Thomas Beck

Frédéric Boniol

Jérôme Ermont

Luc Maillet

Franck Wartel

An automata-based method for interference analysis in multi-core processors

INTRODUCTION

Multi-core processors (MCPs) provide huge gains that allows replacing several embedded single-core processors with a smaller number of computing platforms. However, such processors face important challenges to their integration in safety-critical systems. Due to resource sharing, unwanted interferences may exist between the tasks hosted by the different cores that can cause unexpected delays.

Certification authorities have published a set of recommendations [2] for designers who want to certify a MCP hosting a set of safety-critical tasks. Basically, this entails a two steps process: First, the designer must identify all the interferences that can occur between the tasks. Second, he must show that the severity of the interferences is compliant with the real-time requirements of the tasks. Many works have faced this interference challenge in MCPs. The reader can refer to [START_REF] Maiza | A survey of timing verification techniques for multi-core real-time systems[END_REF] for a large and complete overview of the scientific work on timing verification for MCPs. Among this work, a recent one [START_REF] Carle | Reducing timing interferences in real-time applications running on multicore architectures[END_REF] has shown that it is possible to characterise tasks running on MCPs by a timed sequence of Time Interest Points (TIPS), i.e., a sequence of instructions on which the tasks can suffer from interference.

We focus on the issue of the identification of interferences. We refine the notion of interference with two finer definitions, related to the type of the components causing the interference. And, considering that tasks can be abstracted by timed sequences of TIPS, we develop an the approach automata-based method, inspired from [START_REF] Gustavsson | Towards WCET analysis of multicore architectures using UPPAAL[END_REF], to count the interferences that can occur between the tasks hosted by the processor.

METHOD OVERVIEW

The landscape in which the method is involved is shown in Figure 1. Within this landscape, the scope of the paper is highlighted by the gray box. Let us consider a set of tasks τi hosted by a MCP (on the left of the Figure). The objective of the method is to compute an upper bound of the extra timing penalty associated with each τi due to interference occurring in the architecture (on the right part of the Fig- ure). For that purpose, we compute an upper bound of the maximal interference number (noted INi) from which each τi can suffer. The approach relies on the analysis method proposed by Carle et al. in [START_REF] Carle | Reducing timing interferences in real-time applications running on multicore architectures[END_REF] (on the left part of Figure 1). This method is based on the TIPS notion, which are load and store instructions that generate and suffer from interference. By means of static analysis, Carle et al. show that it is possible to extract a temporal segment sequence, as the one shown Figure 2, from the binary code of a task . Each segment is characterised by a duration (noted di,j for task τi and segment j), and the maximal number of memory requests leaving the core and sent to the bus (noted µi,j). These requests correspond to load and store operations that are not always hit in the L1 cache of the core hosting the task. For instance in Figure 2, τ1 makes zero memory request in segment one, and at most three requests in segment two. Such a sequence defines a bus access profile of the task under consideration. It characterises its worst-case memory activity that can lead to interference. As shown in Figure 1 we take these profiles as inputs, and we study an automatabased method to count, by model-checking, the interference that can occur for each τi .

DEFINITIONS

Let us consider an archetypal MCP architecture depicted Figure 3. This processor is composed of (1) two cores (C0 and C1) owning their private cache L1, (2) a shared cache L2, (3) a DDR memory composed of one bank B, and (4) a shared bus allowing the two cores to address the L2 cache and the DDR. Each core Ci hosts a task called τi.

Let us suppose that τ0 and τ1 are characterised by the profiles shown in Figure 4. They are divided into three segments. τ0 and τ1 can compete to access the memory in the first segment (from 0 to 10). In this segment, each task sends at most 2 memory requests. In the next two segments, either τ0 or τ1 does not send any request, leaving the memory path available for the other task.

Requests from τ0 and τ1 could collide in the bus. If they arrive at the same time, only one of them can pass, the second one must wait. The effect of the interference is a delay caused by a simultaneous collision.

According to the request path of τ0 and τ1, a second interference could arrive in L2. However, the intrinsic nature of this interference is different. Let us imagine for instance that τ0 reads a data from the bank B and put it in the L2 cache. As long as the data remains in the cache, each time τ0 accesses it, its request path ends with L2. Let us imagine now that τ1 reads another data from the bank B. According to the cache policy, data of τ1 could evict data of τ0 from L2. Consequently, the next time τ0 would try to access its data, it should have to lengthen its request path to the memory. The effect is similar to the bus interference: τ0 would suffer from a longer delay. However, the scenario of interference is different. There is no simultaneous collision. The two requests can occur at different time. In other words, τ1 provokes a delayed interference on τ0. As shown in this example, in order to analyze the interferences that can occur, it is necessary to identify the types of HW components. We consider two types of components: transport and storage component. As explained below instantaneous interferences can occur in AHB Bus Figure 3. And a delayed interference can occur in L2. In the same way, a second delayed interference can occur in B. Indeed, a memory bank is composed of a row buffer acting as a local cache. It contains the last block of accessed data. Hence, requests to data in the row buffer (one talks about "row hit" requests) are faster than request to data not in the row ("row miss" requests). When a "row miss" occurs, the requested data has to be fetched in the row buffer, making the request time longer. As in cache, the content of the row buffer depends on previous requests. Hence, banks memory are storage components that can cause delayed interferences.

MODELING

To model the interferences, we define two class of automata: automata for HW components, and automata for SW tasks.

HW components

The role of the HW component automata is to model the answers of the component to requests sent by the tasks. It determines if a request creates an interference in the component and notify the software automaton of this result. As said in section 3, we consider two types of HW components: transport and storage components.

Transport component

According to definition 1 a transport component is modeled by the automaton Figure 5. It is composed of three locations (Free, Occupied and Check), and three internal data (waiting queue, nb elmt, and bus state):

• waiting queue is an internal list containing the identifiers of the tasks waiting for the component.

• nb elmt is the number of tasks currently waiting for the component (including the task currently using it).

The three locations of this automaton are:

• Free: This location is the initial one. The component is free and waits for a request. When a request arrives the location changes to Occupied, and the function update bus is called. This function updates the internal variables of the automaton to let it know which task is calling it.

• Occupied : The component is already occupied by a request. Once the request is completed the next location is Check if the internal waiting queue is not empty (nb elmt = 0) and Free if the queue is empty (nb elmt = 0). All outgoing transitions of the Occupied location are waiting for the synchronization event end req. This event is sent by a task automaton when it releases the component after its request has been completed by the memory.

• Check : This location's purpose is to switch the task whose request is handled by the component. It conversely within an unfavorable one (the interference case), when receiving a request. This notion of favorable delay is related to the task asking for the component. The automaton is composed of four locations:

• IDLE models the state where the component does not handle any request. It is waiting for a memory access request. When receiving it, it reaches Check delay and it calls the function check delay which determines whether there is an interference or not (i.e., whether the component is in an internal favorable state or not). check delay compares the state of the component with the state of the component if the task is alone. Further explanations on this function are presented in the section 5.

• Check delay is a transient location. Its role is to reach Normal delay or Interference delay according to the value of delay.

• Normal delay models the normal response delay of request. Once the request is completed the component returns to IDLE and waits for another request. Before returning to the IDLE, the automaton is waiting for an occurrence of end req sent by the task automaton processing the current request. When taking the transition to IDLE, the update st comp function is called to update the internal state variables of the component.

• Interferences delay: When an interference occurs the response delay is extended. This location represents the added delay induced by the interference. Thereby the next location has to be Normal delay because an interference is represented by an extra time added to the response delay.

Task automaton

A task automaton models the bus access profile of the task and the path of the requests through the HW components of the processor. Figure 7 gives the automaton of the task τ0. It is composed of three parts. The first (locations Request bus, Result bus, and Wainting bus) models the answer of the bus to the request. The second part (locations Request L2, Result L2, and Wainting L2) models the answer of the L2 cache. And and the last part models the answer of the DDR memory.

The initial location of the automaton is an Idle location. It waits for a start (or a end) event from the scheduler (that is, the automaton implementing the sequence of the segment of the task profile). When receiving a start event, the local counter nb req is set to zero. And the automaton reaches Request bus. The three parts follow then the same pattern composed of three locations:

• Request cmp (where cmp is bus, L2, or DDR) models the state in which the task has sent the request to the component cmp and is waiting to know if the request generates an interference. If there is an interference the next location is Waiting cmp. If there isn't an interference the next location is Results cmp.

• Waiting cmp models the extra delay the task encounters due to the interference.

• Results cmp models the case in which the request is normaly completed (with or without interference). The

Scheduler automaton

The last automaton models the sequences of segments of the task profiles. For instance, the profiles of τ0 and τ1 shown in Figure 4 are modeled by the automaton in Figure 8. From the initial location, the Scheduler starts the first segment of τ0 and τ1. Then it waits for an occurence of synchro sent by τ0 and τ1 at the end of their segment. When receiving them, the scheduler notifies the end of the first segment, and starts the second one. And so on until the last segment (when num segt == nb segt).

INTERFERENCE ANALYSIS

To determine when an interference occurs we instrument each component automaton with an algorithm to decide whether or not the task accessing the component is suffering from an interference. These algorithms dependent on the type of the component under consideration.

Transport component. To count interferences in transport components is very simple: there is an interference iff the component is occupied and another request is waiting for it.

Storage component. For storage components, the decision algorithm is more complex. To determine if an access from a task X is affected by an access from a task Y, we not only maintain the "actual" state of the component but also the "virtual" state of the component for each task as if the task were alone. Such a "virtual" view of the component is only paying attention to accesses from the task it is associated to. It means that an access from task X to the storage component affects both the "actual" view and its "virtual" view of the component, but not the "virtual" view associated to task Y. Thereby, for each access to a storage component we are able to determine if there is interference or not by comparing the virtual view of the task with the actual view of the storage component. If there is a difference between these two views it means that an interference occurred. This algorithm is implemented by the function check delay() of each storage automaton. In the example of a L2 direct mapped cache with 16.384 lines of 32 bytes, our algorithm works on:

NEXT WORK

The next step is to conduct a set of experiments to validate the method. We plan to explore the GR740 processor: a quad-core processor based on SPARC V8 architecture. After this validation, the second work will consider finer placement and replacement policies in our cache model in order to capture more realistic configurations.

Figure 1 :

 1 Figure 1: Approach overview (the gray box highlights the scope of the paper, while dashed lines are out of the scope)

Figure 3 :Figure 4 :

 34 Figure 3: A simplified multi-core platform

Definition 1 .

 1 (Transport component) A transport component is a component whose the internal state only depends on the presence or absence of a request using it. If a request is using the component, then it is "occupied". Otherwise, it is "free". Definition 2. (Storage component) A storage component is a component whose the internal state depends on previous requests (including the current one if any). AHB Bus of Figure 3 is a transport component. Examples of "storage components" include caches and memory banks. The content of a cache depends on the previous memory requests that used it. It has a direct effect on the length of next memory request paths. Following the distinction, we refine the notion of interference. Definition 3. An instantaneous interference occurs whenever at least two requests sent by two different tasks collide on a same transport component. Definition 4. A delayed interference occurs whenever a request r sent by a task τ uses a storage component whose internal state has been made non-compliant with τ by another task τ .

 is a transient location reached when the current task occupying the component is releasing it and when another one is waiting for the component. The role of location is to trigger the transition returning to Occupied to process the next request. Once again the update bus function is called when returning to Occupied to change the internal variables of the component.

Figure 5 :

 5 Figure 5: Automaton of a transport component

Figure 7 :

 7 Figure 7: Automaton for task τ0 of example Figure 3

Figure 8 :

 8 Figure 8: Scheduler automaton

(1)

 1 an array cache array containing 16 384 lists of 32 bytes representing the current state of the L2 cache ; (2) one similar array task i array for each task i representing the virtual state of the cache if the task were alone. Let us consider two tasks. Imagine that task 1 requests a data stored in line 250. cache array[250] and task 1 array[250] are updated. Then task 2 accesses the same line, cache array[250] and task 2 array[250] are modified. When task 1 accesses again line 250, task 1 array[250] and cache array[250] are different meaning that task 1 suffers from an interference. Interference analysis by model-checking. To compute an upper bound of the number of interferences experienced by each task in each component for each segment, we use the UPPAAL model-checker. For instance, let us consider nb interf L2[0,τ0] the number of interference in the first segment of τ0 in cache L2 . UPPAAL shows that ∀[](nb interf L2[0,τ0] ≤ 3) that is, 3 is an upper bound of nb interf L2[0,τ0]. This computation takes less than one second (UPPAAL 4.1.24 running on a 3,2 GHz Apple M1 Pro with 32 Go DDR5).