of x3 given by P 1

0 “ ´g⇢0 with 1 “ d{dx3. Note that it is not a physical solution
of the system, because P0 Ñ ˘8 when x3 Ñ ˘8, but, nevertheless, it is a rele-
vant model to study. Then, p⇢, ~u, P q “ p⇢0,~0, P0q is an equilibrium state of (1.1).
The linear RT instability of (1.1) in the vicinity p⇢0px3q,~0, P0px3qq amounts to the
investigation of the parameter � P C (Re� ° 0) such that there exists a bounded
solution � P H4pRq of the following ordinary differential equation

´ �2p⇢0k2�´ p⇢0�1q1q “ �µp�p4q ´ 2k2�2 ` k4�q ´ gk2⇢1
0�, (1.2)

where k ° 0 is the transverse wave number being fixed and � is the third component
of the perturbed velocity. Our desired solution � decays to zero at ˘8, i.e.

lim
x3Ñ˘8

�px3q “ 0. (1.3)

In this case, such a � is a growth rate of the instability or is a characteristic value
of the linearized problem (see [1, Chapter X, Sections 92-93]).

The derivation of (1.2) will be shown in the next section.

Let us discuss about the mathematical study. For the inviscid problem (i.e. µ “ 0
in (1.1) and (1.2)), (1.2) can be seen as an eigenvalue problem with eigenvalue �2.
Multiple eigenvalues of the inviscid problem are first mentioned by Cherfils and
Lafitte [2] through the precise study of the inviscid ODE for a specific profile.
Mention also the paper of Mikaelian [14] for the connection between the Rayleigh
(1.2) and the Schrödinger equations. Lafitte [12] then observed that possible growth
rates �’s for the inviscid Rayleigh-Taylor problem (not only the largest one) are
such that �2 is an eigenvalue of a suitable self-adjoint operator and described this
spectrum, for large values of k, as the eigenvalues of a 1D Schrodinger operator,
which is generalized by Helffer and Lafitte [8].

On the other side, the natural variational structure of the inviscid problem
pointed out in [1] and used by Guo and Hwang [4] describes the square of the
maximum growth rate �21 as the maximum of of the Rayleigh quotient

gk2
≥
R ⇢

1
0|�|2dx3≥

R ⇢0p|�1|2 ` k2|�|2qdx3

and is used to obtain a proof of the nonlinear instability. With this argument, it
can be noticed that the multiple eigenvalues are given by t�2, . . . ,�j , . . . u, where
�2
j

is equal to

max
�PH1

k

gk2
≥
R ⇢

1
0|�|2dx3≥

R ⇢0p|�1|2 ` k2|�|2qdx3

where H1
k

“ t� P H1pRq, ≥
R ��ldx3 “ 0,@l § ju, �l is a nontrivial eigenfunction

associated with �l. This Rayleigh quotient cannot be used here due to the presence
of the viscosity term.

For the viscous problem, Jiang, Jiang and Ni [11] used a modified variational
approach, described by Guo and Tice [5] , where a bootstrap argument yields the
largest growth rate and a corresponding solution being regular under the assump-
tion ⇢1

0 P C8
0 pRq, infR ⇢0 ° 0 and ⇢1

0px3q ° 0 for some points x3 P R.

As far as we could find, no other authors performed studies of the discrete
spectrum of the inviscid or the viscous linearized RT instability. We aim at the
viscous study in the mathematical spirit of Helffer-Lafitte [8].
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We then illustrate our spectral analysis.

Throughout this paper, we consider ⇢0 as an increasing function, i.e. ⇢1
0 • 0. For

an increasing density profile ⇢0, we show in Appendix A that � is real and bounded
by

b
g

L0
, with L´1

0 :“ supR
⇢

1
0

⇢0
. Since our goal is to study the unstable modes, we

restrict our study to the case � ° 0.

The ODE (1.2) rewrites as a linear system of ODEs on p�,�1,�2,�3qT . As
the solution of this system must tend to 0 when x3 Ñ ˘8, using the fact that
the profile ⇢0 goes to ⇢˘ at ˘8, we are able to deduce the stable linear space
S` at `8 and the unstable linear space S´ at ´8, that are vector spaces of
dimension two. Hence, we transform the problem for the normal modes on R into
an ODE problem stated on a compact interval px´, x`q with appropriate boundary
conditions deduced from the outer solutions. In the case of a compactly supported
⇢1
0 (the simplest case of a convergence), they are described by (D.14)-(D.15). In

the case of a non compactly supported ⇢1
0, they are described by (4.7)-(4.8). Note

that, if ⇢1
0 is compactly supported, the natural choice of x˘ is to choose the ends of

supp⇢1
0. However, if ⇢1

0 non compactly supported, x˘ are deduced from the behavior
at ˘8 of the outer solutions and depend also on k and �.

In order to solve (1.2) on px´, x`q, the crucial tool in our study is to construct
two bilinear forms, that are continuous and coercive, B� (denoted respectively by
Ba,� (3.10) for ⇢1

0 being compactly supported and by Bx´,x`,� (4.15) for ⇢1
0 being

positive everwhere) such that the finding of bounded solutions of Eq. (1.2) on the
whole line is equivalent to the existence of solutions to the variational problem

�B�p�,!q “ gk2
ª

x`

x´
⇢1
0�!dx3 for all ! P H2ppx´, x`qq.

As B� is coercive on H2ppx´, x`qq,
a
B�p¨, ¨q is a norm on H2ppx´, x`qq, and one

denotes by pH2ppx´, x`qqq1 the dual of H2ppx´, x`qq for the induced topology. In
view of the Riesz representation theorem, we thus define an abstract operator

Y� P LpH2ppx´, x`qq, pH2ppx´, x`qq1q
(see Ya,� in Proposition 3.3 for ⇢1

0 • 0 being compactly supported and Yx´,x`,�

in Proposition 4.3 for ⇢1
0 being positive everywhere), associated with the norma

B�p¨, ¨q to its dual, such that

B�pf,!q “ xY�f,!y, for all ! P H2ppx´, x`qq (1.4)

Note that it will be crucial to choose x´, x` such that
a
B�p¨, ¨q is a norm on

H2ppx´, x`qq. The existence of bounded solutions of Eq. (1.2) on R is thus equiv-
alent to finding weak solutions � P H2ppx´, x`q of

�Y�� “ gk2⇢1
0� in pH2ppx´, x`qqq1.

A classical bootstrap argument shows that � belongs to H4ppx´, x`qq, from which
one deduces that � satisfies (1.2) on px´, x`q (in the sense of elements of H4ppx´, x`qq),
and the boundary conditions (D.14)-(D.15) or (4.7)-(4.8) hold. Note that, as � be-
longs to H4ppx´, x`qq, these boundary conditions (involving derivatives �2,�3 of
� at x˘) are well defined.

We further rewrite the problem, after introducing M the operator of multiplica-
tion by

a
⇢1
0 in L2ppx´, x`qq, as finding v (which is M´1Y��) satisfying

MY ´1
�

Mv “ �

gk2
v.
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We show that MY ´1
�

M is self-adjoint and compact, which enables to use the theory
of self-adjoint and compact operators on the functional space H2ppx´, x`qq. It is a
generalization of a Sturm-Liouville problem. The discrete spectrum of the operator
MY ´1

�
M is thus an infinite sequence of eigenvalues, denoted by �np�q and let vn

be an eigenfunction associated with �np�q.
The problem of finding characteristic values of (1.2) amounts to solving all the

equations

�np�q “ �

gk2
. (1.5)

When ⇢1
0 • 0 is compactly supported, for each n, we will show the existence and

uniqueness of a solution �n to (1.5) owing first to the differentiability in � of �np�q
(see Lemma 3.2), which is an easy extension of Kato’s perturbation theory of [9],
and secondly on the fact that � Ñ �np�q is decreasing in �, through the derivative
d

d�
p 1
�np�q q (see Lemma 3.3) which exists also thanks to a similar argument of [9].

Then �n “ Y ´1
�n

Mvn P H4ppx´, x`qq is glued with the decaying solutions of (1.2) in
the outer regions by the boundary conditions at x˘, which yields a solution of (1.2)
in H4pRq associated with �n. Hence, we obtain in our first result, Theorem 2.1,
the existence of an infinite sequence of characteristic values p�nqn•1, that decreases
towards 0 as n Ñ 8.

When ⇢1
0 ° 0 everywhere, unlike the first case, we lack the analytical expression

of boundary conditions. We thus do not have the decrease of �n or any control of
�np�q when � goes to 0. Consequently, for ⇢1

0 ° 0 everywhere, our arguments only
lead to a multiple existence of positive characteristic values � such that � • ✏‹ ° 0.
This is our second result, Theorem 2.2.

We then continue our operator method in other contexts. The first one [15]
is to investigate the nonlinear Rayleigh-Taylor instability of the gravity-driven in-
compressible Navier-Stokes equations with Navier-slip boundary conditions in a 2D
slab domain ⌦ “ 2⇡LT ˆ p´1, 1q with L ° 0 and T is the usual 1D-torus. Based
on infinitely unstable modes of the linearized problem, we consider a wide class of
initial data to the nonlinear perturbation problem, extending Grenier’s framework
[6], to prove nonlinear Rayleigh-Taylor instability.

Furthermore, as noted in [1, Chapter X, Section 94(e)], we study the gravity
waves problem that occur in an infinitely deep ocean and the occupied domain
is bounded above by a moving interface tpt, xq P R` ˆ 2⇡LT ˆ R|x2 “ ⌘pt, x1qu.
The governing equation is the gravity-driven incompressible Navier–Stokes equation
without any effect of surface tension on the free surface. The precise study will be
derived in a forthcoming work [16].

We organize this paper as follows. In Section 2, we describe the physical model
and then give the statement of our main theorems. Section 3 and Section 4 are
devoted to proving Theorem 2.1 as ⇢0 satisfies (2.6)-(2.7) and proving Theorem 2.2
as ⇢0 satisfies (2.8)-(2.9), respectively.

Notation. Throughout this paper, C‹ is a generic constant depending on ⇢0 and
other physical parameters, independent of �.



6 OLIVIER LAFITTE AND TIòN-TÀI NGUYôN

2. The main results

2.1. Derivation of the physical model. Recall that p⇢, ~u, P q “ p⇢0,~0, P0q is an
equilibrium state of (1.1). The quantities

� “ ⇢´ ⇢0, ~u “ ~u ´~0, p “ P ´ P0

satisfy the following nonlinear perturbation equations
$
’&

’%

Bt� ` ~u ¨ rp⇢0 ` �q “ 0,

p⇢0 ` �qBt~u ` p⇢0 ` �q~u ¨ r~u ` rp “ µ�~u ´ �~g,

div~u “ 0.

(2.1)

That implies the following linearized system
$
’&

’%

Bt� ` ⇢1
0u3 “ 0,

⇢0Bt~u ` rp “ µ�~u ´ �~g,

div~u “ 0.

(2.2)

Since ⇢0 depends only on x3, we continue the analysis into normal modes as in
[1, Chapter X, Section 91]. Precisely, we seek the perturbations of the form

p�, ~u, pqpt, xq “ e�t`ik1x1`ik2x2p⇣,´i ,´i✓,�, qqpx3q, (2.3)

where k P R2, � P Czt0u and Re� • 0. Let k “
a
k21 ` k22, we arrive at the

following system $
’’’’’’&

’’’’’’%

�⇣ ` ⇢1
0� “ 0,

�⇢0 ´ k1q ` µpk2 ´  2q “ 0,

�⇢0✓ ´ k2q ` µpk2✓ ´ ✓2q “ 0,

�⇢0�` q1 ` µpk2�´ �2q ` g⇣ “ 0,

k1 ` k2✓ ` �1 “ 0.

(2.4)

We directly see ⇣ “ ´⇢
1
0�

�
. Hence, (2.4)4 becomes

�2⇢0�` �q1 ` �µpk2�´ �1q “ g⇢1
0�. (2.5)

We multiply (2.4)2 by k1 and (2.4)3 by k2, then use (2.4)4 to obtain the equality

�2⇢0�
1 ` k2�q ` �µpk2�1 ´ �3q “ 0.

Deriving this equation, and replacing �q1 thanks to (2.5), we get the fourth-order
ordinary equation (1.2). The investigation of multiple growing normal modes (D.13)
amounts to finding regular solutions � P H4pRq of (1.2). These solutions decay to
zero at ˘8, i.e. � satisfies (1.3).

2.2. Main results. Assuming the density profile ⇢0 is increasing, we first show
that all characteristic values � are real and obtain the following upper bound

b
g

L0

of �. The proof is postponed to Appendix A.

Lemma 2.1. All characteristic values � for Eq. (1.2)-(1.3) in H4pRq are always
real and satisfy that � §

b
g

L0
.

In view of Lemma 2.1, we seek for functions � being real and we only consider
vector space of real functions in what follows.

In the case ⇢1
0 • 0 compactly supported, our assumption is

⇢1
0 is a nonnegative function of class C0

0 pRq, suppp⇢1
0q “ r´a, as, (2.6)
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Outside p´a, aq, we denote

⇢0px3q “
#
⇢´ as x3 P p´8,´as,
⇢` as x3 P ra,`8q, (2.7)

with ⇢´ † ⇢` are two positive constants. This can be seen, physically speaking, as
the situation of the toy model with a layer, of size 2a, in which there is a mixture
of the two fluids of density ⇢´ and ⇢`. We have the following result in Section 3.

Theorem 2.1. Let ⇢0 satisfy (2.6) and (2.7). There exist an infinite sequence
p�n,�nqn•1 with �n P p0,

b
g

L0
q and �n P H4pRq satisfying (1.2). In addition, �n

decreases towards 0 as n goes to 8.

We divide the proof of Theorem 2.1 into various steps. Notice that the rapid
convergence is not necessary in this case because ⇢0 is constant on p´8,´aq and on
pa,`8q. Hence, in this case � can be found explicitly since (1.2) outside p´a, aq is
an ODE with constant coefficients, that will shown in Proposition 3.1. After that,
we deduce two boundary conditions (D.14) and (D.15) at ¯a respectively in Lemma
3.1. Eq. (1.2) becomes a boundary-value problem on the finite interval p´a, aq.
Our method to solve that is based on the operator approach, namely the theory of
compact and self-adjoint operator for Ya,�, as illustrated in the introduction part.

In the next part, Section 4, we consider ⇢1
0 no longer compactly supported. The

assumptions on ⇢0 are

⇢0 P C1pRq, lim
x3Ñ˘8

⇢0px3q “ ⇢˘ P p0,`8q (2.8)

and
0 † ⇢1

0px3q † ⇢m † `8 for all x3 P R. (2.9)
The second theorem is as follows.

Theorem 2.2. Let ⇢0 satisfy (2.8) and (2.9). For 0 † ✏‹ ! 1, there exists Np✏‹q P
N‹ such that there are at least Np✏‹q values of � P r✏‹,

b
g

L0
s such that � P H4pRq

satisfying (1.2).

The proof of Theorem 2.2 remains the same to that one of the first case, but
more complicated. We point out the main differences as follows.

Questions concerning the existence of solutions of (1.2) being bounded at 8 are
not trivial as in the first case. In Section 4, we transform Eq. (1.2) into a system
of ODEs (4.3). The matrix Lpx3,�q has 4 eigenvalues ˘k and ˘

a
k2 ` �⇢0px3q{µ,

that are different for all � ° 0. We then follow [3, Theorem 8.1, Chapter 3],
whose statement given in Appendix C, to deduce that (1.2) admits two linearly
independent solutions decaying to 0 at `8 (respectively ´8). A suitable interval
px´, x`q is thus determined through a precise calculation of the family of solutions
decaying exponentially to zero at ˘8, which yield appropriate boundary conditions
(4.7) at x´ and (4.8) at x` in Proposition 4.1.

We then solve (1.2) on a finite interval px´, x`q with boundary conditions (4.7)–
(4.8). To do that, in Section 4.2, we construct the bilinear form Bx´,x`,� in Propo-
sition 4.2 and continue the same arguments as in Section 3 to obtain solution in the
inner region px´, x`q. Note that the coercivity of Bx´,x`,� relies on the positivity
of the terms BVx`,� and BVx´,� stated in Lemma 4.1. Due to the lack of analytical
expression of boundary conditions in this case, it turns out that the positivity of
BVx`,� and BVx´,� will be derived, in Proposition 4.2, by deducing the behavior
at ˘8 of coefficients n˘

ij
(i, j “ 1, 2) depending on px˘,�q and appearing in the
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boundary conditions (4.7)-(4.8). Having the bilinear form Bx´,x`,�, we continue
our arguments in Propositions 4.3 and 4.4, that follows the same line of Section 3,
to prove Theorem 2.2.

Note that, Lemma 4.1 does not give any control on x´ and x`. It is interesting
for computational purposes as well as for a study of particular profiles (for example
profiles decaying exponentially to their limit at ˘8), to be able to derive an explicit
interval on which this is true. Notice that the restriction � • ✏‹ ° 0 of Theorem 2.2
implies that the matrix Rp�q (see (4.2)) in Eq. (4.3) becomes regular. Hence, for
profile ⇢1

0 ° 0 everywhere, we devote Section 4.4 to establish a control of x´ and
x` independent of �. In Propositions 4.7 and 4.8, through a careful construction
of Volterra series, we can obtain refined estimates of bounded solutions of (4.3)
at 8 uniformly in � P r✏‹,

b
g

L0
s. They allow us to have refined estimates on the

coefficients n˘
ij

pi, j “ 1, 2q uniformly in � P r✏‹,
b

g

L0
s. Hence, we obtain a criterion

for x´ and x` in Proposition 4.5 to fulfill the conditions of Lemma 4.1 and extend
Proposition 4.2.

3. The compactly supported profile

In this section, we consider ⇢0 satisfying (2.6) and (2.7). We remark that in this
section, we use the notations ⌫˘ “ ⇢˘

µ
and ⌧˘p�q “ pk2 ` �⌫˘q1{2 and throughout

this paper, we will use x instead of x3 for notational conveniences.

3.1. The solution in outer regions and reduction to a problem on a finite
interval. We derive, in this subsection, the precise expression of �pxq as |x| • a.

Proposition 3.1. There are two linearly independent solutions of (1.2) decaying
to 0 at `8 as x P ra,`8q, i.e.

�`
1 pxq “ e´kx and �`

2 pxq “ e´⌧`p�qx. (3.1)

and two linearly independent solutions of (1.2) decaying to 0 at ´8 as x P p´8,´as,
i.e.

�´
1 pxq “ ekx and �´

2 pxq “ e⌧´p�qx. (3.2)

All solutions decaying to 0 at `8 (respectively at ´8) are spanned by p�`
1 ,�

`
2 q

(respectively by p�´
1 ,�

´
2 q).

Proof. For x P ra,`8q, (1.2) reduces to

´ �⌫`pk2�´ �2q “ �p4q ´ 2k2�2 ` k4�. (3.3)

We seek � as �pxq “ erx. Hence,

´�⌫`pk2 ´ r2q “ r4 ´ 2k2r2 ` k4,

which yields r “ ˘k or r “ ˘pk2 ` �⌫`q1{2. Since � tends to 0 at `8, we get two
linearly independent solutions

�`
1 pxq “ e´kx and �`

2 pxq “ e´⌧`p�qx.

Hence, all solutions � decaying to 0 at `8 are of the form

�pxq “ A`
1 e

´kpx´aq ` A`
2 e

´⌧`p�qpx´aq (3.4)

for all x P ra,`8q and for some real constants A`
1 and A`

2 .
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If x P p´8,´as, the same calculation implies (3.1). Then, all solutions � decay-
ing to 0 at ´8 are of the form

�pxq “ A´
1 e

kpx`aq ` A´
2 e

⌧´p�qpx`aq (3.5)

for all x P p´8,´as and for some real constants A´
1 and A´

2 . ⇤

Once it is proven that �pxq outside p´a, aq is of the form (3.4) and (3.5), we
search for � on p´a, aq. That solution has to match with (3.4) and (3.5) well, i.e.
there is a condition on p�,�1,�2,�3q at x “ ˘a. We will show the conditions in
the following lemma.

Lemma 3.1. The boundary condition of (1.2) at x “ ´a, for � P H4pRq, is
#
k⌧´�p´aq ´ pk ` ⌧´p�qq�1p´aq ` �2p´aq “ 0,

k⌧´p�qpk ` ⌧´p�qq�p´aq ´ pk2 ` k⌧´p�q ` ⌧2´p�qq�1p´aq ` �3p´aq “ 0.

(3.6)
and at x “ a is#

k⌧`p�q�paq ` pk ` ⌧`p�qq�1paq ` �2paq “ 0,

´k⌧`p�qpk ` ⌧`p�qq�paq ´ pk2 ` k⌧`p�q ` ⌧2`p�qq�1paq ` �3paq “ 0.
(3.7)

Proof. The boundary condition of the solutions � of (1.2) at x “ ˘a is equivalent
to the fact that � belongs to the space of decaying solutions at ˘8. On the one
hand, it can be seen from (3.4) and (3.5) that

¨

˚̊
˚̊
˚̊
˝

�pxq
�1pxq
�2pxq
�3pxq

˛

‹‹‹‹‹‹‚
“ A´

1 e
kpx`aq

¨

˚̊
˚̊
˚̊
˝

1

k

k2

k3

˛

‹‹‹‹‹‹‚
` A´

2 e
⌧´p�qpx`aq

¨

˚̊
˚̊
˚̊
˝

1

⌧´p�q
⌧2´p�q
⌧3´p�q

˛

‹‹‹‹‹‹‚
for x § ´a

and that¨

˚̊
˚̊
˚̊
˝

�pxq
�1pxq
�2pxq
�3pxq

˛

‹‹‹‹‹‹‚
“ A`

1 e
´kpx´aq

¨

˚̊
˚̊
˚̊
˝

1

´k

k2

´k3

˛

‹‹‹‹‹‹‚
` A`

2 e
´⌧`p�qpx´aq

¨

˚̊
˚̊
˚̊
˝

1

´⌧`p�q
⌧2`p�q

´⌧3`p�q

˛

‹‹‹‹‹‹‚
, for x • a.

On the other hand, the orthogonal complement of the subspace S´ of R4 spanned
by two vectors p1, k, k2, k3qT and p1, ⌧´p�q, ⌧2´p�q, ⌧3´p�qqT is spanned by

pk⌧´p�q,´pk`⌧´p�qq, 1, 0qT and pk⌧´p�qpk`⌧´p�qq,´pk2`k⌧´p�q`⌧´p�q2q, 0, 1qT .
Similarly, the orthogonal complement of the subspace S` of R4 spanned by two
vectors p1,´k, k2,´k3qT and p1,´⌧`p�q, ⌧2`p�q,´⌧3`p�qq is spanned by two vectors

pk⌧`p�q, k`⌧`p�q, 1, 0qT and p´k⌧`p�qpk`⌧`p�qq,´pk2`k⌧`p�q`⌧2`p�qq, 0, 1qT .
The above arguments allow us to set (D.14) and (D.15) as boundary conditions of
Eq. (1.2) on p´a, aq.

Remark that S´ is also spanned by tp1, k, k2, k3qT , p0, 1, k`⌧´p�q, k2 `k⌧´p�q`
⌧2´p�qqT u, and that S` is also spanned by tp1,´k, k2,´k3qT , p0, 1, k ´ ⌧`p�q, k2 ´
k⌧`p�q ` ⌧2`p�qqT u. This choice of generating families yields two uniformly inde-
pendent families when � Ñ 0. ⇤
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We aim at solving (1.2) on p´a, aq with the boundary conditions (D.14)-(D.15).

3.2. A bilinear form and a self-adjoint invertible operator. We introduce
the bilinear form Ba,� in the following proposition.

Proposition 3.2. Let us denote by

BV´a,�p#, %q :“ µ

˜
k⌧´p�qpk ` ⌧´p�qq#p´aq%p´aq ´ k⌧´p�q#1p´aq%p´aq

´ k⌧´p�q#p´aq%1p´aq ` pk ` ⌧´p�qq#1p´aq%1p´aq

¸

(3.8)

and by

BVa,�p#, %q :“ µ

˜
k⌧`p�qpk ` ⌧`p�qq#paq%paq ´ k⌧`p�q#1paq%paq

´ k⌧`p�q#paq%1paq ` pk ` ⌧`p�qq#1paq%1paq

¸
. (3.9)

Then,

Ba,�p#, %q :“ BVa,�p#, %q ` BV´a,�p#, %q ` �

ª
a

´a

⇢0pk2#%` #1%1qdx

` µ

ª
a

´a

p#2%2 ` 2k2#1%1 ` k4#%qdx.
(3.10)

is a continuous and coercive bilinear form on H2pp´a, aqq.
Furthermore, let pH2pp´a, aqqq1 be the dual space of H2pp´a, aqq associated with

the norm
a
Ba,�p¨, ¨q, there exists a unique operator

Ya,� P LpH2pp´a, aqq, pH2pp´a, aqqq1q,
that is also bijective, such that

Ba,�p#, %q “ xYa,�#, %y (3.11)

for all #, % P H2pp´a, aqq.

Proof. Clearly, Ba,� is a bilinear form on H2pp´a, aqq since the terms BV˘a,�p#, %q
are well defined. We then establish the boundedness of Ba,�. The integral terms of
Ba,� are bounded by

max
´
⇢`k2

c
g

L0
` µk4, ⇢`

c
g

L0
` 2µk2, µ

¯
}#}H2pp´a,aqq}%}H2pp´a,aqq. (3.12)

About the two first terms BV˘a,�p#, %q, it follows from the general Sobolev inequal-
ity that

}#pyq}C0,jpp´a,aqq § Cpj, aq}#pyq}H1pp´a,aqq for all j P r0, 1{2q.
Therefore, we obtain

|#paq|2 ` |#p´aq|2 § C‹}#}2
H1pp´a,aqq.

Similarly,
|#1paq|2 ` |#1p´aq|2 § C‹}#1}2

H1pp´a,aqq.

Consequently, we get
|BV˘a,�p#, %q| § C‹p|#p˘aq| ` #1p˘aq|qp|%p˘aq| ` |%1p˘aq|q

§ C‹}#}H2pp´a,aqq}%}H2pp´a,aqq.
(3.13)

In view of (3.12) and (3.13), we find that

|Ba,�p#, %q| § C‹}#}H2pp´a,aqq}%}H2pp´a,aqq, (3.14)

i.e. Ba,� is bounded.
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We move to show the coercivity of Ba,�. We have that

Ba,�p#,#q “ BVa,�p#,#q ` BV´a,�p#,#q ` �

ª
a

´a

⇢0pk2|#|2 ` |#1|2qdx

` µ

ª
a

´a

p|#2|2 ` 2k2|#1|2 ` k4|#|2qdx.

BVa,�p#,#q • 0 follows from the following equality

1

µ
BVa,�p#,#q “ k⌧`p�qpk ` ⌧`p�qq|#paq|2 ` 2k⌧`p�q#paq#1paq

` pk ` ⌧`p�qq|#1paq|2

“ k⌧`p�qpk ` ⌧`p�qq
ˇ̌
ˇ#paq ` #1paq

k ` ⌧`p�q
ˇ̌
ˇ
2

` k2 ` k⌧`p�q ` ⌧2`p�q
k ` ⌧`p�q |#1paq|2.

We also obtain that BV´a,�p#,#q • 0. Therefore, we deduce that

Ba,�p#,#q • µminpk4, 2k2, 1q}#}2
H2pp´a,aqq. (3.15)

It then tells us that Ba,� is a continuous and coercive bilinear form on H2pp´a, aqq.
It follows from Reisz’s representation theorem that there is a unique operator Ya,� P
LpH2pp´a, aqq, pH2pp´a, aqqq1q, that is also bijective, satisfying (3.11) for all #, % P
H2pp´a, aqq. Proof of Proposition 3.2 is complete. ⇤

The next proposition is to devoted to studying the properties of Ya,�.

Proposition 3.3. We have the following results.

(1) For all # P H2pp´a, aqq,
Ya,�# “ �p⇢0k2#´ p⇢0#1q1q ` µp#p4q ´ 2k2#2 ` k4#q

in D1pp´a, aqq.
(2) Let f P L2pp´a, aqq be given, there exists a unique solution # P H2pp´a, aqq

of
Ya,�# “ f in pH2pp´a, aqqq1, (3.16)

then # P H4pp´a, aqq and satisfies the boundary conditions (D.14)–(D.15).

Proof. Let % P C8
0 pp´a, aqq, it follows from Proposition 3.2 that, for # P H2p´a, aq

�

ª
a

´a

⇢0pk2#%` #1%1qdx ` µ

ª
a

´a

p#2%2 ` 2k2#1%1 ` k4#%qdx “ xYa,�#, %y. (3.17)

We respectively define p#2q1 and p#2q2 in the distributional sense as the first and
second derivative of #2 which is in L2pp´a, aqq. Hence, (3.17) is equivalent to

�

ª
a

´a

⇢0pk2#%`#1%1qdx`µ

ª
a

´a

p2k2#1%1 `k4#%qdx`xp#2q2, %y “ xYa,�#, %y. (3.18)

for all % P C8
0 pp´a, aqq. We deduce from (3.18) that

ª
a

´a

p�pk2⇢0#´ p⇢0#1q1q ` µp´2k2#2 ` k4#qq%dx ` µxp#2q2, %y “ xYa,�#, %y (3.19)

for all % P C8
0 pp´a, aqq. The first assertion follows.
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Let f P L2pp´a, aqq and # P H2pp´a, aqq be the solution of (3.16), we then
improve the regularity of the weak solution # of (3.19). Indeed, we rewrite (3.19)
as

µxp#2q2, %y “
ª

a

´a

pf ` 2µk2#2 ´ µk4#´ �k2⇢0#` �p⇢0#1q1q%dx (3.20)

for all % P C8
0 pp´a, aqq. Since pf ` 2µk2#2 ´ µk4#´ �k2⇢0#` �p⇢0#1q1q belongs to

L2pp´a, aqq, it then follows from (3.20) that p#2q2 P L2pp´a, aqq. Furthermore, by
usual distribution theory, we define  P D1pp´a, aqq such that

x , %y “ xp#2q2, ⇣⇢y (3.21)

for all % P C8
0 , where ⇣⇢pxq “ ≥

x

´a
p%pyq ´ ≥

a

´a
%psqdsqdy. Hence, it can be seen that

x 1, %y “ ´x , %1y “ ´xp#2q2, ⇣⇢1 y “ ´xp#2q2, %y
that implies p#2q1 ´  ” constant. In view of p#2q2 P L2pp´a, aqq and (3.21), we
know that p#2q1 P L2pp´a, aqq. Since # P H2pp´a, aqq and p#2q1, p#2q2 P L2pp´a, aqq,
it tells us that # belongs to H4pp´a, aqq.

By exploiting (3.20), we then show that # satisfies (D.14) and (D.15). Indeed,
consider now % P C8pp´a, aqq, one has, using the integration by parts

ª
a

´a

p#2q2pxq%pxqdx “ p#2q1paq%paq ´ p#2q1p´aq%p´aq ´ p#2qpaq%1paq

` p#2qp´aq%1p´aq `
ª

a

´a

#2pxq%2pxqdx.

We perform on the other terms of (3.19) the integration by parts, which yields

�

ª
a

´a

⇢0pk2#%` #1%1qdx ` µ

ª
a

´a

p#2%2 ` 2k2#1%1 ` k4#%qdx

´ �⇢0#
1%

ˇ̌
ˇ
a

´a

` µ
´
#3%

ˇ̌
ˇ
a

´a

´ #2%1
ˇ̌
ˇ
a

´a

´ 2k2#1%
ˇ̌
ˇ
a

´a

¯
“

ª
a

´a

pYa,�#q%dx.

It then follows from the definition of the bilinear form Ba,� that

BVa,�p#, %q`BV´a,�p#, %q “ ´�⇢0#1%
ˇ̌
ˇ
a

´a

`µ
´
#3%

ˇ̌
ˇ
a

´a

´#2%1
ˇ̌
ˇ
a

´a

´2k2#1%
ˇ̌
ˇ
a

´a

¯
(3.22)

for all % P C8pp´a, aqq.
By collecting all terms corresponding to %p´aq in (3.22), we deduce that

µpk⌧´p�qpk ` ⌧´p�qq#p´aq ´ k⌧´p�q#1p´aqq
“ �⇢0p´aq#1p´aq ´ µp#3p´aq ´ 2k2#1p´aqq.

It yields

#2p´aq ´ pk2 ` k⌧´p�q ` ⌧2´p�qq#1p´aq ` k⌧´p�qpk ` ⌧´p�qq#p´aq “ 0

owing to the definition of ⌧´p�q. Then, we collect all terms corresponding to %paq
or to %1p˘aq in (3.22) to conclude that # satisfies (D.14) and (D.15). This ends the
proof of Proposition 3.2. ⇤

We have the following proposition on Y ´1
a,�

.

Proposition 3.4. The operator Y ´1
a,�

: L2pp´a, aqq Ñ L2pp´a, aqq is compact and
self-adjoint.
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Proof. It follows from Proposition 3.3 that Ya,� admits an inverse operator Y ´1
a,�

from L2pp´a, aqq to a subspace of H4pp´a, aqq requiring all elements satisfy (D.14)–
(D.15), which is symmetric due to Proposition 3.2. We compose Y ´1

a,�
with the

continuous injection from H4pp´a, aqq to L2pp´a, aqq. Notice that the embedding
Hppp´a, aqq ãÑ Hqpp´a, aqq for p ° q • 0 is compact. Therefore, Y ´1

a,�
is compact

and self-adjoint from L2pp´a, aqq to L2pp´a, aqq. Proposition 3.4 is shown. ⇤
Remark 3.1. In this paper, we choose to define the operator

� fiÑ �p⇢0k2�´ p⇢0�1q1q ` µp�p4q ´ 2k2�2 ` k4�q “ Ya,��

with boundary conditions (D.14)-(D.15) through the Riesz representation theorem.
We can also define that by the following way.

Ya,� is well defined on

DpYa,�q “ t� P C4pp´a, aqq,� verifies (D.14) ´ (D.15)u
and that we can extend Ya,� over the closure of DpYa,�). Furthermore, Ya,� with the
domain H4pp´a, aqq containing functions that satisfy (D.14)-(D.15) is symmetric
and positive. It follows from Friedrichs extension (see [7, Theorem 4.3.1] e.g.) that
Ya,� admits a self-adjoint extension.

3.3. A sequence of characteristic values. We continue considering � P p0,
b

g

L0
s

and study the operator Sa,� :“ MY ´1
a,�

M, where M is the operator of multiplica-
tion by

a
⇢1
0. Note that this choice prevents to consider a case where ⇢1

0 could be
negative.

Proposition 3.5. The operator Sa,� : L2pp´a, aqq Ñ L2pp´a, aqq is compact and
self-adjoint, under the hypothesis (2.6).

Proof. Due to the boundedness of ⇢1
0, the operator Sa,� is well-defined from L2pp´a, aqq

to itself. Y ´1
a,�

is compact, so is Sa,�. Moreover, because both the inverse Y ´1
a,�

and
M are self-adjoint, the self-adjointness of Sa,� follows. ⇤

As a result of the spectral theory of compact and self-adjoint operators, the
point spectrum of Sa,� is discrete, i.e. is a decreasing sequence t�npk,�qun•1 of
positive eigenvalues of Sa,� that tends to 0 as n Ñ 8, associated with normalized
orthogonal eigenvectors t$nun•1 in L2pp´a, aqq. That means

�np�q$n “ MY ´1
a,�

M$n.

so that with �n “ Y ´1
a,�

M$n P H4pp´a, aqq, one has

�np�qYa,��n “ ⇢1
0�n (3.23)

and �n satisfies (D.14)-(D.15). (3.23) also tells us that �np�q ° 0 for all n. Indeed,
we obtain

�np�q
ª

a

´a

pYa,��nq�ndx “
ª

a

´a

⇢1
0|�n|2dx.

That implies

�np�qBa,�p�n,�nq “
ª

a

´a

⇢1
0|�n|2dx. (3.24)

Since Ba,�p�n,�nq ° 0 and ⇢1
0 ° 0 on p´a, aq, we know that �np�q is positive.

For each n, in order to verify that �n is a solution of (1.2), we are left to look
for real values of �n such that (1.5). To solve (1.5), we have to prove that �np�q is
differentiable and decreasing in terms of �, respectively in two next lemmas.
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Lemma 3.2. For each n, the functions �np�q and �n are differentiable in terms of
� P p0,

b
g

L0
s.

Proof. The family pYa,�q
�Pp0,

b
g
L0

s is a family of bounded operators owing to Propo-

sition 3.4. It can be seen that the boundary conditions (D.14)-(D.15) differentiable
in the parameter � will tell us that pYa,�q

�Pp0,
b

g
L0

s is also a family of differentiable

operators on � by following a generalized treatment of [9, Example 1.15, Chapter
VII, $1.6]. Since Y ´1

a,�
exists for all � P p0,

b
g

L0
s, it follows from [9, Theorem 2.23,

Chapter IV, $2.6] that Y ´1
a,�

is differentiable for all � P p0,
b

g

L0
s, so is Sa,�. We then

apply the differentiable property of eigenvalues of self-adjoint and compact opera-
tors, demonstrated in Appendix B to deduce that �np�q and �n are differentiable
functions. ⇤
Lemma 3.3. For each n, the function �np�q is decreasing in � P p0,

b
g

L0
s.

Proof. Let zn “ d�n

d�
. Note that d

d�
Ya,�u “ ⇢0k2u ´ p⇢0u1q1. It follows from (3.23)

that

k2⇢0�n ´ p⇢0�1
n

q1 ` Ya,�zn “ 1

�np�q⇢
1
0zn ` d

d�

´ 1

�np�q
¯
⇢1
0�n (3.25)

on p´a, aq. In addition, we have that at x “ ´a,
$
’’’’&

’’’’%

z2
n

p´aq ´ pk ` ⌧´p�qqz1
n

p´aq ` k⌧´p�qznp´aq
“ ⌫´

2⌧´p�q�
1
n

p´aq ´ k⌫´
2⌧´p�q�np´aq,

z3
n

p´aq ´ pk2 ` k⌧´p�q ` ⌧2´p�qqz1
n

p´aq ` k⌧´p�qpk ` ⌧´p�qqznp´aq
“

´
k⌫´

2⌧´p�q ` ⌫´
¯
�1
n

p´aq ´
´

k
2
⌫´

2⌧´p�q ` k⌫´
¯
�np´aq

(3.26)

and that at x “ a,
$
’’’’&

’’’’%

z2
n

paq ` pk ` ⌧`p�qqz1
n

paq ` k⌧`p�qznpaq
“ ´ ⌫`

2⌧`p�q�
1
n

paq ´ k⌫`
2⌧`p�q�npaq,

z3
n

paq ´ pk2 ` k⌧`p�q ` ⌧2`p�qqz1
n

paq ´ k⌧`p�qpk ` ⌧`p�qqznpaq
“

´
k⌫`

2⌧`p�q ` ⌫`
¯
�1
n

paq `
´

k
2
⌫`

2⌧`p�q ` k⌫`
¯
�npaq.

(3.27)

Multiplying by  n on both sides of (3.25) and then integrating by parts to obtain
that ª

a

´a

pk2⇢0�n ´ p⇢0�1
n

q1q�ndx `
ª

a

´a

pYa,�znq�ndx

“ 1

�np�q

ª
a

´a

⇢1
0zn�ndx ` d

d�

´ 1

�np�q
¯ ª

a

´a

⇢1
0|�n|2dx.

(3.28)

Thanks to the integration by parts, we have
ª

a

´a

pk2⇢0�n ´ p⇢0�1
n

q1q�ndx “
ª

a

´a

⇢0pk2|�n|2 ` |�1
n

|2qdx ´ p⇢0�1
n
�nq

ˇ̌
ˇ
a

´a

(3.29)

andª
a

´a

pYa,�znq�ndx “
ª

a

´a

pYa,��nqzndx `
´
µpz3

n
�n ´ z2

n
�1
n

´ 2k2z1
n
�nq ´ �⇢0z

1
n
�n

¯ˇ̌
ˇ
a

´a

´
´
µp�3

n
zn ´ �2

n
z1
n

´ 2k2�1
n
znq ´ �⇢0�

1
n
zn

¯ˇ̌
ˇ
a

´a

.

(3.30)
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Owing to (3.29), (3.30) and (3.23), (3.28) becomes
ª

a

´a

⇢0pk2|�n|2 ` |�1
n

|2qdx `
´
µpz3

n
�n ´ z2

n
�1
n

´ 2k2z1
n
�nq ´ �⇢0z

1
n
�n

¯ˇ̌
ˇ
a

´a

´
´
µp�3

n
zn ´ �2

n
z1
n

´ 2k2�1
n
znq ´ �⇢0�

1
n
zn

¯ˇ̌
ˇ
a

´a

´ p⇢0�1
n
�nq

ˇ̌
ˇ
a

´a

“ d

d�

´ 1

�np�q
¯ ª

a

´a

⇢1
0|�n|2dx.

(3.31)

Using (3.26), we obtain

´
´
µpz3

n
�n ´ z2

n
�1
n

´ 2k2z1
n
�nq ´ �⇢0z

1
n
�n

¯
p´aq

`
´
µp�3

n
zn ´ �2

n
z1
n

´ 2k2�1
n
znq ´ �⇢0�

1
n
zn

¯
p´aq ` ⇢´�1

n
p´aq�np´aq

“ µ
´ k2⌫´
2⌧´p�q ` k⌫´

¯
|�np´aq|2 ´ µ

´ k⌫´
2⌧´p�q ` ⌫´

¯
�1
n

p´aq�np´aq

´ µ
k⌫´

2⌧´p�q�np´aq�1
n

p´aq ` µ
⌫´

2⌧´p�q |�1
n

p´aq|2 ` ⇢´�1
n

p´aq�np´aq.

Keep in mind that µ⌫´ “ ⇢´, one has

´
´
µpz3

n
�n ´ z2

n
�1
n

´ 2k2z1
n
�nq ´ �⇢0z

1
n
�n

¯
p´aq

`
´
µp�3

n
zn ´ �2

n
z1
n

´ 2k2�1
n
znq ´ �⇢0�

1
n
zn

¯
p´aq ` ⇢´�1

n
p´aq�np´aq

“ k⇢´|�np´aq|2 ` ⇢´
2⌧´p�q |�1

n
p´aq ´ k�np´aq|2.

(3.32)

Similarly, using (3.27), we obtain
´
µpz3

n
�n ´ z2

n
�1
n

´ 2k2z1
n
�nq ´ �⇢0z

1
n
�n

¯
paq

´
´
µp�3

n
zn ´ �2

n
z1
n

´ 2k2�1
n
znq ´ �⇢0�

1
n
zn

¯
paq ´ ⇢´�1

n
paq�npaq

“ k⇢`|�npaq|2 ` ⇢`
2⌧`p�q |�1

n
paq ´ k�npaq|2.

(3.33)

Combining (3.31), (3.32) and (3.33), we deduce that
d

d�

´ 1

�np�q
¯ ª

a

´a

⇢1
0|�n|2dx

“
ª

a

´a

⇢0pk2|�n|2 ` |�1
n

|2qdx ` k⇢´|�np´aq|2 ` ⇢´
2⌧´p�q |�1

n
p´aq ´ k�np´aq|2

` k⇢`|�npaq|2 ` ⇢`
2⌧`p�q |�1

n
paq ´ k�npaq|2.

(3.34)

It yields that 1
�np�q is increasing in �, i.e. �np�q is decreasing in �. This ends the

proof of Lemma 3.3. ⇤

Now we are in proposition to solve (1.5).

Proposition 3.6. For each n, there exists only one positive �n satisfying (1.5). In
addition, �n decreases towards 0 as n goes to 8.

Proof. Using (3.24), we know that
1

�np�q

ª
a

´a

⇢1
0|�n|2dx “

ª
a

´a

pYa,��nq�ndx “ Ba,�p�n,�nq,
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that implies
1

L0�np�q • �k2 ` µk4

⇢`
.

Consequently, for all n • 1,

lim
�Ñ

b
g
L0

�

�np�q ° gk2. (3.35)

As 0 † 1
�np�q and it is a increasing function, 1

�np�q § 1

�np 1
2

b
g
L0

q for all � § 1
2

b
g

L0
.

That implies

lim
�Ñ0

�

�np�q § lim
�Ñ0

�

�np 1
2

b
g

L0
q

“ 0 for all n • 1. (3.36)

Combining (3.35), (3.36) and using Lemma 3.3, we deduce that there is only one
�n P p0,

b
g

L0
q satisfying (1.5) for each n • 1.

We then prove that the sequence p�nqn•1 is decreasing. Indeed, if �m † �m`1

for some m • 1, we have
�mp�mq ° �mp�m`1q.

Meanwhile, we also have

�mp�m`1q ° �m`1p�m`1q.
That implies

�m
gk2

“ �mp�mq ° �m`1p�m`1q “ �m`1

gk2
.

That contradiction tells us that p�nqn•1 is a decreasing sequence. Suppose that

lim
nÑ8

�n “ c0 ° 0.

Note that
�npc0q • �np�nq “ �n

gk2
.

Let n Ñ 8, we get a contradiction that 0 • c0. Hence, �n decreases towards 0 as
n Ñ 8. We conclude Proposition 3.6. ⇤

3.4. Proof of Theorem 2.1. Let �n be found from Proposition 3.6 and �npxq “
Y ´1
a,�n

M$npxq on p´a, aq. Keep in mind our computations in Subsection 3.1, we ex-
tend �n to the whole line by requiring �n satisfies (3.4) and (3.5) for some constants
A˘

n,1 and A˘
n,2 as � “ �n. Those constants A˘

n,1 and A˘
n,2 are defined by

#
�npaq “ A`

n,1 ` A`
n,2,

�1
n

paq “ kA`
n,1 `

a
k2 ` �n⌫`A`

n,2.
(3.37)

and by #
�np´aq “ A´

n,1 ` A´
n,2,

�1
n

p´aq “ kA´
n,1 `

a
k2 ` �n⌫´A´

n,2.
(3.38)

Since �n is not trivial, there exists i • 0 such that �piq
n paq ‰ 0, which ensures that,

at least, one of A˘
n,1 is nonzero. Similarly, at least, one of A˘

n,2 is nonzero.

Solving (3.37) and (3.38), we get that

A`
n,1 “

a
k2 ` �n⌫`�npaq ´ �1

n
paqa

k2 ` �n⌫` ´ k
, A`

n,2 “ �1
n

paq ´ k�npaqa
k2 ` �n⌫` ´ k

. (3.39)
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and that

A´
n,1 “

a
k2 ` �n⌫´�np´aq ´ �1

n
p´aqa

k2 ` �n⌫´ ´ k
, A´

n,2 “ �1
n

p´aq ´ k�np´aqa
k2 ` �n⌫´ ´ k

. (3.40)

Therefore, the function �n is a regular solution of (1.2) as � “ �n for each n • 1.
Proof of Theorem 2.1 is complete.

4. The strictly increasing profile case

In this section, let pe1, e2, e3, e4q be the canonical basis of R4 and we pay atten-
tion to an increasing profile ⇢0 satisfying (2.8) and (2.9). We will use the Frobenius
matrix norm } ¨ }F and the Euclidean vector norm } ¨ }2.

4.1. Solutions decaying to 0 at infinity and reduction to a problem on a
finite interval. Let

Lpx,�q “

¨

˚̊
˚̊
˚̊
˝

0 1 0 0

0 0 1 0

0 0 0 1

´�k
2
⇢0pxq
µ

´ k4 0 �⇢0pxq
µ

` 2k2 0

˛

‹‹‹‹‹‹‚
(4.1)

and

Rp�q “

¨

˚̊
˚̊
˚̊
˝

0 0 0 0

0 0 0 0

0 0 0 0

gk
2

�µ

�

µ
0 0

˛

‹‹‹‹‹‹‚
(4.2)

We set U “ p�,�1,�2,�3qT and then rewrite (1.2) as

U 1pxq “ pLpx,�q ` ⇢1
0pxqRp�qqUpxq, (4.3)

The eigenvalues of Lpx,�q, ˘k and ˘�0px,�q, with �0px,�q “
b
k2 ` �

µ
⇢0pxq are

different for all � ° 0 and for all x P R. Furthermore,
ª `8

´8
|L1px,�q|dx † `8,

ª `8

´8
|⇢1

0pxqRp�q|dx † `8. (4.4)

(4.4) allow us to use [3, Theorem 8.1, Chapter 3] (see Appendix C for the statement)
to find bounded solutions of (4.3) near ˘8. We denote �˘p�q “ limxÑ˘8 �0px,�q.
Then, there exist x̄´ † x̄` such that we have the existence of bounded solutions
U`
1,2 on px̄`,`8q and U´

3,4 on p´8, x̄´q such that in a neighborhood of `8,

ekxU`
1 px,�q Ñ p´k´3, k´2,´k´1, 1qT ,

exp
´ ≥

x

x̄`
�0py,�qdy

¯
U`
2 px,�q Ñ p´�´3

` p�q,�´2
` p�q,´�´1

` p�q, 1qT ,
(4.5)

and in a neighborhood of ´8,

e´kxU´
3 px,�q Ñ pk´3, k´2, k´1, 1qT ,

exp
´

´ ≥
x

x̄´
�0py,�qdy

¯
U´
4 px,�q Ñ p�´3

´ p�q,�´2
´ p�q,�´1

´ p�q, 1qT .
(4.6)
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Let us prove that U`
1 px,�q and U`

2 px,�q are linearly independent. Through
Cauchy-Lipschitz theorem, if they are linearly dependent at a particular x0 then
they are linearly dependent for all x, that is there exists T p�q such that

U`
1 px,�q “ T p�qU`

2 px,�q.
In particular, as the limit of kx´ ≥

x

x̄`
�0py,�qdy when x Ñ `8 is equal to ´8, one

observes that

ekxU`
1 px,�q “ T p�qexp

´
kx ´

ª
x

x̄`
�0py,�qdy

¯´
U`
2 px,�qexp

´ ª
x

x̄`
�0py,�qdy

¯¯
.

The right hand side of this identity converges to 0 when x Ñ `8, while the left hand
side converges to p´k´3, k´2,´k´1, 1qT when x Ñ `8, contradiction. Similarly,
U´
3 px,�q and U´

4 px,�q are linearly independent.

The aim of the next proposition is to reduce the study of Eq. (1.2) on the real
line to its study on a finite interval as in the previous section. This is really the key
of our result for a smooth general profile because it entitles us to use the compact
injection of Hjppa, bqq into Hj´1ppa, bqq, j • 1.

Proposition 4.1. There exist x0
´ § x̄´ and x0

` • x̄` such that, for all x´ § x0
´

and x` • x0
`, there are constants n˘

ij
pi, j “ 1, 2q, depending on x˘ and � such

that equation

�2pk2⇢0�´ p⇢0�1q1q ` �µp�p4q ´ 2k2�2 ` k4�q “ gk2⇢1
0�,

where � P H4ppx´, x`qq, supplemented with the boundary conditions at x´ are
#
n´
11�px´q ` n´

12�
1px´q ` �2px´q “ 0,

n´
21�px´q ` n´

22�
1px´q ` �3px´q “ 0

(4.7)

and at x`, are #
n`
11�px`q ` n`

12�
1px`q ` �2px`q “ 0,

n`
21�px`q ` n`

22�
1px`q ` �3px`q “ 0,

(4.8)

is equivalent to equation

�2pk2⇢0�´ p⇢0�1q1q ` �µp�p4q ´ 2k2�2 ` k4�q “ gk2⇢1
0�,

where � P H4pRq.
In this case � “ � on px´, x`q and on px`,`8q (respectively p´8, x´q), � is

the first component of a linear combination of U`
1,2px,�q (see (4.5)) (respectively

U´
3,4px,�q, see (4.6)).

Proof. Notice that if � is a bounded solution of

�2pk2⇢0�´ p⇢0�1q1q ` �µp�p4q ´ 2k2�2 ` k4�q “ gk2⇢1
0�,

⇥ “ p�,�1,�2,�3qT is a bounded solution of (4.3). Any decaying solution  of
(4.3) on px̄`,`8q belongs to the space spanned by U`

1 px,�q and U`
2 px,�q, which is

of dimension 2 because they are linearly independent. It is equivalent to say that,
for any x` • x̄`,

U`
1 px`,�q ^ U`

2 px`,�q ^⇥px`,�q “ 0 (4.9)

and
⇥px`,�q belongs to the space spanned by U`

1 px`,�q and U`
2 px`,�q .

Let us write U`
i

“ pU`
i1 , U

`
i2 , U

`
i3 , U

`
i4qT for i “ 1, 2 and U´

i
“ pU´

i1 , U
´
i2 , U

´
i3 , U

´
i4qT

for i “ 3, 4. System (4.9) is a system of four equations on the components of
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⇥px`,�q, hence there exists a couple of equations which are linearly independent
(the system being of rank 2). Let us notice that two of these four equations contain,
in �2 and �3, respectively the term

pU`
11U

`
22 ´ U`

12U
`
21qpx`,�q�2px`,�q

and
pU`

11U
`
22 ´ U`

12U
`
21qpx`,�q�3px`,�q.

As the limit, when x` Ñ `8, of

exp
´
kx` `

ª
x`

x̄`
�0py,�qdy

¯
pU`

11U
`
22 ´ U`

12U
`
21qpx`,�q

is

´ 1

k3�2`p�q ` 1

k2�3`p�q “ ´ �⇢`
µk3�3`p�qpk ` �`q † 0,

by continuity there exists a x0
` • x̄` such that, for all x` • x0

`,

pU`
11U

`
22 ´ U`

12U
`
21qpx`,�q † 0

hence the equations for (4.9) on the components e1 ^ e2 ^ e3 and e1 ^ e2 ^ e4 write
as N`⇥px`,�q “ 0 with N` is a 4 ˆ 2 matrix of the form

N` “
¨

˝n`
11 n`

12 1 0

n`
21 n`

22 0 1

˛

‚.

We are now able to write the couple N`⇥px`,�q “ 0 as
#
n`
11�px`,�q ` n`

12�
1px`,�q ` �2px`,�q “ 0,

n`
21�px`,�q ` n`

22�
1px`,�q ` �3px`,�q “ 0,

In a similar way, there exist n´
ij

pi, j “ 1, 2q depending on x´ and � such that
#
n´
11�px´,�q ` n´

12�
1px´,�q ` �2px´,�q “ 0,

n´
21�px´,�q ` n´

22�
1px´,�q ` �3px´,�q “ 0,

Hence � is solution of the ODE on px´, x`q:
�2pk2⇢0�´ p⇢0�1q1q ` �µp�p4q ´ 2k2�2 ` k4�q “ gk2⇢1

0�,

with boundary conditions (4.7), (4.8).

Conversely, assume that � P H4ppx´, x`qq is a solution of equation

�2pk2⇢0�´ p⇢0�1q1q ` �µp�p4q ´ 2k2�2 ` k4�q “ gk2⇢1
0�,

with boundary conditions (4.7)-(4.8). From the boundary conditions, we deduce
that there exist C`

j
pj “ 1, 2q, D´

k
pk “ 3, 4q such that

Upx`,�q “ C`
1 U`

1 px`,�q ` C`
2 U`

2 px`,�q
and

Upx´,�q “ D´
3 U

´
3 px´,�q ` D´

4 U
´
4 px´,�q.

Then, through Cauchy-Lipschitz theorem,

Upx,�q “ C`
1 U`

1 px,�q ` C`
2 U`

2 px,�q for all x • x`

and
Upx,�q “ D´

3 U
´
3 px,�q ` D´

4 U
´
4 px,�q for all x § x´.
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As these are decaying solutions at ˘8 respectively, and as there is no jump at x` (or
x´) for �,�1,�2,�3 (which have a meaning as � is assumed to be in H4ppx´, x`qq),
the function

�pxq “

$
’&

’%

C`
1 U`

11px,�q ` C`
2 U`

21px,�q, as x • x`
�pxq, as x´ † x † x`
D´

3 U
´
31px,�q ` D´

4 U
´
41px,�q, as x § x´

belongs to H4pRq and solves equation

�2pk2⇢0�´ p⇢0�1q1q ` �µp�p4q ´ 2k2�2 ` k4�q “ gk2⇢1
0�,

on R. ⇤

Remark that in this proof we have no additional information on the values of x0
´

and of x0
`. This will be the aim of Section 4.4.

4.2. A bilinear form and a self-adjoint invertible operator. The aim of
Section 4.2 is to study the boundary terms that come from the bilinear form (4.15)
below. Let
BVx`,�p#, %q :“ ´�p⇢0#1%qpx`q ´ µpn`

21px`,�q#px`q ` n`
22px`,�q#1px`qq%px`q

` µpn`
11px`,�q#px`q ` n`

12px`,�q#1px`qq%1px`q ´ 2k2µp#1%qpx`q
(4.10)

and by

BVx´,�p#, %q :“ �p⇢0#1%qpx´q ` µpn´
21px´,�q#px´q ` n´

22px´,�q#1px`qq%px´q
´ µpn´

11px´,�q#px´q ` n´
12px´,�q#1px´qq%1px´q ` 2k2µp#1%qpx´q.

(4.11)

Lemma 4.1. Necessary and sufficient conditions to get

BVx`,�p#,#q • 0 and BVx´,�p#,#q • 0 (4.12)

for all # P H2prx´, x`sq are

n`
12px`,�q • 0, n`

21px`,�q § 0,

pn`
11px`,�q ´ n`

22px`,�q ´ k2 ´ �2
0px`,�qq2 ` 4n`

12n
`
21px`,�q § 0,

(4.13)

and
n´
12px´,�q • 0, n´

21px´,�q § 0,

pn´
11px´,�q ´ n´

22px´,�q ´ k2 ´ �2
0px´,�qq2 ` 4n´

12n
´
21px´,�q § 0.

(4.14)

Proof of Lemma 4.1. We treat only the case BVx`,�p#,#q • 0. Since µ�2
0px,�q “

µk2 ` �⇢0pxq, we rewrite
1

µ
BVx`,�p#,#q “ ´n`

21px`,�q|#px`q|2 ` n`
12|#1px`q|2

` pn`
11px`,�q ´ n`

22px`,�q ´ k2 ´ �2
0px`,�qq#px`q#1px`q.

We observe that it is a quadratic polynomial in #px`q,#1px`q. The first case is the
case where n`

12 “ n`
21 “ 0. The inequality (4.13) imply that BVx`,�p#,#q “ 0 for

all #. The second case is the case where at least one of these two real numbers is
not zero. For example, if n`

12 ‰ 0, the inequality means that the polynomial

n`
12t

2 ` pn`
11 ´ n`

22 ´ k2 ´ �2
0qt ´ n`

21
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is always of the sign of n`
12 hence positive, hence BVx`,�p#,#q • 0 for all # P

H2ppx´, x`q. Lemma 4.1 is proven. ⇤

Proposition 4.2. There exists x1
´ § x0

´, x1
` • x0

` such that, for any x´ § x1
´

and x` • x1
` chosen arbitrarily

Bx´,x`,�p#, %q :“BVx´,�p#, %q ` BVx`,�p#, %q ` �

ª
x`

x´
⇢0pk2#%` #1%1qdx

` µ

ª
x`

x´
p#2%2 ` 2k2#1%1 ` k4#%qdx,

(4.15)

is a bilinear form on H2ppx´, x`qq, that is continuous and coercive.

Proof. Recall n˘
ij

pi, j “ 1, 2q are given in Proposition 4.1 and that BVx´,�, BVx`,�

are given in (4.10), (4.11). One observes that one needs to prove that

|Bx´,x`,�p#, %q| § C‹}#}H2ppx´,x`qq}%}H2ppx´,x`qq (4.16)

and that
Bx´,x`,�p#,#q • C‹}#}2

H2ppx´,x`qq. (4.17)

For positive �, µ and k, we have

�

ª
x`

x´
⇢0pk2#%` #1%1qdx3 ` µ

ª
x`

x´
p#2%2 ` 2k2#1%1 ` k4#%qdx

§ C‹}#}H2ppx´,x`qq}%}H2ppx´,x`qq

and that

�

ª
x`

x´
⇢0pk2|#|2 ` |#1|2qdx`µ

ª
x`

x´
p|#2|2 ` 2k2|#1|2 ` k4|#|2qdx • C‹}#}2

H2ppx´,x`qq.

Note that the condition µ ° 0 is necessary to obtain the coercivity on H2ppx´, x`qq.
Note also that the case µ “ 0 amounts to the inviscid Rayleigh-Taylor instability,
for which similar results are known (and the corresponding problem needs only to
be defined in H1). In addition

|BVx`,�p#, %q| § C‹p|#px`q| ` |%px`q|qp|#1px`q| ` |%1px`q|q,
|BVx´,�p#, %q| § C‹p|#px´q| ` |%px´q|qp|#1px´q| ` |%1px´q|q

and the Sobolev embedding yields (4.16). The continuity of Bx´,x`,� on H2ppx´, x`qq
follows.

To show (4.17), it suffices to prove that (4.12) holds. In view of Lemma 4.1,
we verify (4.13). Since N`U`

1 px`,�q “ N`U`
2 px`,�q “ 0, we have that n`

ij

pi, j “ 1, 2q depend on x`and � and satisfy
#
n`
11U

`
11px`,�q ` n`

12U
`
12px`,�q ` U`

13px`,�q “ 0,

n`
11U

`
21px`,�q ` n`

12U
`
22px`,�q ` U`

23px`,�q “ 0,
(4.18)

and #
n`
21U

`
11px`,�q ` n`

22U
`
12px`,�q ` U`

14px`,�q “ 0,

n`
21U

`
21px`,�q ` n`

22U
`
22px`,�q ` U`

24px`,�q “ 0.
(4.19)

Let n`
ij

p�q be the limit of n`
ij

px`,�q as x Ñ `8. When x` Ñ `8, (4.18)-(4.19)
converge to #

´n`
11p�qk´3 ` n`

12p�qk´2 ´ k´1 “ 0,

´n`
11p�q�´3

` p�q ` n`
12p�q�´2

` p�q ´ �´1
` p�q “ 0,

(4.20)
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and #
´n`

21p�qk´3 ` n`
22p�qk´2 ` 1 “ 0,

´n`
21p�q�´3

` p�q ` n`
22p�q�´2

` p�q ` 1 “ 0,
(4.21)

hence
n`
11p�q “ k�`p�q, n`

12p�q “ k ` �`p�q
and

n`
21p�q “ ´k�`p�qpk ` �`p�qq, n`

22p�q “ ´pk2 ` k�`p�q ` �2
`p�qq.

One thus has
pn`

11p�q ´ n`
22p�q ´ k2 ´ �2

`p�qq2 ` 4n`
12n

`
21p�q

“ ppk ` �`p�qq2 ´ k2 ´ �2
`p�qq2 ´ 4k�`p�qpk ` �`p�qq2

“ ´4k�`p�qpk2 ` k�`p�q ` �2
`p�qq † 0.

Hence, by continuity, there exists x1
` • x0

` such that, for all x` • x1
`,

pn`
11px`,�q ´ n`

22px`,�q ´ k2 ´ �2
0px`,�qq2 ` 4n`

12n
`
21px`,�q † 0.

The proof of the existence of x1
´ § x0

´ such that, for all x´ § x1
´ such that

pn´
11px´,�q ´ n´

22px´,�q ´ k2 ´ �2
0px´,�qq2 ` 4n´

12n
´
21px´,�q † 0

follows the same pattern. Hence, by application of Lemma 4.1, (4.17) follow, which
ends the proof of Proposition 4.2. ⇤

Mimicking the arguments in Propositions 3.2, 3.3, 3.4 we obtain the following
proposition.

Proposition 4.3. Let pH2ppx´, x`qqq1 be the dual space of H2ppx´, x`qq associated
with the norm

a
Bx´,x`,�p¨, ¨q, there exists a unique operator

Yx´,x`,� P LpH2ppx´, x`qq, pH2ppx´, x`qq1q,
that is also bijective, such that

Bx´,x`,�p#, %q “ xYx´,x`,�#, %y (4.22)

for all #, % P H2ppx´, x`qq. Furthermore, we have

(1) For all # P H2ppx´, x`qq,
Yx´,x`,�# “ �pk2⇢0#´ p⇢0#1q1q ` µp#p4q ´ 2k2#2 ` k4#q

in D1ppx´, x`qq.
(2) Let f P L2ppx´, x`qq be given, there exists a unique # P H4ppx´, x`qq

satisfying the boundary conditions (4.7)–(4.8).

Yx´,x`,�# “ f in pH2ppx´, x`qqq1, (4.23)

(3) The operator Y ´1
x´,x`,�

: L2ppx´, x`qq Ñ L2ppx´, x`qq is compact and self-
adjoint.

It is then straightforwad to obtain the following spectral result. The discrete
spectrum of MY ´1

x´,x`,�
M is a sequence of eigenvalues p�np�qqn•1. The function

�np�q is a continuous function of � for all n from the arguments of Lemma 3.2.
The problem of finding a characteristic value amounts to solving the equality (1.5)
as before. However, no control is possible on �np�q when � goes to 0. In addition,
no control of x0

˘ and x1
˘ (because it may depend on �) is available to have a

possibility of having estimates of �np�q as well. Having an explicit (even if not
optimal) criterion on x1

˘ such that the inequalities of coercivity (4.13)-(4.14) are
true is the aim of the refined estimates of the solutions U`

1,2 and U´
3,4 (deducing in
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Propositions 4.7, 4.8 below) which follow. That will be postponed to Section 4.4
below.

4.3. The finding of characteristic value �n and Proof of Theorem 2.2. Let
✏‹ ° 0 be given, we look for �n P p✏‹,

b
g

L0
q satisfying (1.5). However, unlike the

previous case with ⇢1
0 • 0 being compactly supported, we do not have here the

decrease of �n on � to obtain the uniqueness of �n.

Proposition 4.4. For 0 † ✏‹ ! 1, there exists Np✏‹q P N such that there is at least
one positive �n P p✏‹,

b
g

L0
q satisfying (1.5) for each 1 § n § Np✏‹q.

Proof. We still have

lim
�Ñ

b
g
L0

�

�np�q ° gk2. (4.24)

and bnp✏‹q :“ inf�•✏‹ �np�q ° 0. Notice that tbnp✏‹qun•1 is a sequence decreasing
to 0 as n Ñ 8. Set

Np✏‹q :“ sup
!
n|bnp✏‹q ° ✏‹

gk2

)
P r1,`8q.

For 1 § n § Np✏‹q,

lim
�Ñ✏‹

�

�np�q § lim
�Ñ✏‹

�

bnp✏‹q “ ✏‹
bnp✏‹q † gk2. (4.25)

It then follows from (4.24) and (4.25) that we have at least one desired �n P
p✏‹,

b
g

L0
q for 1 § n § Np✏‹q. ⇤

Now, we are able to prove Theorem 2.2.

Proof. Let$n be an eigenfunction associated with �n of MY ´1
x`,x´,�

M. That means

MY ´1
x´,x`,�n

M$n “ �np�n, kq$n “ �n
gk2

$n.

Hence, �n “ Y ´1
x´,x`,�n

M$n P H4ppx´, x`qq satisfies

�nYx´,x`,�n�n “ gk2⇢1
0�n

on px´, x`q. In order to conclude that �n is a solution of (1.2), we then extend �n
on R by continuity.

Let us take � “ �n in the formulas of U`
1,2 from (4.5) and in the formulas of U´

3,4

from (4.6). Hence, �n is of the form

�npxq “ B`
n,1U

`
11px,�nq ` B`

n,2U
`
21px,�nq

as x • x` and
�npxq “ B´

n,3U
´
31px,�nq ` B´

n,4U
´
41px,�nq

as x § x´ for some real constants B`
n,1, B

`
n,2, B

´
n,3 and B´

n,4. The constants
B`

n,1, B
`
n,2 are defined by

#
�npx`q “ B`

n,1U
`
11px`,�nq ` B`

n,2U
`
21px`,�nq

�1
n

px`q “ B`
n,1U

`
12px`,�nq ` B`

n,2U
`
22px`,�nq. (4.26)
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Similarly, we have the system for B´
n,3 and B´

n,4 is
#
�npx´q “ B´

n,3U
´
31px´,�nq ` B´

n,4U
´
41px´,�nq,

�1
n

px´q “ B´
n,3U

´
32px´,�nq ` B´

n,4U
´
42px´,�nq. (4.27)

Since �n is not trivial, there exists i • 0 such that �piq
n px`q is nonzero. It implies

that, at least, one of B`
n,1 and B`

n,2 is nonzero.

Solving (4.26) and (4.27), we obtain that

B`
n,1 “ U`

22px`,�nq�npx`q ´ U`
21px`,�nq�1

n
px`q

pU`
11U

`
22 ´ U`

12U
`
21qpx`,�nq ,

that

B`
n,2 “ ´U`

12px`,�nq�npx`q ` U`
11px`,�nq�1

n
px`q

pU`
11U

`
22 ´ U`

12U
`
21qpx`,�nq ,

that

B´
n,3 “ U´

42px´,�nq�npx´q ´ U´
41px´,�nq�1

n
px´q

pU´
31U

´
42 ´ U´

41U
´
32qpx´,�nq ,

and that

B´
n,4 “ ´U´

32px´,�nq�npx´q ` U´
31px´,�nq�1

n
px´q

pU´
31U

´
42 ´ U´

41U
´
32qpx´,�nq .

Therefore, we get that �n is a regular solution of (1.2) as � “ �n for each 1 § n §
Np✏‹q. This ends the proof of Theorem 2.2. ⇤
Remark 4.1. In the forthcoming work [17], we will use the above operator approach
and a more precise hypothesis on ⇢0´⇢˘ to ensure that the classical Rayleigh-Taylor
instability has an infinite number of discrete spectrum. That will complete the study
in [12], where the first author only considered the case ⇢

1
0

⇢0
has a nondegenerate

minimum.

Remark 4.2. (1) For |x˘| large enough, the investigation of regular solutions
to Eq. (1.2) on the real line is equivalent to that one on px´, x`q with
boundary conditions (4.7) and (4.8) at x˘. More computations are required
in the second case due to the lack of compact assumption of ⇢1

0.
(2) For |x˘| large enough, the problem (1.2) on px´, x`q with boundary condi-

tions (4.7) and (4.8) is equivalent to a weaker version of (1.2) that can be
solved by applying Riesz representation theorem on the bilinear continuous
form Bx´,x`,� and then improving the regularity.

(3) Generally speaking, a problem on the real line with decaying solutions at
infinity and transversality hypotheses is equivalent to a problem with the
compact setting when we have enough decays on the solutions at ˘8.

4.4. Explicit construction and refined estimates of the decaying solutions
at infinity. In the regime � • ✏‹ ° 0, we notice again that Rp�q is uniformly
bounded. So that, as � • ✏‹ ° 0, we further derive a control of the inner region
px´, x`q independent of � in the following proposition, extending the result of
Proposition 4.2.

Proposition 4.5. Let ✏‹ ° 0 given and let � • ✏‹. Let z`,✏‹ (respectively, z´,✏‹)
be the sum of two upper bounds, that are functions decreasing towards 0 at `8
(respectively, at ´8), on the r.h.s. of (4.48) and (4.49) (respectively, (4.52) and
(4.53)). There exist positive constants �˘p✏‹q such that, for all x`, x´ such that

z`,✏‹ px`q § �`p✏‹q and z´,✏‹ px´q § �´p✏‹q, (4.28)

we have Bx´,x`,� is coercive.
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The proof of Proposition 4.5 relies on the refined estimates of the bounded solu-
tions of (4.3) near 8, presented in Propositions 4.7, 4.8. Before going to the proof
of Propositions 4.7, 4.8, thus Proposition 4.5, we present some materials. Notice
from (4.1) that one has Lpx,�q “ P px,�qDpx,�qP px,�q´1, where

Dpx,�q “ diagp´k,´�0px,�q, k,�0px,�qq, (4.29)

P px,�q “

¨

˚̊
˚̊
˚̊
˝

´k´3 ´�´3
0 px,�q k´3 �´3

0 px,�q
k´2 �´2

0 px,�q k´2 �´2
0 px,�q

´k´1 ´�´1
0 px,�q k´1 �´1

0 px,�q
1 1 1 1

˛

‹‹‹‹‹‹‚
(4.30)

and

P px,�q´1 “ µ

2�⇢0pxq

¨

˚̊
˚̊
˚̊
˝

´k3�2
0px,�q k2�2

0px,�q k3 ´k2

k2�3
0px,�q ´k2�2

0px,�q ´�3
0px,�q �2

0px,�q
k3�2

0px,�q k2�2
0px,�q ´k3 ´k2

´k2�3
0px,�q ´k2�2

0px,�q �3
0px,�q �2

0px,�q

˛

‹‹‹‹‹‹‚
(4.31)

The columns of matrix P are denoted by P1, P2, P3, P4 and P2, P4 depend on px,�q.
Note that for every positive k,� and µ, P and P´1 are bounded uniformly in R
and P´1 becomes singular when � Ñ 0 and x is fixed.

Then, we set Upxq “ P px,�qV pxq, (4.3) becomes

V 1pxq “ pDpx,�q ` ⇢1
0pxqMpx,�qqV pxq, (4.32)

where

Mpx,�q “ P px,�q´1Rp�qP px,�q ´ d�0pxq
d⇢0pxqP px,�q´1 dP px,�q

d�0pxq .

Lemma 4.2. Let

�p✏‹q :“
c
k2 ` ✏‹⇢´

µ
and �s :“

d

k2 `
c

g

L0

⇢`
µ

.

For any � P r✏‹,
b

g

L0
s, there hold

sup
xPR

}P px,�q}F § �p :“ max
´
1,

1

k
,
1

k2
,
1

k3

¯
(4.33)

and

sup
xPR

}Mpx,�q}F § �mp✏‹q :“ 1

⇢´✏2‹
max

´
g

´
k ` 1

L0

¯
, g

´ k2

�p✏‹q ` 1

L0

¯¯

` 1

4�p✏‹q

c
g

L0
max

´ 2k2

�2p✏‹q pk ` �sq, 5k2

�p✏‹q ` �s,
k2

�p✏‹q ` �s
¯
.

(4.34)

Proof. Due to ✏‹ § � §
b

g

L0
, we get that �p✏‹q † �0px,�q § �s for all x P R, it

yields (4.33). We move to demonstrate (4.34). Let

a˘p�q “ gk ˘ �2, b˘px,�q “ gk2

�0px,�q ˘ �2
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and

c˘px,�q “ k ˘ �0px,�q, dpx,�q “ 5k2

�0px,�q ´ �0px,�q.
Direct computations show that

d�0px,�q
d⇢0pxq “ �

2µ

⇢1
0pxq

�0px,�q ,

that

P px,�q´1Rp�qP px,�q “ 1

2�2⇢0pxq

¨

˚̊
˚̊
˚̊
˝

a´
k
2
b´

�
2
0

´a` ´k
2
b`

�
2
0

´a´�
2
0

k2 ´b´
a`�

2
0

k2 ´b`

a´
k
2
b´

�
2
0

´a` ´k
2
b`

�
2
0

´a´�
2
0

k2 ´b´
a`�

2
0

k2 ´b`

˛

‹‹‹‹‹‹‚
px,�q

and that

P px,�q´1 dP px,�q
d�0px,�q “ µ

2�⇢0pxq

¨

˚̊
˚̊
˚̊
˝

0 ´ 2k2
c`

�
2
0

0 2k2
c´

�
2
0

0 d 0 ´ k
2

�0
` �0

0 2k2
c´

�
2
0

0 ´ 2k2
c`

�
2
0

0 ´ k
2

�0
` �0 0 d

˛

‹‹‹‹‹‹‚
px,�q.

For all x P R, it is clear that

|a˘p�q| § g
´
k ` 1

L0

¯
, |b˘px,�q| § g

´ k2

�p✏‹q ` 1

L0

¯

and that

|c˘px,�q| § k ` �s, |dpx,�q| § 5k2

�p✏‹q ` �s.

Therefore, (4.34) follows. Proof of Lemma 4.2 is complete. ⇤

Let x̃` be chosen such that
ª `8

x̃`
⇢1
0p⌧q}Mp⌧,�q}F d⌧ § �mp✏‹qp⇢` ´ ⇢0px̃`qq † 1

2
(4.35)

and x̃´ be chosen such that
ª

x̃´

´8
⇢1
0p⌧q}Mp⌧,�q}F d⌧ § �mp✏‹qp⇢0px̃´q ´ ⇢´q † 1

2
. (4.36)

Let ↵˘pxq and �˘px,�q be defined

↵˘pxq “ ˘kpx ´ x̃˘q, �˘px,�q “ ˘
ª

x

x̃˘
�0py,�qdy. (4.37)

We then study the solutions of (4.32) decaying to 0 at `8.

Proposition 4.6. Eq. (4.32) on px̃`,`8q admits a unique solution V1px,�q such
that e´↵`pxqV1pxq converges to e1 as x Ñ `8 and a unique solution V2px,�q such
that e´�`px,�qV2pxq converges to e2 as x Ñ `8. Furthermore, we have the following
estimates

}e↵`pxqV1px,�q´e1}2 § 2�mp✏‹q

¨

˚̋
p⇢` ´ ⇢0pxqq ` ⇢0px̃`qe´p�p✏‹q´kqpx´x̃`q

`
ˇ̌
ˇ⇢0pxq ´ p�p✏‹q ´ kq

ª
x

x̃`
⇢0p⌧qe´p�p✏‹q´kqpx´⌧qd⌧

ˇ̌
ˇ

˛

‹‚

(4.38)
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and
}e�`px,�qV2px,�q ´ e2}2 § 2�mp✏‹qp⇢` ´ ⇢0pxqq (4.39)

for all x • x̃`.

Proof. We define the matrices

 px,�q “ diagpe´↵`pxq, e´�`px,�q, e↵`pxq, e�`px,�qq,

 1px,�q “ diagp0, e´�`px,�q, 0, 0q
and

 2px,�q “ diagpe´↵`pxq, 0, e↵`pxq, e�`px,�qq.
Then, we consider the equation

V1px,�q “ e´↵`pxqe1 `
ª

x

x̃`
 1px,�q ´1p⌧,�q⇢1

0p⌧qMp⌧,�qV1p⌧,�qd⌧

´
ª `8

x

 2px,�q p⌧,�q´1⇢1
0p⌧qMp⌧,�qV1p⌧,�qd⌧.

(4.40)

It can be seen that a solution V1 of (4.40) satisfies (4.32). We solve (4.40) by the
Picard iteration method. Indeed, let V p0q

1 pxq “ 0 and

V pj`1q
1 px,�q “ e´↵`pxqe1 `

ª
x

x̃`
 1px,�q ´1p⌧,�q⇢1

0p⌧qMp⌧,�qV pjq
1 p⌧,�qd⌧

´
ª `8

x

 2px,�q ´1p⌧,�q⇢1
0p⌧qMp⌧,�qV pjq

1 p⌧,�qd⌧.

We have that

 1px,�q ´1p⌧,�q “ diagp0, e´p�`px,�q´�`p⌧,�qq, 0, 0q
and that

 2px,�q ´1p⌧,�q “ diagpe´p↵`p⌧q´↵`pxqq, 0, e↵`p⌧q´↵`pxq, e´p�`px,�q´�`p⌧,�qqq.
Hence, we can estimate for x̃` § ⌧ § x,

} 1px,�q ´1p⌧,�q}F § e´p↵`pxq´↵`p⌧qq`≥x
⌧ pk´�0psqqds

§ e´p↵`pxq´↵`p⌧qq´p�p✏‹q´kqpx´⌧q (4.41)

and for ⌧ • x,
} 2px,�q ´1p⌧,�q}F § e´p↵`pxq´↵`p⌧qq. (4.42)

Using (4.41) and (4.42), we get

e↵`pxq}V pj`1q
1 px,�q ´ V pjq

1 px,�q}2

§ �mp✏‹q
ª 8

x̃`
e↵`p⌧q⇢1

0p⌧q}V pjq
1 p⌧,�q ´ V pj´1q

1 p⌧,�q}F d⌧.

Thanks to the induction, we get for all x • x̃` and for all j • 0,

e↵`pxq}V pj`1q
1 px,�q ´ V pjq

1 px,�q}2 §
´1

2

¯j

, (4.43)

yielding the uniform convergence of tV pjq
1 px,�quj•0 on any interval of px̃`,`8q.

Let V1px,�q be the limit function. V pjq
1 px,�q is continuous, so is V1px,�q. Moreover,

(4.43) implies that

e↵`pxq}V pj`1q
1 px,�q}2 §

jÿ

i“0

e↵`pxq}V pi`1q
1 px,�q ´ V piq

1 px,�q} §
jÿ

i“0

´1

2

¯i

.
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That tells us for x • x̃`,
}V1px,�q}2 § 2e´↵`pxq. (4.44)

Once we have (4.44), we then prove (4.38). Indeed,

e↵`pxqV1px,�q ´ e1 “ e↵`pxq
ª

x

x̃`
 1px,�q ´1p⌧,�q⇢1

0p⌧qMp⌧,�qV1p⌧,�qd⌧

´ e↵`pxq
ª `8

x

 2px,�q p⌧,�q´1⇢1
0p⌧qMp⌧,�qV1p⌧,�qd⌧.

We make use of (4.42) and (4.44) to have that

e↵`pxq
ª `8

x

} 2px,�q ´1p⌧,�q⇢1
0p⌧qMp⌧,�qV1p⌧,�q}2d⌧ § 2�mp✏‹qp⇢` ´ ⇢0pxqq.

(4.45)

From (4.41) and (4.44), we obtain that

}e↵`pxq
ª

x

x̃`
 1px,�q ´1p⌧,�q⇢1

0p⌧qMp⌧,�qV1p⌧,�qd⌧}2

§ 2�mp✏‹q
ª

x

x̃`
⇢1
0p⌧qe´p�p✏‹q´kqpx´⌧qd⌧.

(4.46)

After integrating by parts, we get
ª

x

x̃`
⇢1
0p⌧qe´p�p✏‹q´kqpx´⌧qd⌧ “ ´⇢0px̃`qe´p�p✏‹q´kqpx´x̃`q ` ⇢0pxq

´ p�p✏‹q ´ kq
ª

x

x̃`
⇢0p⌧qe´p�p✏‹q´kqpx´⌧qd⌧.

(4.47)

Combining (4.45), (4.46) and (4.47) gives (4.38).

By considering the eigenvalue ´�0px,�q of Lpx,�q, we continue the idea in
Theorem C.1 and mimic the above arguments to the solution V2px,�q such that
e�`px,�qV2pxq converges to e2 at `8 and enjoying (4.39). That ends the proof of
Lemma 4.6. ⇤

Now, we get back to (4.3) to find solutions that are bounded near `8.

Proposition 4.7. Eq. (4.3) on px̃`,`8q admits

(1) a unique solution U`
1 px,�q satisfying that as x Ñ `8, e↵`pxqU`

2 px,�q
converges to p´k´3, k´2,´k´1, 1qT and that for all x • x̃`,

}e↵`pxqU`
1 px,�q ´ p´k´3, k´2,´k´1, 1qT }2

§ 2�p�mp✏‹q

¨

˚̋
p⇢` ´ ⇢0pxqq ` ⇢0px̃`qe´p�p✏‹q´kqpx´x̃`q

`
ˇ̌
ˇ⇢0pxq ´ p�p✏‹q ´ kq

ª
x

x̃`
⇢0p⌧qe´p�p✏‹q´kqpx´⌧qd⌧

ˇ̌
ˇ

˛

‹‚,
(4.48)

(2) a unique solution U`
2 px,�q satisfying that as x Ñ `8, e�`px,�qU`

2 px,�q
converges to p´�´3

` p�q,�´2
` p�q,´�´1

` p�q, 1qT and that for all x • x̃`,

}e�`px,�qU`
2 px,�q ´ p´�´3

` p�q,�´2
` p�q,´�´1

` p�q, 1qT }2

§
´d

gp4�10p✏‹q ` 16�12p✏‹q ` 9�4
s
q

16L0µ2�16p✏‹q ` 2�p�mp✏‹q
¯

p⇢` ´ ⇢0pxqq.
(4.49)
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Proof. We define U`
j

px,�q “ P px,�qVjpx,�qpj “ 1, 2q, with V1 and V2 are two
solutions of (4.32) satisfying (4.38) and (4.39) respectively. It can be seen that
U`
1 px,�q and U`

2 px,�q are two solution of (4.3).

Note that
e↵`pxqU`

1 px,�q “ P1 ` P px,�qpe↵`pxqV1px,�q ´ e1q
“ p´k´3, k´2,´k´1, 1qT ` P px,�qpe↵`pxqV1px,�q ´ e1q.

(4.48) is then clear due to the estimate (4.38). According to l’Hôpital’s rule, we
have

lim
xÑ`8

≥
x

x̃`
⇢0p⌧qep�p✏‹q´kq⌧d⌧

ep�p✏‹q´kqx “ lim
xÑ`8

⇢0pxqep�p✏‹q´kqx

p�p✏‹q ´ kqep�p✏‹q´kqx “ ⇢`
�p✏‹q ´ k

,

that implies

lim
xÑ`8

ˇ̌
ˇ⇢0pxq ´ p�p✏‹q ´ kq

ª
x

x̃`
⇢0p⌧qe´p�p✏‹q´kqpx´⌧qd⌧

ˇ̌
ˇ “ 0.

The behavior of U`
1 px,�q at `8 follows.

To prove (4.49), we write

e�`px,�qU`
2 px,�q ´ p´�´3

` p�q,�´2
` p�q,´�´1

` p�q, 1qT

“ P2px,�q ´ p´�´3
` p�q,�´2

` p�q,´�´1
` p�q, 1qT ` P px,�qpe�`px,�qV2px,�q ´ e2q.

Since �p✏‹q † �`p�q † �s for all � P r✏‹,
b

g

L0
s, we bound that

}P2px,�q ´ p´�´3
` p�q,�´2

` p�q,´�´1
` p�q, 1qT }22

“ �2

µ2
p⇢0pxq ´ ⇢`q2

»

——–

1

�2
0px,�q�2`p�qp�0px,�q ` �`p�qq2 ` 1

�2
0px,�q�2`p�q

`
´�2

0px,�q ` �0px,�q�`p�q ` �2
`p�q

�3
0px,�q�3`p�qp�0px,�q ` �`p�qq

¯2

fi

��fl

§ gp4�10p✏‹q ` 16�12p✏‹q ` 9�4
s
q

16L0µ2�16p✏‹q p⇢0pxq ´ ⇢`q2.

(4.50)

Meanwhile, as a result of (4.39),

}P px,�qpe�`px,�qV2px,�q ´ e2q}2 § 2�p�mp✏‹qp⇢` ´ ⇢0pxqq. (4.51)

Thanks to (4.50) and (4.51), we obtain (4.49) hence the behavior of U`
2 px,�q at

`8. Proof of Proposition 4.7 is complete. ⇤

We now fix two positive eigenvalues of Lpx,�q, k and �0px,�q and thus follow
Theorem C.1 again. We are able to construct solutions of (4.3) that are bounded
near ´8 as in Proposition 4.7.

Proposition 4.8. Eq. (4.3) on p´8, x̃´q admits

(1) a unique solution U´
3 px,�q satisfying that as x Ñ ´8, e↵´pxqU´

3 px,�q
converges to pk´3, k´2, k´1, 1qT and that, for all x § x̃´

}e↵´pxqU´
3 px,�q ´ pk´3, k´2, k´1, 1qT }2

§ 2�p�mp✏‹q

¨

˚̋
p⇢0pxq ´ ⇢´q ` ⇢0px̃´qe´p�p✏‹q´kqpx̃´´xq

`
ˇ̌
ˇ⇢0pxq ´ p�p✏‹q ´ kq

ª
x̃´

x

⇢0p⌧qe´p�p✏‹q´kqp⌧´xqd⌧
ˇ̌
ˇ

˛

‹‚,

(4.52)
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(2) a unique solution U´
4 px,�q satisfying that as x Ñ ´8, e�´px,�qU´

4 px,�q
converges to p�´3

´ p�q,�´2
´ p�q,�´1

´ p�q, 1qT and that for all x § x̃´,

}e�´px,�qU´
4 px,�q ´ p�´3

´ p�q,�´2
´ p�q,�´1

´ p�q, 1qT }2

§
´d

gp4�10p✏‹q ` 16�12p✏‹q ` 9�4
s
q

16L0µ2�16p✏‹q ` 2�p�mp✏‹q
¯

p⇢0pxq ´ ⇢´q.
(4.53)

We are now in position to prove Proposition 4.5.

Proof. We recall n`
ij

(i, j “ 1, 2) from (4.18) and (4.19) to have that
¨

˝n`
11

n`
12

˛

‚px`,�q “ ´ 1

U`
11U

`
22 ´ U`

21U
`
12

¨

˝ U`
22 ´U`

12

´U`
21 U`

11

˛

‚

¨

˝U`
13

U`
23

˛

‚px`,�q (4.54)

and ¨

˝n`
21

n`
22

˛

‚px`,�q “ ´ 1

U`
11U

`
22 ´ U`

21U
`
12

¨

˝ U`
22 ´U`

12

´U`
21 U`

11

˛

‚

¨

˝U`
14

U`
24

˛

‚px`,�q. (4.55)

We are ready to prove the estimates (4.13) needed for Lemma 4.1. Now using (4.48)
and (4.49) into (4.54) yields that

n`
12px`,�q “ U`

21U
`
13 ´ U`

11U
`
23

U`
11U

`
22 ´ U`

21U
`
12

px`,�q “ k ` �`p�q ` f1px`,�q
1 ` f2px`,�q ,

where |fjpx,�q| “ Opz`,✏‹ pxqq pj “ 1, 2q uniformly in � P r✏‹,
b

g

L0
s as x Ñ 8.

Hence, there exists a constant ⇠`p✏‹q ° 0 such that

n`
12px`,�q • k ` �`p�q ´ ⇠`p✏‹qz`,✏‹ px`q

• k ` �p✏‹q ´ ⇠`p✏‹qz`,✏‹ px`q.
That implies n`

12px`,�q ° 0 if

z`,✏‹ px`q † k ` �p✏‹q
⇠`p✏‹q . (4.56)

We then estimate

�`px`,�q :“ pn`
11px`,�q ´ n`

22px`,�q ´ k2 ´ �2
0px`,�qq2 ` 4n`

12n
`
21px`,�q

Using (4.48) and (4.49) into (4.54) and (4.55) again, we have

n`
11px`,�q “ k�`p�q ` Opz`,✏‹ px`qq,

n`
22px`,�q ` k2 ` �2

0px`,�q “ ´k�`p�q ` Opz`,✏‹ px`qq,
n`
21px`,�q “ ´k�`p�qpk ` �`p�qq ` Opz`,✏‹ px`qq.

Hence, there exists w`p✏‹q ° 0 such that

�`px`,�q § ´4k�`p�qpk2 ` k�`p�q ` �2
`p�qq ` w`p✏‹qz`,✏‹ px`q

§ ´4k�p✏‹qpk2 ` k�p✏‹q ` �2p✏‹qq ` w`p✏‹qz`,✏‹ px`q.
The inequality �`px`,�q § 0 is equivalent to

z`,✏‹ px`q § 4k�p✏‹qpk2 ` k�p✏‹q ` �2p✏‹qq
w`p✏‹q . (4.57)

Combining (4.56) and (4.57), we take

�`p✏‹q “ min
´k ` �p✏‹q
⇠`p✏‹q ,

4k�p✏‹qpk2 ` k�p✏‹q ` �2p✏‹qq
w`p✏‹q

¯
.
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If x` satisfies z`,✏‹ px`q § �`p✏‹q, then one has n`
12px`,�q ° 0 • �`px`,�q, i.e.

(4.13). That implies BVx`,�p#,#q • 0.

Similarly, we get that, from (4.19), we follow the above arguments to show that
there exists �´p✏‹q ° 0 such that for z´,✏‹ px´q § �´p✏‹q, (4.14) holds. It yields
BVx´,�p#,#q • 0. Proposition 4.5 is proven. ⇤
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Appendix A. Proof of Lemma 2.1

Multiplying by � on both sides of (1.2) and then integrating by parts, we obtain
that

´�2
ª

R

´
k2⇢0|�|2 ` ⇢0|�1|2

¯
dx “ �µ

ª

R

´
|�2|2 ` 2k2|�1|2 ` k4|�|2

¯
dx

´ gk2
ª

R
⇢1
0|�|2dx.

(A.1)

Suppose that � “ �1 ` i�2, then one deduces from (A.1) that

´p�21 ´ �22q
ª

R

´
k2⇢0|�|2 ` ⇢0|�1|2

¯
dx “ �1µ

ª

R

´
|�2|2 ` 2k2|�1|2 ` k4|�|2

¯
dx

´ gk2
ª

R
⇢1
0|�|2dx

(A.2)

and that

´ 2�1�2

ª

R

´
k2⇢0|�|2 ` ⇢0|�1|2

¯
dx “ �2µ

ª

R

´
|�2|2 ` 2k2|�1|2 ` k4|�|2

¯
dx. (A.3)

If �2 ‰ 0, (A.3) leads us to

´2�1

ª

R

´
k2⇢0|�|2 ` ⇢0|�1|2

¯
dx “ µ

ª

R

´
|�2|2 ` 2k2|�1|2 ` k4|�|2

¯
dx,

which yields

´p�21 ´ �22q
ª

R

´
k2⇢0|�|2 ` ⇢0|�1|2

¯
dx “ ´2�21

ª

R

´
k2⇢0|�|2 ` ⇢0|�1|2

¯
dx

´ gk2
ª

R
⇢1
0|�|2dx.

Equivalently,

p�21 ` �22q
ª

R

´
k2⇢0|�|2 ` ⇢0|�1|2

¯
dx “ ´gk2

ª

R
⇢1
0|�|2dx. (A.4)
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That implies

p�21 ` �22qk2 inf
R
⇢0

ª

R2

|�|2dx § ´gk2
ª

R
⇢1
0|�|2dx.

The positivity of ⇢1
0 yields a contradiction, then � is real. Using (A.1) again, we

further get that

�2
ª

R
⇢0pk2|�|2 ` |�1|2qdx § gk2

ª

R
⇢1
0|�|2dx.

It tells us that � is bounded by
b

g

L0
. This finishes the proof of Lemma 2.1.

Appendix B. Differentiability of eigenvalues of self-adjoint and
compact operators

The classical perturbation theory from [9, Chapter VII, $3] has shown the contin-
uous property of the eigenvalues for a family of holomorphic self-adjoint operators
in an infinite-dimensional Hilbert space. If the operators are only differentiable,
we will present a proof of the differentiability of the eigenvalues for compact and
self-adjoint operators in an infinite-dimensional Hilbert space deduced from that
one for matrix functions in a finite-dimensional space (see [9, Chapter II, $5]).

Theorem B.1. Let I be a closed interval and H be an infinite-dimensional Hilbert
space and pAp�qq�PI be a family of self-adjoint and compact operators in H depend-
ing continuously differentiable on �. Then, all eigenvalues and all eigenvectors of
Ap�q are differentiable functions on �.

Proof. Let �0 P I be fixed. Since Ap�0q is a self-adjoint and compact operator in H,
the spectrum of Ap�0q is discrete. Let �0 be an arbitrary eigenvalue of Ap�0q and
E “ KerpAp�0q ´ �0IdHq, we have the decomposition H “ E ‘ EK. Consequently,
for all � P I,

Ap�q “
¨

˝ Proj
E

pAp�qProj
E

q Proj
E

pAp�qProj
EK q

Proj
EK pAp�qProj

E
q Proj

EK pAp�qProj
EK q

˛

‚

that we will denote by pAijp�qq1§i,j§2 for brevity. Notice that

Ap�0q “
¨

˝�0IdE 0

0 A22p�0q

˛

‚,

and A22p�0q ´ �0IdEK is invertible.

Let 0 † " ! 1 and � be an eigenvalue of Ap�q being close to �0, i.e. |� ´ �0| † ".
We write that

Ap�q ´ �Id “
¨

˝A11p�q ´ �IdE A12p�q
A21p�q A22p�q ´ �IdEK

˛

‚. (B.1)

If x “ py, zqT is a corresponding eigenvector, we obtain
#
A11p�qy ` A12p�qz “ �y,

A21p�qy ` A22p�qz “ �z.

Consequently, #
pA11p�q ´ �IdEqy ` A12p�qz “ 0,

A21p�qy ` pA22p�q ´ �IdEK qz “ 0.
(B.2)
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Since A22p�0q ´ �0IdEK is invertible, we have that A22p�q ´ �0IdEK is invertible
for |� ´ �0| † � ! 1. We further get that A22p�q ´ �IdEK is also invertible for
|�´ �0| † � and |� ´ �0| † ". Hence, we deduce that (B.2) is equivalent to

#
z “ ´pA22p�q ´ �IdEK q´1A21p�qy,
pA11p�q ´ A12p�qpA22p�q ´ �IdEK q´1A21p�qqy “ �y.

(B.3)

If y “ 0, (B.3)1 implies z “ 0, which is impossible. We have y ‰ 0, this means
that if � P p�0 ´ ", �0 ` "q is an eigenvalue of Ap�q, (B.3)2 tells us that � is also an
eigenvalue of Bp�, �q defined by

Bp�, �q :“ A11p�q ´ A12p�qpA22p�q ´ �IdEK q´1A21p�q : E Ñ E

Notice that E is finite-dimensional thanks to Riesz’s theorem. Bp�, �q turns out to
be a matrix, having eigenvalues �jp�, �qp1 § j § dimEq. Then, there exists j such
that �jp�, �q “ �. It follows from [9, Chapter II, $5] that �jp�, �q and its associated
eigenvector are differentiable at �0, so is �. ⇤

Appendix C. Decaying solutions of the linear system of ODEs

We state here the key ingredient for our analysis in Section 4 due to E. A.
Coddington and N. Levinson [3, Theorem 8.1, Chapter 3].

Theorem C.1. We consider a linear system

W 1pyq “ pA ` Lpyq ` RpyqqW pyq. (C.1)

Let A be a constant matrix with characteristic roots µj , j “ 1, . . . , n, all of which
are distinct. Let the matrix L be differentiable and satisfy

ª 8

0
}L1pyq}dy † 8 (C.2)

and let Lpyq Ñ 0 as y Ñ 8. Let the matrix R be integrable and let
ª 8

0
}Rpyq}dy † 8. (C.3)

Let the roots of detpA ` Lpyq ´ �Inq “ 0 be denoted by �jpyq, j “ 1, . . . , n. Clearly,
by reordering the µj if necessary, limyÑ8 �jpyq “ µj. For a given h, let

dhjpyq “ Rep�hpyq ´ �jpyqq.
Suppose all �jp1 § j § nq fall into one of two classes H1 and H2, where

�j P H1 if
ª

y

0
dhjpsqds Ñ 8 as y Ñ 8 and

ª
y2

y1

dhjpsqds • ´K py2 • y1 • 0q,

and

�j P H2 if
ª

y2

y1

dhjpsqds § K py2 • y1 • 0q,

where h is fixed and K is a constant. Let ph be the eigenvector corresponding to
µh, i.e. Aph “ µhph. Hence, there is a solution �h of (C.1) and a y0 P p0,8q such
that

lim
yÑ8

�hpyqexp
”

´
ª

y

y0

�hpsqds
ı

“ ph.
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Appendix D. A remark on the relation between the formulation on
rx´, x`s and the formulation on R of the viscous RT

problem

Proposition D.1. For all � bounded solution of (1.2) on R and for all ✓ P H2pRq,
there holds

�

ª `8

´8
⇢0pk2�✓ ` �1✓1qdx ` µ

ª `8

´8
p�2✓2 ` 2k2�✓1 ` k4�✓qdx

“ Bx´,x`,�p�, ✓q `
ª

Rzrx´,x`s

gk2⇢1
0

�
�✓dx.

(D.1)

We immediately have two remarks from (D.1).

(1) In the case of ⇢1
0 being compactly supported (supp⇢1

0 “ r´a, as), we have

�

ª `8

´8
⇢0pk2�✓ ` �1✓1qdx ` µ

ª `8

´8
p�2✓2 ` 2k2�✓1 ` k4�✓qdx “ Ba,�p�, ✓q. (D.2)

That means Bx´,x`,� is independent of x˘ if and only if x´ § ´a † a § x`.
(2) In the case ⇢1

0 ° 0 everywhere, for each px´, x`q, a penalization of Bx´,x`,�

by the term
≥
x`
x´

gk
2
⇢

1
0

�
�✓dx is necessary to obtain the ODE (1.2) on the

whole space.

Proof of Proposition D.1. To prove (D.1), we show two following identities
ª `8

x`
�⇢0pk2�✓ ` �1✓1qdx ` µ

ª `8

x`
pk4�✓ ` 2k2�1✓1 ` �2✓2qdx

“
ª `8

x`

gk2⇢1
0

�
�✓dx ` BVx`,�p�, ✓q.

(D.3)

and
ª

x´

´8
�⇢0pk2�✓ ` �1✓1qdx ` µ

ª
x´

´8
pk4�✓ ` 2k2�1✓1 ` �2✓2qdx

“
ª

x´

´8

gk2⇢1
0

�
�✓dx ` BVx`,�p�, ✓q.

(D.4)

We have the following remark that we state on px`,`8q (a similar expression
holds true for p´8, x´q) that if � is a bounded solution of (1.2) on px`,`8q, we
then have from Proposition 4.1 that � satisfies (4.8) at x`. We integrate by parts
to have that

ª `8

x`
�2✓2dx “ �2✓1

ˇ̌
ˇ
`8

x`
´ �3✓

ˇ̌
ˇ
`8

x`
`

ª `8

x`
�p4q✓dx

“ ´p�2✓1qpx`q ` p�3✓qpx`q `
ª `8

x`
�p4q✓dx.

(D.5)

Because of (4.8), we have

�2px`q “ ´pn`
11�px`q ` n`

12�
1px`qq (D.6)

and
�3px`q “ ´pn`

21�px`q ` n`
22�

1px`qq. (D.7)
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Substituting (D.6) and (D.7) into (D.5), we obtain
ª `8

x`
�2✓2dx “ pn`

11�px`q ` n`
12�

1px`qq✓1px`q ´ pn`
21�px`q ` n`

22�
1px`qq✓px`q

`
ª `8

x`
�p4q✓dx.

(D.8)

Using the integration by parts again, we deduce that
ª `8

x`
�1✓1dx “ �1✓

ˇ̌
ˇ
`8

x`
´

ª `8

x`
�2✓dx “ ´p�1✓qpx`q ´

ª `8

x`
�2✓dx (D.9)

and that
ª `8

x`
⇢0�

1✓1dx “ ´p⇢0�1✓qpx`q ´
ª `8

x`
p⇢0�1q1✓dx. (D.10)

In view of (D.8), (D.9) and (D.10), we obtain
ª `8

x`
�⇢0pk2�✓ ` �1✓1qdx ` µ

ª `8

x`
pk4�✓ ` 2k2�1✓1 ` �2✓2qdx

“
ª `8

x`
p�pk2⇢0�´ p⇢0�1q1q ` µp�p4q ´ 2k2�2 ` k4�qq✓dx

` µpn`
11�px`q ` n`

12�
1px`qq✓1px`q ´ µpn`

21�px`q ` n`
22�

1px`qq✓px`q
´ 2k2µp�1✓qpx`q ´ �p⇢0�1✓qpx`q

“
ª `8

x`

gk2⇢1
0

�
�✓dx ` BVx`,�p�, ✓q.

(D.11)

Hence, (D.3) follows from (D.11). Similarly, we obtain (D.4). It follows from (D.3)
and (D.4) that

�

ª `8

´8
⇢0pk2�✓ ` �1✓1qdx ` µ

ª `8

´8
p�2✓2 ` 2k2�✓1 ` k4�✓qdx

“
ª

x´

´8

gk2⇢1
0

�
�✓dx `

ª `8

x`

gk2⇢1
0

�
�✓dx ` BVx´,�p�, ✓q ` BVx`,�p�, ✓q

`
ª

x`

x´
�⇢0pk2�✓ ` �1✓1qdx ` µ

ª
x`

x´
pk4�✓ ` 2k2�1✓1 ` �2✓2qdx

“
ª

x´

´8

gk2⇢1
0

�
�✓dx `

ª `8

x`

gk2⇢1
0

�
�✓dx ` Bx´,x`,�p�, ✓q.

(D.12)

It yields (D.1). ⇤
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