
HAL Id: hal-03857305
https://hal.science/hal-03857305v1

Submitted on 17 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of environment on the execution of a real-time
Linux process on a multicore platform

Thomas Beck, Frédéric Boniol, Jérôme Ermont, Luc Maillet

To cite this version:
Thomas Beck, Frédéric Boniol, Jérôme Ermont, Luc Maillet. Impact of environment on the execution
of a real-time Linux process on a multicore platform. 11th European Congress on Embedded Real-
Time Systems (ERTS 2022), Jun 2022, Toulouse, France. �hal-03857305�

https://hal.science/hal-03857305v1
https://hal.archives-ouvertes.fr

Impact of environment on the execution of a
real-time Linux process on a multicore platform

Thomas Beck∗, Frédéric Boniol†, Jérôme Ermont‡ and Luc Maillet∗
∗Airbus Defence and Space, Toulouse, France

Email: thomas.t.beck@airbus.com luc.maillet@airbus.com
†ONERA, Toulouse, France

Email: frederic.boniol@onera.fr
‡IRIT-ENSEEIHT, Toulouse, France

Email: jerome.ermont@toulouse-inp.fr

I. INTRODUCTION

A. Space context

In the embedded systems industry there are not environ-
ments more hostile than space. In fact, a spacecraft is alone
in the void without direct human interactions. Its only way
to communicate and receive orders is through antennas. In
such a context, consequences of software failures can lead
to the loss of the spacecraft or even worse. For example, if
the AOCS (Attitude and Orbit Control System) software does
not work, the solar panels will not always be facing the sun
and the battery will not be able to produce enough power for
the whole spacecraft. In order to reduce those risks, on-board
software applications have a criticality level which represents
the consequences of their failures. Therefore, a failure in a high
criticality level software will result in worse consequences. In
the space context, criticality level for software is defined in
the ECSS (European Cooperation for Space Standardization)
standards as follows:

• A Catastrophic consequences: loss of human life or
environment disaster.

• B Critical consequences: loss of the spacecraft and/or
the mission.

• C Major consequences: major mission degradation.

• D Minor consequences: minor mission degradation.

The development of a software with a high level of criticality
is more constrained and thus more expensive. Usually, to
prevent that a software failure propagates to a software with
a higher level of criticality, software applications are executed
on different hardware platforms. Most of the time, on-board
software applications with the same level of criticality are
not made by the same software team, and are separated on
different hardware platforms as well. With this approach,
software failures are contained by the hardware and software
behavior does not affect execution of others software. Clearly
this one-software on one-hardware-platform strategy has a non
negligible cost considering the size, weight and power of an
on-board computer.

B. Problem statement

This article aims at studying the cohabitation of two or
more software applications on the same multi-core hardware

platform. These two software applications are designed and
developed according to the space context described in the pre-
vious section, thus each software application has a criticality
level and is produced by a different developers team. Once
they are executing on the same hardware platform, we want
to assure two fundamental properties:

• Execution interferences: the perturbation made by
one software on to others should not be greater than
ϵ. This ϵ can be an execution time or a response time
depending on the case. This epsilon is defined for each
application and is part of its specification.

• Failure propagation: a software failure should not
propagate to software with a higher criticality level.
The functional failure propagation, being application-
specific is not in the scope of this work.

Along with these properties we assume the following hypoth-
esis: all software should be developed and executed on Linux.
It means that Linux is used as the embedded operating system
of our spacecraft. In order to ensure these two properties, our
objective is to use space and time isolation of applications
running on a Linux operating system. The use of Linux is
motivated by its recent evolution that makes it useful for
embedded systems.

C. Related work

In 2000, [1] presented core issues of IMA (integrated
modular avionics) which was new at that time. In this tech-
nical report, John Rushby laid the groundwork of avionics
partitioning showing that a strict isolation is a solution for
resolving the IMA problematic. Many years later, solutions
have been found to adapt this resolution in space avionics as
shown in [2]. Hypervisors such as Xtratum and VxWorks 653
have been developed to respond to the needs of an IMA for
space. Isolation proposed by this kind of hypervisor is strict,
secure and with a temporal predictability. The disadvantage of
those isolation properties is that it makes the whole system less
modular. Scheduling is fixed , developers coding libraries are
specific and not widely known and the development process is
more complex. A performance comparison of these real time
solutions is presented in [3].

Linux could be the perfect solution to the problems pre-
viously cited and it is used in many space mission as de-
scribed in [4]. However, Linux is not a hypervisor designed to

strictly isolate and to schedule real-time software applications.
Linux and its PREEMPT-RT patch is able to provide real-
time features. For hard real-time software applications, a co-
kernel solution named Xenomai is available. The performance
differences between native Linux and Xenomai are presented
in [5]. However Linux is not deterministic and its behavior can
introduce latency in the system. A lot of studies measured this
latency with the PREEMPT-RT patch ([6] [7] [8]). Moreover,
some studies worked on the scheduling model of Linux to
reduce these latencies ([9] [10] [11]).

The other aspect of using Linux in a critical real time
system is to ensure an isolation of the different applications
running on it. This concurrency problem is explained in [12]
where they try to reduce the impact by implementing an RCU
mechanism. Others studies try to address the problem from
the memory point of view and thus work on the hardware
memory system ([13] [14] [15]). Containerization is a powerful
feature of Linux which helps when an isolation is required.
[16] presents a way to modify the Linux scheduler to use
container and real-time scheduling at the same time.

Linux is a powerful operating system and is useful in a
lot of industries. In the space industry the interest has recently
grown with the new space. The last Linux space known project
was made by NASA. They sent a helicopter on Mars with an
avionic partially based on Linux [17]. As explained in [18]
Linux is also an academic subject to study.

Finally, our approach presented in this paper is based on
the measurements like in [19]. We want to study Linux with
the less customised configurations to take the more advantages
of the open-source world offered by Linux.

D. Contribution of the paper

The main objective of this paper is to evaluate the ro-
bustness of Linux in a critical real-time context. This paper
aims at producing tests results of the Linux behavior and its
processes when using an embedded space scenario. We are
studying the impact of Linux upon real time processes by
varying configurations of the system (cf sections VI-B, VI-C
and VI-D). We will also focus on the impacts of running Linux
real-time processes upon each other (cf section VI-A).

II. SPACE SOFTWARE USECASE AND PLATFORM

Software applications we study exchange data between
physical sensors, physical memory and the ground station.
Those software can be real-time, i.e with a deadline and/or
a period, depending on the requirements of the sensor they
communicate with. Since all software will be executed on
top of a Linux operating system, a software application is
represented by a Linux process. We took one space specific
use-case software to study its isolation when it is executed
with others processes on the same hardware platform.

A. AOCS: attitude and orbit control system

In a satellite, the AOCS software is responsible of control-
ling the attitude i.e orientation and the orbit of the spacecraft.
Inputs of AOCS algorithm are attitude and orbit positions com-
ing from sensors such as Star trackers. The AOCS algorithm
generates commands sent to actuators such as gyroscopes and

thrusters. These commands aim at correcting the attitude and
orbit of the spacecraft. In the scope of this article we study
a simple AOCS algorithm doing a flyby i.e approaching a
stellar object without entering any orbit. The AOCS software
application implementing the algorithm is a periodic Linux
process running at a 8Hz frequency. It takes its inputs from
a pipe and writes its outputs in another pipe. This software
consists of 16000 calculus steps. Each steps doesn’t have the
same behavior as the others. However, if the inputs stay the
same the behavior of the same step in two different execution
of the software will have the exact same behavior. The AOCS
process has two children processes described below:

• A non periodic Linux process reads inputs from the
input file and writes it to the input pipe.

• Another non periodic Linux process reads outputs
from the output pipe and compares it to the expected
outputs from the output file.

The input and output files are located on the file system. The
AOCS process is thus only responsible of computation which
is its true behavior in the spacecraft. By forking the AOCS
process and thus creating two children processes it creates an
isolation between I/Os accesses and calculus code. Moreover,
memory accesses made by the I/Os processes and the AOCS
process are different. Reading and writing to a file imply
loading memory pages from the disk to the main memory. This
operation along with every others one related to the virtual
memory are handled by the operating system and are slower
than accessing the main memory. In another hand, reading
and writing to a pipe is faster as it doesn’t need memory page
management because pipes are located in the operating system
area.

B. Hardware platform

Due to the hostility of the space environment, spacecraft
embedded computers and electronic devices must be adapted.
Those modifications have non negligible costs on satellites
production. Recently, the space industry introduced COTS
(commercial off-the-shelf) hardware components to be used
in the next generation of satellites. Experiments presented in
this paper are made on a Zynq Ultrascale+ made by Xilinx
which is one of the COTS hardware platforms considered by
the space industry for the next generation of satellites.

The SoC has two main processing units (application and
real-time) along with a PMU (platform management unit), a
CSU (configuration and security unit) and a GPU (graphical
processing unit). The Zynq ultrascale+ also contains an FPGA
which can be accessed by all I/Os and processing units.
This SoC architecture is interesting for the space industry,
the application processing unit can run COTS software (such
as Linux) while the real-time processing unit handles more
critical software or monitors the entire system. Moreover,
FPGA is useful for handling communications between I/Os
and processing units and is becoming an essential electronic
component for satellites.

As described in the previous paragraph, in the context
of space systems the real-time processing unit is envisaged
to take measures. This unit is made of an ARM Cortex-R5
implementing the ARMv7-R architecture. It is a dual-core

2

with one L1 cache per core and a L2 shared cache. To ensure
reliability it can be used in lock-step, i.e the two cores execute
the same instructions and their outputs are compared.

Besides, the application processing unit will run Linux.
This processing unit is made of an ARM Cortex-A53 processor
with a frequency going up to 1.5 GHz, which implements the
ARMv8-A architecture. It is a quad-core, with instruction and
data L1 cache along with a shared L2 cache and an MMU
(memory management unit). The L2 cache is a 1MB 16 way
set-associative cache with ECC shared between the CPUs. It
means that it’s containing 15 625 lines of 64 bytes. The L2
cache is unified i.e it contains both data and instruction from
the L1 memory system. The L1 instruction cache is a 32 KB
2 way set-associative cache with ECC independent for each
CPU. It’s containing 500 lines of 64 bytes. The L1 data cache
is a 32 KB 4 way set-associative cache with ECC independent
for each CPU. It can contain 500 lines of 64 bytes. In the
scope of this paper, all software applications are executed on
the processing unit.

III. PROBLEM FORMALISATION

Our work is focused on analyzing perturbations between
software applications on the same hardware platform and
respecting the properties described in the introduction of this
paper. All software applications will be executed in a Linux
process and processes will only contain one thread.

First of all, Linux hasn’t been created to be a real-time
operating system. As our software applications are connected
to complex sensors they sometimes need to be executed pe-
riodically and respect a deadline. Linux developers developed
real-time mechanisms for Linux. The central question of our
work is to ask if real-time constraints of our use-cases can be
respected with or without Linux real-time mechanisms. In this
paper, we will provide some elements answering this question.

Second of all, the hardware part of our usecase is very
important, as execution time can be modified by a memory
response delayed by shared caches or busy busses. Interactions
between software and hardware is made by two channels:
systems calls and drivers. System calls allow software to use
special features provided by the operating system. A complex
operating system such as Linux proposes many different sys-
tem calls and some of them might not be suitable for space
avionics. In order to measure and then control interference
caused by system calls the first step is to list system calls
usable in a satellite avionic. Once the list is complete an
analysis of the memory impact of each system call will be
made. For example, if one software uses shared pipes they can
be accessed by others software. These accesses can generate
interference, thereby a space isolation of resources accessed
through system calls is needed. In the scope of this paper, we
consider all systems calls related to the file system, specifically
the write and read system calls. In fact, using files is a useful
feature for an on-board software.

The main purpose of drivers is to abstract the handling of
devices. Drivers code runs in kernel mode like the operating
system and can thus access the physical memory. As they are
closely related to device characteristics most of the time drivers
are written by the company who developed the device. This
detail poses a problem in our context, the fact that a non trusted

component is running inside the kernel is a clear breach of the
isolation sought in this work. The last question of our work is,
how to isolate shared software resources such as drivers in a
Linux system. This question won’t be addressed in this paper.

IV. LINUX BASED SOLUTION

Linux is a widely used operating system. Created in the
mid 90s Linux is developed by software engineers all around
the world. A lot of companies invest time and money in the
development of Linux. Nowadays, Linux is used by a lot of
people and deployed on many different kind of hardware. It
can run on desktop computers, servers, supercomputers but
also on IoT and embedded devices. Most of developers learn
to use Linux and its development environment which make
it a standard in the computer industry. One of most power-
ful advantages of Linux is its reusability. The open-source
philosophy allows to reuse libraries and drivers developed
for Linux on different hardware. All these advantages make
Linux useful in an embedded devices context. However, it is
not conceived for critical applications and the development
process of Linux is far from those used in real-time/critical
operating system. Critical embedded industries want to be part
of the Linux adventure and get all the benefits of using it
in their products. Medical, aerospace, automotive, and indus-
trial automation are considering the use of Linux for critical
sections. This new approach of critical software asks a lot
of questions due to the fact that qualification or certification
of open-sourced Linux is certainly impossible. Thereby the
embedded operating system verification paradigm has to be
changed. In this section, configurable characteristics of Linux
will be presented. These characteristics are appropriate for
ensuring the properties described in the introduction.

A. Real-time scheduler: SCHED DEADLINE

For Linux to be used in a critical embedded systems context
it need to have real time properties. Thus, process needs
to respect their deadline and period cannot be fulfilled with
the default Linux scheduler. Nevertheless, Linux has multiple
scheduling policies. Each Linux process can have a different
scheduling policy and many of them are real-time oriented.
In this article we will target the SCHED DEADLINE policy.
It allows a process to have a period and a deadline. Its
implementation uses GEDF (Global Earliest Deadline First)
in conjunction with CBS (Constant Bandwidth Server). To
ensure an optimal scheduling, the scheduler needs to know the
process runtime (cf figure 1). This runtime must be greater than
its average computation time (or WCET for hard real-time).
These 3 properties will be used by the scheduler to ensure the
scheduling policy. CBS throttles threads attempting to over-run
their runtime to guarantee non-interference between tasks.

arrival/wakeup absolute deadline
| start time |
| | |
v v v
-x--------xooooooooooooooooo--------x--------x--

|<-- Runtime ------->|
|<----------- Deadline ----------->|
|<-------------- Period ------------------->|

Fig. 1. Parameters of a SCHED DEADLINE Linux process (man sched(7))

3

In the Linux system, SCHED DEADLINE threads have
the higher priority. In other words, if one SCHED DEADLINE
thread is runnable it will preempt threads scheduled by another
policy.

B. Real-time kernel

Scheduling is not the only characteristic needed for an
operating system to be considered as real-time. In Linux the
PREEMPT-RT patch has been created to adapt the kernel to a
real-time context. This patch is now merged into the upstream
Linux stable version. As presented in the previous section, the
Linux scheduling can be real-time and implement rt-throttling
to ensure that no tasks hang the system. The PREEMPT-RT
patch also enables the priority inheritance mechanism in the
Linux scheduler. It allows a task with a low priority to take an
higher priority if it is blocking a mutually exclusive resource.
Thereby, the high priority task waiting for the mutually exclu-
sive resource will be executed as soon as possible.

One important aspect of the Linux PREEMPT-RT patch is
the preemption model. In the mainline kernel, plenty of the
code is non preemptible which can delay the tasks execution
time. To reduce the impact of this, it is possible to make
the kernel in a fully preemptible mode. It means that all
kernel code is preemptible (except a few critical parts). Large
preemption disabled sections are split with locking constructs.
Threaded interrupts handlers are forced i.e interrupts han-
dlers run in a threaded context and new mechanisms are
implemented such as rt mutex and spinlocks which allows
preemption in mutexes and raw spinlocks.

V. METHODOLOGY

A. Protocol

In this section we describe the protocol used to get the
results presented in this paper. For each metric we want to
retrieve two measurements. One measurement before calling
the calculus function and one measurement after. Then, the
difference between those two measurements is made to obtain
the value of the metric during the execution of the calculus
function. For example, to retrieve the number of L2 cache
refill made by one execution of the AOCS calculus function,
we measure the value of the L2 cache refill before calling
the function and after calling the function. Then we can take
the difference between those two values to get the number
of L2 cache refill made during one execution of the AOCS
calculus function. Note that the measurements are only taken
on the AOCS process and not on the I/Os processes. It means
that writing and reading from the pipes is not considered in
the measurements. Also all measurements are taken on one
process only which is considered the victim of the experiment.
All others processes (users and kernel ones) and all kernel
activities are considered the attackers of the system. In the
ARM Cortex A53 used in these experiments performance
counters registers are 32 bits wide. As we are running an
AOCS process running at a frequency of 8Hz for 16 000 steps,
the entire execution takes around 33 minutes. During such a
long time, the 32 bits registers can overflowed, in this case
the counts restart at zero. In most cases this is not a problem
as we are taking the difference between two values. However,
when the overflow happens during the execution of the calculus

1 f o r (i = 0 ; i < nbStep ; i ++) {
2 c l o c k g e t t i m e (CLOCK REALTIME, . . .) ;
3 r e a d (p ipe , . . .) ;
4 . . .
5

6 r e a d c o u n t e r (i) ;
7 c l o c k g e t t i m e (CLOCK PROCESS CPUTIME ID , . . .) ;
8 Aocs s t ep () ;
9

10 r e a d c o u n t e r (i) ;
11 c l o c k g e t t i m e (CLOCK PROCESS CPUTIME ID , . . .) ;
12 c l o c k g e t t i m e (CLOCK REALTIME, . . .) ;
13 . . .
14 }
15

Fig. 2. C code of the measure point inside the AOCS process

function, the value of the difference is not correct. To repair
those values we add 232 to each non valid value. The only
measure taken before reading the input pipe is from the clock
because one important metric to analyze is the wake up date
of the process. The code of the measurements is shown in the
figure 2.

We collected a lot of data from the performance counters,
mostly on hardware memory events (bus accesses, cache
accesses, cache refills, ...). In the scope of this paper, data
such as context switches or core migration during the execution
of an AOCS process could be interesting. Unfortunately, we
weren’t able to retrieve those data precisely enough. This is
due to the fact that there is no way to know when a process is
migrated or preempted. It is possible to get the number of the
core the process is executed on, but nothing assures you that
this won’t change in the next moments. Thus, we aren’t enable
to get information about context switches or core migrations
by retrieving hardware data.

In all these experiments we consider a “light” Linux distri-
bution made with Yocto. The Linux kernel used in this paper
is a 5.4 version of the Xilinx Linux kernel found in the official
Xilinx Github [20]. According to Xilinx recommendations
([21]) we used the Yocto zeus version from the official Yocto
repository ([22]). Using Yocto allows a complete theoretical
control of what’s inside the Linux operating system. In the
scope of this article, each application is modelled by a Linux
process and each Linux process have exactly one thread i.e
threads = processes.

B. Measures impacts

Measure methods affect the experiment and therefore mod-
ify the results. Removing measure impacts is difficult and most
of the time impossible. Therefore, the question is are those
impacts negligible in these experiments ?

Every measures described in the scope of these experiments
are taken inside a period of execution. It means that every code
outside of the periodic loop isn’t considered in the measures
results. In particular, the loading and initialization phases of
the application are not in the measures scope.

Measures presented in this article are coming from two
different sources. The first one is clocks, managed by the
operating system and used to measures execution time, relative

4

wake up time and processing time i.e time passed on the CPU
between the beginning and the end of a cycle. Retrieving the
value from those clocks takes approximately the same amount
of time each time. The time value is encoded with two 64 bits
integers, one for the nanoseconds and the other one for the
seconds. Impacts of retrieving a timing value is then constant.
The second source for the measures is performance counters.
The activation of those counters doesn’t modify the execution
of the code. Retrieving the value of those counters imply
reading CPU registers which aren’t in the main memory. As
for the clocks, the impacts of retrieving performance counters
values are constant through the time. For both measures
sources impacts of retrieving data are constant and don’t affect
the main memory i.e no memory accesses are performed.
To be analyzed, those retrieved data need to be stored and
made available after the experiment. The storage procedure
can induce huge impacts on the measures, as the results have
to be stored on the main memory. For example, the complete
AOCS application has around 16 000 cycles which means
that if all 6 performance counters and 2 clocks are used a
storage space of 16000 ∗ (6 + 2) ∗ 64bits = 1MB will be
needed. Accessing this space requires accessing memory pages
which will generates memory accesses, page faults and other
events related to the virtual memory which will be handled by
the operating system. To reduce the effects of those memory
accesses on the experiment, measures data is placed in local
variable placed on the stack of the process and then copy to
the memory outside of the measured section. This method will
generate less impacts on the executed code but will alter a little
the memory hardware state.

Finally, impacts of retrieving measures are constant and
storage of the results is made outside the periodic loop.
Therefore, to decide if measures impacts are negligible in this
context we need to measure the constant part of the impacts.
Figure 3 shows the results when no code is executed between
two measures points. This chart represents the execution time
induced by the measure itself which comprised between 7, 5µs
and 9, 0µs. As the WCET of the AOCS process is around
1ms we can conclude that the impact of the measurements is
negligible.

0 100 200 300 400 500

7.5

8

8.5

step

Ex
ec

ut
io

n
tim

e
(in

µ
s)

Fig. 3. Measurement of execution time with no code

VI. EXPERIMENTS

Experiments presented in this paper aim at finding Linux
configurations suitable for our context. Linux have a multitude
of configurable points which can vary. To find suitable Linux
configurations we will focus on varying those configurable
points. For example, real time and isolation mechanisms such
as the PREEMPT-RT patch or the Linux namespaces are
configurable points which can vary from disabled to enabled.

In this section we present 4 experiments making measure-
ments on different configurable points. The first experiment
aims at comparing the use of same or different files by the
same processes. The second experiment measures an impact
of the Linux stock kernel on the execution time of an AOCS
process. The third experiment measures a drift in the scheduler
wake up date of a periodic process. The last experiment, is the
same as the last two but with the PREEMPT-RT patch enabled.

A. Mono file versus multiple files

Files take an important place in our experiments. Not only
they are used to store inputs and outputs of the AOCS applica-
tion, they also contain instruction data. In fact, executables are
files stored in the disk (SD card in our specific case). The file
management is completely handled by the operating system,
through multiple system calls, which try to optimize these
accesses. In this context, accessing files is a source of interfer-
ence from the operating system on applications but also from
other applications. For example, two different applications
trying to read to the same file will generate interference and
the behavior will be different as if the application was alone
on the system. The first experiment presented in this paper
aims at exhibiting the differences between applications using
the same files and applications using completely different files.
This configuration could happen when using shared libraries
as it is very common is the Linux development world.

In this experiment, two groups of applications were created
based on the AOCS code. The first group is composed of
AOCS applications using the same executable file and the
same I/Os files. For the second group each executable and I/Os
files are duplicated. For each group the same experiment was
performed and is described as follows. The experiment begins
by executing one AOCS application and measuring execution
time, process time, wake-up time and performance counters
related to memory such as L2 cache refill or bus accesses. The
results from this first step is used for comparison and must be
equivalent in both groups. The next step of the experiment is
to increase the number of parallel execution. The maximum
number of launched applications is 30 which represents 90
processes on the operating system (30 AOCS processes, 30
input processes and 30 output processes). In the context of
this experiment, measurements are taken on only one AOCS
process considered as the victim whereas all others AOCS and
I/Os processes are considered attackers.

In the results of this experiment we observed that when
the files are the same the performance are better on average.
The worst performance is better than for the other group of
processes. The figure 4 shows the average execution time for
the AOCS process when others AOCS processes are executed
in parallel. There is one curve for the first group and the other
curve is for the other group. In these curves we can notice

5

aberrant points as for example, the point 3 of the mono file
curve. Linux isn’t deterministic and induce a lot of variability
in the system, this is why we may have these points. In
this paper we are focusing on the curves trends and not the
particular values. Note that we did repeat those experiments a
few times and these aberrant points aren’t always at the same
spot. Although, we do not have enough data to make statistics
which could lead to removing these points.

This chart shows us that in average the group using
the same files is executed approximately two times faster.
Moreover, both curves can be separated in two phases. The
first phase is between 1 and 4 AOCS parallel while the second
phase is from 5 to 30 AOCS in parallel. In the first phase,
both curves are increasing and in the second phase they seem
constant. The hypothesis behind these observations is that the
pivot point of 4 AOCS processes in parallel is related to
the cores number of the ARM Cortex A53 the processes are
executed on. In fact, many memory hardware resources are
shared between the 4 cores of the processor (buses, L2 cache,
memory controller, RAM,...). When 2 processes are executed
in parallel, they both need to access those resources and thus
hardware resources aren’t always ready to respond to the cores
requests. When executing more than 4 processes in parallel,
cores are always occupied. If it’s not by AOCS processes
they will be by inputs or outputs processes. This means that
there is always 4 processes running at the same time and thus
memory hardware resources are busier than if there were less
than 4 processes in the system. Parallel use of the hardware
resources can explained this observation, but these are not the
only hardware interference possible in the system.

0 5 10 15 20 25 30

150

200

250

300

350

400

Number of AOCS in parallel

Ex
ec

ut
io

n
tim

e
(in

µ
s)

Mono file
Multi files

Fig. 4. Measurement of execution time in average comparison of the two
processes groups

Modifying the state of a shared memory hardware device
is another kind of interference. The figure 5 shows the number
of L2 data cache refill i.e the number of times a cache line
has to be loaded from the main memory, from the same two
groups of processes. As for the previous curve, it has been
obtained by executing the AOCS processes in parallel during
16 000 steps at a frequency of 8Hz. The curve is similar to
the previous one, but the form of it around the pilot point
is smoother. As a matter of fact, we can observe a behavior

change around the point 4 but the transition between the two
phase is not abrupt. In this case, we still can see an increasing
between the point 4 and 8 in both curves but the slope of
the curves is smaller and the shape of the curves changed
from exponential to logarithmic before becoming constant. In
other words the first phase of the curves (between 1 and 4) is
similar to the previous curves and thus induces the shape of
the execution time curves. In fact, if there are more L2 data
refill the execution time of the process will increase. Then,
the second phase shows a smaller rise of the curves because
increasing the number of parallel processes means increasing
accesses and more accesses means more L2 cache refill. The
last question raised by those charts is why is the second phase
constant ? At first, it does not seem logical that the impact
on an AOCS process is the same when there are 10 others
AOCS processes executed in parallel and when there are 30
AOCS processes executed in parallel. An hypothesis that could
explain this behavior is that the cache could be filled up or at
least all the ways accessed by the AOCS process are filled
up with other data. In this case, each time the AOCS process
is scheduled its data from the last execution has been evicted
from the cache.

0 5 10 15 20 25 30

0

1,000

2,000

3,000

4,000

Number of AOCS in parallel

N
um

be
r

of
L2

da
ta

ca
ch

e
re

fil
l Mono file

Multi files

Fig. 5. Measurement of L2 data cache refill in average, comparison of the
two processes groups

Now that the shape of the curves is described, let us focus
on the differences between the two groups of processes. In
both charts we can see a non negligible difference between
the mono file curve and the multi files one. The mono file
curve shows less L2 cache refill with a maximum of 1000
while the maximum of data cache refill for the multi files
curve exceeds 3000. This means that when using the same
files, there is a better re usability of the data which can be
found in the caches. But address space of different processes
in Linux are completely separated. In other words, data from a
process A cannot be shared with a process B and thus process
B cannot use data from the cache already loaded by process
A. Then how can we explained the previous results?

When accessing a file in Linux a process uses system calls.
All actions related to a file is then handled by the operating
system. Even if there are 30 different processes executing in
parallel with different address space, they are all taking their

6

data from the same file. All reads and writes are performed
by the operating system from the kernel address space. Which
means that all processes reading or writing to the same file
can used the same cache line without needs to refill it.

To conclude, using the same files both as executable
and data I/Os for parallel processes change drastically the
performance we observed. We showed in this sub section that
the impact of using or not the same files in parallel execution
of processes is impacted by two distinct phenomenon.

B. Periodic interference peaks

During the first experiment we observed that when an
AOCS process was executed alone on the system its execution
time was impacted by interference. In fact, periodic peaks are
present in the execution time curve as shown in the figure
6. We investigated to know if those peaks comes from the
application code itself or if it is interference generated by the
operating system. In this experiment, there are no difference
between mono or multi files as we are only considering one
AOCS process.

0 625 1 250 1 875

100

200

300

400

Time of the experiment (in seconds)

Ex
ec

ut
io

n
tim

e
(in

µ
s)

Fig. 6. Measurement of execution time for each step of an AOCS application
with a period of 125 ms without any other application running in parallel

To determine the origin of those peaks two observations
were made. First, the peaks don’t appear at the same steps for
every execution of the AOCS process. We know that the AOCS
code we use doesn’t have the same behavior for each step but
one step will always execute the same code if its inputs are
the same. In the scope of these experiments, I/Os files aren’t
modified. After this observation, the hypothesis that the peaks
do not come from the AOCS code itself seems plausible. To
assure that we had the right hypothesis we try to redo the
measurements with a modified period. In this case, the period
of the peaks didn’t change. The figure 7 shows the results for
a period of 50ms. In fact, there are 20 peaks in 625 seconds
in both curves.

It is clear that the period of those peaks isn’t based on the
steps of the AOCS application. Therefore, we can now assure
that those peaks come from the operating system. Note that
these peaks also appear in the figure 2 which also confirm that
the interference don’t come from the AOCS algorithm.

0 250 500 750

100

200

300

400

Time of the experiment (in seconds)

Ex
ec

ut
io

n
tim

e
(in

µ
s)

Fig. 7. Measurement of execution time for each step of an AOCS application
with a period of 50ms without any other application running in parallel

One other simple hypothesis could be that those peaks
come from a context switch. To answer this question an ana-
lyze of the difference between processing time and execution
time can be made. The execution time counts the time spent
by the processor when executing only the AOCS code. The
processing time is the difference between the end date and the
beginning date of the process. Therefore, if a context switch
occurred during the execution of the process, the processing
time will be greater than the execution time. We observed that
there is no correlation between this difference and the peaks
observed in the execution time chart. In fact, the processing
time is not greater when there is a peak in the execution time
curve. The figure 8 shows the result of the difference between
processing time and execution time. Therefore, this hypothesis
can be excluded because there are no peaks in this curve.

0 5,000 10,000 15,000

0

100

200

300

400

Step

T
im

e
di

ffe
re

nc
e

(in
µ

s)

Fig. 8. Measurement of the difference between processing time and execution
time.

Now the question is to find where the peaks come from. We
can note that there are two types of peaks. There are smaller
peaks with smaller period and bigger peaks with bigger period.

7

We could also note that there are exactly 9 small peaks between
two big peaks. It seems that 2 periodic phenomena impact
the AOCS process. There are 2 hypothesis for the second
phenomenon with the bigger peaks. Either it is a particular
execution of the first phenomenon occurring each 10 peaks.
Or it can be from a completely different source and the 2
phenomena are synchronised for some reasons.

The measures taken from the performance counters are
difficult to analyze because the AOCS algorithm doesn’t have
the same behavior at each steps. In particular, it doesn’t make
the same amount of memory accesses and doesn’t access the
same data in the main memory. Thereby, it is hard to know if
the AOCS algorithm play a role in the value of those peaks or
if they are only induced by the environment.

This questions lead to create another algorithm to help us
find the source of the observed peaks. The new application is
reading from an integers array stored in memory. To ensure
that the compiler won’t remove those unused accesses a sum
of each integer of the array is performed. Moreover, this sum
is repeated periodically at a frequency of 8Hz and uses the
SCHED DEADLINE policy from the Linux scheduler. We
also implemented the same measurements techniques as for the
AOCS process. The measures from this new algorithm give the
same peaks in the execution time data. This confirmed once
again that the operating system is altering the behavior of the
process. What’s interesting in this case is that the memory
accesses and the L1 data accesses are constant at each steps.
Each new refill from the L1 and L2 data cache can then
be considered an interference from the operating system. As
shown in the figure 9 there are also peaks in the L2 data cache
refill. Those peaks occur at the same steps as the one observed
in the execution time curve.

0 5,000 10,000 15,000

0

1,000

2,000

3,000

Step

N
um

be
r

of
L2

da
ta

ca
ch

e
re

fil
l

Fig. 9. Measurement of L2 data cache refill for the AOCS application

At this point the main hypothesis is that Linux or a
hardware component is flushing all the memory hardware
system (L1, L2 and TLB), either because it makes a lot of
accesses to the memory or because it performs a hardware flush
(for example because of security reasons). After this action is
performed the process is woken up and have to refill all its
data in the memory system which takes time and generates

the peaks we observed. This hypothesis also explains why
the curve which shows the difference between processing and
execution time presented in the figure 8 is not constant. In fact,
as the process as to access the main memory the CPU has to
wait, when the CPU is waiting the real time clock is running
but not the one counting the time passed in the process. Note
that these peaks are observed even for very small array. It
means, that even when the process has only a small amount of
data in the caches, the operating system ejects it. This also
confirms the hypothesis of an entire flush of the hardware
memory system.

Actually kernel code responsible of this flush phenomenon
hasn’t yet been identified. An analysis of the behavior of the
system with the Linux Ftrace tool has been made but no
correlation has been found.

C. Scheduler wake-up drift

In the embedded space system the wake up date of the peri-
odic process is an important metric to measure. If the scheduler
wakes up the process a little later or a little sooner it can induce
a drift which will result in a desynchronization of the process
and the sensors sending input data. This desynchronization
could become a problem, especially since satellites are running
for years without being rebooted. We measured the wake up
date of the AOCS process with the CLOCK MONOTONIC
of Linux which is a system wide clock. The chart presented in
figure 10 shows the relative wake up date (in ns) at each step.
The first wake up date is taken as a reference. The rest of the
curve is obtained by subtracting step∗1.25∗108 at each wake
up date. It shows that after 15 000 steps the wake up date is
40 µs sooner that it should have been if the scheduler used an
exact period of 125.00 ms.

0 5,000 10,000 15,000

-40

-30

-20

-10

0

Step

R
el

at
iv

e
w

ak
e

up
da

te
(in

µ
s)

Fig. 10. Measurement of the wake up date for each step relatively to the
first wake up date

The first observation made on that curve is that the
scheduler seems to induce a drift in the wake up date. One
hypothesis to explain this drift could be a desynchronization
between the internal scheduler clock and the clock monotonic
used in this experiment.

8

The second observation is that the peaks presented on the
section B also appears on the wake up date curve. Those peaks
are similar in the figure 10 and in the figure 6 even though
they came from different execution. The scheduler drift seems
to be linear but can be impacted by the same phenomenon
than the AOCS process itself. We observe that on the same
execution measures the peaks appear exactly at the same steps
on both curves.

To help find what can induce this drift we look at the
difference between two consecutive wake up dates. The figure
11 shows for each step the difference between the wake up
date of this step and the wake up date of the step before minus
1.25 ∗ 108. In other words, a value of 1 at the step 50 means
that the difference of the wake up date between the step 50
and the step 49 is 125ms + 1 µs.

0 5,000 10,000 15,000

-10

-5

0

5

10

15

Step

W
ak

e
up

da
te

di
ffe

re
nc

e
(in

µ
s)

Fig. 11. Measurement of the wake up date difference for each step

In this curve we can remark that there are also peaks.
As for the other curves, the peaks appear on the same steps
in all different curves. This means that the two phenomenon
producing those peaks both in the scheduler and the AOCS
process are correlated. Moreover in the figure 11, the positive
peaks seem to be correlated to negative ones. The figure 12
shows the same curve but only the first 100 steps. At the
step 61 we could see a positive peak of around 8 µs. This
peak is followed right after by a negative one at the step 62
of around -6.5 µs. The hypothesis behind this observation is
that the scheduler try to catch up its delay at the step 61 by
scheduling the next step a little earlier. But the positive delay
at the step 61 is greater than the negative delay at the step
62. As a result the scheduler induces a positive delay at the
step 63. By looking closely at the figure 11 we observe that
this phenomenon is reproduced for each positive and negative
peak. Another hypothesis could be that the time spent at
executing the operating system code isn’t taking into account
for calculating the next period.

We can then generalise the rationale for the steps 61 and
62. Thus the scheduler induces a positive delay for each
peak which should result in a positive delay in the entire
measurement. However, the figure 10 shows that globally there
is a negative delay.

Finally measuring wake up dates of the AOCS process
showed two things. First, the phenomenon impacting the
execution time presented in the last sub section also impacts
the scheduling of the process. This impact induces a positive
delay in the wake up dates. Second, the wake up date are
globally drifting and the process at the step 15 000 is scheduled
sooner than it should have been.

0 20 40 60 80 100

0

5

-5

7

2

-2

-7

9

Step
W

ak
e

up
da

te
di

ffe
re

nc
e

(in
µ

s)

Fig. 12. Measurement of the wake up date difference for each step for the
first 100 steps

As explained in the introduction of this sub section, this
drift could be a problem if the system is not rebooted very
often. This raises the followed question: does the phenomenon
result from a desynchronisation between two internal clocks or
a software behavior of the scheduler itself?

D. Impact of PREEMPT-RT

One of the first question when Linux is proposed in a
critical embedded context is: is the PREEMPT-RT patch of
Linux necessary ? We reproduced the 2 last experiments
with PREEMPT-RT to find out if the real time patch reduces
the observed phenomenon. The next paragraphs describe the
obtained results for each experiment.

For the periodic peaks experiment adding PREEMPT-RT
doesn’t change the actual behavior. The peaks still appear in
the execution time curve and are correlated to the peaks in the
L2 cache refill curve. However, our observations are described
as follows:

• The average execution time is the same with and
without the PREEMPT-RT patch enabled. Globally,
for each step the execution time isn’t modified by
PREEMPT-RT. We measured an average execution
time of 145 393 nanoseconds without PREEMPT-RT
and an average execution time of 146 429 nanoseconds
with the PREEMPT-RT patch. This means that there
is a difference of around one microsecond between the
two average execution time.

• The bigger peaks have the same value with and
without the PREEMPT-RT patch enabled.

9

• The smaller peaks are higher with PREEMPT-RT than
without.

The first observation means that the PREEMPT-RT patch
doesn’t add any overhead to the execution time. However,
it seems that the PREEMPT-RT patch induces a phenomena
which results in a higher impact on the AOCS process. We
don’t have any hypothesis at this time of what causes this
impact since we aren’t sure of what causes the peaks in the
first place.

For the scheduler wake up date drift the curves from both
cases seem to have the same characteristics. In fact, the drift is
still there and its slope is the same. The patch PREEMPT-RT
doesn’t have any impact on the wake up date drift.

Finally, in these two experiments, adding the PREEMPT-
RT patch doesn’t seem to modify the behavior except a small
change in the heights of the smaller peaks in the execution
time curve. In fact, using the SCHED DEADLINE scheduling
policy from Linux makes the AOCS process a high priority
process. Without a lot of external interruptions the AOCS
process isn’t bothered very often. The scheduling policy is
then enough for our process to be efficient.

VII. CONCLUSION AND PERSPECTIVES

A. Conclusion on the observation

The goal of this paper was to observe how the Linux kernel
impacts the execution of real-time processes.

The first experiment showed us that system calls provided
by Linux to access files seem to be optimised to increase
the performance when multiple processes want to access the
same files. In our experiment, using shared files produces less
interference than using different files when reading the files
even if the address space of processes are completely isolated
by the operating system.

The next two experiments presented the impacts of the
stock Linux kernel on the AOCS process. In the first experi-
ment, we have periodic impacts increasing the execution time.
In the second one, we found a drift in the wake up date of
periodic processes. Both of these phenomena can be a problem
depending on the chosen ϵ mentioned in the introduction.
For instance, in the AOCS figure 6 shows that perturbations
induced by Linux double the execution time. In this case,
if ϵ (i.e margin associated with AOCS) is lower than the
isolated execution time then this Linux-based implementation
doesn’t meet the requirements. However, the impacts described
in those two experiments is constant and predictable through
time. In fact, in all the measurements we made we found the
same impact in both experiments. The execution time peaks
are periodic with a constant period. For the scheduler wake up
date drift, the slope is constant and around -40 microseconds
for 16 000 steps (3̃3 minutes).

Finally, we did the same two experiments with another
variation of our Linux kernel. In this case, we enabled the
PREEMPT-RT patch to find if it has an impact on the two
observed phenomenon. Only a small change in the value of
the small peaks has been spotted but the global behavior didn’t
change. Thus, the PREEMPT-RT patch doesn’t seem to impact
the observed phenomenon.

B. Future work

For the future, the first thing we want to do is find the root
cause of the two observed phenomena. In order to do that,
we could add statistics tools to help understand the measured
data and extract information on the phenomena. In this paper
we focused on a qualitative rationale, introducing statistics
will help for producing a more quantitative rationale. Another
approach to find the root cause could be to use tools provided
by the kernel itself such as ftrace. This tool will provide kernel
information on what is actually executed by the kernel. Using
kernel tools could also give information on core migrations
and context switches.

The SCHED DEADLINE policy used in this paper is
based on the EDF algorithm. A future work could be to find a
link between the scheduler wake up date drift and the formal
equations used to code the SCHED DEADLINE scheduler.

In this paper, we focused on the AOCS algorithm, in the
future using other space applications will be useful to find
other interference and characterize the already observed ones.

Finally, we would like to introduce containerization con-
figuration in our kernel such as namespaces and cgroups. In
fact, the goal of our work is to reduce interference between
multiple applications and their environment in a Linux context.
Linux provides isolation configuration and we would like to
find if these tools could help seeking a certain isolation in our
context.

REFERENCES

[1] J. Rushby, “Partitioning in avionics architectures: Requirements, mech-
anisms, and assurance,” SRI INTERNATIONAL MENLO PARK CA
COMPUTER SCIENCE LAB, Tech. Rep., 2000.

[2] J. Bredereke, “A survey of time and space partitioning for space
avionics,” 2017.

[3] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa, and
C. Taliercio, “Performance comparison of vxworks, linux, rtai, and
xenomai in a hard real-time application,” IEEE Transactions on Nuclear
Science, vol. 55, no. 1, pp. 435–439, 2008.

[4] H. Leppinen, “Current use of linux in spacecraft flight software,” IEEE
Aerospace and Electronic Systems Magazine, vol. 32, no. 10, pp. 4–13,
2017.

[5] J. H. Brown and B. Martin, “How fast is fast enough? choosing between
xenomai and linux for real-time applications,” in proc. of the 12th
Real-Time Linux Workshop (RTLWS’12), 2010, pp. 1–17.

[6] D. Bristot de Oliveira and R. Oliveira, “Timing analysis of the preempt
rt linux kernel,” Software: Practice and Experience, vol. 46, pp. n/a–n/a,
05 2015.

[7] D. Bristot de Oliveira, D. Casini, R. Oliveira, and T. Cucinotta,
“Demystifying the real-time linux scheduling latency,” 07 2020.

[8] C. Emde, “Long-term monitoring of apparent latency in preempt rt linux
real-time systems,” 2010.

[9] T. Cucinotta, “An efficient and scalable implementation of global edf
in linux,” 01 2011.

[10] D. Faggioli, F. Checconi, S. Superiore, S. Anna, M. Trimarchi, and
C. Scordino, “An edf scheduling class for the linux kernel,” 01 2009.

[11] P. Mckenney and D. Sarma, “Towards hard realtime response from the
linux kernel on smp hardware,” 01 2005.

[12] J. Alglave, L. Maranget, P. E. McKenney, A. Parri, and A. Stern,
“Frightening small children and disconcerting grown-ups: Concurrency
in the linux kernel,” SIGPLAN Not., vol. 53, no. 2, p. 405–418, mar
2018. [Online]. Available: https://doi.org/10.1145/3296957.3177156

10

[13] J. Kim, P. Shin, S. Noh, D. Ham, and S. Hong, “Reducing mem-
ory interference latency of safety-critical applications via memory
request throttling and linux cgroup,” in 2018 31st IEEE International
System-on-Chip Conference (SOCC), 2018, pp. 215–220.

[14] J. Kim, P. Shin, M. Kim, and S. Hong, “Memory-aware fair-share
scheduling for improved performance isolation in the linux kernel,”
IEEE Access, vol. 8, pp. 98 874–98 886, 2020.

[15] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu, “A software
memory partition approach for eliminating bank-level interference in
multicore systems,” in Proceedings of the 21st International Conference
on Parallel Architectures and Compilation Techniques, ser. PACT ’12.
New York, NY, USA: Association for Computing Machinery, 2012, p.
367–376. [Online]. Available: https://doi.org/10.1145/2370816.2370869

[16] L. Abeni, A. Balsini, and T. Cucinotta, “Container-based real-time
scheduling in the linux kernel,” ACM SIGBED Review, vol. 16, no. 3,
pp. 33–38, 2019.

[17] H. Grip, J. Lam, D. Bayard, D. Conway, G. Singh, R. Brockers,
J. Delaune, L. Matthies, C. Malpica, T. Brown, A. Jain, A. Martin,
and G. Merewether, “Flight control system for nasa’s mars helicopter,”
01 2019.

[18] B. B. Brandenburg and J. H. Anderson, “Joint opportunities for real-
time linux and real-time systems research,” 2009.

[19] L. Abeni, A. Goel, C. Krasic, J. Snow, and J. Walpole, “A measurement-
based analysis of the real-time performance of linux,” in Proceedings.
Eighth IEEE Real-Time and Embedded Technology and Applications
Symposium, 2002, pp. 133–142.

[20] (2021) The github repository of the xilinx linux kernel. [Online].
Available: https://github.com/Xilinx/linux-xlnx/tree/xlnx rebase v5.4

[21] (2021) Xilinx wiki on yocto. [Online]. Available: https://xilinx-
wiki.atlassian.net/wiki/spaces/A/pages/18841883/Yocto4

[22] (2021) Yocto zeus version repository. [Online]. Available:
http://layers.openembedded.org/layerindex/branch/zeus/layers/

11

