
HAL Id: hal-03857409
https://hal.science/hal-03857409v1

Submitted on 17 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An automata-based method for interference analysis in
multi-core processors

Thomas Beck, Frédéric Boniol, Jérôme Ermont, Franck Wartel, Luc Maillet

To cite this version:
Thomas Beck, Frédéric Boniol, Jérôme Ermont, Franck Wartel, Luc Maillet. An automata-based
method for interference analysis in multi-core processors. 15th Junior Researcher Workshop on Real-
Time Computing (JRWRTC 2022) @ RTNS 2022, Jun 2022, Paris, France. pp.1-4. �hal-03857409�

https://hal.science/hal-03857409v1
https://hal.archives-ouvertes.fr


An automata-based method for interference analysis in
multi-core processors

Thomas Beck
Airbus Defence and Space

Toulouse, France

Frédéric Boniol
ONERA

Toulouse, France

Jérôme Ermont
IRIT - INP - ENSEEIHT

Toulouse, France

Luc Maillet
Airbus Defence and Space

Toulouse, France

Franck Wartel
Airbus Defence and Space

Toulouse, France

1. INTRODUCTION
Multi-core processors (MCPs) provide huge gains that al-

lows replacing several embedded single-core processors with
a smaller number of computing platforms. However, such
processors face important challenges to their integration in
safety-critical systems. Due to resource sharing, unwanted
interferences may exist between the tasks hosted by the dif-
ferent cores that can cause unexpected delays.

Certification authorities have published a set of recom-
mendations [2] for designers who want to certify a MCP
hosting a set of safety-critical tasks. Basically, this entails
a two steps process: First, the designer must identify all
the interferences that can occur between the tasks. Second,
he must show that the severity of the interferences is com-
pliant with the real-time requirements of the tasks. Many
works have faced this interference challenge in MCPs. The
reader can refer to [4] for a large and complete overview of
the scientific work on timing verification for MCPs. Among
this work, a recent one [1] has shown that it is possible to
characterise tasks running on MCPs by a timed sequence of
Time Interest Points (TIPS), i.e., a sequence of instructions
on which the tasks can suffer from interference.

We focus on the issue of the identification of interferences.
We refine the notion of interference with two finer defini-
tions, related to the type of the components causing the
interference. And, considering that tasks can be abstracted
by timed sequences of TIPS, we develop an the approach
automata-based method, inspired from [3], to count the in-
terferences that can occur between the tasks hosted by the
processor.

2. METHOD OVERVIEW
The landscape in which the method is involved is shown

in Figure 1. Within this landscape, the scope of the paper is
highlighted by the gray box. Let us consider a set of tasks τi
hosted by a MCP (on the left of the Figure). The objective
of the method is to compute an upper bound of the extra
timing penalty associated with each τi due to interference
occurring in the architecture (on the right part of the Fig-
ure). For that purpose, we compute an upper bound of the
maximal interference number (noted INi) from which each
τi can suffer. The approach relies on the analysis method
proposed by Carle et al. in [1] (on the left part of Figure
1). This method is based on the TIPS notion, which are

load and store instructions that generate and suffer from in-
terference. By means of static analysis, Carle et al. show
that it is possible to extract a temporal segment sequence,
as the one shown Figure 2, from the binary code of a task .
Each segment is characterised by a duration (noted di,j for
task τi and segment j), and the maximal number of memory
requests leaving the core and sent to the bus (noted µi,j).
These requests correspond to load and store operations that
are not always hit in the L1 cache of the core hosting the
task. For instance in Figure 2, τ1 makes zero memory re-
quest in segment one, and at most three requests in segment
two. Such a sequence defines a bus access profile of the task
under consideration. It characterises its worst-case memory
activity that can lead to interference. As shown in Figure 1
we take these profiles as inputs, and we study an automata-
based method to count, by model-checking, the interference
that can occur for each τi .

3. DEFINITIONS
Let us consider an archetypal MCP architecture depicted

Figure 3. This processor is composed of (1) two cores (C0

and C1) owning their private cache L1, (2) a shared cache
L2, (3) a DDR memory composed of one bank B, and (4) a
shared bus allowing the two cores to address the L2 cache
and the DDR. Each core Ci hosts a task called τi.

Let us suppose that τ0 and τ1 are characterised by the
profiles shown in Figure 4. They are divided into three seg-
ments. τ0 and τ1 can compete to access the memory in the
first segment (from 0 to 10). In this segment, each task sends
at most 2 memory requests. In the next two segments, ei-
ther τ0 or τ1 does not send any request, leaving the memory
path available for the other task.

Requests from τ0 and τ1 could collide in the bus. If they
arrive at the same time, only one of them can pass, the
second one must wait. The effect of the interference is a
delay caused by a simultaneous collision.

According to the request path of τ0 and τ1, a second in-
terference could arrive in L2. However, the intrinsic nature
of this interference is different. Let us imagine for instance
that τ0 reads a data from the bank B and put it in the
L2 cache. As long as the data remains in the cache, each
time τ0 accesses it, its request path ends with L2. Let us
imagine now that τ1 reads another data from the bank B.
According to the cache policy, data of τ1 could evict data



SW Task τ1

SW Task τ2

. . .

SW Task τn

τ1 bus
access profile

τ2 bus
access profile

. . .

τn bus
access profile

The TIPS
method [1]

Memory access
analyser

Contribution of the paper

Behavioural interference
model (UPPAAL

automata network)

τ1 profile

τ2 profile

. . .

τn profile

H
W

co
m

p
o
n
en

ts

Multicore HW platform

IN1 (max interference
number for τ1)

IN2 (max interference
number for τ2)

. . .

INn (max interference
number for τn)

τ1 timing inter-
ference penalty

τ2 timing inter-
ference penalty

. . .

τn timing inter-
ference penalty

backward propagation of the timing interference penalties

Figure 1: Approach overview (the gray box highlights the scope of the paper, while dashed lines are out of the scope)

Figure 2: Example of bus access profile (excerpt from [1])

AHB Bus
Shared

cache L2

DDR

Bank B

data d0

data d1Cache L10

Core C0

Task τ0

Cache L11

Core C1

Task τ1

Figure 3: A simplified multi-core platform

Figure 4: Bus access profile of τ0 and τ1

of τ0 from L2. Consequently, the next time τ0 would try to
access its data, it should have to lengthen its request path
to the memory. The effect is similar to the bus interference:
τ0 would suffer from a longer delay. However, the scenario
of interference is different. There is no simultaneous colli-
sion. The two requests can occur at different time. In other
words, τ1 provokes a delayed interference on τ0.

As shown in this example, in order to analyze the inter-
ferences that can occur, it is necessary to identify the types
of HW components. We consider two types of components:
transport and storage component.

Definition 1. (Transport component) A transport compo-
nent is a component whose the internal state only depends
on the presence or absence of a request using it. If a request
is using the component, then it is “occupied”. Otherwise, it
is “free”.

Definition 2. (Storage component) A storage component

is a component whose the internal state depends on previous
requests (including the current one if any).

AHB Bus of Figure 3 is a transport component. Examples
of “storage components” include caches and memory banks.
The content of a cache depends on the previous memory
requests that used it. It has a direct effect on the length of
next memory request paths. Following the distinction, we
refine the notion of interference.

Definition 3. An instantaneous interference occurs when-
ever at least two requests sent by two different tasks collide
on a same transport component.

Definition 4. A delayed interference occurs whenever a
request r sent by a task τ uses a storage component whose
internal state has been made non-compliant with τ by an-
other task τ ′.

As explained below instantaneous interferences can occur
in AHB Bus Figure 3. And a delayed interference can oc-
cur in L2. In the same way, a second delayed interference
can occur in B. Indeed, a memory bank is composed of
a row buffer acting as a local cache. It contains the last
block of accessed data. Hence, requests to data in the row
buffer (one talks about “row hit” requests) are faster than
request to data not in the row (“row miss” requests). When
a “row miss” occurs, the requested data has to be fetched
in the row buffer, making the request time longer. As in
cache, the content of the row buffer depends on previous re-
quests. Hence, banks memory are storage components that
can cause delayed interferences.

4. MODELING
To model the interferences, we define two class of au-

tomata: automata for HW components, and automata for
SW tasks.

4.1 HW components
The role of the HW component automata is to model the

answers of the component to requests sent by the tasks. It
determines if a request creates an interference in the com-
ponent and notify the software automaton of this result. As
said in section 3, we consider two types of HW components:
transport and storage components.



4.1.1 Transport component
According to definition 1 a transport component is mod-

eled by the automaton Figure 5. It is composed of three
locations (Free, Occupied and Check), and three internal
data (waiting queue, nb elmt, and bus state):

• waiting queue is an internal list containing the identi-
fiers of the tasks waiting for the component.

• nb elmt is the number of tasks currently waiting for
the component (including the task currently using it).

The three locations of this automaton are:

• Free: This location is the initial one. The component
is free and waits for a request. When a request arrives
the location changes to Occupied, and the function up-
date bus is called. This function updates the internal
variables of the automaton to let it know which task
is calling it.

• Occupied : The component is already occupied by a
request. Once the request is completed the next lo-
cation is Check if the internal waiting queue is not
empty (nb elmt 6= 0) and Free if the queue is empty
(nb elmt = 0). All outgoing transitions of the Occu-
pied location are waiting for the synchronization event
end req. This event is sent by a task automaton when
it releases the component after its request has been
completed by the memory.

• Check : This location’s purpose is to switch the task
whose request is handled by the component. It is a
transient location reached when the current task oc-
cupying the component is releasing it and when an-
other one is waiting for the component. The role of
location is to trigger the transition returning to Oc-
cupied to process the next request. Once again the
update bus function is called when returning to Occu-
pied to change the internal variables of the component.

Figure 5: Automaton of a transport component

Figure 6: Automaton of a storage component

4.1.2 Storage component automata
Storage component generates delayed interferences, mean-

ing that a task can interfere with another one by modifying
the state of component. Storage components are modeled by
the automaton Figure 6. The idea is to determine if the com-
ponent reacts within a favorable delay (the normal case), or

conversely within an unfavorable one (the interference case),
when receiving a request. This notion of favorable delay is
related to the task asking for the component. The automa-
ton is composed of four locations:

• IDLE models the state where the component does not
handle any request. It is waiting for a memory ac-
cess request. When receiving it, it reaches Check delay
and it calls the function check delay which determines
whether there is an interference or not (i.e., whether
the component is in an internal favorable state or not).
check delay compares the state of the component with
the state of the component if the task is alone. Fur-
ther explanations on this function are presented in the
section 5.

• Check delay is a transient location. Its role is to reach
Normal delay or Interference delay according to the
value of delay.

• Normal delay models the normal response delay of re-
quest. Once the request is completed the component
returns to IDLE and waits for another request. Before
returning to the IDLE, the automaton is waiting for
an occurrence of end req sent by the task automaton
processing the current request. When taking the tran-
sition to IDLE, the update st comp function is called to
update the internal state variables of the component.

• Interferences delay : When an interference occurs the
response delay is extended. This location represents
the added delay induced by the interference. Thereby
the next location has to be Normal delay because an
interference is represented by an extra time added to
the response delay.

4.2 Task automaton
A task automaton models the bus access profile of the task

and the path of the requests through the HW components
of the processor. Figure 7 gives the automaton of the task
τ0. It is composed of three parts. The first (locations Re-
quest bus, Result bus, and Wainting bus) models the answer
of the bus to the request. The second part (locations Re-
quest L2, Result L2, and Wainting L2 ) models the answer
of the L2 cache. And and the last part models the answer
of the DDR memory.

The initial location of the automaton is an Idle location.
It waits for a start (or a end) event from the scheduler (that
is, the automaton implementing the sequence of the segment
of the task profile). When receiving a start event, the local
counter nb req is set to zero. And the automaton reaches
Request bus. The three parts follow then the same pattern
composed of three locations:

• Request cmp (where cmp is bus, L2, or DDR) models
the state in which the task has sent the request to the
component cmp and is waiting to know if the request
generates an interference. If there is an interference
the next location is Waiting cmp. If there isn’t an
interference the next location is Results cmp.

• Waiting cmp models the extra delay the task encoun-
ters due to the interference.

• Results cmp models the case in which the request is
normaly completed (with or without interference). The



Figure 7: Automaton for task τ0 of example Figure 3

Figure 8: Scheduler automaton

next location is then the Request cmp of the next com-
ponent or Idle if the component is a storage component
(L2 or DDR) and if the requested data is present in
the component. When the outgoing transition of this
location is taken, the task automaton sends an event
to the component automaton to notify it of the end of
the current request.

4.3 Scheduler automaton
The last automaton models the sequences of segments of

the task profiles. For instance, the profiles of τ0 and τ1 shown
in Figure 4 are modeled by the automaton in Figure 8. From
the initial location, the Scheduler starts the first segment of
τ0 and τ1. Then it waits for an occurence of synchro sent
by τ0 and τ1 at the end of their segment. When receiving
them, the scheduler notifies the end of the first segment,
and starts the second one. And so on until the last segment
(when num segt == nb segt).

5. INTERFERENCE ANALYSIS
To determine when an interference occurs we instrument

each component automaton with an algorithm to decide
whether or not the task accessing the component is suffer-
ing from an interference. These algorithms dependent on
the type of the component under consideration.

Transport component. To count interferences in transport
components is very simple: there is an interference iff the
component is occupied and another request is waiting for it.

Storage component. For storage components, the decision
algorithm is more complex. To determine if an access from
a task X is affected by an access from a task Y, we not only
maintain the “actual” state of the component but also the
“virtual” state of the component for each task as if the task
were alone. Such a “virtual” view of the component is only
paying attention to accesses from the task it is associated
to. It means that an access from task X to the storage com-
ponent affects both the “actual” view and its “virtual” view
of the component, but not the “virtual” view associated to
task Y. Thereby, for each access to a storage component we
are able to determine if there is interference or not by com-
paring the virtual view of the task with the actual view of
the storage component. If there is a difference between these

two views it means that an interference occurred. This algo-
rithm is implemented by the function check delay() of each
storage automaton. In the example of a L2 direct mapped
cache with 16.384 lines of 32 bytes, our algorithm works on:
(1) an array cache array containing 16 384 lists of 32 bytes
representing the current state of the L2 cache ; (2) one simi-
lar array task i array for each task i representing the virtual
state of the cache if the task were alone. Let us consider
two tasks. Imagine that task 1 requests a data stored in line
250. cache array[250] and task 1 array[250] are updated.
Then task 2 accesses the same line, cache array[250] and
task 2 array[250] are modified. When task 1 accesses again
line 250, task 1 array[250] and cache array[250] are differ-
ent meaning that task 1 suffers from an interference.

Interference analysis by model-checking. To compute an
upper bound of the number of interferences experienced by
each task in each component for each segment, we use the
UPPAAL model-checker. For instance, let us consider
nb interf L2[0,τ0] the number of interference in the first seg-
ment of τ0 in cache L2 . UPPAAL shows that

∀[](nb interf L2[0,τ0] ≤ 3)

that is, 3 is an upper bound of nb interf L2[0,τ0]. This com-
putation takes less than one second (UPPAAL 4.1.24 run-
ning on a 3,2 GHz Apple M1 Pro with 32 Go DDR5).

6. NEXT WORK
The next step is to conduct a set of experiments to vali-

date the method. We plan to explore the GR740 processor:
a quad-core processor based on SPARC V8 architecture. Af-
ter this validation, the second work will consider finer place-
ment and replacement policies in our cache model in order
to capture more realistic configurations.

7. REFERENCES
[1] Thomas Carle and Hugues Cassé. Reducing timing

interferences in real-time applications running on
multicore architectures. In 18th International Workshop
on Worst-Case Execution Time Analysis, 2018.

[2] Certification Authorities Software Team. Multi-core
Processors - Position Paper. Technical Report CAST
32-A, November 2016.

[3] Andreas Gustavsson, Andreas Ermedahl, Björn Lisper,
and Paul Pettersson. Towards WCET analysis of
multicore architectures using UPPAAL. In 10th
International Workshop on Worst-Case Execution
Time Analysis, 2010.

[4] Claire Maiza, Hamza Rihani, Juan Maria Rivas, Joël
Goossens, Sebastian Altmeyer, and Robert I. Davis. A
survey of timing verification techniques for multi-core
real-time systems. ACM Comput. Surv.,
52(3):56:1–56:38, 2019.


