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Completeness in static analysis by abstract
interpretation, a personal point of view

David Monniaux

Abstract Static analysis by abstract interpretation is generally designed to be
“sound”, that is, it should not claim to establish properties that do not hold—in
other words, not provide “false negatives” about possible bugs. A rarer requirement
is that it should be “complete”, meaning that it should be able to infer certain prop-
erties if they hold. This paper describes a number of practical issues and questions
related to completeness that I have come across over the years.

1 Introduction

The concept of completeness, under several definitions, permeates mathematical
logic. A proof system is deemed complete with respect to a semantics if it can prove
all properties that are true in this semantics. For instance, Gödel’s completeness
theorem states that first-order logic (that is, any reasonable proof system for it) can
prove any property true in all models. A decision procedure for a logic (that is, a
procedure that answers “true” or “false” for any formula in the logic �) is expected
to be sound (it does not declare to be true formulas that are not true) and complete

(it declares to be true all formulas that are true).
The concepts of completeness (a) for a proof system with respect to a class of

properties (b) for a procedure that searches for proofs of such properties within such
a proof system are related, but distinct. Obviously, if a proof system is incomplete,
then so is any procedure that searches for proofs within that system. However, it is
possible to have a complete proof system and an incomplete procedure for searching
within it, for instance for practical efficiency reasons.

In abstract interpretation, completeness, at least at the global level (proving prop-
erties of whole programs), is often forgone straight from the start when designing the
abstraction (for instance, interval arithmetic is used even though it is obvious that it

Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG
38000 Grenoble, France

1



2 David Monniaux

cannot prove safety in general, even if the property to prove is itself an interval), and
there thus may be little reluctance to adding further incompleteness in the solving
procedure by using approaches such as widening operators [5, 6]. Yet, it is interest-
ing to control this further incompleteness, both from a theoretical and a practical
points of view. Completeness in the solving method ensures some predictability
in the analysis outcome, while the brittleness of some incomplete approaches (the
approach succeeds or fails depending on seemingly inconsequential aspects of the
program and the property) surprises end users: for instance, providing more precise
information on the precondition of a program may prevent the analysis procedure
from proving a property that it could prove with a less precise precondition.

In this paper, I discuss various instances of completeness and incompleteness that
I have came across, without any pretense of thorough theoretical discussion and,
ironically, no pretense of completeness. For more theoretical discussion, Giacobazzi
et al. [14, Sec. 7] surveyed the literature extensively. For a study of completeness
with respect to the relationship between the semantics and the abstract domain, and
constructions to make the domain complete, see [13].

2 Completeness of the Abstraction: the Case of LRU Caches

It is well-known that it is equivalent to (a) evaluate an integer multivariate polynomial
over integer inputs, then take the final result modulo # (b) do the same computation
but reducing modulo # at every step.1 Due to a strong mathematical property (a ring
morphism), it is possible to replace an expensive computation, possibly involving
large numbers, by a simpler one that abstracts the expensive one by operating on
small abstractions of the data.

This example is ideal, and one could doubt the existence of complete abstractions
that significantly simplify computations for nontrivial program analysis problems;
yet we came across one such example, where we perform an exact analysis defined
by a composition of exact abstractions and an exact solving procedure.

All current processors use some form of cache memory: frequently accessed code
or data is retained in fast memory close to the processor core, avoiding much slower
accesses to main memory. Cache analysis consists in determining, given a program
and a description of a processor cache subsystem, which memory accesses are always
“cache hits” (data already in cache), which are always “cache misses” (data not in
cache, thus access to external memory), or more complex properties (“the first time
this statement is executed, the access is a cache miss, then subsequent accesses are

1 For # = 9, this is the basis for the method of “casting out nines”, named so because reduction
modulo # can be implemented over numbers in decimal form by summing the digits of the
number, with 9 being replaced by 0 (repeat the process until the result consists on one single digit).
Schoolchildren used to apply this method to check their hand computations: the final result of an
error-prone integer computation, taken modulo 9, should be identical to the result obtained with
reduction at every step. This is of course not a sound check: if results differ, one is sure that there
has been some error somewhere (no false positives), but they can coincide by chance.
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hits”). Such an analysis is for instance used as a prerequisite for worst-case execution
time analysis.

A possible approach to solving the cache analysis problem would be to apply a
model-checker to the combination of the program under analysis (or some suitably
simplified model thereof) and of the cache system. A first and obvious abstraction
is, for the cache system, to retain only the addresses of the memory blocks currently
stored within the system, but not their contents. This abstraction is exact: the cache
system finds data, or decides to evict data to make room for new contents, according
to addresses only, never according to contents. The resulting model of the cache
system, for a fixed processor model, is finite: the cache consists of a fixed number of
cache lines, buffers, etc., labeled with addresses taken within a fixed range. However,
such a model is in practice intractable on all but the simplest examples.

The naive vision of cache memory is that of a fully associative cache: any cache
line may be used to store any block from the main memory, regardless of its address.
In reality, a cache is usually split into several cache sets, each of which able to retain
blocks present only at a given class of addresses in the main memory. The classes
of addresses for the different cache sets from a partition of the possible addresses in
main memory. In almost all cases2 these cache sets operate completely separately
from each other. It is thus possible to perform cache analysis separately for each
cache set; this is again an exact abstraction. However, this still results in intractable
models.

Each cache set is composed of a fixed number of cache lines; the number # of
lines is also known as the number of ways or the associativity of the cache. Each
cache line may be empty or nonempty; a nonempty cache line stores a block from
main memory: its address and its contents (we have already seen that the contents are
not relevant for analysis). For simplicity, we shall consider here the case of single-
level, read-only caches. A read from a memory location not currently in the cache
triggers a load from main memory into the cache. Except in the rare case when the
relevant cache set still has empty lines, this involves evicting a block from the cache
set. The selection of the block to be evicted is made according to a cache replacement

policy. The most obvious replacement policy is to evict the least recently used (LRU)
block.3 A cache set is therefore modeled as a sequence of at most # block addresses,
in increasing age: the youngest block is the one accessed most recently, the oldest is
the least recently accessed. The positions of blocks within the set change as data is
accessed.

Let us take an example with # = 4. Assume 0, 1, 2, . . . denote distinct addresses
in memory, and assume the cache set initially contains 0123, meaning that 0 is

2 The exception is the “pseudo round robin” cache replacement policy, which involves a counter
global to all cache sets. Also, dependencies between cache sets arise if one considers an integrated
model of the processor pipeline, pre-fetching units, and caches, because whether or not some data
is in some cache set influences indirectly whether some other data will be fetched.

3 Some processors implement this LRU policy. It is however more common to implement so-called
pseudo-LRU policies, meant to provide the same practical performance at a fraction of the hardware
cost [19, 15]. Unfortunately, these pseudo-LRU policies are very different from the point of view
of cache analysis [19, 23, 25].
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the youngest block and 3 the oldest. If the processor requires block 3, then it is
rejuvenated and the cache set then contains 3012. If then the processor requires
block 4, then the oldest block (2) is evicted and the cache set contains 4301.

Let us now see our approach to analyzing programs over LRU caches [27].
Consider the case where we want to know whether a certain fixed block 0 is within
the cache at certain program locations. Then, the blocks older than 0 in the cache
are unimportant; so is the ordering of the blocks younger than 0. The idea is that if
a block is younger than 0, then accessing it again will just change the ordering of
blocks younger than 0, but not the age of 0; and if it is older, then accessing it will
increment the age of 0.

A cache set may thus be described, with respect to a block 0, by an abstract
configuration: either “0 is absent” or “0 is here and the set of blocks younger than 0

is {. . . }”. Again, this is an exact abstraction. Cache analysis using that abstraction
specialized for accesses to 0 thus amounts to collecting the sets (for all program
locations) of reachable abstract configurations in the cache set where 0 is to be
stored. This is still very costly.

A collection of abstract configurations for that cache set consists of a Boolean “is
it possible that 0 is absent” and a set of sets of size less than # of blocks distinct
from 0. A crucial observation is that, in this set of sets, only the minimal and maximal
elements (with respect to the inclusion ordering) matter: if it is possible that 0 is
preceded by {1}, {1, 2}, {1, 2, 3}, then, for checking if it is possible that 0 (at some
later point) is out of the cache, it is only necessary to retain {1, 2, 3}, which subsumes
the other two cases; and for checking if it is possible that 0 (at some later point) is
in the cache, it is only necessary to retain {1}, which again subsumes the other two
cases. The reason for this subsumption is that if a sequence of steps leads from a
state where 0 is preceded in the cache by a set % of blocks to the next access to 0,
and that access is a miss, then the same sequence of steps of steps, starting with any
cache state where the set of blocks younger than 0 is a superset of %, also leads to a
miss (mutatis mutandis for subsets and hits). Retaining only the extremal elements
is thus, again, an exact abstraction from the point of view of cache analysis.

To summarize, we first gradually simplified the cache state by abstracting away
parts and aspects that are irrelevant to the analysis under way, then we simplified
the collection of abstract cache states by using a subsumption relation. The resulting
abstraction is exact with respect to the properties under analysis.

A this point, what remains is how to implement this abstraction. What is needed
is an efficient way to represent sets of incomparable sets of blocks (antichains); we
opted for zero-suppressed binary decision diagrams (ZDD). For better efficiency,
this analysis, still somewhat costly, is applied to memory accesses only after some
cheap approximate analyses [26] have failed to classify these accesses.

An advantage of an exact approach is that, since the result is uniquely defined, it is
possible to test implementations of various exact abstractions against each other; the
results should be identical. This way we discovered a subtle ZDD bug by comparison
with a (less scalable) model-checking approach.
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Granted, this approach is “exact” or “complete” only because a simplified model of
the program (a control-flow graph, not taking into account the data being processed)
is used. This model introduces approximation: for instance, in the following program

if (flag) access(a); else access(b);

if (flag) access(a); else access(b);

the only feasible sequences of accesses are 0, 0 and 1, 1, (and thus in either case
the second access is a hit), but an analysis based on control-flow only will not track
the value of the flag and consider that sequences 0, 1 and 1, 0 are also feasible,
and conclude that the second access may be a miss. However, tracking the value of
data precisely makes the model undecidable. An intermediate solution that retains
decidability is to consider control-flow with precise modelingof procedure calls [23].

On a final note, on many examples [27], worst-case execution time (WCET)
analysis ended up being overall faster with the help of this apparently expensive
analysis. The reason is that the WCET analysis in use involved enumerating all
reachable pipeline states. If the cache analysis is imprecise and cannot conclude
about some access, where the exact analysis would conclude to a “always miss”, this
does not normally change the bound on WCET, but this increases the number of
pipeline states to consider. In short:

• incomplete analyses are first applied in order to answer most subproblems ex-
actly; only the subproblems for which the answer is definitely unknown are
passed to the more expensive complete analysis;

• completeness is ensured by a composition of abstractions that do not lose any
precision with respect to the properties we are interested in, but which greatly
simplify the model to analyze;

• the resulting model is analyzed exactly;
• complete analyses have an exactly defined result, thus testing for bugs is easy by

comparing results;
• for the same reason, it is possible to study the complexity of the problem [25, 23];
• the extra cost of the complete analysis may be offset by savings in client analyses,

because a more precise result means fewer case analyses down the road.

3 Completeness or Incompleteness of the Analysis Method

A classical question of completeness in abstract interpretation is whether the abstract
domain in use is sufficient to prove the properties being sought. Yet, even if the
abstract domain is sufficient, it may happen that the abstract interpretation method
being used cannot find the necessary invariants within the domain.
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3.1 Widening Operators

Let us see an example: some simplified version of a dataflow program where i is an
index into some circular array of length 42.

i = 0;

while (true) {

if (trigger()) {

i = i+1;

if (i > 42) i = 0;

}

assert (i < 1000);

}

Textbook forward static analysis by intervals [5, 4] will compute, for variable i, a
sequence of intervals [0, 0], [0, 1], [0, 2], . . . , and widen it to [0,∞). If narrowing
iterations are used, in their simplest form by starting from the [0,∞) invariant,
running the loop body once more and adding the initialization states, one obtains
[0, 999]. The assertion cannot be proved using that invariant. Yet the assertion would
have been proved if the analysis had guessed the least possible interval, [0, 42].
Clearly, the problem is with the inference method (iterations with widening), not the
abstract domain (intervals). Iterations with widening are an incomplete method with
respect to the abstract domain: they may fail to discover suitable inductive invariants
when some exist in the domain.

Note also a surprising characteristic of this incomplete approach: if instead of the
precondition 8 = 0 we had analyzed the loop with the precondition 0 ≤ 8 ≤ 42, we
would be able to prove the assertion correct. This non monotonic behavior (a less
precise precondition, or a coarser abstraction of some program semantics leads to
more precise analysis results) may surprise end users.

Another surprising characteristic of widening operators for relational domains is
that they do not commute, in general, with projection, meaning that adding some
extra variables may change the result of the analysis on the original variables even
if the extra variables have no influence on the original ones (for instance, if these
variables are mere “observers”). Consider for instance the program:

i=0; j=0;

while (true) {

if (*) i=0; else {i=1; j=0; }

if (i==0) j=j+1;

}

In this program, j observes the number of last iterations during which i was 0. The
set of reachable states of this program for (8, 9) is (1, 0)∪{(0, =) |= ∈ N}; in particular
the set of reachable values for 8 is {0, 1}, and it can be computed exactly with interval
analysis by postponing widening by one step, or by applying one step of narrowing.
Now consider the sequence of polyhedra, that is, polygons, computed by polyhedral
analysis with widening [8]: at step =, the polygon is defined by vertices (0, 0), (1, 0),
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(0, =). The lines passing through vertices (0, 0) and (1, 0) (constraint 9 ≥ 0) and
the one passing through vertices (0, 0) and (0, =) (constraint 8 ≥ 0) are stable; the
line passing through vertices (1, 0) and (0, =) is unstable and will be discarded by
widening. The resulting system of constraints is 8 ≥ 0 ∧ 9 ≥ 0; we have lost the
8 ≤ 1 constraint obtained by interval analysis. In some cases, a stratified approach,
where successive analyses take increasing subsets of variables in consideration, may
be able to recoup precision [24].

3.2 Exact Solving

A safety property is established using forward abstract interpretation by inferring
some inductive invariants in the abstract domain and checking that these invariants
imply the property. A complete abstract interpretation method is one that would
compute always such invariants if they exist.

Clearly, any method that computes the least inductive invariants in the abstract
domain is complete: if there exist invariants in the domain that can prove the safety
property, then, a fortiori, the least inductive invariants in the domain can prove that
property.

One such method is ascending iterations without widening within a domain that
satisfies the ascending chain condition (no infinite strictly ascending sequences),
which ensures termination. This includes domains of finite height (there is a bound
on the length of strictly ascending chains), and in particular finite domains, such as
powersets of finite sets. If 5 : ! → ! is a monotone function, and ⊥ is the infimum
of !, then the sequence 5 = (⊥) is ascending and, in all the above cases, becomes
stationary. When 5 = (⊥) = 5 =+1 (⊥), then 5 = (⊥) is the least solution of G = 5 (G).
The algorithms used in practice are algorithmic improvements over this idea.4

An example of an infinite domain of finite height is that of solution sets of systems
of linear equations over a fixed number of variables [20]. When a solution set ( is
strictly included in a solution set (′, the dimension of (′ is strictly greater than that
of (; this dimension cannot be more than =, which thus bounds the height of the
lattice.

The domain of intervals has none of these characteristics; but it is however possible
to compute the least inductive invariant within that domain of programs such as the
one above, by specifying this least inductive invariant as a least fixed point, writing
a system of numeric equations that this fixed point should satisfy, and solving this
system for the least solution. Indeed, for the above example, let us write down the
equations that ℎ should satisfy for [0, ℎ] to be a fixed point for the loop:

4 In many cases, ! = !<

1
where !1 is a base lattice. An element G of ! is then decomposed into

G1, . . . , G<, and 5 is decomposed into its < projections 51, . . . , 5<. The problem is then to find
a solution of a system of equations G1 = 51 (G1, . . . , G<) , . . . , G< = 5< (G1, . . . , G<) , typically
using a system of working set of variables being updated, with some judiciously chosen ordering
for choosing the next update to process.
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ℎ = min(max(min(42, ℎ + 1), ℎ), 999) (1)

Let us solve this equation. In any solution, the outermost “minimum” operator
must be equal to one of its arguments. Assume it is the second argument, 999. One can
indeed verify that 999 is a solution to this equation. Now consider the case where it
evaluates to its left argument. The equation then becomes ℎ = max(min(42, ℎ+1), ℎ).
Similarly, the “maximum” operator evaluates to one of its operands. Assume it
evaluates to its right argument. The system then simplifies to ℎ = ℎ; but this is under
the condition that ℎ ≤ 999 and ℎ ≥ min(42, ℎ + 1). When ℎ + 1 > 42, that is,
ℎ ≥ 42, this minimum is equal to 42; thus all 42 ≤ ℎ ≤ 999 yield valid solutions.
When ℎ + 1 ≤ 42, this minimum is equal to ℎ + 1; but then the condition becomes
ℎ ≥ ℎ + 1, which would imply ℎ = ∞, which contradicts ℎ ≤ 999. Now assume the
“maximum” operator evaluates to its left argument. The system then simplifies to
ℎ = min(42, ℎ + 1), which yields only ℎ = 42 as solution. We conclude that ℎ = 42
is the least solution.

The above reasoning by case analysis over the minimum and maximum opera-
tors can be automated through exhaustive case analysis or, most subtly, by a SMT
(satisfiability modulo theory) solver. Many such solvers can also optimize within the
solution space, and thus directly produce the least fixpoint. Alternatively, for proving
safety properties, it is sufficient to query the solver for any solution sufficient for
proving the safety property.

A more principled approach to the case analysis for the maximum operators is
ascending policy iteration [11], which considers an ascending sequence of fixpoints
of systems obtained by picking arguments to the “maximum” operators.All the above
approaches generalize to domains other than intervals, for instance to zones [12], at
the expense of some algorithmic complications.

Let us go further. Assume the abstract domain consists of the sets defined by a
parameterized predicate � (p, x) where p is the vector of parameters, x is the program
state. Note that this encompasses intervals, octagons, template polyhedra domains,
or even polyhedra with a fixed number of faces. Also note that � may contain
disjunctions and express non-convex relations.

The inductiveness condition for a transition g8, 9 from program location 8 to pro-
gram location 9 may thus be written as the Horn clause

∀x, x′ � (p8 , x) ∧ g8, 9 (x, x
′) ⇒ � (p 9 , x) (2)

Safety conditions may be expressed as ∀x �8 (p8 , x) ⇒ �8 (x), and program startup
may be specified as ∀x (8 (x) ⇒ �8 (p8 , x). Inductive invariants within the abstract
domaine suitable for proving the safety properties are thus expressed as the solutions,
in the parameters p8 , of a system of Horn clauses.

If � , the transitions g8, 9 , the safety conditions �8 and the start conditions (8 are
all expressed within a theory admitting algorithmic quantifier elimination, such as
Presburger arithmetic or the theory of real closed fields, then the existence of such
invariants is decided by quantifier elimination. For instance, if we consider a program
operating over real numbers, and invariants of the form �(p)x ≤ �(p) where �(p)

and �(p) have a fixed number A of rows (a polyhedron with at most A faces), then the
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existence of a suitable invariant is established by quantifier elimination in the theory
of real closed fields. It is even possible to specify that one wants the least inductive
invariant and obtain it by quantifier elimination [21].

3.3 Imprecise Abstract Transfer Functions

Widening operators are the best known source of non-monotonicity and incomplete-
ness in finding suitable invariants in abstract interpretation, but they are not the only
one. There are, and this may be surprising, cases of non-monotonicity and incom-
pleteness due to transfer functions, particularly in combinations of abstractions.

It is well-known that even if each individual step of abstract interpretation com-
putes the least possible post-condition within the abstract domain compatible with
the precondition, this property does not extend to composition of steps; in other
words, optimality does not compose. Let us see a simple example:

y=x;

z=x-y;

If G is known to lie in [0, 1], then so does H, and this is optimal—non-optimal
but sound answers would be intervals containing [0, 1]. Then interval arithmetic
deduces that I is in [−1, 1], which is sound, but not optimal: the optimal interval is
[0, 0]. However, in order to reach that conclusion, one must know that G = H at the
intermediate control point, that is, a relation between G and H, which is not possible
in a non-relational abstraction such as intervals.

One workaround to this weakness is to propagate a system of relations along with
the interval analysis. For instance, we we had propagated H = G, then by substituting
H ↦→ G into G − H and simplifying, we would have obtained I = 0.

An approach to implement this workaround [7], for instance applied in the Astrée
static analyzer, is to propagate a terminating rewriting system (for instance, populated
in chronological order) along with the interval information, perform interval analysis
on both the original expressions and the expressions obtained by rewriting and
simplification, and then take the intersection. Here, the rewriting system would
contain H ↦→ G, and the rewritten and simplified expression would yield I = 0.

This approach however creates non-monotonicity.5 Consider this example [7,
ex. 4]:

Code Symbolic computation Less precise symbolic
int i, j=i+1; 9 ↦→ 8 + 1 nothing
int k=j+1; 9 ↦→ 8 + 1, : ↦→ 9 + 1 ↦→ 8 + 2 : ↦→ 9 + 1
if (j > 0) l=k; 9 ↦→ 8 + 1, : ↦→ 8 + 2, ; ↦→ 8 + 2 : ↦→ 9 + 1, ; ↦→ 9 + 1

Assume we don’t know anything about the values of the variables initially, and
consider the interval obtained for ; at the end of the “then” branch of the test.

5 This non-monotonicity resulted in some “false alarms”, that is, warnings about nonexistent
problems, one some industrial programs.



10 David Monniaux

Simple interval propagation yields no information about ;. The rewriting system
yields ; ↦→ 8 + 2 and since no information is known about 8, no information is known
about ;. Yet, if we forget that 9 ↦→ 8 + 1, and apply the resulting rewriting system, we
obtain ; ↦→ 9 + 1 and thus ; > 1.

Granted, some improvements could be made by more clever propagation.6 For
instance, since 9 ↦→ 8 + 1, the guard could be rewritten into 8 + 1 > 0, and this could
itself be rewritten into 8 > −1. This amounts to “inverting” 9 ↦→ 8 + 1 to 8 ↦→ 9 − 1.
More generally, one would need to consider the rewriting system not as a directed
system, but as a system of equations. The combination of a system of linear equations
and intervals forms the basis of the simplex algorithm for linear programming, and
obtaining optimal interval bounds from a combination of equalities and interval
bounds amounts to linear programming. In fact, any convex polyhedron can be
expressed as the projection of a set defined by the conjunction of linear equalities
and interval bounds.7 The appropriate domain for dealing with such constraints
precisely would thus be that of convex polyhedra [8, 18].

4 Undecidability of an Abstraction

The argument from Section 3.2 for establishing decidability of the existence of an
inductive invariant within the domain of convex polyhedra with at most A faces does
not extend to the domain convex polyhedra with any number of faces. In fact, there
is no known algorithm for deciding the existence of inductive invariants within that
domain for any nontrivial class of programs. Invariant inference approaches for that
domain, starting from the early proposals from Cousot and Halbwachs [8, 18], are
typically based on iterations with widening. An intriguing question is whether it is
inevitable to resort to heuristics.

4.1 Polyhedral Abstraction

I have attempted proving that there is no algorithm deciding the existence of polyhe-
dral invariants for linear transition systems (real or integer), and have so far failed.
Because of my efforts in raising attention to this issue, some colleagues named

6 More generally, advanced tools such as Astrée implement complex combinations of domains and
iteration strategies, which make many examples of non-monotone behavior and false alarms on
simple analyses actually succeed.

7 Consider the representation of the polyhedron as a system of inequalities ;8 (G1, . . . , G=) ≤ �8 ,
create a new variable H8 for any linear combination ;8 for which there does not already exist a
variable, keep this inequality as H8 ≤ �8 and H8 = ;8 (G1, . . . , G=) , then the set defined by the
original system is the projection of the set defined by the transformed system on the G variables
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this the “Monniaux problem”. Several distinguished researchers8 have also reported
trying to solve it and failing.

4.1.1 Undecidability with Quadratic Guards

Progress has however been made on variants of the so-called “Monniaux prob-
lem” [10]. I was able to prove that this problem becomes undecidable if one is
allowed to use a quadratic transition guard: it is then possible to encode a determin-
istic counter machine reachability problem into the invariant inference problem. Let
us recall how (proof sketch) [22].

Let the counter machine " operate over variables I1, . . . , I=, to which we add
two variables G and H, initialized to 0. The transitions of the counter machine
are synchronously combined with steps (G, H) ↦→ (G + 1, H + G). The combined
machine thus simulates the counter machine on variables I8 together with a parabola
(

=, 1
2=(= − 1)

)

on variables (G, H), where = is the number of steps taken so far. Now
modify the resulting machine by conjoining to all transitions the guard H =

1
2G(G−1);

clearly this does not modify the behavior of the machine. Add a special control state
f1 , meant to be unreachable, and transitions from any state H < 1

2G(G − 1) to that
state. Call the resulting machine " ′.

Assume " terminates in # steps, then so does " ′. Consider the convex hull �
of the finite family of points such that G = :, H =

1
2 : (: − 1), I1, . . . , I= is the state

reached after : steps in the execution of " , and 0 ≤ : ≤ # . The only points in
� that lie on the H =

1
2G(G − 1) parabola project to the reachable states of " . �,

in general, contains extra states (integer points) such that H > 1
2G(G − 1), but due

to the nonlinear guards, these states cannot transition to other states. Thus � is an
inductive invariant for " ′ that proves the inaccessibility of f1 .

Fig. 1 When the process is non terminating, any polyhedron containing the reachable points
inevitably goes below the parabola

8 Including some at the 2022 CSV workshop in Venice, whence this volume comes.
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Assume " does not terminate, and thus so does " ′. Any inductive invariant
for " ′ must contain the infinite family of points such that G = :, H =

1
2 : (: − 1),

I1, . . . , I= is the state reached after : steps, for : ≥ 0. Any convex polyhedron that
contains this infinite family of points must have a point H < 1

2G(G − 1): assume
there is none and consider the vertex +∗ with maximal G∗; this vertex must lie on the
parabola; there is for G ≥ G∗ at least one infinite face of the form H ≥ !(G, I1, . . . , I=);
but then inevitably there will be points of that face lying below the parabola (Fig. 1).
However, any convex polyhedron that contains a point where H < 1

2G(G−1) is not an
inductive invariant capable of proving that f1 is unreachable. It follows that there is
no convex polyhedron that is an inductive invariant for " ′ capable of showing the
unreachability of f1 .

Thus, " ′ has an inductive polyhedral invariant suitable for proving the unreach-
ability of f1 if and only if " terminates, and this for arbitrary " in a class of
machines with undecidable termination.

The same reasoning applies whether the state space is considered over integers
or over the reals.

4.1.2 Perspectives and Dead Ends

The role of the parabola H =
1
2G(G − 1) in the above proof could be played by other

sets, such as a circle G2 + H2
= 1: the process that enumerated points on the parabola

can be replaced by one that enumerates points on the circle. Initialize (G, H) = (1, 0),
and, as next step, apply a rotation matrix defined by a Pythagorean triple ((0, 1, 2)

integers such that 02+12
= 22, for instance (3, 4, 5)):

(

0

2

1

2

1

2
− 0

2

)

. This however leads to

more complex proof arguments, and does not gain anything: we still need a nonlinear
guard.

Essentially, what we used in both cases is a strictly convex set ( (H ≥ 1
2G(G − 1))

with boundary definable by a guard (H =
1
2G(G − 1)), with exterior (H < 1

2G(G − 1))
definable by a guard, and with a way to enumerate points in the boundary while
still remaining in the class of deterministic transitions under consideration. Strict
convexity is used so that taking the convex hull of points in (, as when using
polyhedral invariants, does not add “parasitic” points on the boundary. This ensures
that the guard that keeps only points on the boundary removes “parasitic” points.

Could we achieve similar goals using only linear constraints? Suppose we can
express such a guard with a formula, possibly containing disjunctions. Then, by
distributivity, this formula expresses a finite union of polyhedra %1 ∪ · · · ∪ %=. Then
there is a 8 such that the enumeration process eventually picks two points (in fact, an
infinity of them) in %8; and thus the guard cannot exclude “parasitic” points between
these two, at least over the reals.

A possible course of action could be to set the problem over integers and take
advantage of the implicit guard that non-integer points are discarded. This however
was also a dead end.
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4.2 Richer Domains

If the abstract domain (class of invariants) under consideration is rich enough to
express exactly the set of reachable states of the programs to be analyzed, then
obviously the problem is undecidable: a suitable inductive invariant (the set of
reachable states) exists in the domain if and only if the safety property is true.

This happens for instance if the domain includesΣ0
1 formulas of Peano arithmetic,

that is, formulas of the form∃{1 . . . ∃{= � where� only contains bounded quantifiers
and the usual arithmetic operations and comparisons.By a form of Gödel’s encoding,
for any integer program with < variables built using the usual arithmetic operators, it
is possible to build a Σ0

1 formula � (:, B1, . . . , B<) satified if and only if (B1, . . . , B<)

is the state of the program after : steps of [28, Ch. 7][3].
Such domains are obviously too rich. In fact, with the domain of Σ0

1 formulas
described above, it is not even possible in general to check for inductiveness, because
the formulas belong to an indecidable class.

However, even semilinear sets (sets defined by Boolean combinations of linear
inequalities with algebraic coefficients, thus disjunctions of convex polyhedra) are
sufficient to obtain undecidability even for a very restricted class of programs (one
single loop control state, nondeterministic choice between two linear transforma-
tions, no guards) [10, Th. 9].

5 Perspectives and Conclusion

The question of the completeness of the domain with respect to the properties to
prove, and the class of programs under consideration, is distinct from the problem
of algorithmically finding suitable invariants within that domain—or the related
problem of computing the least inductive invariant within the domain.

The traditional approach for abstract interpretation in domains with infinite as-
cending chains is iterations with widening. This approach has known weaknesses:
the analysis may miss the invariants necessary for the proof and the analysis be-
havior is non-monotone (increasing knowledge about preconditions or transitions
may decrease the precision of the analysis), which is a source of “brittleness” (a
minor change in the program causes the analysis to fail to prove the property). Many
tricks are thus used to improve the invariants obtained with widening: narrowing
iterations [6, 4], lookahead widening [16], guided static analysis [17]. Though they
help in practice, none of them guarantees that analysis will succeed.

Over time, completely different approaches were designed to compute suitable
arguments for proving safety properties. While widening is a form of extrapolation
(look at sets of reachable states in 0, 1, 2 . . . steps and try to extrapolate for arbitrary
number of steps), these methods are based on interpolation: given some under-
approximation of the set of reachable states, and the property to prove, find a simple
separation between the two (a Craig interpolant) and hope that the interpolant,
or components thereof, or formulas constructed from components of successive
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interpolants, becomes inductive. One such approach is property-directed reachability

[1, 9], later enriched with a number of extensions and improvements (dealing with
arithmetic theories, dealing with non-linear Horn clauses and not just transition
systems). Variants of this approach are in particular implemented in the popular
Z3 solver.9 Unfortunately, this approach, too, is brittle [2]: minor differences in the
problem to be solved (names of variables, etc.) may result in dramatic changes in
outcome (finding invariants or timing out).

Approaches that are guaranteed to find the least inductive invariant in the chosen
abstract domain (or, more generally, an inductive invariant suitable for proving
a given property, if it exists) are more resilient; I have listed several of them in
Section 3.2. Some of these methods however do not scale up well (those based on
quantifier elimination); policy iteration seems to be the most scalable.

In our view, the case for continued use of widening operators, despite their known
weaknesses, or other non monotonic and/or brittle methods, would be strengthened
by a proof that the existence of a suitable invariant in the domain is undecidable, or
at least has high complexity. Unfortunately, such undecidability proofs are hard.

In contrast, complete methods have many desirable properties. We have illustrated
this with the example of LRU cache analysis (Section 2). Since the end result has a
unique definition, there is no brittleness, and several algorithms or implementations
can be used to compute the same result, which allows performance comparisons (the
meaning of performance differences between methods producing non comparable
results is unclear) and validation by testing that results are identical.
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