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The linear instability study of the viscous Rayleigh-Taylor model in the neighborhood of a laminar smooth increasing density profile ⇢ 0 px 3 q amounts to the study of the following ordinary differential equation of order 4:

´ 2 r⇢ 0 k 2 ´p⇢ 0 1 q 1 s " µp p4q ´2k 2 2 `k4 q ´gk 2 ⇢ 1 0 , (0.1) where is the growth rate in time, k is the wave number transverse to the density profile.

In the case of ⇢ 1 0 • 0 compactly supported, we provide a spectral analysis showing that in accordance with the results of [8], there is an infinite sequence of non trivial solutions p n, nq of (0.1), with n Ñ 0 when n Ñ `8 and n P H 4 pRq. In the more general case where ⇢ 1 0 °0 everywhere and ⇢ 0 converges at ˘8 to finite limits ⇢ ˘°0, we prove that there exist finitely non trivial solutions p n, nq of (0.1). The line of investigation is to reduce both cases to the study of a self-adjoint operator on a compact set.

Introduction

The Rayleigh-Taylor (RT) instability, studied first by Lord Rayleigh in [19] and then Taylor [20] is well known as a gravity-driven instability in two semi-infinite inviscid and incompressible fluids when the heavy one is on top of the light one. It has attracted much attention due to both its physical and mathematical importance. Two applications of worth mentioning are implosion of inertial confinement fusion capsules [START_REF] Lindl | Inertial Confinement Fusion[END_REF] and core-collapse of supernovae [START_REF] Remington | A review of astrophysics experiments on intense lasers[END_REF]. For a detailed physical comprehension of the RT instability, we refer to three survey papers [START_REF] Kull | Theory of the Rayleigh-Taylor instability[END_REF]21,22]. Mathematically speaking, for the inviscid and incompressible regime in the neighborhood of a smooth density profile, the classical RT instability was investigated by Lafitte [12], Guo and Hwang [START_REF] Guo | On the dynamical Rayleigh-Taylor instability[END_REF] and Helffer and Lafitte [START_REF] Helffer | Asymptotic methods for the eigenvalues of the Rayleigh equation for the linearized Rayleigh-Taylor instability[END_REF].

In this paper, we pay attention to the viscous RT instability. One of the first studies on the viscous RT can be seen in the book of Chandrasekhar [1, Chapter X] considering two uniform viscous fluid separated by a horizontal boundary and generalizing the classical result of Rayleigh and Taylor. We are concerned with the following Navier-Stokes equation describing the motion of a nonhomogeneous incompressible viscous fluid in the presence of a uniform gravitational field in R 3 , $ ' & ' % B t ⇢ `divp⇢ũq " 0, B t p⇢ũq `divp⇢ũ b ũq `rP " µ ũ ´⇢g,

divũ " 0, (1.1) 
where t • 0, x " px 1 , x 2 , x 3 q P R 3 . The unknowns ⇢ :" ⇢px, tq, ũ :" ũpx, tq and P :" P px, tq denote respectively the density, the velocity and the pressure of the fluid, while µ °0 is the viscosity coefficient and g :" p0, 0, gq, g °0 being the gravitational constant.

Let ⇢ 0 °0 be a C 1 -function depending only on x 3 and let P 0 be another function of x 3 given by P 1 0 " ´g⇢ 0 with 1 " d{dx 3 . Note that it is not a physical solution of the system, because P 0 Ñ ˘8 when x 3 Ñ ˘8, but, nevertheless, it is a relevant model to study. Then, p⇢, ũ, P q " p⇢ 0 , 0, P 0 q is an equilibrium state of (1.1). The linear RT instability of (1.1) in the vicinity p⇢ 0 px 3 q, 0, P 0 px 3 qq amounts to the investigation of the parameter P C (Re °0) such that there exists a bounded solution P H 4 pRq of the following ordinary differential equation

´ 2 p⇢ 0 k 2 ´p⇢ 0 1 q 1 q " µp p4q ´2k 2 2 `k4 q ´gk 2 ⇢ 1 0 ,

where k °0 is the transverse wave number being fixed and is the third component of the perturbed velocity. Our desired solution decays to zero at ˘8, i.e. lim x3Ñ˘8 px 3 q " 0.

(1.3)

In this case, such a is a growth rate of the instability or is a characteristic value of the linearized problem (see [1, Chapter X, Sections 92-93]).

The derivation of (1.2) will be shown in the next section.

Let us discuss about the mathematical study. For the inviscid problem (i.e. µ " 0 in (1.1) and (1.2)), (1.2) can be seen as an eigenvalue problem with eigenvalue 2 . Multiple eigenvalues of the inviscid problem are first mentioned by Cherfils and Lafitte [START_REF] Cherfils | Analytic solutions of the Rayleigh equation for linear density profiles[END_REF] through the precise study of the inviscid ODE for a specific profile. Mention also the paper of Mikaelian [START_REF] Mikaelian | Connection between the Rayleigh and the Schrödinger equations[END_REF] for the connection between the Rayleigh (1.2) and the Schrödinger equations. Lafitte [12] then observed that possible growth rates 's for the inviscid Rayleigh-Taylor problem (not only the largest one) are such that 2 is an eigenvalue of a suitable self-adjoint operator and described this spectrum, for large values of k, as the eigenvalues of a 1D Schrodinger operator, which is generalized by Helffer and Lafitte [START_REF] Helffer | Asymptotic methods for the eigenvalues of the Rayleigh equation for the linearized Rayleigh-Taylor instability[END_REF].

On the other side, the natural variational structure of the inviscid problem pointed out in [START_REF] Chandrasekhar | Hydrodynamics and Hydromagnetic Stability[END_REF] and used by Guo and Hwang [START_REF] Guo | On the dynamical Rayleigh-Taylor instability[END_REF] describes the square of the maximum growth rate 2 1 as the maximum of of the Rayleigh quotient

gk 2 ≥ R ⇢ 1 0 | | 2 dx 3 ≥ R ⇢ 0 p| 1 | 2 `k2 | | 2 qdx 3
and is used to obtain a proof of the nonlinear instability. With this argument, it can be noticed that the multiple eigenvalues are given by t 2 , . . . , j , . . . u, where 2 j is equal to max

PH 1 k gk 2 ≥ R ⇢ 1 0 | | 2 dx 3 ≥ R ⇢ 0 p| 1 | 2 `k2 | | 2 qdx 3
where H 1 k " t P H 1 pRq, ≥ R l dx 3 " 0, @l § ju, l is a nontrivial eigenfunction associated with l . This Rayleigh quotient cannot be used here due to the presence of the viscosity term.

For the viscous problem, Jiang, Jiang and Ni [11] used a modified variational approach, described by Guo and Tice [START_REF] Guo | Linear Rayleigh-Taylor instability for viscous, compressible fluids[END_REF] , where a bootstrap argument yields the largest growth rate and a corresponding solution being regular under the assumption ⇢ 1 0 P C 8 0 pRq, inf R ⇢ 0 °0 and ⇢ 1 0 px 3 q °0 for some points x 3 P R. As far as we could find, no other authors performed studies of the discrete spectrum of the inviscid or the viscous linearized RT instability. We aim at the viscous study in the mathematical spirit of Helffer-Lafitte [START_REF] Helffer | Asymptotic methods for the eigenvalues of the Rayleigh equation for the linearized Rayleigh-Taylor instability[END_REF].

We then illustrate our spectral analysis.

Throughout this paper, we consider ⇢ 0 as an increasing function, i.e. ⇢ 1 0 • 0. For an increasing density profile ⇢ 0 , we show in Appendix A that is real and bounded by b g L0 , with L ´1 0 :" sup R ⇢ 1 0 ⇢0 . Since our goal is to study the unstable modes, we restrict our study to the case °0.

The ODE (1.2) rewrites as a linear system of ODEs on p , 1 , 2 , 3 q T . As the solution of this system must tend to 0 when x 3 Ñ ˘8, using the fact that the profile ⇢ 0 goes to ⇢ ˘at ˘8, we are able to deduce the stable linear space S `at `8 and the unstable linear space S ´at ´8, that are vector spaces of dimension two. Hence, we transform the problem for the normal modes on R into an ODE problem stated on a compact interval px ´, x `q with appropriate boundary conditions deduced from the outer solutions. In the case of a compactly supported ⇢ 1 0 (the simplest case of a convergence), they are described by (D.14)-(D.15). In the case of a non compactly supported ⇢ 1 0 , they are described by (4.7)- (4.8). Note that, if ⇢ 1 0 is compactly supported, the natural choice of x ˘is to choose the ends of supp⇢ 1 0 . However, if ⇢ 1 0 non compactly supported, x ˘are deduced from the behavior at ˘8 of the outer solutions and depend also on k and .

In order to solve (1.2) on px ´, x `q, the crucial tool in our study is to construct two bilinear forms, that are continuous and coercive, B (denoted respectively by B a, (3.10) for ⇢ 1 0 being compactly supported and by B x´,x`, (4.15) for ⇢ 1 0 being positive everwhere) such that the finding of bounded solutions of Eq. (1.2) on the whole line is equivalent to the existence of solutions to the variational problem

B p , !q " gk 2 ª xx ´⇢1 0 !dx 3 for all ! P H 2 ppx ´, x `qq.
As B is coercive on H 2 ppx ´, x `qq, a B p¨, ¨q is a norm on H 2 ppx ´, x `qq, and one denotes by pH 2 ppx ´, x `qqq 1 the dual of H 2 ppx ´, x `qq for the induced topology. In view of the Riesz representation theorem, we thus define an abstract operator Y P LpH 2 ppx ´, x `qq, pH 2 ppx ´, x `qq 1 q (see Y a, in Proposition 3.3 for ⇢ 1 0 • 0 being compactly supported and Y x´,x`, in Proposition 4.3 for ⇢ 1 0 being positive everywhere), associated with the norm a B p¨, ¨q to its dual, such that B pf, !q " xY f, !y, for all ! P H 2 ppx ´, x `qq (1.4) Note that it will be crucial to choose x ´, x `such that a B p¨, ¨q is a norm on H 2 ppx ´, x `qq. The existence of bounded solutions of Eq. (1.2) on R is thus equivalent to finding weak solutions P H 2 ppx ´, x `q of Y " gk 2 ⇢ 1 0 in pH 2 ppx ´, x `qqq 1 . A classical bootstrap argument shows that belongs to H 4 ppx ´, x `qq, from which one deduces that satisfies (1.2) on px ´, x `q (in the sense of elements of H 4 ppx ´, x `qq), and the boundary conditions (D.14)-(D.15) or (4.7)-(4.8) hold. Note that, as belongs to H 4 ppx ´, x `qq, these boundary conditions (involving derivatives 2 , 3 of at x ˘) are well defined.

We further rewrite the problem, after introducing M the operator of multiplication by a ⇢ 1 0 in L 2 ppx ´, x `qq, as finding v (which is M ´1Y ) satisfying

MY ´1 Mv " gk 2 v.
We show that MY ´1 M is self-adjoint and compact, which enables to use the theory of self-adjoint and compact operators on the functional space H 2 ppx ´, x `qq. It is a generalization of a Sturm-Liouville problem. The discrete spectrum of the operator MY ´1 M is thus an infinite sequence of eigenvalues, denoted by n p q and let v n be an eigenfunction associated with n p q.

The problem of finding characteristic values of (1.2) amounts to solving all the equations n p q " gk 2 .

(1.5)

When ⇢ 1 0 • 0 is compactly supported, for each n, we will show the existence and uniqueness of a solution n to (1.5) owing first to the differentiability in of n p q (see Lemma 3.2), which is an easy extension of Kato's perturbation theory of [START_REF] Kato | Perturbation theory for linear operators[END_REF], and secondly on the fact that Ñ n p q is decreasing in , through the derivative d d p 1 n p q q (see Lemma 3.3) which exists also thanks to a similar argument of [START_REF] Kato | Perturbation theory for linear operators[END_REF]. Then n " Y ´1 n Mv n P H 4 ppx ´, x `qq is glued with the decaying solutions of (1.2) in the outer regions by the boundary conditions at x ˘, which yields a solution of (1.2) in H 4 pRq associated with n . Hence, we obtain in our first result, Theorem 2.1, the existence of an infinite sequence of characteristic values p n q n•1 , that decreases towards 0 as n Ñ 8.

When ⇢ 1 0 °0 everywhere, unlike the first case, we lack the analytical expression of boundary conditions. We thus do not have the decrease of n or any control of n p q when goes to 0. Consequently, for ⇢ 1 0 °0 everywhere, our arguments only lead to a multiple existence of positive characteristic values such that • ✏ ‹ °0. This is our second result, Theorem 2.2.

We then continue our operator method in other contexts. The first one [START_REF] Nguyπn | Linear and nonlinear analysis of the Rayleigh-Taylor system with Navierslip boundary conditions[END_REF] is to investigate the nonlinear Rayleigh-Taylor instability of the gravity-driven incompressible Navier-Stokes equations with Navier-slip boundary conditions in a 2D slab domain ⌦ " 2⇡LT ˆp´1, 1q with L °0 and T is the usual 1D-torus. Based on infinitely unstable modes of the linearized problem, we consider a wide class of initial data to the nonlinear perturbation problem, extending Grenier's framework [6], to prove nonlinear Rayleigh-Taylor instability.

Furthermore, as noted in [1, Chapter X, Section 94(e)], we study the gravity waves problem that occur in an infinitely deep ocean and the occupied domain is bounded above by a moving interface tpt, xq P R `ˆ2⇡LT ˆR|x 2 " ⌘pt, x 1 qu. The governing equation is the gravity-driven incompressible Navier-Stokes equation without any effect of surface tension on the free surface. The precise study will be derived in a forthcoming work [16].

We organize this paper as follows. In Section 2, we describe the physical model and then give the statement of our main theorems. Section 3 and Section 4 are devoted to proving Theorem 2.1 as ⇢ 0 satisfies (2.6)-(2.7) and proving Theorem 2.2 as ⇢ 0 satisfies (2.8)-(2.9), respectively.

Notation. Throughout this paper, C ‹ is a generic constant depending on ⇢ 0 and other physical parameters, independent of .

The main results

2.1.

Derivation of the physical model. Recall that p⇢, ũ, P q " p⇢ 0 , 0, P 0 q is an equilibrium state of (1.1). The quantities " ⇢ ´⇢0 , ũ " ũ ´0, p " P ´P0 satisfy the following nonlinear perturbation equations

$ ' & ' % B t `ũ ¨rp⇢ 0 ` q " 0, p⇢ 0 ` qB t ũ `p⇢ 0 ` qũ ¨rũ `rp " µ ũ ´ g, divũ " 0. 
(2.1)

That implies the following linearized system

$ ' & ' % B t `⇢1 0 u 3 " 0, ⇢ 0 B t ũ `rp " µ ũ ´ g, divũ " 0. (2.2)
Since ⇢ 0 depends only on x 3 , we continue the analysis into normal modes as in [1, Chapter X, Section 91]. Precisely, we seek the perturbations of the form p , ũ, pqpt, xq " e t`ik1x1`ik2x2 p⇣, ´i , ´i✓, , qqpx 3 q,

where

k P R 2 , P Czt0u and Re • 0. Let k " a k 2 1 `k2 2 , we arrive at the following system $ ' ' ' ' ' ' & ' ' ' ' ' ' % ⇣ `⇢1 0 " 0, ⇢ 0 ´k1 q `µpk 2 ´ 2 q " 0, ⇢ 0 ✓ ´k2 q `µpk 2 ✓ ´✓2 q " 0, ⇢ 0 `q1 `µpk 2 ´ 2 q `g⇣ " 0, k 1 `k2 ✓ ` 1 " 0.
(2.4)

We directly see ⇣ " ´⇢1 0 . Hence, (2.4) 4 becomes 2 ⇢ 0 ` q 1 ` µpk 2 ´ 1 q " g⇢ 1 0 .

(2.5)

We multiply (2.4) 2 by k 1 and (2.4) 3 by k 2 , then use (2.4) 4 to obtain the equality 2 ⇢ 0 1 `k2 q ` µpk 2 1 ´ 3 q " 0.

Deriving this equation, and replacing q 1 thanks to (2.5), we get the fourth-order ordinary equation ( In view of Lemma 2.1, we seek for functions being real and we only consider vector space of real functions in what follows.

In the case ⇢ 1 0 • 0 compactly supported, our assumption is ⇢ 1 0 is a nonnegative function of class C 0 0 pRq, suppp⇢ 1 0 q " r´a, as,

Outside p´a, aq, we denote ⇢ 0 px 3 q " # ⇢ ´as x 3 P p´8, ´as, ⇢ `as x 3 P ra, `8q, (2.7)

with ⇢ ´ † ⇢ `are two positive constants. This can be seen, physically speaking, as the situation of the toy model with a layer, of size 2a, in which there is a mixture of the two fluids of density ⇢ ´and ⇢ `. We have the following result in Section 3.

Theorem 2.1. Let ⇢ 0 satisfy (2.6) and (2.7). There exist an infinite sequence p n , n q n•1 with n P p0, b g L0 q and n P H 4 pRq satisfying (1.2). In addition, n decreases towards 0 as n goes to 8.

We divide the proof of Theorem 2.1 into various steps. Notice that the rapid convergence is not necessary in this case because ⇢ 0 is constant on p´8, ´aq and on pa, `8q. Hence, in this case can be found explicitly since (1.2) outside p´a, aq is an ODE with constant coefficients, that will shown in Proposition 3.1. After that, we deduce two boundary conditions (D.14) and (D.15) at ¯a respectively in Lemma 3.1. Eq. (1.2) becomes a boundary-value problem on the finite interval p´a, aq. Our method to solve that is based on the operator approach, namely the theory of compact and self-adjoint operator for Y a, , as illustrated in the introduction part.

In the next part, Section 4, we consider ⇢ 1 0 no longer compactly supported. The assumptions on ⇢ 0 are

⇢ 0 P C 1 pRq, lim x3Ñ˘8 ⇢ 0 px 3 q " ⇢ ˘P p0, `8q (2.8) 
and 0 † ⇢ 1 0 px 3 q † ⇢ m † `8 for all x 3 P R.

(2.9) The second theorem is as follows.

Theorem 2.2. Let ⇢ 0 satisfy (2.8) and (2.9). For 0 † ✏ ‹ ! 1, there exists N p✏ ‹ q P N ‹ such that there are at least N p✏ ‹ q values of P r✏ ‹ , b g L0 s such that P H 4 pRq satisfying (1.2).

The proof of Theorem 2.2 remains the same to that one of the first case, but more complicated. We point out the main differences as follows.

Questions concerning the existence of solutions of (1.2) being bounded at 8 are not trivial as in the first case. In Section 4, we transform Eq. (1.2) into a system of ODEs (4.3). The matrix Lpx 3 , q has 4 eigenvalues ˘k and ˘ak 2 ` ⇢ 0 px 3 q{µ, that are different for all °0. We then follow [3, Theorem 8.1, Chapter 3], whose statement given in Appendix C, to deduce that (1.2) admits two linearly independent solutions decaying to 0 at `8 (respectively ´8). A suitable interval px ´, x `q is thus determined through a precise calculation of the family of solutions decaying exponentially to zero at ˘8, which yield appropriate boundary conditions (4.7) at x ´and (4.8) at x `in Proposition 4.1.

We then solve (1.2) on a finite interval px ´, x `q with boundary conditions (4.7)-(4.8). To do that, in Section 4.2, we construct the bilinear form B x´,x`, in Proposition 4.2 and continue the same arguments as in Section 3 to obtain solution in the inner region px ´, x `q. Note that the coercivity of B x´,x`, relies on the positivity of the terms BV x`, and BV x´, stated in Lemma 4.1. Due to the lack of analytical expression of boundary conditions in this case, it turns out that the positivity of BV x`, and BV x´, will be derived, in Proposition 4.2, by deducing the behavior at ˘8 of coefficients n ȋj (i, j " 1, 2) depending on px ˘, q and appearing in the boundary conditions (4.7)-(4.8). Having the bilinear form B x´,x`, , we continue our arguments in Propositions 4.3 and 4.4, that follows the same line of Section 3, to prove Theorem 2.2.

Note that, Lemma 4.1 does not give any control on x ´and x `. It is interesting for computational purposes as well as for a study of particular profiles (for example profiles decaying exponentially to their limit at ˘8), to be able to derive an explicit interval on which this is true. Notice that the restriction • ✏ ‹ °0 of Theorem 2.2 implies that the matrix Rp q (see (4.2)) in Eq. (4.3) becomes regular. Hence, for profile ⇢ 1 0 °0 everywhere, we devote Section 4.4 to establish a control of x ´and x `independent of . In Propositions 4.7 and 4.8, through a careful construction of Volterra series, we can obtain refined estimates of bounded solutions of (4. 

The compactly supported profile

In this section, we consider ⇢ 0 satisfying (2.6) and (2.7). We remark that in this section, we use the notations ⌫ ˘" ⇢μ and ⌧ ˘p q " pk 2 ` ⌫ ˘q1{2 and throughout this paper, we will use x instead of x 3 for notational conveniences.

3.1. The solution in outer regions and reduction to a problem on a finite interval. We derive, in this subsection, the precise expression of pxq as |x| • a. Proposition 3.1. There are two linearly independent solutions of (1.2) decaying to 0 at `8 as x P ra, `8q, i.e. All solutions decaying to 0 at `8 (respectively at ´8) are spanned by p 1 , 2 q (respectively by p 1 , 2 q).

Proof. For x P ra, `8q, (1.2) reduces to

´ ⌫ `pk 2 ´ 2 q " p4q ´2k 2 2 `k4 . (3.3) 
We seek as pxq " e rx . Hence,

´ ⌫ `pk 2 ´r2 q " r 4 ´2k 2 r 2 `k4 , which yields r " ˘k or r " ˘pk 2 ` ⌫ `q1{2 . Since tends to 0 at `8, we get two linearly independent solutions 1 pxq " e ´kx and 2 pxq " e ´⌧`p qx .

Hence, all solutions decaying to 0 at `8 are of the form pxq " A 1 e ´kpx´aq `A2 e ´⌧`p qpx´aq (3.4) for all x P ra, `8q and for some real constants A 1 and A 2 .

If x P p´8, ´as, the same calculation implies (3.1). Then, all solutions decaying to 0 at ´8 are of the form pxq " A 1 e kpx`aq `A2 e ⌧´p qpx`aq (3.5) for all x P p´8, ´as and for some real constants A 1 and A 2 . ⇤

Once it is proven that pxq outside p´a, aq is of the form (3.4) and (3.5), we search for on p´a, aq. That solution has to match with (3.4) and (3.5) well, i.e. there is a condition on p , 1 , 2 , 3 q at x " ˘a. We will show the conditions in the following lemma.

Lemma 3.1. The boundary condition of (1.2) at x " ´a, for P H 4 pRq, is # k⌧ ´ p´aq ´pk `⌧´p qq 1 p´aq ` 2 p´aq " 0, k⌧ ´p qpk `⌧´p qq p´aq ´pk 2 `k⌧ ´p q `⌧ 2 ´p qq 1 p´aq ` 3 p´aq " 0.

(3.6) and at x " a is # k⌧ `p q paq `pk `⌧`p qq 1 paq ` 2 paq " 0, ´k⌧ `p qpk `⌧`p qq paq ´pk 2 `k⌧ `p q `⌧ 2 `p qq 1 paq ` 3 paq " 0.

(3.7)

Proof. The boundary condition of the solutions of (1.2) at x " ˘a is equivalent to the fact that belongs to the space of decaying solutions at ˘8. On the one hand, it can be seen from (3.4) and (3.5) that ¨ pxq

1 pxq 2 pxq 3 pxq ‹ ‹ ‹ ‹ ‹ ‹ ' " A 1 e kpx`aq ¨1 k k 2 k 3 ‹ ‹ ‹ ‹ ‹ ‹ ' `A2 e ⌧´p qpx`aq ¨1 ⌧ ´p q ⌧ 2 ´p q ⌧ 3 ´p q ‹ ‹ ‹ ‹ ‹ ‹ ' for x § ´a
and that ¨ pxq

1 pxq 2 pxq 3 pxq ‹ ‹ ‹ ‹ ‹ ‹ ' " A 1 e ´kpx´aq ¨1 ´k k 2 ´k3 ‹ ‹ ‹ ‹ ‹ ‹ ' `A2 e ´⌧`p qpx´aq ¨1 ´⌧`p q ⌧ 2 `p q ´⌧ 3 `p q ‹ ‹ ‹ ‹ ‹ ‹ ' , for x • a.
On the other hand, the orthogonal complement of the subspace S ´of R 4 spanned by two vectors p1, k, k 2 , k 3 q T and p1, ⌧ ´p q, ⌧ 2 ´p q, ⌧ 3 ´p qq T is spanned by pk⌧ ´p q, ´pk`⌧ ´p qq, 1, 0q T and pk⌧ ´p qpk`⌧ ´p qq, ´pk 2 `k⌧ ´p q`⌧ ´p q 2 q, 0, 1q T .

Similarly, the orthogonal complement of the subspace S `of R 4 spanned by two vectors p1, ´k, k 2 , ´k3 q T and p1, ´⌧`p q, ⌧ 2 `p q, ´⌧ 3 `p qq is spanned by two vectors pk⌧ `p q, k`⌧ `p q, 1, 0q T and p´k⌧ `p qpk`⌧ `p qq, ´pk 2 `k⌧ `p q`⌧ 2 `p qq, 0, 1q T . The above arguments allow us to set (D.14) and (D.15) as boundary conditions of Eq. (1.2) on p´a, aq.

Remark that S ´is also spanned by tp1, k, k 2 , k 3 q T , p0, 1, k `⌧´p q, k 2 `k⌧ ´p q ⌧ 2 ´p qq T u, and that S `is also spanned by tp1, ´k, k 2 , ´k3 q T , p0, 1, k ´⌧`p q, k 2 ḱ⌧ `p q `⌧ 2 `p qq T u. This choice of generating families yields two uniformly independent families when Ñ 0.

⇤

We aim at solving (1.2) on p´a, aq with the boundary conditions (D.14)-(D.15).

3.2.

A bilinear form and a self-adjoint invertible operator. We introduce the bilinear form B a, in the following proposition.

Proposition 3.2. Let us denote by BV ´a, p#, %q :" µ ˜k⌧ ´p qpk `⌧´p qq#p´aq%p´aq ´k⌧ ´p q# 1 p´aq%p´aq ´k⌧ ´p q#p´aq% 1 p´aq `pk `⌧´p qq# 1 p´aq% 1 p´aq

(3.8)
and by

BV a, p#, %q :" µ ˜k⌧ `p qpk `⌧`p qq#paq%paq ´k⌧ `p q# 1 paq%paq ´k⌧ `p q#paq% 1 paq `pk `⌧`p qq# 1 paq% 1 paq ¸.

(3.9)

Then,

B a, p#, %q :" BV a, p#, %q `BV ´a, p#, %q ` ª a ´a ⇢ 0 pk 2 #% `#1 % 1 qdx `µ ª a ´ap# 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx. (3.10)
is a continuous and coercive bilinear form on H 2 pp´a, aqq.

Furthermore, let pH 2 pp´a, aqqq 1 be the dual space of H 2 pp´a, aqq associated with the norm a B a, p¨, ¨q, there exists a unique operator Y a, P LpH 2 pp´a, aqq, pH 2 pp´a, aqqq 1 q, that is also bijective, such that B a, p#, %q " xY a, #, %y (3.11) for all #, % P H 2 pp´a, aqq.

Proof. Clearly, B a, is a bilinear form on H 2 pp´a, aqq since the terms BV ˘a, p#, %q are well defined. We then establish the boundedness of B a, . The integral terms of B a, are bounded by

max ´⇢`k 2 c g L 0 `µk 4 , ⇢ `c g L 0 `2µk 2 , µ ¯}#} H 2 pp´a,aqq }%} H 2 pp´a,aqq . (3.12) 
About the two first terms BV ˘a, p#, %q, it follows from the general Sobolev inequality that }#pyq} C 0,j pp´a,aqq § Cpj, aq}#pyq} H 1 pp´a,aqq for all j P r0, 1{2q.

Therefore, we obtain

|#paq| 2 `|#p´aq| 2 § C ‹ }#} 2 H 1 pp´a,aqq . Similarly, |# 1 paq| 2 `|# 1 p´aq| 2 § C ‹ }# 1 } 2 H 1 pp´a,aqq . Consequently, we get |BV ˘a, p#, %q| § C ‹ p|#p˘aq| `#1 p˘aq|qp|%p˘aq| `|% 1 p˘aq|q § C ‹ }#} H 2 pp´a,aqq }%} H 2 pp´a,aqq . (3.13) 
In view of (3.12) and (3.13), we find that

|B a, p#, %q| § C ‹ }#} H 2 pp´a,aqq }%} H 2 pp´a,aqq , (3.14) 
i.e. B a, is bounded.

We move to show the coercivity of B a, . We have that

B a, p#, #q " BV a, p#, #q `BV ´a, p#, #q ` ª a ´a ⇢ 0 pk 2 |#| 2 `|# 1 | 2 qdx `µ ª a ´ap|# 2 | 2 `2k 2 |# 1 | 2 `k4 |#| 2 qdx.
BV a, p#, #q • 0 follows from the following equality

1 µ BV a, p#, #q " k⌧ `p qpk `⌧`p qq|#paq| 2 `2k⌧ `p q#paq# 1 paq `pk `⌧`p qq|# 1 paq| 2 " k⌧ `p qpk `⌧`p qq ˇˇ#paq `#1 paq k `⌧`p q ˇˇ2 `k2 `k⌧ `p q `⌧ 2 `p q k `⌧`p q |# 1 paq| 2 .
We also obtain that BV ´a, p#, #q • 0. Therefore, we deduce that

B a, p#, #q • µ minpk 4 , 2k 2 , 1q}#} 2 H 2 pp´a,aqq . (3.15) 
It then tells us that B a, is a continuous and coercive bilinear form on H 2 pp´a, aqq.

It follows from Reisz's representation theorem that there is a unique operator Y a, P LpH 2 pp´a, aqq, pH 2 pp´a, aqqq 1 q, that is also bijective, satisfying (3.11) for all #, % P H 2 pp´a, aqq. Proof of Proposition 3.2 is complete. ⇤

The next proposition is to devoted to studying the properties of Y a, .

Proposition 3.3. We have the following results.

(1) For all # P H 2 pp´a, aqq, 

Y a, # " p⇢ 0 k 2 # ´p⇢ 0 # 1 q 1 q `µp# p4q ´2k 2 # 2 `k4 #q in D 1 pp´a, aqq. (2) Let f P L 2 pp´a
a ´a ⇢ 0 pk 2 #% `#1 % 1 qdx `µ ª a ´ap# 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx " xY a, #, %y. (3.17)
We respectively define p# 2 q 1 and p# 2 q 2 in the distributional sense as the first and second derivative of # 2 which is in L 2 pp´a, aqq. Hence, (3.17) is equivalent to

ª a ´a ⇢ 0 pk 2 #% `#1 % 1 qdx `µ ª a ´ap2k 2 # 1 % 1 `k4 #%qdx `xp# 2 q 2 , %y " xY a, #, %y. (3.18)
for all % P C 8 0 pp´a, aqq. We deduce from (3.18) that ª a ´ap pk 2 ⇢ 0 # ´p⇢ 0 # 1 q 1 q `µp´2k 2 # 2 `k4 #qq%dx `µxp# 2 q 2 , %y " xY a, #, %y (3.19) for all % P C 8 0 pp´a, aqq. The first assertion follows.

Let f P L 2 pp´a, aqq and # P H 2 pp´a, aqq be the solution of (3.16), we then improve the regularity of the weak solution # of (3.19). Indeed, we rewrite (3.19) as µxp# 2 q 2 , %y "

ª a ´apf `2µk 2 # 2 ´µk 4 # ´ k 2 ⇢ 0 # ` p⇢ 0 # 1 q 1 q%dx (3.20) for all % P C 8 0 pp´a, aqq. Since pf `2µk 2 # 2 ´µk 4 # ´ k 2 ⇢ 0 # ` p⇢ 0 # 1 q 1 q
belongs to L 2 pp´a, aqq, it then follows from (3.20) that p# 2 q 2 P L 2 pp´a, aqq. Furthermore, by usual distribution theory, we define P D 1 pp´a, aqq such that

x , %y " xp# 2 q 2 , ⇣ ⇢ y (3.21)
for all % P C 8 0 , where ⇣ ⇢ pxq "

≥

x ´ap%pyq ´≥a ´a %psqdsqdy. Hence, it can be seen that x 1 , %y " ´x , % 1 y " ´xp# 2 q 2 , ⇣ ⇢ 1 y " ´xp# 2 q 2 , %y that implies p# 2 q 1 ´ " constant. In view of p# 2 q 2 P L 2 pp´a, aqq and (3.21), we know that p# 2 q 1 P L 2 pp´a, aqq. Since # P H 2 pp´a, aqq and p# 2 q 1 , p# 2 q 2 P L 2 pp´a, aqq, it tells us that # belongs to H 4 pp´a, aqq.

By exploiting (3.20), we then show that # satisfies (D.14) and (D.15). Indeed, consider now % P C 8 pp´a, aqq, one has, using the integration by parts ª

a ´ap# 2 q 2 pxq%pxqdx " p# 2 q 1 paq%paq ´p# 2 q 1 p´aq%p´aq ´p# 2 qpaq% 1 paq `p# 2 qp´aq% 1 p´aq `ª a ´a # 2 pxq% 2 pxqdx.
We perform on the other terms of (3.19) the integration by parts, which yields ª

a ´a ⇢ 0 pk 2 #% `#1 % 1 qdx `µ ª a ´ap# 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx ´ ⇢ 0 # 1 % ˇˇa ´a `µ´# 3 % ˇˇa ´a ´#2 % 1 ˇˇa ´a ´2k 2 # 1 % ˇˇa ´a¯" ª a ´apY a, #q%dx. It then follows from the definition of the bilinear form B a, that BV a, p#, %q`BV ´a, p#, %q " ´ ⇢ 0 # 1 % ˇˇa ´a`µ ´#3 % ˇˇa ´a´# 2 % 1 ˇˇa ´a´2k 2 # 1 % ˇˇa ´a¯(

3.22)

for all % P C 8 pp´a, aqq.

By collecting all terms corresponding to %p´aq in (3.22), we deduce that µpk⌧ ´p qpk `⌧´p qq#p´aq ´k⌧ ´p q# 1 p´aqq " ⇢ 0 p´aq# 1 p´aq ´µp# 3 p´aq ´2k 2 # 1 p´aqq.

It yields

# 2 p´aq ´pk 2 `k⌧ ´p q `⌧ 2 ´p qq# 1 p´aq `k⌧ ´p qpk `⌧´p qq#p´aq " 0 owing to the definition of ⌧ ´p q. Then, we collect all terms corresponding to %paq or to % with the continuous injection from H 4 pp´a, aqq to L 2 pp´a, aqq. Notice that the embedding H p pp´a, aqq ãÑ H q pp´a, aqq for p °q • 0 is compact. Therefore, Y ´1 a, is compact and self-adjoint from L 2 pp´a, aqq to L 2 pp´a, aqq. Proposition 3.4 is shown. ⇤ Remark 3.1. In this paper, we choose to define the operator fi Ñ p⇢ 0 k 2 ´p⇢ 0 1 q 1 q `µp p4q ´2k M, where M is the operator of multiplication by a ⇢ 1 0 . Note that this choice prevents to consider a case where ⇢ 1 0 could be negative.

Proposition 3.5. The operator S a, : L 2 pp´a, aqq Ñ L 2 pp´a, aqq is compact and self-adjoint, under the hypothesis (2.6).

Proof. Due to the boundedness of ⇢ 1 0 , the operator S a, is well-defined from L 2 pp´a, aqq to itself. Y ´1 a, is compact, so is S a, . Moreover, because both the inverse Y ´1 a, and M are self-adjoint, the self-adjointness of S a, follows. ⇤

As a result of the spectral theory of compact and self-adjoint operators, the point spectrum of S a, is discrete, i.e. is a decreasing sequence t n pk, qu n•1 of positive eigenvalues of S a, that tends to 0 as n Ñ 8, associated with normalized orthogonal eigenvectors t$ n u n•1 in L 2 pp´a, aqq. That means

n p q$ n " MY ´1 a, M$ n . so that with n " Y ´1 a, M$ n P H 4 pp´a, aqq, one has n p qY a, n " ⇢ 1 0 n (3.23)
and n satisfies (D.14)-(D.15). (3.23) also tells us that n p q °0 for all n. Indeed, we obtain

n p q ª a ´apY a, n q n dx " ª a ´a ⇢ 1 0 | n | 2 dx. That implies n p qB a, p n , n q " ª a ´a ⇢ 1 0 | n | 2 dx. (3.24)
Since B a, p n , n q °0 and ⇢ 1 0 °0 on p´a, aq, we know that n p q is positive. For each n, in order to verify that n is a solution of (1.2), we are left to look for real values of n such that (1.5). To solve (1.5), we have to prove that n p q is differentiable and decreasing in terms of , respectively in two next lemmas. a, is differentiable for all P p0, b g L0 s, so is S a, . We then apply the differentiable property of eigenvalues of self-adjoint and compact operators, demonstrated in Appendix B to deduce that n p q and n are differentiable functions. ⇤ Lemma 3.3. For each n, the function n p q is decreasing in P p0, b g L0 s.

Proof. Let z n " d n d . Note that d d Y a, u " ⇢ 0 k 2 u ´p⇢ 0 u 1 q 1 . It follows from (3.23) that k 2 ⇢ 0 n ´p⇢ 0 1 n q 1 `Ya, z n " 1 n p q ⇢ 1 0 z n `d d ´1 n p q ¯⇢1 0 n (3.25)
on p´a, aq. In addition, we have that at x " ´a, $ ' ' ' ' & ' ' ' ' % z 2 n p´aq ´pk `⌧´p qqz 1 n p´aq `k⌧ ´p qz n p´aq " ⌫2 ⌧´p q 1 n p´aq ´k⌫2 ⌧´p q n p´aq, z 3 n p´aq ´pk 2 `k⌧ ´p q `⌧ 2 ´p qqz 1 n p´aq `k⌧ ´p qpk `⌧´p qqz n p´aq " ´k⌫2 ⌧´p q `⌫´¯ n paq ´k⌫2 ⌧`p q n paq, z 3 n paq ´pk 2 `k⌧ `p q `⌧ 2 `p qqz 1 n paq ´k⌧ `p qpk `⌧`p qqz n paq " ´k⌫2 ⌧`p q `⌫`¯ 1 n paq `´k 2 ⌫2 ⌧`p q `k⌫ `¯ n paq.

(3.27)

Multiplying by n on both sides of (3.25) and then integrating by parts to obtain that ª

a ´apk 2 ⇢ 0 n ´p⇢ 0 1 n q 1 q n dx `ª a ´apY a, z n q n dx " 1 n p q ª a ´a ⇢ 1 0 z n n dx `d d ´1 n p q ¯ª a ´a ⇢ 1 0 | n | 2 dx.
(3.28)

Thanks to the integration by parts, we have ª

a ´apk 2 ⇢ 0 n ´p⇢ 0 1 n q 1 q n dx " ª a ´a ⇢ 0 pk 2 | n | 2 `| 1 n | 2 qdx ´p⇢ 0 1 n n q ˇˇa ´a (3.29)
and ª a ´apY a, z n q n dx "

ª a ´apY a, n qz n dx `´µpz 3 n n ´z2 n 1 n ´2k 2 z 1 n n q ´ ⇢ 0 z 1 n n ¯ˇˇa ´a ´´µp 3 n z n ´ 2 n z 1 n ´2k 2 1 n z n q ´ ⇢ 0 1 n z n ¯ˇˇa ´a.
(3.30)

Owing to (3.29), (3.30) and (3.23), (3.28) becomes ª

a ´a ⇢ 0 pk 2 | n | 2 `| 1 n | 2 qdx `´µpz 3 n n ´z2 n 1 n ´2k 2 z 1 n n q ´ ⇢ 0 z 1 n n ¯ˇˇa ´a ´´µp 3 n z n ´ 2 n z 1 n ´2k 2 1 n z n q ´ ⇢ 0 1 n z n ¯ˇˇa ´a ´p⇢ 0 1 n n q ˇˇa ´a " d d ´1 n p q ¯ª a ´a ⇢ 1 0 | n | 2 dx.
(3.31) Using (3.26), we obtain

´´µpz 3 n n ´z2 n 1 n ´2k 2 z 1 n n q ´ ⇢ 0 z 1 n n ¯p´aq `´µp 3 n z n ´ 2 n z 1 n ´2k 2 1 n z n q ´ ⇢ 0 1 n z n ¯p´aq `⇢´ 1 n p´aq n p´aq " µ ´k2 ⌫ 2⌧ ´p q `k⌫ ´¯| n p´aq| 2 ´µ´k ⌫ 2⌧ ´p q `⌫´¯ 1 n p´aq n p´aq ´µ k⌫ 2⌧ ´p q n p´aq 1 n p´aq `µ ⌫ 2⌧ ´p q | 1 n p´aq| 2 `⇢´ 1 n p´aq n p´aq.
Keep in mind that µ⌫ ´" ⇢ ´, one has

´´µpz 3 n n ´z2 n 1 n ´2k 2 z 1 n n q ´ ⇢ 0 z 1 n n ¯p´aq `´µp 3 n z n ´ 2 n z 1 n ´2k 2 1 n z n q ´ ⇢ 0 1 n z n ¯p´aq `⇢´ 1 n p´aq n p´aq " k⇢ ´| n p´aq| 2 `⇢2 ⌧ ´p q | 1 n p´aq ´k n p´aq| 2 .
(3.32)

Similarly, using (3.27), we obtain

´µpz 3 n n ´z2 n 1 n ´2k 2 z 1 n n q ´ ⇢ 0 z 1 n n ¯paq ´´µp 3 n z n ´ 2 n z 1 n ´2k 2 1 n z n q ´ ⇢ 0 1 n z n ¯paq ´⇢´ 1 n paq n paq " k⇢ `| n paq| 2 `⇢2 ⌧ `p q | 1 n paq ´k n paq| 2 .
(3.33)

Combining (3.31), (3.32) and (3.33), we deduce that

d d ´1 n p q ¯ª a ´a ⇢ 1 0 | n | 2 dx " ª a ´a ⇢ 0 pk 2 | n | 2 `| 1 n | 2 qdx `k⇢ ´| n p´aq| 2 `⇢2 ⌧ ´p q | 1 n p´aq ´k n p´aq| 2 `k⇢ `| n paq| 2 `⇢2 ⌧ `p q | 1 n paq ´k n paq| 2 . (3.34)
It yields that 1 n p q is increasing in , i.e. n p q is decreasing in . This ends the proof of Lemma 3.3. ⇤ Now we are in proposition to solve (1.5).

Proposition 3.6. For each n, there exists only one positive n satisfying (1.5). In addition, n decreases towards 0 as n goes to 8.

Proof. Using (3.24), we know that

1 n p q ª a ´a ⇢ 1 0 | n | 2 dx " ª a ´apY a, n q n dx " B a, p n , n q, that implies 1 L 0 n p q • k 2 `µk 4 ⇢ `. Consequently, for all n • 1, lim Ñ b g L 0 n p q °gk 2 . (3.35)
As 0 † 1 n p q and it is a increasing function,

1 n p q § 1 n p 1 2 b g L 0 q for all § 1 2 b g L0 . That implies lim Ñ0 n p q § lim Ñ0 n p 1 2 b g L0 q
" 0 for all n • 1.

(3.36)

Combining (3.35), (3.36) and using Lemma 3.3, we deduce that there is only one n P p0, b g L0 q satisfying (1.5) for each n • 1. We then prove that the sequence p n q n•1 is decreasing. Indeed, if m † m`1 for some m • 1, we have m p m q ° m p m`1 q. Meanwhile, we also have

m p m`1 q ° m`1 p m`1 q. That implies m gk 2 " m p m q ° m`1 p m`1 q " m`1 gk 2 .
That contradiction tells us that p n q n•1 is a decreasing sequence. Suppose that

lim nÑ8 n " c 0 °0. Note that n pc 0 q • n p n q " n gk 2 .
Let n Ñ 8, we get a contradiction that 0 • c 0 . Hence, n decreases towards 0 as n Ñ 8. We conclude Proposition 3.6. ⇤ 3.4. Proof of Theorem 2.1. Let n be found from Proposition 3.6 and n pxq " Y ´1 a, n M$ n pxq on p´a, aq. Keep in mind our computations in Subsection 3.1, we extend n to the whole line by requiring n satisfies (3.4) and (3.5) for some constants A n,1 and A n,2 as " n . Those constants A n,1 and A n,2 are defined by

# n paq " A ǹ,1 `Aǹ ,2 , 1 n paq " kA ǹ,1 `ak 2 ` n ⌫ `Aǹ ,2 .
(3.37) and by

# n p´aq " A ń,1 `Ań ,2 , 1 n p´aq " kA ń,1 `ak 2 ` n ⌫ ´Ań ,2 .
(3.38)

Since n is not trivial, there exists i • 0 such that piq n paq ‰ 0, which ensures that, at least, one of A n,1 is nonzero. Similarly, at least, one of A n,2 is nonzero. Solving (3.37) and (3.38), we get that

A ǹ,1 " a k 2 ` n ⌫ ` n paq ´ 1 n paq a k 2 ` n ⌫ `´k , A ǹ,2 " 1 n paq ´k n paq a k 2 ` n ⌫ `´k . ( 3 

.39)

and that

A ń,1 " a k 2 ` n ⌫ ´ n p´aq ´ 1 n p´aq a k 2 ` n ⌫ ´´k , A ń,2 " 1 n p´aq ´k n p´aq a k 2 ` n ⌫ ´´k . (3.40)
Therefore, the function n is a regular solution of (1.2) as " n for each n • 1.

Proof of Theorem 2.1 is complete.

The strictly increasing profile case

In this section, let pe 1 , e 2 , e 3 , e 4 q be the canonical basis of R 4 and we pay attention to an increasing profile ⇢ 0 satisfying (2.8) and (2.9). We will use the Frobenius matrix norm } ¨}F and the Euclidean vector norm } ¨}2 . 4.1. Solutions decaying to 0 at infinity and reduction to a problem on a finite interval. Let Lpx, q "

¨0 1 0 0 0 0 1 0 0 0 0 1 ´ k 2 ⇢0pxq µ ´k4 0 ⇢0pxq µ `2k 2 0 ‹ ‹ ‹ ‹ ‹ ‹ ' (4.1) 
and Rp q " ¨0 0 0 0 0 0 0 0 0 0 0 0

gk 2 µ µ 0 0 ‹ ‹ ‹ ‹ ‹ ‹ ' (4.2)
We set U " p , 1 , 2 , 3 q T and then rewrite (1.2) as U 1 pxq " pLpx, q `⇢1 0 pxqRp qqU pxq, (

The eigenvalues of Lpx, q, ˘k and ˘ 0 px, q, with 0 px, q " b k 2 ` µ ⇢ 0 pxq are different for all °0 and for all x P R. Furthermore, ª `8 to find bounded solutions of (4.3) near ˘8. We denote ˘p q " lim xÑ˘8 0 px, q.

´8 |L 1 px, q|dx † `8, ª `8 ´8 |⇢ 1 0 pxqRp q|dx † `8. (4.4) 
Then, there exist x´ † x`s uch that we have the existence of bounded solutions U 1,2 on px `, `8q and U 3,4 on p´8, x´q such that in a neighborhood of `8, e kx U 1 px, q Ñ p´k ´3, k ´2, ´k´1 , 1q T , exp ´≥x

x` 0 py, qdy ¯U 2 px, q Ñ p´ ´3 `p q, ´2 `p q, ´ ´1 `p q, 1q T , (

and in a neighborhood of ´8,

e ´kx U 3 px, q Ñ pk ´3, k ´2, k ´1, 1q T , exp ´´≥ x
x´ 0 py, qdy ¯U 4 px, q Ñ p ´3 ´p q, ´2 ´p q, ´1 ´p q, 1q T .

(4.6)

Let us prove that U 1 px, q and U 2 px, q are linearly independent. Through Cauchy-Lipschitz theorem, if they are linearly dependent at a particular x 0 then they are linearly dependent for all x, that is there exists T p q such that U 1 px, q " T p qU 2 px, q.

In particular, as the limit of kx ´≥x x` 0 py, qdy when x Ñ `8 is equal to ´8, one observes that e kx U 1 px, q " T p qexp ´kx ´ª x

x` 0 py, qdy ¯´U 2 px, qexp ´ª x

x` 0 py, qdy ¯¯.

The right hand side of this identity converges to 0 when x Ñ `8, while the left hand side converges to p´k ´3, k ´2, ´k´1 , 1q T when x Ñ `8, contradiction. Similarly, U 3 px, q and U 4 px, q are linearly independent.

The aim of the next proposition is to reduce the study of Eq. (1.2) on the real line to its study on a finite interval as in the previous section. This is really the key of our result for a smooth general profile because it entitles us to use the compact injection of H j ppa, bqq into H j´1 ppa, bqq, j • 1.

Proposition 4.1. There exist x 0

´ § x´a nd x 0 `• x`s uch that, for all x ´ § x 0 ánd x `• x 0 `, there are constants n ȋj pi, j " 1, 2q, depending on x ˘and such that equation 2 pk 2 ⇢ 0 ´p⇢ 0 1 q 1 q ` µp p4q ´2k 2 2 `k4 q " gk 2 ⇢ 1 0 , where P H 4 ppx ´, x `qq, supplemented with the boundary conditions at x ´are # n 11 px ´q `n1 2 1 px ´q ` 2 px ´q " 0,

n 21 px ´q `n2 2 
1 px ´q ` 3 px ´q " 0 (4.7)

and at x `, are # n 11 px `q `n1 2 1 px `q ` 2 px `q " 0,

n 21 px `q `n2 2 
1 px `q ` 3 px `q " 0, (

is equivalent to equation 2 pk 2 ⇢ 0 ´p⇢ 0 1 q 1 q ` µp p4q ´2k 2 2 `k4 q " gk 2 ⇢ 1 0 , where P H 4 pRq.

In this case " on px ´, x `q and on px `, `8q (respectively p´8, x ´q), is the first component of a linear combination of U 1,2 px, q (see (4.5)) (respectively U 3,4 px, q, see (4.6)).

Proof. Notice that if is a bounded solution of 2 pk 2 ⇢ 0 ´p⇢ 0 1 q 1 q ` µp p4q ´2k 2 2 `k4 q " gk 2 ⇢ 1 0 , ⇥ " p , 1 , 2 , 3 q T is a bounded solution of (4.3). Any decaying solution of (4.3) on px `, `8q belongs to the space spanned by U 1 px, q and U 2 px, q, which is of dimension 2 because they are linearly independent. It is equivalent to say that, for any x `• x`, U 1 px `, q ^U 2 px `, q ^⇥px `, q " 0 (4.9) and ⇥px `, q belongs to the space spanned by U 1 px `, q and U 2 px `, q .

Let us write U ì " pU ì1 , U ì2 , U ì3 , U ì4 q T for i " 1, 2 and U í " pU í1 , U í2 , U í3 , U í4 q T for i " 3, 4. System (4.9) is a system of four equations on the components of ⇥px `, q, hence there exists a couple of equations which are linearly independent (the system being of rank 2). Let us notice that two of these four equations contain, in 2 and 3 , respectively the term pU 11 U 22 ´U 12 U 21 qpx `, q 2 px `, q and pU 11 U 22 ´U 12 U 21 qpx `, q 3 px `, q.

As the limit, when x `Ñ `8, of exp ´kx ``ª xx ` 0 py, qdy

¯pU 11 U 22 ´U 12 U 21 qpx `, q is ´1 k 3 2 `p q `1 k 2 3 `p q " ´ ⇢ μk 3 3 
`p qpk ` `q † 0, by continuity there exists a x 0 `• x`s uch that, for all x `• x 0 `, pU 11 U 22 ´U 12 U 21 qpx `, q † 0 hence the equations for (4.9) on the components e 1 ^e2 ^e3 and e 1 ^e2 ^e4 write as N `⇥px `, q " 0 with N `is a 4 ˆ2 matrix of the form

N `" ¨n1 1 n 12 1 0 n 21 n 22 0 1 '.
We are now able to write the couple N `⇥px `, q " 0 as # n 11 px `, q `n1 2 1 px `, q ` 2 px `, q " 0, n 21 px `, q `n2 2 1 px `, q ` 3 px `, q " 0,

In a similar way, there exist n íj pi, j " 1, 2q depending on x ´and such that # n 11 px ´, q `n1 2 1 px ´, q ` 2 px ´, q " 0,

n 21 px ´, q `n2 2 1 px ´, q ` 3 px ´, q " 0,
Hence is solution of the ODE on px ´, x `q:

2 pk 2 ⇢ 0 ´p⇢ 0 1 q 1 q ` µp p4q ´2k 2 2 `k4 q " gk 2 ⇢ 1 0 , with boundary conditions (4.7), (4.8).

Conversely, assume that P H 4 ppx ´, x `qq is a solution of equation 2 pk 2 ⇢ 0 ´p⇢ 0 1 q 1 q ` µp p4q ´2k 2 2 `k4 q " gk 2 ⇢ 1 0 , with boundary conditions (4.7)-(4.8). From the boundary conditions, we deduce that there exist C j pj " 1, 2q, D ḱ pk " 3, 4q such that U px `, q " C 1 U 1 px `, q `C2 U 2 px `, q and U px ´, q " D 3 U 3 px ´, q `D4 U 4 px ´, q.

Then, through Cauchy-Lipschitz theorem, U px, q " C 1 U 1 px, q `C2 U 2 px, q for all x • x ànd U px, q " D 3 U 3 px, q `D4 U 4 px, q for all x § x ´.

As these are decaying solutions at ˘8 respectively, and as there is no jump at x `(or x ´) for , 1 , 2 , 3 (which have a meaning as is assumed to be in H 4 ppx ´, x `qq), the function

pxq " $ ' & ' %
C 1 U 11 px, q `C2 U 21 px, q, as x • x ` pxq, as x ´ † x † x D3 U 31 px, q `D4 U 41 px, q, as x § x belongs to H 4 pRq and solves equation

2 pk 2 ⇢ 0 ´p⇢ 0 1 q 1 q ` µp p4q ´2k 2 2 `k4 q " gk 2 ⇢ 1 0 , on R. ⇤
Remark that in this proof we have no additional information on the values of x 0 ánd of x 0 `. This will be the aim of Section 4.4.

4.2.

A bilinear form and a self-adjoint invertible operator. The aim of Section 4.2 is to study the boundary terms that come from the bilinear form (4.15) below. Let BV x`, p#, %q :" ´ p⇢ 0 # 1 %qpx `q ´µpn 21 px `, q#px `q `n2 2 px `, q# 1 px `qq%px `q `µpn 11 px `, q#px `q `n1 2 px `, q# 1 px `qq% 1 px `q ´2k 2 µp# 1 %qpx `q (4.10)

and by

BV x´, p#, %q :" p⇢ 0 # 1 %qpx ´q `µpn 21 px ´, q#px ´q `n2 2 px ´, q# 1 px `qq%px ´q ´µpn 11 px ´, q#px ´q `n1

2 px ´, q# 1 px ´qq% 1 px ´q `2k 2 µp# 1 %qpx ´q. for all # P H 2 prx ´, x `sq are n 12 px `, q • 0, n 21 px `, q § 0, pn 11 px `, q ´n2 2 px `, q ´k2 ´ 2 0 px `, qq 2 `4n 12 n 21 px `, q § 0, (4.13)

and n 12 px ´, q • 0, n 21 px ´, q § 0,

pn 11 px ´, q ´n2 2 px ´, q ´k2 ´ 2 0 px ´, qq 2 `4n 12 n 21 px ´, q § 0. (4.14)
Proof of Lemma 4.1. We treat only the case BV x`, p#, #q • 0. Since µ 2 0 px, q " µk 2 ` ⇢ 0 pxq, we rewrite

1 µ BV x`, p#, #q " ´n2 1 px `, q|#px `q| 2 `n1 2 |# 1 px `q| 2
`pn 11 px `, q ´n2 2 px `, q ´k2 ´ 2 0 px `, qq#px `q# 1 px `q. We observe that it is a quadratic polynomial in #px `q, # 1 px `q. The first case is the case where n 12 " n 21 " 0. The inequality (4.13) imply that BV x`, p#, #q " 0 for all #. The second case is the case where at least one of these two real numbers is not zero. For example, if n 12 ‰ 0, the inequality means that the polynomial

n 12 t 2 `pn 11 ´n2 2 ´k2
´ 2 0 qt ´n2 1 is always of the sign of n 12 hence positive, hence BV x`, p#, #q • 0 for all # P H 2 ppx ´, x `q. Lemma 4.1 is proven. ⇤ Proposition 4.2. There exists For positive , µ and k, we have

x 1 ´ § x 0 ´, x 1 `• x 0 `such that, for any x ´ § x 1 ánd x `• x 1 `chosen arbitrarily B x´,x`, p#, %q :"BV x´, p#, %q `BV x`, p#, %q ` ª xx ´⇢0 pk 2 #% `#1 % 1 qdx `µ ª xx ´p# 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx, ( 4 
ª xx ´⇢0 pk 2 #% `#1 % 1 qdx 3 `µ ª xx ´p# 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx § C ‹ }#} H 2 ppx´,x`qq }%} H 2 ppx´,x`qq
and that

ª xx ´⇢0 pk 2 |#| 2 `|# 1 | 2 qdx `µ ª xx ´p|# 2 | 2 `2k 2 |# 1 | 2 `k4 |#| 2 qdx • C ‹ }#} 2 H 2 ppx´,x`qq .
Note that the condition µ °0 is necessary to obtain the coercivity on H 2 ppx ´, x `qq.

Note also that the case µ " 0 amounts to the inviscid Rayleigh-Taylor instability, for which similar results are known (and the corresponding problem needs only to be defined in H 1 ). In addition

|BV x`, p#, %q| § C ‹ p|#px `q| `|%px `q|qp|# 1 px `q| `|% 1 px `q|q, |BV x´, p#, %q| § C ‹ p|#px ´q| `|%px ´q|qp|# 1 px ´q| `|% 1 px ´q|q
and the Sobolev embedding yields (4.16). The continuity of B x´,x`, on H 2 ppx ´, x `qq follows.

To show (4.17), it suffices to prove that (4.12) holds. In view of Lemma 4.1, we verify (4.13). Since N `U 1 px `, q " N `U 2 px `, q " 0, we have that n ìj pi, j " 1, 2q depend on x `and and satisfy # n 11 U 11 px `, q `n1 2 U 12 px `, q `U 13 px `, q " 0, n 11 U 21 px `, q `n1 2 U 22 px `, q `U 23 px `, q " 0, (4.18) and # n 21 U 11 px `, q `n2 2 U 12 px `, q `U 14 px `, q " 0, n 21 U 21 px `, q `n2 2 U 22 px `, q `U 24 px `, q " 0. Let n ìj p q be the limit of n ìj px `, q as x Ñ `8. When x `Ñ `8, (4.18)-(4.19) converge to # ´n1 1 p qk ´3 `n1 2 p qk ´2 ´k´1 " 0, ´n1 1 p q ´3 `p q `n1 2 p q ´2 `p q ´ ´1 `p q " 0, (4.20) and # ´n2 1 p qk ´3 `n2 2 p qk ´2 `1 " 0, ´n2 1 p q ´3 `p q `n2 2 p q ´2 `p q `1 " 0, (4.21) hence n 11 p q " k `p q, n 12 p q " k ` `p q and n 21 p q " ´k `p qpk ` `p qq, n 22 p q " ´pk 2 `k `p q ` 2 `p qq. One thus has pn 11 p q ´n2 2 p q ´k2 ´ 2 `p qq 2 `4n 12 n 21 p q " ppk ` `p qq 2 ´k2 ´ 2 `p qq 2 ´4k `p qpk ` `p qq 2 " ´4k `p qpk 2 `k `p q ` 2 `p qq † 0. Hence, by continuity, there exists x 1 `• x 0 `such that, for all x `• x 1 `, pn 11 px `, q ´n2 2 px `, q ´k2 ´ 2 0 px `, qq 2 `4n 12 n 21 px `, q † 0. The proof of the existence of x 1

´ § x 0 ´such that, for all x ´ § x 1 ´such that pn 11 px ´, q ´n2

2 px ´, q ´k2 ´ 2 0 px ´, qq 2 `4n 12 n 21 px ´, q † 0 follows the same pattern. Hence, by application of Lemma 4. 

Y x´,x`, # " pk 2 ⇢ 0 # ´p⇢ 0 # 1 q 1 q `µp# p4q ´2k 2 # 2 `k4 #q in D 1 ppx ´, x `qq. (2) Let f P L 2 ppx
´, x `qq be given, there exists a unique # P H 4 ppx ´, x `qq satisfying the boundary conditions (4.7)-(4.8).

Y x´,x`, # " f in pH 2 ppx ´, x `qqq 1 , (4.23) (3) The operator Y ´1 x´,x`, : L 2 ppx ´, x `qq Ñ L 2 ppx ´, x `qq is compact and self- adjoint.
It is then straightforwad to obtain the following spectral result. The discrete spectrum of MY ´1 x´,x`, M is a sequence of eigenvalues p n p qq n•1 . The function n p q is a continuous function of for all n from the arguments of Lemma 3.2. The problem of finding a characteristic value amounts to solving the equality (1.5) as before. However, no control is possible on n p q when goes to 0. In addition, no control of x 0 ˘and x 1 ˘(because it may depend on ) is available to have a possibility of having estimates of n p q as well. Having an explicit (even if not optimal) criterion on x 1 ˘such that the inequalities of coercivity (4.13)-(4.14) are true is the aim of the refined estimates of the solutions U 1,2 and U 3,4 (deducing in Propositions 4.7, 4.8 below) which follow. That will be postponed to Section 4.4 below.

4.3.

The finding of characteristic value n and Proof of Theorem 2.2. Let ✏ ‹ °0 be given, we look for n P p✏ ‹ , b g L0 q satisfying (1.5). However, unlike the previous case with ⇢ 1 0 • 0 being compactly supported, we do not have here the decrease of n on to obtain the uniqueness of n . Proposition 4.4. For 0 † ✏ ‹ ! 1, there exists N p✏ ‹ q P N such that there is at least one positive n P p✏ ‹ , b g L0 q satisfying (1.5) for each 1 § n § N p✏ ‹ q.

Proof. We still have

lim Ñ b g L 0 n p q °gk 2 . (4.24)
and b n p✏ ‹ q :" inf •✏‹ n p q °0. Notice that tb n p✏ ‹ qu n•1 is a sequence decreasing to 0 as n Ñ 8. Set

N p✏ ‹ q :" sup ! n|b n p✏ ‹ q °✏‹ gk 2 
) P r1, `8q.

For 1 § n § N p✏ ‹ q, lim Ñ✏‹ n p q § lim Ñ✏‹ b n p✏ ‹ q " ✏ ‹ b n p✏ ‹ q † gk 2 . (4.25) 
It then follows from (4.24) and (4.25) that we have at least one desired n P p✏ ‹ , b g L0 q for 1 § n § N p✏ ‹ q. ⇤ Now, we are able to prove Theorem 2.2.

Proof. Let $ n be an eigenfunction associated with n of MY ´1 x`,x´, M. That means

MY ´1 x´,x`, n M$ n " n p n , kq$ n " n gk 2 $ n . Hence, n " Y ´1 x´,x`, n M$ n P H 4 ppx ´, x `qq satisfies n Y x´,x`, n n " gk 2 ⇢ 1 0 n on px ´, x `q.
In order to conclude that n is a solution of (1.2), we then extend n on R by continuity.

Let us take " n in the formulas of U 1,2 from (4.5) and in the formulas of U 3,4 from (4.6). Hence, n is of the form n pxq " B ǹ,1 U 11 px, n q `Bǹ ,2 U 21 px, n q as x • x `and n pxq " B ń,3 U 31 px, n q `Bń ,4 U 41 px, n q as x § x ´for some real constants B ǹ,1 , B ǹ,2 , B ń,3 and B ń,4 . The constants B ǹ,1 , B ǹ,2 are defined by # n px `q " B ǹ,1 U 11 px `, n q `Bǹ ,2 U 21 px `, n q 1 n px `q " B ǹ,1 U 12 px `, n q `Bǹ ,2 U 22 px `, n q.

(4.26)

Similarly, we have the system for B ń,3 and B ń,4 is #

n px ´q " B ń,3 U 31 px ´, n q `Bń ,4 U 41 px ´, n q, 1 n px ´q " B ń,3 U 32 px ´, n q `Bń ,4 U 42 px ´, n q. (4.27)
Since n is not trivial, there exists i • 0 such that piq n px `q is nonzero. It implies that, at least, one of B ǹ,1 and B ǹ,2 is nonzero. Solving (4.26) and (4.27), we obtain that

B ǹ,1 " U 22 px `, n q n px `q ´U 21 px `, n q 1 n px `q pU 11 U 22 ´U 12 U 21 qpx `, n q , that B ǹ,2 " ´U 12 px `, n q n px `q `U 11 px `, n q 1 n px `q pU 11 U 22 ´U 12 U 21 qpx `, n q , that B ń,3 " U 42 px ´, n q n px ´q ´U 41 px ´, n q 1 n px ´q pU 31 U 42 ´U 41 U 32 qpx ´, n q ,
and that

B ń,4 " ´U 32 px ´, n q n px ´q `U 31 px ´, n q 1 n px ´q pU 31 U 42 ´U 41 U 32 qpx ´, n q .
Therefore, we get that n is a regular solution of (1.2) as " n for each 1 § n § N p✏ ‹ q. This ends the proof of Theorem 2.2. ⇤ Remark 4.1. In the forthcoming work [START_REF] Nguyπn | Etude des instabilités non linéaires autour de solutions laminaires de systèmes d'EDP de la mécanique des fluides ou des modèles de propagation en biologie[END_REF], we will use the above operator approach and a more precise hypothesis on ⇢ 0 ´⇢˘t o ensure that the classical Rayleigh-Taylor instability has an infinite number of discrete spectrum. That will complete the study in [12], where the first author only considered the case

⇢ 1 0 ⇢0 has a nondegenerate minimum. Remark 4.2.
(1) For |x ˘| large enough, the investigation of regular solutions to Eq. (1.2) on the real line is equivalent to that one on px ´, x `q with boundary conditions (4.7) and (4.8) at x ˘. More computations are required in the second case due to the lack of compact assumption of ⇢ 1 0 .

(2) For |x ˘| large enough, the problem (1.2) on px ´, x `q with boundary conditions (4.7) and (4.8) is equivalent to a weaker version of (1.2) that can be solved by applying Riesz representation theorem on the bilinear continuous form B x´,x`, and then improving the regularity. (3) Generally speaking, a problem on the real line with decaying solutions at infinity and transversality hypotheses is equivalent to a problem with the compact setting when we have enough decays on the solutions at ˘8.

4.4.

Explicit construction and refined estimates of the decaying solutions at infinity. In the regime • ✏ ‹ °0, we notice again that Rp q is uniformly bounded. So that, as • ✏ ‹ °0, we further derive a control of the inner region px ´, x `q independent of in the following proposition, extending the result of Proposition 4.2. Proposition 4.5. Let ✏ ‹ °0 given and let • ✏ ‹ . Let z `,✏‹ (respectively, z ´,✏‹ ) be the sum of two upper bounds, that are functions decreasing towards 0 at `8 (respectively, at ´8), on the r.h.s. of (4.48) and (4.49) (respectively, (4.52) and (4.53)). There exist positive constants ˘p✏ ‹ q such that, for all x `, x ´such that z `,✏‹ px `q § `p✏ ‹ q and z ´,✏‹ px ´q § ´p✏ ‹ q, (4.28)

we have B x´,x`, is coercive.

The proof of Proposition 4.5 relies on the refined estimates of the bounded solutions of (4.3) near 8, presented in Propositions 4.7, 4.8. Before going to the proof of Propositions 4.7, 4.8, thus Proposition 4.5, we present some materials. Notice from (4.1) that one has Lpx, q " P px, qDpx, qP px, q ´1, where Dpx, q " diagp´k, ´ 0 px, q, k, 0 px, qq, (

P px, q "

¨´k ´3 ´ ´3 0 px, q k ´3 ´3 0 px, q k ´2 ´2 0 px, q k ´2 ´2 0 px, q ´k´1 ´ ´1 0 px, q k ´1 ´1 0 px, q 1 1 1 1 ‹ ‹ ‹ ‹ ‹ ‹ ' (4.30) 
and

P px, q ´1 " µ 2 ⇢ 0 pxq ¨´k 3 2 0 px, q k 2 2 0 px, q k 3 ´k2 k 2 3 0 px, q ´k2 2 0 px, q ´ 3 0 px, q 2 0 px, q k 3 2 0 px, q k 2 2 0 px, q ´k3 ´k2 ´k2 3 0 px, q ´k2 2 0 px, q 3 0 px, q 2 0 px, q ‹ ‹ ‹ ‹ ‹ ‹ ' (4.31) 
The columns of matrix P are denoted by P 1 , P 2 , P 3 , P 4 and P 2 , P 4 depend on px, q.

Note that for every positive k, and µ, P and P ´1 are bounded uniformly in R and P ´1 becomes singular when Ñ 0 and x is fixed.

Then, we set U pxq " P px, qV pxq, (4.3) becomes V 1 pxq " pDpx, q `⇢1 0 pxqM px, qqV pxq, (4.32) where M px, q " P px, q ´1Rp qP px, q ´d 0 pxq d⇢ 0 pxq P px, q ´1 dP px, q d 0 pxq .

Lemma 4.2. Let p✏ ‹ q :" c k 2 `✏‹ ⇢ μ and s :"

d k 2 `c g L 0 ⇢ μ .
For any P r✏ ‹ , b g L0 s, there hold

sup xPR }P px, q} F § p :" max ´1, 1 k , 1 k 2 , 1 k 3 ¯(4.33)
and

sup xPR }M px, q} F § m p✏ ‹ q :" 1 ⇢ ´✏2 ‹ max ´g´k `1 L 0 ¯, g ´k2 
p✏ ‹ q `1 L 0 ¯1 4 p✏ ‹ q c g L 0 max ´2k 2 2 p✏ ‹ q pk ` s q, 5k 2 p✏ ‹ q ` s , k 2 p✏ ‹ q ` s ¯. (4.34) Proof. Due to ✏ ‹ § § b g L0
, we get that p✏ ‹ q † 0 px, q § s for all x P R, it yields (4.33). We move to demonstrate (4.34). Let a ˘p q " gk ˘ 2 , b ˘px, q " gk 2 0 px, q ˘ 2 and c ˘px, q " k ˘ 0 px, q, dpx, q " 5k 2 0 px, q ´ 0 px, q.

Direct computations show that d 0 px, q d⇢ 0 pxq " 2µ

⇢ 1 0 pxq 0 px, q , that P px, q ´1Rp qP px, q " 1 2 2 ⇢ 0 pxq ¨a´k 2 b´ 2 0 ´a`´k 2 b` 2 0 ´a´ 2 0 k 2 ´b´a ` 2 0 k 2 ´bà ´k2 b´ 2 0 ´a`´k 2 b` 2 0 ´a´ 2 0 k 2 ´b´a ` 2 0 k 2 ´b`‹ ‹ ‹ ‹ ‹ ‹ ' px, q
and that P px, q ´1 dP px, q

d 0 px, q " µ 2 ⇢ 0 pxq ¨0 ´2k 2 c` 2 0 0 2k 2 c´ 2 0 0 d 0 ´k2 0 ` 0 0 2k 2 c´ 2 0 0 ´2k 2 c` 2 0 0 ´k2 0 ` 0 0 d ‹ ‹ ‹ ‹ ‹ ‹ ' px, q.
For all x P R, it is clear that

|a ˘p q| § g ´k `1 L 0 ¯, |b ˘px, q| § g ´k2 p✏ ‹ q `1 L 0 ānd that |c ˘px, q| § k ` s , |dpx, q| § 5k 2 p✏ ‹ q ` s .
Therefore Let ↵ ˘pxq and ˘px, q be defined ↵ ˘pxq " ˘kpx ´x ˘q, ˘px, q " ˘ª x x˘ 0 py, qdy. (4.37)

We then study the solutions of (4.32) decaying to 0 at `8.

Proposition 4.6. Eq. (4.32) on px `, `8q admits a unique solution V 1 px, q such that e ´↵`pxq V 1 pxq converges to e 1 as x Ñ `8 and a unique solution V 2 px, q such that e ´ `px, q V 2 pxq converges to e 2 as x Ñ `8. Furthermore, we have the following estimates }e ↵`pxq V 1 px, q´e 1 } 2 § 2 m p✏ ‹ q ¨p⇢ `´⇢ 0 pxqq `⇢0 px `qe ´p p✏‹q´kqpx´x`q `ˇˇ⇢ 0 pxq ´p p✏ ‹ q ´kq ª x

x`⇢ 0 p⌧ qe ´p p✏‹q´kqpx´⌧ q d⌧ ˇˇ‹ ' (4.38) and }e `px, q V 2 px, q ´e2 } 2 § 2 m p✏ ‹ qp⇢ `´⇢ 0 pxqq (4.39) for all x • x`.

Proof. We define the matrices px, q " diagpe ´↵`pxq , e ´ `px, q , e ↵`pxq , e `px, q q, 1 px, q " diagp0, e ´ `px, q , 0, 0q and 2 px, q " diagpe ´↵`pxq , 0, e ↵`pxq , e `px, q q. Then, we consider the equation V 1 px, q " e ´↵`pxq e 1 `ª x

x`

1 px, q ´1p⌧, q⇢ 1 0 p⌧ qM p⌧, qV 1 p⌧, qd⌧ ´ª `8

x 2 px, q p⌧, q ´1⇢ 1 0 p⌧ qM p⌧, qV 1 p⌧, qd⌧.

(4.40)

It can be seen that a solution V 1 of (4.40) satisfies (4.32). We solve (4.40) by the Picard iteration method. Indeed, let V p0q 1 pxq " 0 and

V pj`1q 1 
px, q " e ´↵`pxq e 1 `ª x

x`

1 px, q ´1p⌧, q⇢ 1 0 p⌧ qM p⌧, qV pjq 1 p⌧, qd⌧ ´ª `8

x 2 px, q ´1p⌧, q⇢ 1 0 p⌧ qM p⌧, qV pjq 1 p⌧, qd⌧.

We have that 1 px, q ´1p⌧, q " diagp0, e ´p `px, q´ `p⌧, qq , 0, 0q and that 2 px, q ´1p⌧, q " diagpe ´p↵`p⌧ q´↵`pxqq , 0, e ↵`p⌧ q´↵`pxq , e ´p `px, q´ `p⌧, qq q. Hence, we can estimate for x` § ⌧ § x, } 1 px, q ´1p⌧, q} F § e ´p↵`pxq´↵`p⌧ qq`≥ x ⌧ pk´ 0 psqqds § e ´p↵`pxq´↵`p⌧ qq´p p✏‹q´kqpx´⌧ q (4.41) and for ⌧ • x, } 2 px, q ´1p⌧, q} F § e ´p↵`pxq´↵`p⌧ qq . (4.42) Using (4.41) and (4.42), we get

e ↵`pxq }V pj`1q 1 px, q ´V pjq 1 px, q} 2 § m p✏ ‹ q ª 8
x`e ↵`p⌧ q ⇢ 1 0 p⌧ q}V pjq 1 p⌧, q ´V pj´1q 1 p⌧, q} F d⌧.

Thanks to the induction, we get for all x • x`a nd for all j • 0,

e ↵`pxq }V pj`1q 1 px, q ´V pjq 1 px, q} 2 § ´1 2 ¯j, (4.43) 
yielding the uniform convergence of tV pjq 1 px, qu j•0 on any interval of px `, `8q. Let V 1 px, q be the limit function. V pjq 1 px, q is continuous, so is V 1 px, q. Moreover, (4.43) 

e ↵`pxq V 1 px, q ´e1 " e ↵`pxq ª x x`
1 px, q ´1p⌧, q⇢ 1 0 p⌧ qM p⌧, qV 1 p⌧, qd⌧ ´e↵`pxq ª `8

x 2 px, q p⌧, q ´1⇢ 1 0 p⌧ qM p⌧, qV 1 p⌧, qd⌧.

We make use of ( After integrating by parts, we get ª x x`⇢ 1 0 p⌧ qe ´p p✏‹q´kqpx´⌧ q d⌧ " ´⇢0 px `qe ´p p✏‹q´kqpx´x`q `⇢0 pxq ´p p✏ ‹ q ´kq ª x

x`⇢ 0 p⌧ qe ´p p✏‹q´kqpx´⌧ q d⌧. By considering the eigenvalue ´ 0 px, q of Lpx, q, we continue the idea in Theorem C.1 and mimic the above arguments to the solution V 2 px, q such that e `px, q V 2 pxq converges to e 2 at `8 and enjoying (4.39). That ends the proof of Lemma 4.6. ⇤ Now, we get back to (4.3) to find solutions that are bounded near `8.

Proposition 4.7. Eq. (4.3) on px `, `8q admits

(1) a unique solution U 1 px, q satisfying that as x Ñ `8, e ↵`pxq U 2 px, q converges to p´k ´3, k ´2, ´k´1 , 1q T and that for all x • x`, }e ↵`pxq U 1 px, q ´p´k ´3, k ´2, ´k´1 , 1q T } 2 § 2 p m p✏ ‹ q ¨p⇢ `´⇢ 0 pxqq `⇢0 px `qe ´p p✏‹q´kqpx´x`q `ˇˇ⇢ 0 pxq ´p p✏ ‹ q ´kq ª x

x`⇢ 0 p⌧ qe ´p p✏‹q´kqpx´⌧ q d⌧ ˇˇ‹ ',

(2) a unique solution U 2 px, q satisfying that as x Ñ `8, e `px, q U 2 px, q converges to p´ ´3 `p q, ´2 `p q, ´ ´1 `p q, 1q T and that for all x • x`, }e `px, q U 2 px, q ´p´ ´3 `p q, ´2 `p q, ´ ´1 `p q, 1q T } 2 § ´d gp4 10 p✏ ‹ q `16 12 p✏ ‹ q `9 4 s q 16L 0 µ 2 16 p✏ ‹ q `2 p m p✏ ‹ q ¯p⇢ `´⇢ 0 pxqq. (4.49)

Proof. We define U j px, q " P px, qV j px, qpj " 1, 2q, with V 1 and V 2 are two solutions of (4.32) satisfying (4.38) and (4.39) respectively. It can be seen that U 1 px, q and U 2 px, q are two solution of (4.3).

Note that e ↵`pxq U 1 px, q " P 1 `P px, qpe ↵`pxq V 1 px, q ´e1 q " p´k ´3, k ´2, ´k´1 , 1q T `P px, qpe ↵`pxq V 1 px, q ´e1 q.

( ˇˇ⇢0pxq ´p p✏ ‹ q ´kq ª x x`⇢ 0 p⌧ qe ´p p✏‹q´kqpx´⌧ q d⌧ ˇˇ" 0.

The behavior of U 1 px, q at `8 follows.

To prove (4.49), we write e `px, q U 2 px, q ´p´ ´3 `p q, ´2 `p q, ´ ´1 `p q, 1q T " P 2 px, q ´p´ ´3 `p q, ´2 `p q, ´ ´1 `p q, 1q T `P px, qpe `px, q V 2 px, q ´e2 q.

Since p✏ ‹ q † `p q † s for all P r✏ ‹ , b g L0 s, we bound that }P 2 px, q ´p´ ´3 `p q, ´2 `p q, ´ ´1

`p q, 1q T } 2 2 " 2 µ 2 p⇢ 0 pxq ´⇢`q 2 » - - - 1 2 0 px, q 2 
`p qp 0 px, q ` `p qq 2 `1 2 0 px, q 2 `p q `´ 2 0 px, q ` 0 px, q `p q ` 2 `p q 3 0 px, q 3 `p qp 0 px, q ` `p qq ¯2 fi fl § gp4 10 p✏ ‹ q `16 12 p✏ ‹ q `9 4 s q 16L 0 µ 2 16 p✏ ‹ q p⇢ 0 pxq ´⇢`q 2 .

(4.50)

Meanwhile, as a result of (4.39), }P px, qpe `px, q V 2 px, q ´e2 q} 2 § 2 p m p✏ ‹ qp⇢ `´⇢ 0 pxqq. (4.51)

Thanks to (4.50) and (4.51), we obtain (4.49) hence the behavior of U 2 px, q at `8. Proof of Proposition 4.7 is complete. ⇤

We now fix two positive eigenvalues of Lpx, q, k and 0 px, q and thus follow Theorem C.1 again. We are able to construct solutions of (4.3) that are bounded near ´8 as in Proposition 4.7. Proposition 4.8. Eq. (4.3) on p´8, x´q admits (1) a unique solution U 3 px, q satisfying that as x Ñ ´8, e ↵´pxq U 3 px, q converges to pk ´3, k ´2, k ´1, 1q T and that, for all x § x} e ↵´pxq U 3 px, q ´pk ´3, k ´2, k ´1, 1q T } 2 § 2 p m p✏ ‹ q ¨p⇢ 0 pxq ´⇢´q `⇢0 px ´qe ´p p✏‹q´kqpx´´xq `ˇˇ⇢ 0 pxq ´p p✏ ‹ q ´kq ª xx ⇢ 0 p⌧ qe ´p p✏‹q´kqp⌧ ´xq d⌧ ˇˇ‹ ',

(2) a unique solution U 4 px, q satisfying that as x Ñ ´8, e ´px, q U 4 px, q converges to p ´3 ´p q, ´2 ´p q, ´1 ´p q, 1q T and that for all x § x´, }e ´px, q U 4 px, q ´p ´3 ´p q, ´2 ´p q, ´1 ´p q, 1q T } 2 § ´d gp4 10 p✏ ‹ q `16 12 p✏ ‹ q `9 4 s q 16L 0 µ 2 16 p✏ ‹ q `2 p m p✏ ‹ q ¯p⇢ 0 pxq ´⇢´q . (4.53)

We are now in position to prove Proposition 4.5.

Proof. We recall n ìj (i, j " 1, 2) from (4. 

U 11 U 22 ´U 21 U 12 px `, q " k ` `p q `f1 px `, q 1 `f2 px `, q , 
where |f j px, q| " Opz `,✏‹ pxqq pj " 1, 2q uniformly in P r✏ ‹ , b g L0 s as x Ñ 8. Hence, there exists a constant ⇠ `p✏ ‹ q °0 such that n 12 px `, q • k ` `p q ´⇠`p ✏ ‹ qz `,✏‹ px `q

• k ` p✏ ‹ q ´⇠`p ✏ ‹ qz `,✏‹ px `q.

That implies n 12 px `, q °0 if z `,✏‹ px `q † k ` p✏ ‹ q ⇠ `p✏ ‹ q . (4.56)

We then estimate `px `, q :" pn 11 px `, q ´n2 2 px `, q ´k2 ´ 2 0 px `, qq 2 `4n 12 n 21 px `, q Using (4.48) and (4.49) into (4.54) and (4.55) again, we have n 11 px `, q " k `p q `Opz `,✏‹ px `qq, n 22 px `, q `k2 ` 2 0 px `, q " ´k `p q `Opz `,✏‹ px `qq, n 21 px `, q " ´k `p qpk ` `p qq `Opz `,✏‹ px `qq.

Hence, there exists w `p✏ ‹ q °0 such that `px `, q § ´4k `p qpk 2 `k `p q ` 2 `p qq `w`p ✏ ‹ qz `,✏‹ px `q § ´4k p✏ ‹ qpk 2 `k p✏ ‹ q ` 2 p✏ ‹ qq `w`p ✏ ‹ qz `,✏‹ px `q.

The inequality `px `, q § 0 is equivalent to z `,✏‹ px `q § 4k p✏ ‹ qpk 2 `k p✏ ‹ q ` 2 p✏ ‹ qq w `p✏ ‹ q . (4.57)

Combining (4.56) and (4.57), we take

`p✏ ‹ q " min ´k ` p✏ ‹ q ⇠ `p✏ ‹ q , 4k p✏ ‹ qpk 2 `k p✏ ‹ q ` 2 p✏ ‹ qq w `p✏ ‹ q ¯.
If x `satisfies z `,✏‹ px `q § `p✏ ‹ q, then one has n 12 px `, q °0 • `px `, q, i.e. (4.13). That implies BV x`, p#, #q • 0.

Similarly, we get that, from (4.19), we follow the above arguments to show that there exists ´p✏ ‹ q °0 such that for z ´,✏‹ px ´q § ´p✏ ‹ q, (4.14) holds. It yields BV x´, p#, #q • 0. Proposition 4.5 is proven.

⇤ That implies p 2 1 ` 2 2 qk 2 inf R ⇢ 0 ª R 2 | | 2 dx § ´gk 2 ª R ⇢ 1 0 | | 2 dx.
The positivity of ⇢ 1 0 yields a contradiction, then is real. Using (A.1) again, we further get that

2 ª R ⇢ 0 pk 2 | | 2 `| 1 | 2 qdx § gk 2 ª R ⇢ 1 0 | | 2 dx.
It tells us that is bounded by b g L0 . This finishes the proof of Lemma 2.1.

Appendix B. Differentiability of eigenvalues of self-adjoint and compact operators

The classical perturbation theory from [9, Chapter VII, $3] has shown the continuous property of the eigenvalues for a family of holomorphic self-adjoint operators in an infinite-dimensional Hilbert space. If the operators are only differentiable, we will present a proof of the differentiability of the eigenvalues for compact and self-adjoint operators in an infinite-dimensional Hilbert space deduced from that one for matrix functions in a finite-dimensional space (see [9, Chapter II, $5]).

Theorem B.1. Let I be a closed interval and H be an infinite-dimensional Hilbert space and pAp qq PI be a family of self-adjoint and compact operators in H depending continuously differentiable on . Then, all eigenvalues and all eigenvectors of Ap q are differentiable functions on .

Proof. Let 0 P I be fixed. Since Ap 0 q is a self-adjoint and compact operator in H, the spectrum of Ap 0 q is discrete. Let 0 be an arbitrary eigenvalue of Ap 0 q and E " KerpAp 0 q ´ 0 Id H q, we have the decomposition H " E ' E K . Consequently, for all P I, Ap q " ¨Proj E pAp qProj E q Proj E pAp qProj E K q Proj E K pAp qProj E q Proj E K pAp qProj E K q ' that we will denote by pA ij p qq 1 §i,j §2 for brevity. Notice that Ap 0 q " ¨ 0 Id E 0 0 A 22 p 0 q ', and A 22 p 0 q ´ 0 Id E K is invertible.

Let 0 † " ! 1 and be an eigenvalue of Ap q being close to 0 , i.e. | ´ 0 | † ". We write that Ap q ´ Id " ¨A11 p q ´ Id E A 12 p q A 21 p q A 22 p q ´ Id E K '.

(B.1) If x " py, zq T is a corresponding eigenvector, we obtain # A 11 p qy `A12 p qz " y, A 21 p qy `A22 p qz " z.

Consequently, # pA 11 p q ´ Id E qy `A12 p qz " 0, A 21 p qy `pA 22 p q ´ Id E K qz " 0.

(B.2)

Since A 22 p 0 q ´ 0 Id E K is invertible, we have that A 22 p q ´ 0 Id E K is invertible for | ´ 0 | † ! 1. We further get that A 22 p q ´ Id E K is also invertible for | ´ 0 | † and | ´ 0 | † ". Hence, we deduce that (B.2) is equivalent to # z " ´pA 22 p q ´ Id E K q ´1A 21 p qy, pA 11 p q ´A12 p qpA 22 p q ´ Id E K q ´1A 21 p qqy " y. (B.3)

If y " 0, (B.3) 1 implies z " 0, which is impossible. We have y ‰ 0, this means that if P p 0 ´", 0 `"q is an eigenvalue of Ap q, (B.3) 2 tells us that is also an eigenvalue of Bp , q defined by Bp , q :" A 11 p q ´A12 p qpA 22 p q ´ Id E K q ´1A 21 p q : E Ñ E

Notice that E is finite-dimensional thanks to Riesz's theorem. Bp , q turns out to be a matrix, having eigenvalues j p , qp1 § j § dimEq. Then, there exists j such that j p , q " . It follows from [9, Chapter II, $5] that j p , q and its associated eigenvector are differentiable at 0 , so is . ⇤ Appendix C. Decaying solutions of the linear system of ODEs

We state here the key ingredient for our analysis in Section 4 due to E. A. Theorem C.1. We consider a linear system W 1 pyq " pA `Lpyq `RpyqqW pyq.

(C.1)

Let A be a constant matrix with characteristic roots µ j , j " 1, . . . , n, all of which are distinct. Let the matrix L be differentiable and satisfy Let the roots of detpA `Lpyq ´ I n q " 0 be denoted by j pyq, j " 1, . . . , n. Clearly, by reordering the µ j if necessary, lim yÑ8 j pyq " µ j . For a given h, let We immediately have two remarks from (D.1).

d
(1) In the case of ⇢ 1 0 being compactly supported (supp⇢ 1 0 " r´a, as), we have ª `8 ´8 ⇢ 0 pk 2 ✓ ` 1 ✓ 1 qdx `µ ª `8 ´8 p 2 ✓ 2 `2k 2 ✓ 1 `k4 ✓qdx " B a, p , ✓q. (D.2) That means B x´,x`, is independent of x ˘if and only if x ´ § ´a † a § x `.

(2) In the case ⇢ 1 0 °0 everywhere, for each px ´, x `q, a penalization of B x´,x`, by the term ≥ ⇢ 0 pk 2 ✓ ` 1 ✓ 1 qdx `µ ª `8

x`p k 4 ✓ `2k (D.4)

We have the following remark that we state on px `, `8q (a similar expression holds true for p´8, x ´q) that if is a bounded solution of (1.2) on px `, `8q, we then have from Proposition 4.1 that satisfies (4.8) at x `. We integrate by parts to have that ª `8

x`

2 ✓ 2 dx " 2 ✓ 1 ˇˇ`8

x`´ 3 ✓ ˇˇ`8

x``ª `8 x` p4q ✓dx " ´p 2 ✓ 1 qpx `q `p 3 ✓qpx `q `ª `8

x` p4q ✓dx.

(D.5)

Because of (4.8), we have 2 px `q " ´pn 11 px `q `n1 2 1 px `qq (D.6) and 3 px `q " ´pn 21 px `q `n2 2 1 px `qq. (D.7) Substituting (D.6) and (D.7) into (D.5), we obtain ª `8

x`

2 ✓ 2 dx " pn 11 px `q `n1 2 1 px `qq✓ 1 px `q ´pn 21 px `q `n2 2 1 px `qq✓px `q `ª `8

x` p4q ✓dx.

(D.8)

Using the integration by parts again, we deduce that ª `8

x`

1 ✓ 1 dx " 1 ✓ ˇˇ`8

x`´ª `8

x`

2 ✓dx " ´p 1 ✓qpx `q ´ª `8

x`

2 ✓dx (D.9)

and that ª `8

x`⇢ 0 1 ✓ 1 dx " ´p⇢ 0 1 ✓qpx `q ´ª `8

x`p ⇢ 0 1 q 1 ✓dx. (D.10)

In view of (D.8), (D.9) and (D.10), we obtain ª `8

x`

⇢ 0 pk 2 ✓ ` 1 ✓ 1 qdx `µ ª `8

x`p

k 4 ✓ `2k 2 1 ✓ 1 ` 2 ✓ 2 qdx " ª `8
x`p pk 2 ⇢ 0 ´p⇢ 0 1 q 1 q `µp p4q ´2k 2 2 `k4 qq✓dx `µpn 11 px `q `n1 2 1 px `qq✓ 1 px `q ´µpn 21 px `q `n2 2 1 px `qq✓px `q ´2k 2 µp 1 ✓qpx `q ´ p⇢ 0 1 ✓qpx `q " ª `8

x`g k 2 ⇢ 1 0 ✓dx `BV x`, p , ✓q. 

3 ) at 8

 38 uniformly in P r✏ ‹ , b g L0 s. They allow us to have refined estimates on the coefficients n ȋj pi, j " 1, 2q uniformly in P r✏ ‹ , b g L0 s. Hence, we obtain a criterion for x ´and x `in Proposition 4.5 to fulfill the conditions of Lemma 4.1 and extend Proposition 4.2.

Lemma 3 . 2 .s

 32 For each n, the functions n p q and n are differentiable in terms of P p0, b g L0 s.Proof. The family pY a, q Pp0, b g L 0s is a family of bounded operators owing to Proposition 3.4. It can be seen that the boundary conditions (D.14)-(D.15) differentiable in the parameter will tell us that pY a, q Pp0, is also a family of differentiable operators on by following a generalized treatment of[9, Example 1.15, Chapter VII, $1.6]. Since Y ´1 a, exists for all P p0, b g L0 s, it follows from [9, Theorem 2.23, Chapter IV, $2.6] that Y ´1

( 4 . 4 )

 44 allow us to use [3, Theorem 8.1, Chapter 3] (see Appendix C for the statement)

Lemma 4 . 1 .

 41 Necessary and sufficient conditions to get BV x`, p#, #q • 0 and BV x´, p#, #q • 0 (4.12)

(4. 47 )

 47 Combining (4.45), (4.46) and (4.47) gives (4.38).

  Coddington and N. Levinson [3, Theorem 8.1, Chapter 3].

ª 8 0}L 1 pyq}dy † 8 (C. 2 ) 8 0}Rpyq}dy † 8 .

 88288 and let Lpyq Ñ 0 as y Ñ 8. Let the matrix R be integrable and let ª (C.3)

xx ´gk 2 ⇢ 1 0

 21 ✓dx is necessary to obtain the ODE (1.2) on the whole space.Proof of Proposition D.1. To prove (D.1), we show two following identities ª `8x`

8 ´8 ⇢ 0

 80 D.3) follows from (D.11). Similarly, we obtain (D.4). It follows from (D.3) and (D.4) that ª `pk 2 ✓ `

  1 p˘aq in(3.22) to conclude that # satisfies (D.14) and (D.15). This ends the proof of Proposition 3.2. It follows from Proposition 3.3 that Y a, admits an inverse operator Y ´1 a, from L 2 pp´a, aqq to a subspace of H 4 pp´a, aqq requiring all elements satisfy (D.14)-(D.15), which is symmetric due to Proposition 3.2. We compose Y ´1

	a,

⇤

We have the following proposition on Y ´1 a, . Proposition 3.4. The operator Y ´1 a, : L 2 pp´a, aqq Ñ L 2 pp´a, aqq is compact and self-adjoint.

Proof.

  2 2 `k4 q " Y a, with boundary conditions (D.14)-(D.15) through the Riesz representation theorem. We can also define that by the following way.

Y a, is well defined on DpY a, q " t P C 4 pp´a, aqq, verifies (D.14) ´(D.15)u and that we can extend Y a, over the closure of DpY a, ). Furthermore, Y a, with the domain H 4 pp´a, aqq containing functions that satisfy (D.14)-(D.15) is symmetric and positive. It follows from Friedrichs extension (see [7, Theorem 4.3.1] e.g.) that Y a, admits a self-adjoint extension. 3.3. A sequence of characteristic values. We continue considering P p0, b g L0 s and study the operator S a, :" MY ´1 a,

  .[START_REF] Nguyπn | Linear and nonlinear analysis of the Rayleigh-Taylor system with Navierslip boundary conditions[END_REF]) is a bilinear form on H 2 ppx ´, x `qq, that is continuous and coercive.Proof. Recall n ȋj pi, j " 1, 2q are given in Proposition 4.1 and that BV x´, , BV x`,

are given in (4.10),

(4.11)

. One observes that one needs to prove that

|B x´,x`, p#, %q| § C ‹ }#} H 2 ppx´

,x`qq }%} H 2 ppx´,x`qq (4.16) and that B x´,x`, p#, #q • C ‹ }#} 2 H 2 ppx´,x`qq . (4.17)

  1, (4.17) follow, which ends the proof of Proposition 4.2. Proposition 4.3. Let pH 2 ppx ´, x `qqq 1 be the dual space of H 2 ppx ´, x `qq associated with the norm a B

⇤

Mimicking the arguments in Propositions 3.2, 3.3, 3.4 we obtain the following proposition. x´,x`, p¨, ¨q, there exists a unique operator Y x´,x`, P LpH 2 ppx ´, x `qq, pH 2 ppx ´, x `qq 1 q, that is also bijective, such that

B x´,x`, p#, %q " xY x´,x`, #, %y

(4.22)

for all #, % P H 2 ppx ´, x `qq. Furthermore, we have

(1) For all # P H 2 ppx ´, x `qq,

  p⌧ q}M p⌧, q} F d⌧ § m p✏ ‹ qp⇢ `´⇢ 0 px `qq † p⌧ q}M p⌧, q} F d⌧ § m p✏ ‹ qp⇢ 0 px ´q ´⇢´q †

	, (4.34) follows. Proof of Lemma 4.2 is complete.		⇤
	Let x`b e chosen such that	
	ª `8 x`⇢	1 0 1 2	(4.35)
	and x´b e chosen such that	
	ª x8	⇢ 1 0 1 2	.	(4.36)

  That tells us for x • x`, }V 1 px, q} 2 § 2e ´↵`pxq .

										(4.44)
	Once we have (4.44), we then prove (4.38). Indeed,		
	implies that								
	e ↵`pxq }V	pj`1q 1	px, q} 2 §	j ÿ i"0	e ↵`pxq }V	pi`1q 1	px, q	´V piq 1 px, q} §	j ÿ i"0 ´1 2	¯i.

  } 2 px, q ´1p⌧, q⇢ 1 0 p⌧ qM p⌧, qV 1 p⌧, q} 2 d⌧ § 2 m p✏ ‹ qp⇢ `´⇢ 0 pxqq. ´1p⌧, q⇢ 1 0 p⌧ qM p⌧, qV 1 p⌧, qd⌧ } 2 § 2 m p✏ ‹ q

				4.42) and (4.44) to have that		
	e ↵`pxq	ª `8			
		x					(4.45)
	From (4.41) and (4.44), we obtain that		
		ª	x			
	}e ↵`pxq	x`	1 px, q ª	x`⇢ x	1 0 p⌧ qe ´p p✏‹q´kqpx´⌧ q d⌧.	(4.46)

  .48) is then clear due to the estimate (4.38). According to l'Hôpital's rule, we have

	lim xÑ`8 that implies ≥	x x`⇢ 0 p⌧ qe p p✏‹q´kq⌧ d⌧ e p p✏‹q´kqx	" lim xÑ`8	⇢ 0 pxqe p p✏‹q´kqx p p✏ ‹ q ´kqe p p✏‹q´kqx "	⇢ ` p✏ ‹ q ´k ,
		lim			
	xÑ`8			

  hj pyq " Rep h pyq ´ j pyqq. Suppose all j p1 § j § nq fall into one of two classes H 1 and H 2 , where hj psqds § K py 2 • y 1 • 0q, where h is fixed and K is a constant. Let p h be the eigenvector corresponding to µ h , i.e. Ap h " µ h p h . Hence, there is a solution h of (C.1) and a y 0 P p0, 8q such that Appendix D. A remark on the relation between the formulation on rx ´, x `s and the formulation on R of the viscous RT problem Proposition D.1. For all bounded solution of (1.2) on R and for all ✓ P H 2 pRq, there holds ª `8´8 ⇢ 0 pk 2 ✓ ` 1 ✓ 1 qdx `µ ª `8 ´8 p 2 ✓ 2 `2k2 ✓ 1 `k4 ✓qdx " B x´,x`, p , ✓q `ªRzrx´,x`s gk 2 ⇢ 1 0 ✓dx.

						(D.1)
	ª	y				ª	y2
	0	d hj psqds Ñ 8 as y Ñ 8 and	y1	d hj psqds • ´K py 2 • y 1 • 0q,
	and		ª	y2	
			j P H 2 if d lim y1 yÑ8 h pyqexp "	´ª y y0	h psqds	ı	" p h .

j P H 1 if

  2 1 ✓ 1 ` 2 ✓ 2 qdx

		"	ª `8 x`g	0 ✓dx `BV x`, p , ✓q. k 2 ⇢ 1	(D.3)
	and	ª		

x8 ⇢ 0 pk 2 ✓ ` 1 ✓ 1 qdx `µ ª x8 pk 4 ✓ `2k 2 1 ✓ 1 ` 2 ✓ 2 qdx " ª x8 gk 2 ⇢ 1 0 ✓dx `BV x`, p , ✓q.

  1 ✓ 1 qdx `µ ª `8 ´8 p 2 ✓ 2 `2k 2 ✓ 1 `k4 ✓qdx

	" "	ª ª	x8 gk 2 ⇢ 1 0 ✓dx x8 gk 2 ⇢ 1 0 ✓dx	`8 x`g `ª `ª `8 x`g	0 ✓dx `Bx´,x`, p , ✓q. k 2 ⇢ 1 ´pk 4 ✓ `2k 2 1 ✓ 1 ` 2 ✓ 2 qdx xx	(D.12)
	It yields (D.1).			⇤

k 2 ⇢ 1 0 ✓dx `BV x´, p , ✓q `BV x`, p , ✓q `ª xx ´ ⇢ 0 pk 2 ✓ ` 1 ✓ 1 qdx `µ ª
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Appendix A. Proof of Lemma 2.1

Multiplying by on both sides of (1.2) and then integrating by parts, we obtain that

Suppose that " 1 `i 2 , then one deduces from (A.1) that

and that

Equivalently, .4)