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Completeness in Static Analysis by Abstract
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David Monniaux
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Abstract

Static analysis by abstract interpretation is generally designed to be
“sound”, that is, it should not claim to establish properties that do not
hold—in other words, not provide “false negatives” about possible bugs. A
rarer requirement is that it should be “complete”, meaning that it should
be able to infer certain properties if they hold. This paper describes a
number of practical issues and questions related to completeness that I
have come across over the years.

1 Introduction

The concept of completeness, under several definitions, permeates math-
ematical logic. A proof system is deemed complete with respect to a
semantics if it can prove all properties that are true in this semantics.
For instance, Gödel’s completeness theorem states that first-order logic
(that is, any reasonable proof system for it) can prove any property true
in all models. A decision procedure for a logic (that is, a procedure that
answers “true” or “false” for any formula in the logic F ) is expected to
be sound (it does not declare to be true formulas that are not true) and
complete (it declares to be true all formulas that are true).

The concepts of completeness (a) for a proof system with respect to
a class of properties (b) for a procedure that searches for proofs of such
properties within such a proof system are related, but distinct. Obviously,
if a proof system is incomplete, then so is any procedure that searches for
proofs within that system. However, it is possible to have a complete proof
system and an incomplete procedure for searching within it, for instance
for practical efficiency reasons.

In abstract interpretation, completeness, at least at the global level
(proving properties of whole programs), is often forgone straight from the
start when designing the abstraction (for instance, interval arithmetic is
used even though it is obvious that it cannot prove safety in general, even
if the property to prove is itself an interval), and there thus may be little
reluctance to adding further incompleteness in the solving procedure by
using approaches such as widening operators [5, 6]. Yet, it is interest-
ing to control this further incompleteness, both from a theoretical and
a practical points of view. Completeness in the solving method ensures
some predictability in the analysis outcome, while the brittleness of some
incomplete approaches (the approach succeeds or fails depending on seem-
ingly inconsequential aspects of the program and the property) surprises
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end users: for instance, providing more precise information on the pre-
condition of a program may prevent the analysis procedure from proving
a property that it could prove with a less precise precondition.

In this paper, I discuss various instances of completeness and incom-
pleteness that I have came across, without any pretense of thorough the-
oretical discussion and, ironically, no pretense of completeness. For more
theoretical discussion, Giacobazzi et al. [14, Sec. 7] surveyed the literature
extensively. For a study of completeness with respect to the relationship
between the semantics and the abstract domain, and constructions to
make the domain complete, see [13].

2 Completeness of the Abstraction: the

Case of LRU Caches

It is well-known that it is equivalent to (a) evaluate an integer multivariate
polynomial over integer inputs, then take the final result modulo N (b) do
the same computation but reducing modulo N at every step.1 Due to a
strong mathematical property (a ring morphism), it is possible to replace
an expensive computation, possibly involving large numbers, by a simpler
one that abstracts the expensive one by operating on small abstractions
of the data.

This example is ideal, and one could doubt the existence of complete
abstractions that significantly simplify computations for nontrivial pro-
gram analysis problems; yet we came across one such example, where we
perform an exact analysis defined by a composition of exact abstractions
and an exact solving procedure.

All current processors use some form of cache memory: frequently
accessed code or data is retained in fast memory close to the processor
core, avoiding much slower accesses to main memory. Cache analysis
consists in determining, given a program and a description of a processor
cache subsystem, which memory accesses are always “cache hits” (data
already in cache), which are always “cache misses” (data not in cache, thus
access to external memory), or more complex properties (“the first time
this statement is executed, the access is a cache miss, then subsequent
accesses are hits”). Such an analysis is for instance used as a prerequisite
for worst-case execution time analysis.

A possible approach to solving the cache analysis problem would be to
apply a model-checker to the combination of the program under analysis
(or some suitably simplified model thereof) and of the cache system. A
first and obvious abstraction is, for the cache system, to retain only the
addresses of the memory blocks currently stored within the system, but
not their contents. This abstraction is exact: the cache system finds data,
or decides to evict data to make room for new contents, according to
addresses only, never according to contents. The resulting model of the
cache system, for a fixed processor model, is finite: the cache consists of

1For N = 9, this is the basis for the method of “casting out nines”, named so because
reduction modulo N can be implemented over numbers in decimal form by summing the digits
of the number, with 9 being replaced by 0 (repeat the process until the result consists on one
single digit). Schoolchildren used to apply this method to check their hand computations: the
final result of an error-prone integer computation, taken modulo 9, should be identical to the
result obtained with reduction at every step. This is of course not a sound check: if results
differ, one is sure that there has been some error somewhere (no false positives), but they can
coincide by chance.
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a fixed number of cache lines, buffers, etc., labeled with addresses taken
within a fixed range. However, such a model is in practice intractable on
all but the simplest examples.

The naive vision of cache memory is that of a fully associative cache:
any cache line may be used to store any block from the main memory,
regardless of its address. In reality, a cache is usually split into several
cache sets, each of which able to retain blocks present only at a given class
of addresses in the main memory. The classes of addresses for the different
cache sets form a partition of the possible addresses in main memory. In
almost all cases2 these cache sets operate completely separately from each
other. It is thus possible to perform cache analysis separately for each
cache set; this is again an exact abstraction. However, this still results in
intractable models.

Each cache set is composed of a fixed number of cache lines; the num-
ber N of lines is also known as the number of ways or the associativity

of the cache. Each cache line may be empty or nonempty; a nonempty
cache line stores a block from main memory: its address and its contents
(we have already seen that the contents are not relevant for analysis). For
simplicity, we shall consider here the case of single-level, read-only caches.
A read from a memory location not currently in the cache triggers a load
from main memory into the cache. Except in the rare case when the rel-
evant cache set still has empty lines, this involves evicting a block from
the cache set. The selection of the block to be evicted is made according
to a cache replacement policy. The most obvious replacement policy is to
evict the least recently used (LRU) block.3 A cache set is therefore mod-
eled as a sequence of at most N block addresses, in increasing age: the
youngest block is the one accessed most recently, the oldest is the least
recently accessed. The positions of blocks within the set change as data
is accessed.

Let us take an example with N = 4. Assume a, b, c, . . . denote distinct
addresses in memory, and assume the cache set initially contains abcd,
meaning that a is the youngest block and d the oldest. If the processor
requires block d, then it is rejuvenated and the cache set then contains
dabc. If then the processor requires block e, then the oldest block (c) is
evicted and the cache set contains edab.

Let us now see our approach to analyzing programs over LRU caches [27].
Consider the case where we want to know whether a certain fixed block a

is within the cache at certain program locations. Then, the blocks older
than a in the cache are unimportant; so is the ordering of the blocks
younger than a. The idea is that if a block is younger than a, then access-
ing it again will just change the ordering of blocks younger than a, but
not the age of a; and if it is older, then accessing it will increment the age
of a.

A cache set may thus be described, with respect to a block a, by an
abstract configuration: either “a is absent” or “a is here and the set of
blocks younger than a is {. . . }”. Again, this is an exact abstraction.

2The exception is the “pseudo round robin” cache replacement policy, which involves a
counter global to all cache sets. Also, dependencies between cache sets arise if one considers
an integrated model of the processor pipeline, pre-fetching units, and caches, because whether
or not some data is in some cache set influences indirectly whether some other data will be
fetched.

3Some processors implement this LRU policy. It is however more common to implement
so-called pseudo-LRU policies, meant to provide the same practical performance at a fraction
of the hardware cost [19, 15]. Unfortunately, these pseudo-LRU policies are very different
from the point of view of cache analysis [19, 23, 25].

3



Cache analysis using that abstraction specialized for accesses to a thus
amounts to collecting the sets (for all program locations) of reachable
abstract configurations in the cache set where a is to be stored. This is
still very costly.

A collection of abstract configurations for that cache set consists of
a Boolean “is it possible that a is absent” and a set of sets of size less
than N of blocks distinct from a. A crucial observation is that, in this
set of sets, only the minimal and maximal elements (with respect to the
inclusion ordering) matter: if it is possible that a is preceded by {b},
{b, c}, {b, c, d}, then, for checking if it is possible that a (at some later
point) is out of the cache, it is only necessary to retain {b, c, d}, which
subsumes the other two cases; and for checking if it is possible that a (at
some later point) is in the cache, it is only necessary to retain {b}, which
again subsumes the other two cases. The reason for this subsumption is
that if a sequence of steps leads from a state where a is preceded in the
cache by a set P of blocks to the next access to a, and that access is a
miss, then the same sequence of steps of steps, starting with any cache
state where the set of blocks younger than a is a superset of P , also leads
to a miss (mutatis mutandis for subsets and hits). Retaining only the
extremal elements is thus, again, an exact abstraction from the point of
view of cache analysis.

To summarize, we first gradually simplified the cache state by ab-
stracting away parts and aspects that are irrelevant to the analysis under
way, then we simplified the collection of abstract cache states by using a
subsumption relation. The resulting abstraction is exact with respect to
the properties under analysis.

A this point, what remains is how to implement this abstraction.
What is needed is an efficient way to represent sets of incomparable sets
of blocks (antichains); we opted for zero-suppressed binary decision dia-
grams (ZDD). For better efficiency, this analysis, still somewhat costly, is
applied to memory accesses only after some cheap approximate analyses
[26] have failed to classify these accesses.

An advantage of an exact approach is that, since the result is uniquely
defined, it is possible to test implementations of various exact abstractions
against each other; the results should be identical. This way we discovered
a subtle ZDD bug by comparison with a (less scalable) model-checking
approach.

Granted, this approach is “exact” or “complete” only because a simpli-
fied model of the program (a control-flow graph, not taking into account
the data being processed) is used. This model introduces approximation:
for instance, in the following program

if (flag ) access(a); else access(b);

if (flag ) access(a); else access(b);

the only feasible sequences of accesses are a, a and b, b, (and thus in either
case the second access is a hit), but an analysis based on control-flow only
will not track the value of the flag and consider that sequences a, b and
b, a are also feasible, and conclude that the second access may be a miss.
However, tracking the value of data precisely makes the model undecid-
able. An intermediate solution that retains decidability is to consider
control-flow with precise modeling of procedure calls [23].

On a final note, on many examples [27], worst-case execution time
(WCET) analysis ended up being overall faster with the help of this ap-
parently expensive analysis. The reason is that the WCET analysis in use
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involved enumerating all reachable pipeline states. If the cache analysis is
imprecise and cannot conclude about some access, where the exact anal-
ysis would conclude to a “always miss”, this does not normally change
the bound on WCET, but this increases the number of pipeline states to
consider. In short:

• incomplete analyses are first applied in order to answer most sub-
problems exactly; only the subproblems for which the answer is defi-
nitely unknown are passed to the more expensive complete analysis;

• completeness is ensured by a composition of abstractions that do not
lose any precision with respect to the properties we are interested
in, but which greatly simplify the model to analyze;

• the resulting model is analyzed exactly;

• complete analyses have an exactly defined result, thus testing for
bugs is easy by comparing results;

• for the same reason, it is possible to study the complexity of the
problem [25, 23];

• the extra cost of the complete analysis may be offset by savings
in client analyses, because a more precise result means fewer case
analyses down the road.

3 Completeness or Incompleteness of the

Analysis Method

A classical question of completeness in abstract interpretation is whether
the abstract domain in use is sufficient to prove the properties being
sought. Yet, even if the abstract domain is sufficient, it may happen that
the abstract interpretation method being used cannot find the necessary
invariants within the domain.

3.1 Widening Operators

Let us see an example: some simplified version of a dataflow program
where i is an index into some circular array of length 42.

i = 0;

while (true ) {

if (trigger ()) {

i = i+1;

if (i > 42) i = 0;

}

assert (i < 1000);

}

Textbook forward static analysis by intervals [5, 4] will compute, for
variable i, a sequence of intervals [0, 0], [0, 1], [0, 2], . . . , and widen it to
[0,∞). If narrowing iterations are used, in their simplest form by starting
from the [0,∞) invariant, running the loop body once more and adding
the initialization states, one obtains [0, 999]. The assertion cannot be
proved using that invariant. Yet the assertion would have been proved if
the analysis had guessed the least possible interval, [0, 42]. Clearly, the
problem is with the inference method (iterations with widening), not the
abstract domain (intervals). Iterations with widening are an incomplete
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method with respect to the abstract domain: they may fail to discover
suitable inductive invariants when some exist in the domain.

Note also a surprising characteristic of this incomplete approach: if
instead of the precondition i = 0 we had analyzed the loop with the pre-
condition 0 ≤ i ≤ 42, we would be able to prove the assertion correct.
This non monotonic behavior (a less precise precondition, or a coarser
abstraction of some program semantics leads to more precise analysis re-
sults) may surprise end users.

Another surprising characteristic of widening operators for relational
domains is that they do not commute, in general, with projection, meaning
that adding some extra variables may change the result of the analysis
on the original variables even if the extra variables have no influence on
the original ones (for instance, if these variables are mere “observers”).
Consider for instance the program:

i=0; j=0;

while (true ) {

if (*) i=0; else {i=1; j=0; }

if (i==0) j=j+1;

}

In this program, j observes the number of last iterations during which
i was 0. The set of reachable states of this program for (i, j) is (1, 0) ∪
{(0, n)|n ∈ N}; in particular the set of reachable values for i is {0, 1}, and it
can be computed exactly with interval analysis by postponing widening by
one step, or by applying one step of narrowing. Now consider the sequence
of polyhedra, that is, polygons, computed by polyhedral analysis with
widening [7]: at step n, the polygon is defined by vertices (0, 0), (1, 0),
(0, n). The lines passing through vertices (0, 0) and (1, 0) (constraint
j ≥ 0) and the one passing through vertices (0, 0) and (0, n) (constraint
i ≥ 0) are stable; the line passing through vertices (1, 0) and (0, n) is
unstable and will be discarded by widening. The resulting system of
constraints is i ≥ 0∧ j ≥ 0; we have lost the i ≤ 1 constraint obtained by
interval analysis. In some cases, a stratified approach, where successive
analyses take increasing subsets of variables in consideration, may be able
to recoup precision [24].

3.2 Exact Solving

A safety property is established using forward abstract interpretation by
inferring some inductive invariants in the abstract domain and checking
that these invariants imply the property. A complete abstract interpre-
tation method is one that would compute always such invariants if they
exist.

Clearly, any method that computes the least inductive invariants in
the abstract domain is complete: if there exist invariants in the domain
that can prove the safety property, then, a fortiori, the least inductive
invariants in the domain can prove that property.

One such method is ascending iterations without widening within a
domain that satisfies the ascending chain condition (no infinite strictly
ascending sequences), which ensures termination. This includes domains
of finite height (there is a bound on the length of strictly ascending chains),
and in particular finite domains, such as powersets of finite sets. If f : L →
L is a monotone function, and ⊥ is the infimum of L, then the sequence
fn(⊥) is ascending and, in all the above cases, becomes stationary. When
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fn(⊥) = fn+1(⊥), then fn(⊥) is the least solution of x = f(x). The
algorithms used in practice are algorithmic improvements over this idea.4

An example of an infinite domain of finite height is that of solution sets
of systems of linear equations over a fixed number of variables [20]. When
a solution set S is strictly included in a solution set S′, the dimension
of S′ is strictly greater than that of S; this dimension cannot be more
than n, which thus bounds the height of the lattice.

The domain of intervals has none of these characteristics; but it is
however possible to compute the least inductive invariant within that do-
main of programs such as the one above, by specifying this least inductive
invariant as a least fixed point, writing a system of numeric equations
that this fixed point should satisfy, and solving this system for the least
solution. Indeed, for the above example, let us write down the equations
that h should satisfy for [0, h] to be a fixed point for the loop:

h = min(max(min(42, h+ 1), h), 999) (1)

Let us solve this equation. In any solution, the outermost “minimum”
operator must be equal to one of its arguments. Assume it is the second
argument, 999. One can indeed verify that 999 is a solution to this equa-
tion. Now consider the case where it evaluates to its left argument. The
equation then becomes h = max(min(42, h+ 1), h). Similarly, the “max-
imum” operator evaluates to one of its operands. Assume it evaluates to
its right argument. The system then simplifies to h = h; but this is under
the condition that h ≤ 999 and h ≥ min(42, h + 1). When h + 1 > 42,
that is, h ≥ 42, this minimum is equal to 42; thus all 42 ≤ h ≤ 999 yield
valid solutions. When h + 1 ≤ 42, this minimum is equal to h + 1; but
then the condition becomes h ≥ h+ 1, which would imply h = ∞, which
contradicts h ≤ 999. Now assume the “maximum” operator evaluates to
its left argument. The system then simplifies to h = min(42, h+1), which
yields only h = 42 as solution. We conclude that h = 42 is the least
solution.

The above reasoning by case analysis over the minimum and maximum
operators can be automated through exhaustive case analysis or, most
subtly, by a SMT (satisfiability modulo theory) solver. Many such solvers
can also optimize within the solution space, and thus directly produce the
least fixpoint. Alternatively, for proving safety properties, it is sufficient to
query the solver for any solution sufficient for proving the safety property.

A more principled approach to the case analysis for the maximum
operators is ascending policy iteration [11], which considers an ascending
sequence of fixpoints of systems obtained by picking arguments to the
“maximum” operators. All the above approaches generalize to domains
other than intervals, for instance to zones [12], at the expense of some
algorithmic complications.

Let us go further. Assume the abstract domain consists of the sets
defined by a parameterized predicate I(p,x) where p is the vector of
parameters, x is the program state. Note that this encompasses intervals,
octagons, template polyhedra domains, or even polyhedra with a fixed
number of faces. Also note that I may contain disjunctions and express
non-convex relations.

4In many cases, L = Lm
b

where Lb is a base lattice. An element x of L is then decomposed
into x1, . . . , xm, and f is decomposed into its m projections f1, . . . , fm. The problem is then
to find a solution of a system of equations x1 = f1(x1, . . . , xm), . . . , xm = fm(x1, . . . , xm),
typically using a system of working set of variables being updated, with some judiciously
chosen ordering for choosing the next update to process.
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The inductiveness condition for a transition τi,j from program location
i to program location j may thus be written as the Horn clause

∀x,x′

I(pi,x) ∧ τi,j(x,x
′) ⇒ I(pj ,x) (2)

Safety conditions may be expressed as ∀x Ii(pi,x) ⇒ Ci(x), and program
startup may be specified as ∀x Si(x) ⇒ Ii(pi,x). Inductive invariants
within the abstract domaine suitable for proving the safety properties are
thus expressed as the solutions, in the parameters pi, of a system of Horn
clauses.

If I , the transitions τi,j , the safety conditions Ci and the start condi-
tions Si are all expressed within a theory admitting algorithmic quantifier
elimination, such as Presburger arithmetic or the theory of real closed
fields, then the existence of such invariants is decided by quantifier elim-
ination. For instance, if we consider a program operating over real num-
bers, and invariants of the form A(p)x ≤ B(p) where A(p) and B(p) have
a fixed number r of rows (a polyhedron with at most r faces), then the
existence of a suitable invariant is established by quantifier elimination in
the theory of real closed fields. It is even possible to specify that one wants
the least inductive invariant and obtain it by quantifier elimination [21].

3.3 Imprecise Abstract Transfer Functions

Widening operators are the best known source of non-monotonicity and
incompleteness in finding suitable invariants in abstract interpretation,
but they are not the only one. There are, and this may be surprising,
cases of non-monotonicity and incompleteness due to transfer functions,
particularly in combinations of abstractions.

It is well-known that even if each individual step of abstract inter-
pretation computes the least possible post-condition within the abstract
domain compatible with the precondition, this property does not extend
to composition of steps; in other words, optimality does not compose. Let
us see a simple example:

y=x;

z=x-y;

If x is known to lie in [0, 1], then so does y, and this is optimal—
non-optimal but sound answers would be intervals containing [0, 1]. Then
interval arithmetic deduces that z is in [−1, 1], which is sound, but not
optimal: the optimal interval is [0, 0]. However, in order to reach that
conclusion, one must know that x = y at the intermediate control point,
that is, a relation between x and y, which is not possible in a non-relational
abstraction such as intervals.

One workaround to this weakness is to propagate a system of relations
along with the interval analysis. For instance, we we had propagated
y = x, then by substituting y 7→ x into x − y and simplifying, we would
have obtained z = 0.

An approach to implement this workaround [8], for instance applied in
the Astrée static analyzer, is to propagate a terminating rewriting system
(for instance, populated in chronological order) along with the interval
information, perform interval analysis on both the original expressions
and the expressions obtained by rewriting and simplification, and then
take the intersection. Here, the rewriting system would contain y 7→ x,
and the rewritten and simplified expression would yield z = 0.
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This approach however creates non-monotonicity.5 Consider this ex-
ample [8, ex. 4]:

Code Symbolic computation Less precise symbolic
int i, j=i+1; j 7→ i+ 1 nothing
int k=j+1; j 7→ i+ 1, k 7→ j + 1 7→ i+ 2 k 7→ j + 1
if (j > 0) l=k; j 7→ i+ 1, k 7→ i+ 2, l 7→ i+ 2 k 7→ j + 1, l 7→ j + 1

Assume we don’t know anything about the values of the variables initially,
and consider the interval obtained for l at the end of the “then” branch of
the test. Simple interval propagation yields no information about l. The
rewriting system yields l 7→ i+2 and since no information is known about
i, no information is known about l. Yet, if we forget that j 7→ i+ 1, and
apply the resulting rewriting system, we obtain l 7→ j + 1 and thus l > 1.

Granted, some improvements could be made by more clever propaga-
tion.6 For instance, since j 7→ i + 1, the guard could be rewritten into
i + 1 > 0, and this could itself be rewritten into i > −1. This amounts
to “inverting” j 7→ i + 1 to i 7→ j − 1. More generally, one would need
to consider the rewriting system not as a directed system, but as a sys-
tem of equations. The combination of a system of linear equations and
intervals forms the basis of the simplex algorithm for linear programming,
and obtaining optimal interval bounds from a combination of equalities
and interval bounds amounts to linear programming. In fact, any convex
polyhedron can be expressed as the projection of a set defined by the
conjunction of linear equalities and interval bounds.7 The appropriate
domain for dealing with such constraints precisely would thus be that of
convex polyhedra [7, 18].

4 Undecidability of an Abstraction

The argument from Section 3.2 for establishing decidability of the ex-
istence of an inductive invariant within the domain of convex polyhedra
with at most r faces does not extend to the domain convex polyhedra with
any number of faces. In fact, there is no known algorithm for deciding
the existence of inductive invariants within that domain for any nontriv-
ial class of programs. Invariant inference approaches for that domain,
starting from the early proposals from Cousot and Halbwachs [7, 18], are
typically based on iterations with widening. An intriguing question is
whether it is inevitable to resort to heuristics.

4.1 Polyhedral Abstraction

I have attempted proving that there is no algorithm deciding the exis-
tence of polyhedral invariants for linear transition systems (real or inte-
ger), and have so far failed. Because of my efforts in raising attention to

5This non-monotonicity resulted in some “false alarms”, that is, warnings about nonexis-
tent problems, one some industrial programs.

6More generally, advanced tools such as Astrée implement complex combinations of do-
mains and iteration strategies, which make many examples of non-monotone behavior and
false alarms on simple analyses actually succeed.

7Consider the representation of the polyhedron as a system of inequalities li(x1, . . . , xn) ≤
Bi, create a new variable yi for any linear combination li for which there does not already
exist a variable, keep this inequality as yi ≤ Bi and yi = li(x1, . . . , xn), then the set defined
by the original system is the projection of the set defined by the transformed system on the
x variables
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Figure 1: When the process is non terminating, any polyhedron containing the
reachable points inevitably goes below the parabola

this issue, some colleagues named this the “Monniaux problem”. Several
distinguished researchers8 have also reported trying to solve it and failing.

4.1.1 Undecidability with Quadratic Guards

Progress has however been made on variants of the so-called “Monniaux
problem” [10]. I was able to prove that this problem becomes undecidable
if one is allowed to use a quadratic transition guard: it is then possible
to encode a deterministic counter machine reachability problem into the
invariant inference problem. Let us recall how (proof sketch) [22].

Let the counter machine M operate over variables z1, . . . , zn, to which
we add two variables x and y, initialized to 0. The transitions of the
counter machine are synchronously combined with steps (x, y) 7→ (x +
1, y + x). The combined machine thus simulates the counter machine on
variables zi together with a parabola

(

n, 1

2
n(n − 1)

)

on variables (x, y),
where n is the number of steps taken so far. Now modify the resulting
machine by conjoining to all transitions the guard y = 1

2
x(x− 1); clearly

this does not modify the behavior of the machine. Add a special control
state σb, meant to be unreachable, and transitions from any state y <
1

2
x(x− 1) to that state. Call the resulting machine M ′.
Assume M terminates in N steps, then so does M ′. Consider the

convex hull H of the finite family of points such that x = k, y = 1

2
k(k−1),

z1, . . . , zn is the state reached after k steps in the execution of M , and
0 ≤ k ≤ N . The only points in H that lie on the y = 1

2
x(x− 1) parabola

project to the reachable states of M . H , in general, contains extra states
(integer points) such that y > 1

2
x(x−1), but due to the nonlinear guards,

these states cannot transition to other states. Thus H is an inductive
invariant for M ′ that proves the inaccessibility of σb.

Assume M does not terminate, and thus so does M ′. Any inductive
invariant for M ′ must contain the infinite family of points such that x = k,
y = 1

2
k(k−1), z1, . . . , zn is the state reached after k steps, for k ≥ 0. Any

convex polyhedron that contains this infinite family of points must have
a point y < 1

2
x(x − 1): assume there is none and consider the vertex

V ∗ with maximal x∗; this vertex must lie on the parabola; there is for

8Including some at the 2022 CSV workshop in Venice, whence this volume comes.
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x ≥ x∗ at least one infinite face of the form y ≥ L(x, z1, . . . , zn); but
then inevitably there will be points of that face lying below the parabola
(Fig. 1). However, any convex polyhedron that contains a point where
y < 1

2
x(x − 1) is not an inductive invariant capable of proving that σb

is unreachable. It follows that there is no convex polyhedron that is an
inductive invariant for M ′ capable of showing the unreachability of σb.

Thus, M ′ has an inductive polyhedral invariant suitable for proving
the unreachability of σb if and only if M terminates, and this for arbitrary
M in a class of machines with undecidable termination.

The same reasoning applies whether the state space is considered over
integers or over the reals.

4.1.2 Perspectives and Dead Ends

The role of the parabola y = 1

2
x(x−1) in the above proof could be played

by other sets, such as a circle x2 + y2 = 1: the process that enumerated
points on the parabola can be replaced by one that enumerates points on
the circle. Initialize (x, y) = (1, 0), and, as next step, apply a rotation
matrix defined by a Pythagorean triple ((a, b, c) integers such that a2 +

b2 = c2, for instance (3, 4, 5)):

(

a

c

b

c

b

c
−

a

c

)

. This however leads to more

complex proof arguments, and does not gain anything: we still need a
nonlinear guard.

Essentially, what we used in both cases is a strictly convex set S (y ≥
1

2
x(x − 1)) with boundary definable by a guard (y = 1

2
x(x − 1)), with

exterior (y < 1

2
x(x−1)) definable by a guard, and with a way to enumerate

points in the boundary while still remaining in the class of deterministic
transitions under consideration. Strict convexity is used so that taking
the convex hull of points in S, as when using polyhedral invariants, does
not add “parasitic” points on the boundary. This ensures that the guard
that keeps only points on the boundary removes “parasitic” points.

Could we achieve similar goals using only linear constraints? Suppose
we can express such a guard with a formula, possibly containing disjunc-
tions. Then, by distributivity, this formula expresses a finite union of
polyhedra P1 ∪ · · · ∪ Pn. Then there is a i such that the enumeration
process eventually picks two points (in fact, an infinity of them) in Pi;
and thus the guard cannot exclude “parasitic” points between these two,
at least over the reals.

A possible course of action could be to set the problem over integers
and take advantage of the implicit guard that non-integer points are dis-
carded. This however was also a dead end.

4.2 Richer Domains

If the abstract domain (class of invariants) under consideration is rich
enough to express exactly the set of reachable states of the programs to be
analyzed, then obviously the problem is undecidable: a suitable inductive
invariant (the set of reachable states) exists in the domain if and only if
the safety property is true.

This happens for instance if the domain includes Σ0
1 formulas of Peano

arithmetic, that is, formulas of the form ∃v1 . . .∃vn F where F only con-
tains bounded quantifiers and the usual arithmetic operations and com-
parisons. By a form of Gödel’s encoding, for any integer program with
m variables built using the usual arithmetic operators, it is possible to
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build a Σ0
1 formula F (k, s1, . . . , sm) satified if and only if (s1, . . . , sm) is

the state of the program after k steps of [28, Ch. 7][3].
Such domains are obviously too rich. In fact, with the domain of Σ0

1

formulas described above, it is not even possible in general to check for
inductiveness, because the formulas belong to an indecidable class.

However, even semilinear sets (sets defined by Boolean combinations of
linear inequalities with algebraic coefficients, thus disjunctions of convex
polyhedra) are sufficient to obtain undecidability even for a very restricted
class of programs (one single loop control state, nondeterministic choice
between two linear transformations, no guards) [10, Th. 9].

5 Perspectives and Conclusion

The question of the completeness of the domain with respect to the prop-
erties to prove, and the class of programs under consideration, is distinct
from the problem of algorithmically finding suitable invariants within that
domain—or the related problem of computing the least inductive invariant
within the domain.

The traditional approach for abstract interpretation in domains with
infinite ascending chains is iterations with widening. This approach has
known weaknesses: the analysis may miss the invariants necessary for the
proof and the analysis behavior is non-monotone (increasing knowledge
about preconditions or transitions may decrease the precision of the anal-
ysis), which is a source of “brittleness” (a minor change in the program
causes the analysis to fail to prove the property). Many tricks are thus
used to improve the invariants obtained with widening: narrowing itera-
tions [6, 4], lookahead widening [17], guided static analysis [16]. Though
they help in practice, none of them guarantees that analysis will succeed.

Over time, completely different approaches were designed to compute
suitable arguments for proving safety properties. While widening is a
form of extrapolation (look at sets of reachable states in 0, 1, 2 . . . steps
and try to extrapolate for arbitrary number of steps), these methods are
based on interpolation: given some under-approximation of the set of
reachable states, and the property to prove, find a simple separation be-
tween the two (a Craig interpolant) and hope that the interpolant, or
components thereof, or formulas constructed from components of suc-
cessive interpolants, becomes inductive. One such approach is property-

directed reachability [1, 9], later enriched with a number of extensions and
improvements (dealing with arithmetic theories, dealing with non-linear
Horn clauses and not just transition systems). Variants of this approach
are in particular implemented in the popular Z3 solver.9 Unfortunately,
this approach, too, is brittle [2]: minor differences in the problem to be
solved (names of variables, etc.) may result in dramatic changes in out-
come (finding invariants or timing out).

Approaches that are guaranteed to find the least inductive invariant
in the chosen abstract domain (or, more generally, an inductive invariant
suitable for proving a given property, if it exists) are more resilient; I have
listed several of them in Section 3.2. Some of these methods however do
not scale up well (those based on quantifier elimination); policy iteration
seems to be the most scalable.

In our view, the case for continued use of widening operators, despite
their known weaknesses, or other non monotonic and/or brittle meth-

9https://github.com/Z3Prover/z3
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ods, would be strengthened by a proof that the existence of a suitable
invariant in the domain is undecidable, or at least has high complexity.
Unfortunately, such undecidability proofs are hard.

In contrast, complete methods have many desirable properties. We
have illustrated this with the example of LRU cache analysis (Section 2).
Since the end result has a unique definition, there is no brittleness, and
several algorithms or implementations can be used to compute the same
result, which allows performance comparisons (the meaning of perfor-
mance differences between methods producing non comparable results is
unclear) and validation by testing that results are identical.
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[18] Nicolas Halbwachs. “Détermination automatique de relations
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