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Abstract

This paper studies some asymptotic properties of adaptive algorithms widely used in optimiza-
tion and machine learning, and among them Adagrad and Rmsprop, which are involved in most
of the blackbox deep learning algorithms. Our setup is the non-convex landscape optimization
point of view, we consider a one time scale parametrization and we consider the situation where
these algorithms may be used or not with mini-batches. We adopt the point of view of stochastic
algorithms and establish the almost sure convergence of these methods when using a decreasing
step-size towards the set of critical points of the target function. With a mild extra assumption
on the noise, we also obtain the convergence towards the set of minimizers of the function. Along
our study, we also obtain a “convergence rate” of the methods, in the vein of the works of [GL13].
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AMS classifications: Primary 62L20; secondary 68T05.

1 Introduction

1.1 Stochastic optimization

Minimizing a differentiable non-convex function f : Rd −→ R when f is defined through an expected
loss in a statistical model is a common way of estimation from an empirical set of observations in
nowadays machine learning problems. In particular, some difficult optimization is generally involved
in neural networks learning, see e.g. [BCN18] where the major challenge of a such problem is the
large scale statistical settings (large number of observations n involved in the definition of f and large
dimension of the ambient space d) and the non-convex landscape property when using a cascade of
logistic regressions. We consider in this work the generic formulation:

∀θ ∈ Rd : f(θ) = EX∼P[f̃(θ,X)],

where X is a random variable sampled according to an unknown distribution P. To perform the
optimization of f under the uncertainty on P, we assume that we can compute all along the process of
our algorithm some noisy but unbiased approximations of the gradient of f computed at the current
point of the algorithm. One typical example of a such algorithm is the so-called Stochastic Gradient
Descent (SGD) introduced in the famous work of [RM51], which is governed by the stochastic evolution:

θk+1 = θk − γk+1∇θf̃(θk, Xk+1),

whose early success in the sixties has been at least rejuvenated if not resurrected with the development
of massive learning problems, in the last fifteen years. We refer among other to [BB08, MB11] or to
[Bac14] and the references therein for various applications in machine learning. Although being one of

1



the state-of-the-art method to handle massive datasets, SGD suffers from several issues: difficulty to
tune the step-size sequence or dependence on the gradient flow that may be lazy in flat areas, which
is especially the case when looking at non-convex neural network problems.

Some popular improvements are commonly patched to the vanilla SGD, and among others we
refer to the popular acceleration obtained with the Polyak-Ruppert averaging [PJ92, Rup88, MB11,
CCGB17, GP20], variance reduction with mini-batch strategies (see e.g. [LRSB+12, JZ13]).

While these two last improvements do not modify the underlying gradient flow, other strategies
rely on a modification of the dynamical system exploiting acceleration brought by momentum with
second order terms. The first historical example is the Heavy Ball with Friction optimization based
on the seminal contribution [Pol64] and then translated into a stochastic framework (see e.g. [GPS18,
SGD20, LR20]). Another second example is the Nesterov Accelerated Gradient Descent (see e.g.
[Nes83]) translated and studied in the noisy situation recently in a large number of works (see among
other [GL16, JNJ18]).

A last stimulating subject of investigation we refer to for improving the behaviour of stochastic
algorithms rely on adaptive methods: they consist in tuning the step-size sequence either with a per-
coordinate strategy or with a matricial inversion in front of the gradient ∇θf̃(θk, Xk+1). Among other,
Adagrad introduced in [DHS11] (with a long range memory of past gradients) and Rmsprop (with
an exponential moving average) taught in [HSS12] are typical examples of step-size adaptation with
second-order moments learned on-line and these two algorithms are at the core of our work. Another
state-of-the-art algorithm is the ADAM method introduced in [KB15] and used in GAN optimization
[GPAM+14]. These algorithms are referred to as adaptive methods and have encountered a striking
raise of attention these recent years in machine learning (see e.g. [WWB19] [ZSJ+19]). In the sta-
tistical community, stochastic Newton and stochastic Gauss-Newton methods may also be seen as
adaptive algorithms with a direct matricial inversion and multiplication: these methods have shown
both good theoretical and numerical abilities for regressions [CGBP20], logistic regression [BGP20],
average consensus research [LR20] or optimal transport problems [BBGS20].

To the best of our knowledge, there is little convergence mathematical results on adaptive algo-
rithms: [BdSG20] studies the deterministic dynamical system behind adaptive algorithms and obtained
long-time behaviour of the trajectories or the value function following ideas of [CEG09a, SBC16]. More
recently, [BB20] (that is more closely related to us) obtains the almost sure convergence of their algo-
rithms towards critical points with a parametrization that is different from our but the authors leave as
an open problem the important question of the convergence towards a minimizer of f .1 Finally, some
recent contributions in machine learning [WWB19, ZSJ+19, DBBU20] address some “convergence”
questions for adaptive algorithms with constant step-size. They provide a non-asymptotic study with
a step-size that is tuned according to the finite horizon of simulation. Even though these results are of
major interest from a numerical point of view, they do not really answer the question of convergence
from a trajectorial point of view (see Section 2.2 below). The objective of this work may be seen
as modest at the moment: we aim to study the asymptotic behaviour of Adagrad and Rmsprop i.e.
we aim to show the almost sure convergence towards a local minimizer of the objective function f .
However limited at first sight, we will see that the convergence of the trajectories outside local traps
is already challenging, especially when a mini-batch strategy is used.

2 Adaptive algorithms and main results

2.1 Definition of the methods

The algorithm we consider in this paper use the vectorial division/multiplication notations introduced
in Adagrad (see [DHS11]) and now widely used in machine learning. The vectorial division u

v and

1The same week we sent our paper on Arxiv, [BBHS20] also published some results on the trap avoidance of adaptive
algorithms but not consider the mini-batch effect that is known to be a crucial ingredient for the efficiency of adaptive
methods. We refer to Theorem 2 and 3 below for the conditions we obtained on the mini-batch sequence.
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multiplication u · v are the coordinate per coordinate operations introduced by:(u
v

)
i

=
ui
vi
, and (u · v)i = uivi ∀i ∈ {1, . . . , d}

In the meantime, the notation u�2 corresponds to the coordinate per coordinate square:

∀i ∈ {1, . . . , d} {u�2}i = u2i ,

whereas
√
u denotes the coordinate per coordinate square root:(√

u
)
i

=
√
ui, ∀i ∈ {1, . . . , d}

Finally, the sum of a vector u ∈ Rd and a scalar ε ∈ R is given by :

(u+ ε)i = ui + ε ∀i ∈ {1, . . . , d}.

Following the recent work of [BdSG20], we consider the joint evolution of (θn, wn)n≥1 in Rd ×Rd of a
stochastic algorithm defined by:θn+1 = θn − γn+1

gn+1√
wn + ε

wn+1 = wn + γn+1(png
�2
n+1 − qnwn)

, (1)

where (gn)n≥1 corresponds to a noisy stochastic evaluation of the gradient of the function f , corrupted
by an additive noise sequence (ξn+1)n≥1:

gn+1 = ∇f(θn) + ξn+1.

Following the initial vectorial notations, we emphasize that (1) means that for any coordinate i ∈
{1, . . . , d}, the position (θn)n≥1 and scaling factor (wn)n≥1 are updated according to:θin+1 = θin − γn+1

gin+1√
win+ε

win+1 = win + γn+1(pn(gin+1)2 − qnwin)
.

2.2 Link with other parametrizations

2.2.1 Historical parametrization

We discuss here on our choice of the Adagrad/Rmsprop parametrization (1) using the one of [BdSG20],
and its link with the standard parametrization introduced in [DHS11] or [HSS12] and used in later
works [DBBU20, ZSJ+19] for Adam and in [WWB19] for Adagrad. We have chosen to use this
formulation, which is inspired from the limiting O.D.E. of the continuous time adaptive gradient system
following previous works on accelerated or second order dynamics and among other we refer to Memory
gradient diffusion [GP14], Ruppert-Polyak averaging [GP20], Heavy Ball systems [AGR00, CEG09a,
CEG09b, GPS18] or more generally Nesterov acceleration [Nes04, SBC16, ACR19] and dissipative
systems [Har91, AABR02].

The pioneering works [DHS11] and [HSS12] use the following parametrization:θ̃n+1 = θ̃n − αn+1
gn+1√
vn + ε̃

vn+1 = β2(n)vn + g�2n+1

(2)

for β2 ∈ (0, 1) and when no heavy ball momentum (see e.g. [Pol64]) is used in the algorithm (which is
also the case we are considering in this work). Notice that β2 may depend on the current iteration in
a second stage and for the sake of completeness, we consider a general sequence (β2(n))n≥1.

We introduce the natural normalizing sequence (Sn)n≥1, defined by S0 = 1 and the following
recursion:

Sn+1 = β2(n)Sn + 1 (3)
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We are led to introduce w̃n = vn/Sn and ε̃n = ε̃/Sn and we observe that:

θ̃n+1 = θ̃n −
αn+1√
Sn

gn+1√
w̃n + ε̃n

,

whereas the second coordinate evolves according to:

w̃n+1 =
β2(n)vn + g�2n+1

Sn+1
=
g�2n+1

Sn+1
+ w̃n

β2(n)Sn
Sn+1

= w̃n +
1

Sn+1

[
g�2n+1 − w̃n

]
.

Following the recommendation of [WWB19, DBBU20] (see in particular Equation (2.4) of [DBBU20]),
we can introduce a new step-size sequence (α̃n)n≥1 such that αn+1 = α̃n+1

√
Sn and we recover in this

case a joint evolution: {
θ̃n+1 = θ̃n − α̃n+1

gn+1√
w̃n+ε̃n

w̃n+1 = w̃n + 1
Sn+1

[g�2n+1 − w̃n]
. (4)

2.2.2 Two-time scale parametrization

We deduce that the popular parametrization introduced in the seminal contributions of Adagrad,
Rmsprop or ADAM and the one we used in our paper are equivalent and fall into our framework
described in Equation (1) with possibly two time-scales on the system (θ̃n, w̃n)n≥1:θ̃n+1 = θ̃n − γn+1

gn+1√
wn + ε

w̃n+1 = w̃n + γ̃n+1(png
�2
n+1 − qnw̃n),

(5)

where

γn+1 =
αn+1√
Sn

and γ̃n+1 =
1

Sn+1
and pn = qn = 1. (6)

The choice of the sequence (β2(n))n≥1 is key to understand the stochastic algorithm we obtain in (4).
• Case constant β2 = 1 (Adagrad of [DHS11]) This case is certainly the easiest to understand since

the natural rescaling Sn of the sequence (vn)n≥1 is Sn = n. In this case, we recover a joint evolution:{
θ̃n+1 = θ̃n − αn+1√

n

gn+1√
w̃n+ε̃n

w̃n+1 = w̃n + 1
n+1 [g�2n+1 − w̃n]

, (7)

which entails γn+1 = αn+1√
n

and γ̃n+1 = 1
n+1 . With the choice of [DBBU20], we then obtain a constant

step-size stochastic algorithm for the coordinate (θn)n≥1 associated with a uniform Cesaro averaging
on the sequence of past squared gradients (g�2n+1)n≥1.
• Case constant β2 ∈ (0, 1) (Adam of [KB15] with no momentum). Since Sn converges exponentially

fast towards (1− β2)−1, the system is close to:{
θ̃n+1 = θ̃n − (1− β2)αn+1

gn+1√
w̃n+ε̃n

w̃n+1 = w̃n + (1− β2)[g�2n+1 − w̃n]
, (8)

which entails γn+1 = (1− β2)αn+1 and γ̃n+1 = (1− β2).
• Case β2(n) = 1 − bn−β with b ∈ (0, 1). This last case where the sequence goes to 1 with n

corresponds to an intermediary situation between β2 = 1 and β2 < 1, this transition being parametrized
by β ∈ [0,+∞]. We shall introduce the sequence of products:

πk = β2(1) . . . β2(k) with π0 = 1,

and a straightforward computation yields

Sn+1 =

n∑
k=0

πnπ
−1
k .
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It is well known (see e.g. [BCG20] Lemma 5.2) that when β = 1,

lim
n−→+∞

n−bπ−1n = Γ(1− b),

whereas when β 6= 1
lim

n−→+∞
exp(b(1− β)−1n1−β)π−1n = exp(Λ)

where Λ can be made explicit in terms of the Riemann zeta function. We then conclude the following
behaviour of (Sn)n≥1 (see Appendix B of [GPS18]) that:

Sn ∼ c−1b,βn
β∧1,

which implies that the joint evolution shall be written as:{
θ̃n+1 = θ̃n − αn+1n

− β∧1
2

gn+1√
w̃n+ε̃n

w̃n+1 = w̃n + cb,βn
−(β∧1)[g�2n+1 − w̃n]

. (9)

which entails γn+1 = αn+1n
− β∧1

2 and γ̃n+1 = n−(β∧1).
In all the situations above, we point out that we obtain some standard choices for the sequences

(γn+1)n≥1 and (γ̃n+1)n≥1 involved in our two-time scale system (5).

2.2.3 Final remark on step-size sequences

We emphasize that when (α̃n)n≥1 is chosen as a constant sequence α̃, the sequence (θ̃n)n≥1 evolves
as an ergodic Markov chain and therefore the trajectory cannot converge towards a minimizer of f
(indeed it cannot converge anywhere). Nevertheless, using a finite time horizon strategy with a small
enough value of α̃, [ZSJ+19, DBBU20] derive some theoretical guarantees on E[‖∇f(θn)‖2].

In this work, we have chosen to restrict our study to a single time-scale parametrization with
decreasing sequences (γn+1)n≥1 = (γ̃n+1)n≥1 within the standard setup of stochastic algorithms:∑

n≥1

γn+1 = +∞ and
∑
n≥1

γ2n+1 < +∞.

This single time-scale restriction implies that
√
Sn = αn+1, so that when we choose in (1) pn = qn = 1

and γn+1 = γ1(n+ 1)−β , our algorithm is strictly equivalent to the one initially introduced in (2) with
Sn ∝ n−β and αn+1 = n−β/2. In particular, if β < 1, it corresponds to β2(n) = 1 − bn−β while if
β = 1, it corresponds to β2(n) = 1.

We leave the more sophisticated general study of the two time-scale algorithm for future inves-
tiations and refer to [Bor97], [MP06] or [BCG20, CG20] for other examples of such two time-scale
stochastic algorithms in various (but simpler) situations.

2.3 Assumptions and convenient notations

We introduce the canonical filtration associated to our random sequence Fn = σ ((θk, wk)1≤k≤n) and
list below the main assumptions used in our work.

We use the symbols .d,&d to refer to inequalities up to a multiplicative constant that are inde-
pendent from the dimension d: for two positive sequences (un)n≥0 and (vn)n≥0, we write

un .d vn if there exists C > 0 such that un ≤ Cvn, ∀n ∈ N,

and the constant C is independent from the dimension of the ambient space d. We will also use the
notation un = Od(vn) when un .d vn. We also use the symbol . that refers to an inequality up to a
multiplicative constant that can depend on d, for the proof of the local trap avoidance since for this
result we are not interested in a quantitative effect of the dimension.
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Assumptions on the noise. We first describe our main assumption on the sequence (gn)n≥1.
• Assumption Hp

σ. We assume that the sequence (gn)n≥1 used in (1) provides an unbiased estimation
of the true gradient of f at position θn, i.e. we assume that:

E[gn+1 |Fn] = ∇f(θn).

We furthermore assume that the noise sequence (ξn+1)n≥1 satisfies:

∀n ≥ 1 ξn+1 := gn+1 −∇f(θn) = σn+1ζn+1 with E[‖ζn+1‖p|Fn, ] ≤ c(d+ f(θn))p/2, (10)

where c is a positive constant independent from d. Assumption Hp
σ stands for a classical framework

in stochastic optimization methods: (σn)n≥1 is an auxiliary sequence that translastes a possible use
of mini-batches when σn −→ 0 as n −→ +∞. The moment assumption on (ζn)n≥1 is the convenient
assumption to handle standard problems like on-line regression, logistic regression or cascade of logistic
regressions used in deep learning. We emphasize that we do not make any restrictive and somewhat
irrealistic boundedness assumption of the noise (ζn)n≥1 or of the sequence (θn)n≥1 itself. Below, we
will use this assumption with p = 4 in Theorem 1. Finally, we should observe that this assumption
introduces a possible linear dependency with d on the size of the variance of the noise.

To derive the convergence of our algorithms towards a local minima, we will need a more stringent
condition on the noise sequence. We then introduce the next assumption that will replace Hp

σ in our
second main result of almost sure convergence (see Theorem 3 below).
• Assumption H∞σ .

• (H∞σ − 1). The noise sequence (ξn+1)n≥1 is centered and satisfies:

ξn+1 = σn+1ζn+1 with E[‖ζn+1‖2|Fn] ≤ 1 and E[‖ζn+1‖4|Fn] ≤ C. (11)

• (H∞σ − 2). The noise sequence is elliptic uniformly in n:

∃m > 0 ∀n ≥ 1 ∀u ∈ Sd−1 E[〈u, ζn+1〉2] ≥ m > 0.

We stress that the upper bound 1 on the second order moment is not restrictive, up to a modification
of the calibration of the sequence (σn)n≥1. The second assumption will be of course used to exit local
traps.

Assumptions Hf We now introduce some standard assumptions on f .

• (Hf − 1). The function f is positive and coercive, i.e. f satisfies:

lim
‖x‖−→+∞

f(x) = +∞ and min(f) > 0.

Demanding the lower bound of f to be strictly positive is mostly a convenient technical constraint
and not fundamentally more restrictive than the classical assumption of positivity.

• (Hf − 2). We assume that f satisfies the so-called Lipschitz continuous gradient property:

∃L > 0 ∀(x, y) ∈ Rd ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

We emphasize that this implies the famous descent inequality:

f(x) + 〈h,∇f(x)〉 − L

2
‖h‖2 ≤ f(x+ h) ≤ f(x) + 〈h,∇f(x)〉+

L

2
‖h‖2. (12)

This assumption is commonly used in optimization theory and statistics. Even though it is
possible to address some more sophisticated situations (see e.g. [BBT17]), it is generally admitted
that most of machine learning optimization problems fall into the Lipschitz continuous gradient
framework.
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• (Hf − 3). We also assume that another constant cf exists such that:

|∇f |2 ≤ cff. (13)

This last assumption prevents from some too large growth of the function f and it is immediate to

verify that (Hf − 3) implies that f has a subquadratic growth, i.e. lim sup‖x‖−→+∞
f(x)
‖x‖2 < +∞.

It has been widely used in the literature of stochastic algorithm (see e.g. [GPS18] and the
references therein).

• (Hf − 4). Finally, we assume that ∀ x ∈ Rd, {θ, f(θ) = x} ∩ {θ,∇f(θ) = 0} is locally finite.

Assumption on the step-size sequences HSteps We finally introduce our assumptions on the
step-size sequences used all along the paper that are involved in (pn)n≥1, (qn)n≥1 and (γn)n≥1. To
easily assess some convergence results with quantitative conditions on our gain sequences, we will
consider the situations where:

• (HSteps − 1). The sequences (pn)n≥1 and (qn)n≥1 satisfy:

∃(r, p∞) ∈ R+ × R+ : |pn − p∞| .d n−r and lim
n−→+∞

qn = q∞ > 0.

and
∀n ≥ 1 γn+1qn < 1 and lim

n−→+∞

γn+1

pn
= 0.

• (HSteps − 2). The mini-batch sequence (σn)n≥1 satisfies:

σn = σ1n
−s with s ≥ 0.

• (HSteps − 3). As already discussed in Section 2.2.3, the sequence (γn)n≥0 satisfies:∑
n≥1

γn+1 = +∞ and
∑
n≥1

γ2n+1 < +∞.

All the more, we assume that: ∑
n≥0

pnγn+1σ
2
n+1 < +∞.

We point out that (pn)n≥1 and (σn)n≥1 may be (or not) some vanishing sequences (if r > 0 and p∞ = 0
or if s > 0).

2.4 Main results

We now state our three main convergence results for the stochastic algorithm defined in Equation (1).

Almost sure convergence result towards a critical point

Theorem 1. Assume that Hf , HSteps and Hp
σ hold for p = 4. Then (θn, wn)n≥1 converges almost

surely towards (θ∞, 0) where ∇f(θ∞) = 0.

Theorem 1 is a purely asymptotic convergence results. It provides the convergence of our adaptive
algorithm (1) towards a set of critical points under mild assumptions on the noise sequence and on the
function f . We emphasize that this results holds for a standard setup on stochastic algorithms with
a decreasing learning rate (γn)n≥1. We observe that the essential condition involved in this result is
the convergence of the series that depend on (γn, pn, σ

2
n). In particular, when γn = γ1n

−β , we observe
that Theorem 1 holds when:

β ∈ (1/2, 1] and β + r + 2s > 1.
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From a theoretical point of view, the less restrictive situation corresponds to the choice β = 1 since the
series converges as soon as σ2

n+1pn decreases like log(n)−2. It implies that either we need to use a very
lengthy decrease of the update induced by (pn)n≥1, or use a very lengthy increase of the minibatch
proportional, with a batch of size log2(n) at step n. Of course, this last condition holds as soon as
r + 2s > 0. When β is chosen lower than 1, the condition becomes r + 2s > 1− β, which may lead to
a larger computational cost.

Rate of “convergence” Using the point of view introduced in [GL13] to assess the computational
cost of non-convex stochastic optimization, it is possible to derive a more quantitative result on the
sequence (θn)n≥1. This result is stated in terms of the expected value of the gradient of f all along the
algorithm. A δ-approximation computational cost is then the number of samples that are necessary
to obtain an average value below δ.

Theorem 2. Assume that Hf and Hp
σ hold for p = 4 and consider an integer N > 0 and τ an integer

sampled uniformly over {1, . . . , N}:

i) If γn = γ = 1
d
√
N

and pn = qn = 1√
N

and σ2
n = 1, then

E
[∥∥∥√|∇f(θτ )|

∥∥∥4] = O
(
dN−1/2

)
and the computational cost to obtain a δ-approximation is d2δ−2.

ii) If γn = γ = 1√
N

and pn = qn = 1 and σ2
n = 1

d
√
N

, then

E
[∥∥∥√|∇f(θτ )|

∥∥∥4] = O
(
N−1/2

)
and the computational cost to obtain a δ-approximation is of order dδ−3.

iii) If γn = γ = 1√
dN

and pn = qn = 1√
dN

and σ2
n = 1, then

E
[∥∥∥√|∇f(θτ )|

∥∥∥4] = O
(
dN−1/2

)
and the computational cost to obtain a δ-approximation is of order dδ−2.

iv) If γn = γ = 1√
N

and pn = qn = 1√
N

and σ2
n = 1

d , then

E
[∥∥∥√|∇f(θτ )|

∥∥∥4] = O
(
N−1/2

)
and the computational cost to obtain a δ-approximation is of order dδ−2.

We emphasize that this last result is not a real convergence result, which is indeed impossible to
derive with a constant step-size stochastic algorithm. Nevertheless, it may be seen as a benchmark
result following the usages in non-convex machine learning optimization. It is a convenient way to
assess a mean square convergence of stochastic optimization algorithm with non-convex landscape (see
e.g. [GL13]).

We recover in this result a more quantitative result that translates both the linear effect of the
dimension on the “convergence” rate and the dependency of the final bound in terms of N−1/2 when
the algorithm is randomly stopped uniformly between iteration 1 and N . The presence of both d and
of N−1/2 is not surprising as it already appears to be the minimax rate of convergence in stochastic
optimization with weakly convex landscapes (see e.g. [NY83]).

If we translate the upper bound of i) into a complexity bound, we observe that for any δ > 0, we
need to fix N such that

dN−1/2 ≤ δ ⇐⇒ N ≥ (dδ−1)2.
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When we use a mini-batch strategy with d
√
N samples at each iteration such that the error bound

produced by ii) is lower than δ, we observe that N has to be chosen of the order δ−2 and the overall
procedure may be improved (when compared to the first setting) since we obtain a dδ−3 computational
cost. Finally, the otimal tuning of the algorithm seems to be the last ones, where σ2 is chosen of the
order d−1 and γn ∝ pn ∝ N−1, or σ2 = 1 and γ = p = q = (dN)−1/2, which leads to a dδ−2

computational cost. As discussed in Section 3.2, with this strategy, it seems impossible to improve the
dδ−2 computational cost obtained with other choices of the parameters.

Even if of rather minor importance, our result is stated with the help of E
[∥∥∥√|∇f(θτ )|

∥∥∥4], instead

of E
[
‖∇f(θτ )‖2

]
used in [WWB19, DBBU20] and E

[
‖∇f(θτ )‖4/3

]2/3
used in [ZSJ+19]. It is therefore

slightly stronger since (using our vectorial notations):∥∥∥√|∇f |∥∥∥4 ≥ ‖∇f‖2.
A such improvement comes from a careful tuning of a Lyapunov function that is not exactly the
same as the one used in these previous works. We refer to Sections 3.1 and 3.2 for further details.
Finally, we also point out that when the sequence (γn)n≥1 is kept fixed, as indicated in the paragraph
2.2.2 it corresponds to a choice of β2 < 1 kept constant all over the time evolution (see Equation
(8)) and p = q = 1√

N
. This result with this range of parameters appears to be in line with those of

[WWB19, DBBU20], but in our work the assumptions on the noise sequence and on the function f
are significantly weaker.

Almost sure convergence towards a minimizer In this paragraph, we assess the almost sure
convergence of the sequence (θn)n≥1 towards a local minimum of f and state that the algorithm cannot
converge towards an unstable (hyperbolic) point of the dynamical system, e.g. cannot converge towards
a saddle point or a local maximum of f .

Theorem 3. Assume that Hf , HSteps and H∞σ hold. Assume that f is twice differentiable. Suppose

p∞ = 0, |qn − q∞| = O(pn), γn = γ−β1 and let (β, r, s) be chosen such that:

1

2
< β < 1 and s ≤ 1− β

2
and (1− β) ∨

(
β

2
+ s

)
< r < β.

Then almost surely the sequence (θn)n≥1 does not converge towards a local maximum of f .

Several remarks are necessary after our last theorem, that identifies not only the limit points as the
critical points of f but as local minimizers. Hence, our contribution should be understood as a new
example of stochastic method that avoids local traps, and then compared to [Pem90, BD96, GPS18,
BBHS20].

Moreover, we point out that our result holds for every initialization point and do not use any
integration over (θ0, w0). Hence, the nature of our result is different from the ones obtained in recent
contributions in the field of machine learning (see e.g. [LSJR16, LPP+17]): we establish that our
stochastic algorithm converges with probability 1 to a minimizer, which is different from proving
that a deterministic or randomized algorithm (gradient descent in [LPP+17] for example) randomly
initialized converges to a local minimum with probability 1.

When the variance of the noise sequence is kept fixed all along the iterations (no mini-batch is
used, so that s = 0), the previous conditions on the parameters can be summarized as: β ∈ (1/2, 1);
r ∈ (1− β, β), when β < 2/3 and r ∈ (β/2, β) when β ≥ 2/3.

Finally, we should emphasize that this last result is rather difficult to obtain when the mini-batch
parameter s is chosen strictly greater than 0 since it translates a possible vanishing level of noise when
the number of iterations is increasing. Our assumption shows that the size of the mini-batch should
not grow to fast (induced by the condition s ≤ (1 − β)/2) to obtain the convergence towards a local
minimizer of f . Up to our knowledge, a such explicit phenomenon is new in the stochastic algorithm
community. It would deserve further numerical or theoretical investigations to identify whether this
condition is necessary to convert an almost sure convergence result towards critical points into a

9
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Figure 1: Nature of our convergence results when (s, r) are chosen according to the statements of
Theorem 1 and Theorem 3 when γn = γ1n

−β and β ≥ 1/2. Left: β ≤ 2/3. Right: β ≥ 2/3. The
mini-batch size is σ−2n ∝ n2s.

convergence result towards a stable point of the differential system. The limiting condition seems
to be β = 1, s ≤ 1/2 and r ∈ [1/2, 1]. As a really ambitious question, we leave this problem for
future developments and up to our knowledge, the maximal size of the mini-batch that guarantees
convergence to local minimizer is still an unresolved question even for the SGD.

2.5 Organization of the paper

The rest of the paper consists in showing the proofs of the previous results.
Theorems 1 and 2 are proven in Section 3. In particular, Proposition 4 studies the average one-step

evolution of the algorithm through several key functions. This proposition permits to derive a Lya-
punov function in Section 3.2 that translates both the average quantitative result of Theorem 2 and
the asymptotic convergence result of Theorem 1. The main difficulties in these two results is to derive
a mean reverting effect in terms of ‖∇f(θn)‖2 without using some extra boundedness assumption, and
to assess the influence of d on the quantitative result.

Theorem 3 is a typical result of stochastic algorithms, and is inspired from the seminal contributions
of [Pem90] and [BH95]. The proof is detailed in Section 4 and the cornerstone of this proof is the use
of the stable/unstable manifold Lemma that provides an ad-hoc Lyapunov function of the dynamical
system, denoted by η in Proposition 10. We also refer to the recent contribution of [BBHS20] for
another typical application to stochastic algorithms. The main novelty brought in our proof is to use
the mini-batch low noise level and keep the a.s. escape of local maximum true. In particular, from a
technical point of view, we take advantage of the boundedness series of Proposition 6, which is a key
ingredient in the proof of Proposition 16.

3 Almost sure convergence to the set of critical points

The purpose of this section is to prove Theorem 1 and Theorem 2. In particular, we will obtain
Theorem 2 during the proof of the almost sure convergence result as a specific point of Proposition 6,
iii). The basic ingredient of our proof relies on the Robbins-Siegmund Theorem [RS71] that will be
applied with the help of an ad-hoc Lyapunov function on (θn, wn)n≥1.

3.1 Preliminary computations

Below, we will pay a specific attention to the dimension dependency in the inequalities we will obtain.
We first state the following proposition that will create a mean reverting effect from iteration n to

10



iteration n+ 1 on the pair (θn, wn).

Proposition 4. Assume that ‖γnqn‖∞ < 1, that ‖pn‖∞ < +∞, that Hf and Hp
σ hold for p = 4.

i) For any n ≥ 1, one has:

E[‖
√
wn+1 + ε‖2|Fn] ≤ ‖

√
wn + ε‖2 − qnγn+1‖

√
wn‖2

+ γn+1pn‖∇f(θn)‖2 + γn+1σ
2
n+1pn(d+ f(θn)).

ii) A constant c1,ε independent from n and d exists such that for any n ≥ 1:

E[f(θn+1) ||Fn] ≤ f(θn)(1 + c1,εγ
2
n+1) + c1,εdγ

2
n+1σ

2
n+1 − γn+1

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2 .
iii) If we define

sn := γ2n+1(1 + σ2
n+1d+ γ2n+1σ

4
n+1d

2),

then a constant c2,ε independent from n and d exists such that:

E[f(θn)2|Fn] ≤ f(θn)2(1 + c2,εsn)− 2γn+1f(θn)

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2 + c2,εsn.

iv) If we define

tn := γn+1pn(γ2n+1 + 2σ2
n+1d+ 2γ2n+1σ

4
n+1d

2)

then a constant c3,ε independent from n and d exists such that:

E[f(θn+1)‖(wn+1 + ε)1/4‖2 |Fn] ≤ f(θn)‖(wn + ε)1/4‖2
(
1 + c3,εγ

2
n+1(1 + dσ2

n+1)
)

− γn+1

∥∥∥√|∇f(θn)|
∥∥∥4 + γn+1pnf(θn)

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2
+ c3,ε

[
tnf

2(θn) + tn
]
.

Proof. We consider each point separately.
• Proof of i): We observe that:

E[‖
√
wn+1 + ε‖2 ||Fn] = E

[∥∥∥∥√wn + γn+1[png
�2
n+1 − qnwn] + ε

∥∥∥∥2 |Fn
]

= E

[
d∑
i=1

win + ε+ γn+1[pn{gin+1}2 − qnwin] |Fn

]
≤ ‖
√
wn + ε‖2 − qnγn+1‖

√
wn‖2 + γn+1pn‖∇f(θn)‖2 + γn+1pnσ

2
n+1(d+ f(θn)),

where the last line comes from the definition of ξn+1 = σn+1ζn+1 and the fact that:

E[ζn+1 |Fn] = 0 and E[‖ζn+1‖2 |Fn] .d (d+ f(θn)).

This concludes the proof. �

11



• Proof of ii): We develop f(θn+1): we use the descent inequality (12):

f(θn+1) = f

(
θn − γn+1

gn+1√
wn + ε

)
≤ f(θn)− γn+1〈∇f(θn),

gn+1√
wn + ε

〉+
L2

2
γ2n+1

∥∥∥∥ gn+1√
wn + ε

∥∥∥∥2 := m+
n (14)

≤ f(θn)− γn+1

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2 − γn+1〈∇f(θn),
ξn+1√
wn + ε

〉

+ L2ε−1γ2n+1 ‖∇f(θn)‖2 + L2ε−1γ2n+1σ
2
n+1 ‖ζn+1‖2 ,

where in the last line we used a rough upper bound on 1/
√
wn + ε and |a+ b|2 ≤ 2a2 + 2b2. It is also

possible to use (12) and prove the lower bound:

f(θn+1) ≥ f(θn)− γn+1〈∇f(θn),
gn+1√
wn + ε

〉 − L2

2
γ2n+1

∥∥∥∥ gn+1√
wn + ε

∥∥∥∥2 := m−n . (15)

To deduce ii), we then consider the conditional expectation in (14), use Equation (13) and assump-
tion Hp

σ for p = 2 to obtain that a constant cε = L2(1 ∨ cf )/ε exists such that:

E[f(θn+1) ||Fn] ≤ f(θn)(1 + cεγ
2
n+1) + cεdγ

2
n+1σ

2
n+1 − γn+1

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2 .
We emphasize that at this stage, this last inequality does not create any repelling effect on the

position (θn)n≥1 and we need to deal with the denominator (wn + ε), which is the purpose of iii). �
• Proof of iii): We consider the evolution of f2 from θn to θn+1. Using (14) and (15) obtained in ii),
we deduce that:

f(θn+1)2 ≤ {m−n }2 ∨ {m+
n }2.

We now expand {m−n }2 and {m+
n }2, using that a ∨ −a = |a|, we get:

{m−n }2 ∨ {m+
n }2 ≤ f(θn)2 + γ2n+1〈∇f(θn),

gn+1√
wn + ε

〉2 +
L4

4
γ4n+1

∥∥∥∥ gn+1√
wn + ε

∥∥∥∥4
− 2γn+1f(θn)〈∇f(θn),

gn+1√
wn + ε

〉+ L2γ2n+1f(θn)

∥∥∥∥ gn+1√
wn + ε

∥∥∥∥2
+ L2γ3n+1

∥∥∥∥ gn+1√
wn + ε

∥∥∥∥2 ∣∣∣∣〈∇f(θn),
gn+1√
wn + ε

〉
∣∣∣∣

(16)

When taking the conditional expectation in the previous inequality we treat some of these terms
separately. First, using the centering of ξn+1 we have that :

γ2n+1E[〈∇f(θn),
gn+1√
wn + ε

〉2|Fn] ≤ γ2n+1

(∥∥∥∥ ∇f(θn)√
wn + ε

∥∥∥∥4 + E[〈ξn+1,
∇f(θn)√
wn + ε

〉2|Fn]

)

≤ γ2n+1

(
ε−2 ‖∇f(θn)‖4 +

∥∥∥∥ ∇f(θn)√
wn + ε

∥∥∥∥2 σ2
n+1(d+ f(θn))

)
.d γ

2
n+1(1 + σ2

n+1d)(1 + f(θn))2,

where in the second line we used Cauchy-Schwarz inequality and assumption Hp
σ for p = 2 whereas

the last line comes from sub-quadratic growth assumption on the function f given by (13). This last

bound can also be used to control the term L2γ2n+1f(θn)
∥∥∥ gn+1√

wn+ε

∥∥∥2 since:∥∥∥∥ gn+1√
wn + ε

∥∥∥∥2 .d ‖ξn+1‖2 + ‖∇f(θn))‖2.

12



Now, in similar manner, using repeatitly these last two assumptions (Hp
σ also with p = 4 ) :

L4

4
γ4n+1E

[∥∥∥∥ gn+1√
wn + ε

∥∥∥∥4 |Fn
]
≤ L

4

4ε2
γ4n+1

(
‖∇f(θn)‖4 + 6‖∇f(θn)‖2E[‖ξn+1‖2|Fn]

+4‖∇f(θn)‖E[‖ξn+1‖3|Fn] + E[‖ξn+1‖4|Fn]
)

.d γ
4
n+1(1 + σn+1

√
d)4(1 + f(θn))2

Starting again with the Cauchy-Schwarz inequality for the last term we obtain :

L2γ3n+1E

[∥∥∥∥ gn+1√
wn + ε

∥∥∥∥2 ∣∣∣∣〈∇f(θn),
gn+1√
wn + ε

〉
∣∣∣∣ |Fn

]
.d γ

3
n+1E

[
‖gn+1‖3 ‖∇f(θn)‖|Fn

]
.d γ

3
n+1‖∇f(θn)‖E[(‖∇f(θn)‖+ ‖ξn+1‖)3|Fn]

.d γ
3
n+1

√
f(θn)E[(

√
f(θn) + ‖ξn+1‖)3|Fn]

.d γ
3
n+1(1 + f(θn))2(1 + σn+1

√
d)3.

We can now regroup the previous bounds, use equation (16), the fact that γn < 1 and that√
ab ≤ 1/2(a+ b) to conclude that a constant c2,ε, independent of d and n exists such that :

E[f(θn)2|Fn] ≤ f(θn)2(1 + c2,εsn)− 2γn+1f(θn)

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2 + c2,εsn. �

• Proof of iv): We observe that:

‖(wn+1 + ε)1/4‖2 =

d∑
i=1

√
win + ε+ γn+1[pn{gin+1}2 − qnwin]

=

d∑
i=1

√
(win + ε)

(
1 + γn+1

pn{gin+1}2 − qnwin
win + ε

)

=

d∑
i=1

√
win + ε

(
1 + γn+1

pn{gin+1}2 − qnwin
win + ε

)1/2

,

where the last line comes from the fact that win/(w
i
n + ε) < 1, which implies that the last term of the

right hand side exists.
Using

√
1 + a ≤ 1 + a/2 for any a > −1, we deduce that:

‖(wn+1 + ε)1/4‖2 ≤
d∑
i=1

√
win + ε

(
1 +

γn+1

2

pn{gin+1}2 − qnwin
win + ε

)
≤ ‖(wn + ε)1/4‖2 +

γn+1

2
〈 1√

wn + ε
, png

�2
n+1 − qnwn〉.
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Now observe that the second term can easily be bounded by :

〈 1√
wn + ε

, png
�2
n+1 − qnwn〉 =

d∑
i=1

pn{gin+1}2√
win + ε

− 〈 1√
wn + ε

, qnwn〉︸ ︷︷ ︸
positive term

≤
d∑
i=1

pn{gin+1}2√
win + ε

≤ 2pn

(∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2 + ε−1/2σ2
n+1‖ζn+1‖2]

)

We use this last inequality and f(θn+1) ≤ m+
n to conclude that:

f(θn+1)‖(wn+1+ε)1/4‖2 ≤ m+
n

(
‖(wn + ε)1/4‖2 + γn+1pn

(∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2 + ε−1/2σ2
n+1‖ζn+1‖2]

))
.

We then develop and obtain that:

f(θn+1)‖(wn+1 + ε)1/4‖2 ≤

(
f(θn)− γn+1

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2 − γn+1〈∇f(θn),
ξn+1√
wn + ε

〉 + L2ε−1γ2n+1 ‖∇f(θn)‖2

+L2ε−1γ2n+1σ
2
n+1‖ζn+1‖2

)(
‖(wn + ε)1/4‖2 + γn+1pn

(∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2 + ε−1/2σ2
n+1‖ζn+1‖2]

))

The baseline remark is that thanks to the Cauchy-Schwarz inequality, we have:

∥∥∥√|∇f(θn)|
∥∥∥4 =

(
d∑
i=1

|∂if(θn)|

)2

≤
d∑
i=1

{∂if(θn)}2√
win + ε

d∑
i=1

√
win + ε

=

∣∣∣∣∣∣∣∣ ∇f(θn)

(wn + ε)1/4

∣∣∣∣∣∣∣∣2 ‖(wn + ε)1/4‖2. (17)

We then compute the conditional expectation of the previous terms with respect to Fn, using the
previous inequality, the centering of ξn+1, and obtain that a constant c3,ε independent from d exists
such that:
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E[f(θn+1)‖(wn+1 + ε)1/4‖2 |Fn]

≤ f(θn)‖(wn + ε)1/4‖2 + γn+1pnf(θn)

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2 − γn+1

∥∥∥√|∇f(θn)|
∥∥∥4

+ c3,εE

γn+1σ
2
n+1pnf(θn)‖ζn+1‖2︸ ︷︷ ︸

:= 1©

+ γ2n+1pnσ
3
n+1

∣∣∣∣〈∇f(θn),
ζn+1√
wn + ε

〉
∣∣∣∣ ‖ζn+1‖2︸ ︷︷ ︸

:= 2©

+ γ2n+1‖∇f(θn)‖2‖(wn + ε)1/4‖2︸ ︷︷ ︸
:= 3©

+ γ3n+1pn‖∇f(θn)‖2
∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2︸ ︷︷ ︸
:= 4©

+ γ3n+1pnσ
2
n+1‖∇f(θn)‖2‖ζn+1‖2︸ ︷︷ ︸

:= 5©

+ γ2n+1σ
2
n+1‖ζn+1‖2‖(wn + ε)1/4‖2︸ ︷︷ ︸

:= 6©

+ pnγ
3
n+1σ

2
n+1‖ζn+1‖2

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2︸ ︷︷ ︸
:= 7©

+ γ3n+1pnσ
4
n+1‖ζn+1‖4

∣∣︸ ︷︷ ︸
:= 8©

Fn


We then study each terms in the large bracket separately. Using f ≤ 1 + f2 and Hp

σ, we have:

E[ 1©
∣∣Fn] = γn+1σ

2
n+1pnf(θn)E

(
‖ζn+1‖2

∣∣Fn)
≤ γn+1σ

2
n+1pnf(θn)(d+ f(θn))

≤ γn+1σ
2
n+1pnd(1 + f(θn))2.

The second term is handled with the help of Hp
σ (for p = 3) and the Cauchy-Schwarz inequality:

E[ 2©
∣∣Fn] = γ2n+1pnσ

3
n+1‖∇f(θn)‖E[‖ζn+1‖3

∣∣Fn]

≤ γ2n+1pnσ
3
n+1‖∇f(θn)‖(d+ f(θn))3/2

≤ γ2n+1pnσ
3
n+1

√
cf (1 + f(θn))d3/2(1 + f(θn))3/2

.d γ
2
n+1pnσ

3
n+1d

3/2(1 + f(θn))2.

3© is Fn measurable and the subquadratic growth assumption given by (13) ensures that :

3© .d γ
2
n+1f(θn)‖(wn + ε)1/4‖2.

The term 4© is Fn measurable and we use once more that ‖∇f‖2 .d f to obtain that:

4© .d γ
3
n+1pnf(θn)

d∑
i=1

{∂if(θn)}2√
win + ε

≤ γ3n+1pnf(θn)ε−1/2
d∑
i=1

{∂if(θn)}2

.d γ
3
n+1pnf(θn)2.

For 5© we use Assumption Hp
σ with p = 2 and obtain that:

E[ 5©
∣∣Fn] = γ3n+1pnσ

2
n+1‖∇f(θn)‖2E[‖ζn+1‖2

∣∣Fn]

.d γ
3
n+1pnσ

2
n+1f(θn)(d+ f(θn))

.d γ
3
n+1pnσ

2
n+1d(1 + f(θn))2.

Since γ2n+1 ≤ 1, we can conclude that E[ 5©
∣∣Fn] .d E[ 1©

∣∣Fn].
6© is close to 3©, we use Hp

σ with p = 2 and obtain that:
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E[ 6©
∣∣Fn] ≤ γ2n+1σ

2
n+1‖(wn + ε)1/4‖2E[‖ζn+1‖2 |Fn] .d γ

2
n+1σ

2
n+1(d+ f(θn))‖(wn + ε)1/4‖2

.d dγ
2
n+1σ

2
n+1f(θn)‖(wn + ε)1/4‖2.

The last line comes from the fact that as soon as f is uniformly lower bounded by a positive constant,
then ‖(wn + ε)1/4‖2 .d f(θn)‖(wn + ε)1/4‖2.

The term 7© is close to 5© and Hp
σ yields:

E[ 7©
∣∣Fn] ≤ pnγ3n+1σ

2
n+1ε

−1/2‖∇f(θn)‖2E[‖ζn+1‖2
∣∣Fn]

.d pnγ
3
n+1σ

2
n+1f(θn)(d+ f(θn))

.d E[ 5©
∣∣Fn].

For 8© Assumption Hp
σ with p = 4 implies that:

E[ 8©
∣∣Fn] .d γ

3
n+1pnσ

4
n+1(d2 + f2(θn)).

Our bounds on 1©− 8© and the fact that (1 + f(θn))2 ≤ 2(1 + f(θn)2) ensure that a constant c3,ε
exists independent from d such that:

E[f(θn+1)‖(wn+1 + ε)1/4‖2 |Fn] ≤ f(θn)‖(wn + ε)1/4‖2
(
1 + c3,εγ

2
n+1(1 + dσ2

n+1)
)

− γn+1

∥∥∥√|∇f(θn)|
∥∥∥4 + γn+1pnf(θn)

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2
+ c3,ε

[
γn+1pn(γ2n+1 + σ2

n+1d+ γn+1σ
3
n+1d

3/2 + γ2n+1σ
4
n+1d

2)(1 + f2(θn))
]
.

Since γn+1σ
3
n+1d

3/2 ≤ 1/2(σ2
n+1d+ γ2n+1σ

4
n+1d

2), using the definition of tn, we deduce that:

E[f(θn+1)‖(wn+1 + ε)1/4‖2 |Fn] ≤ f(θn)‖(wn + ε)1/4‖2
(
1 + c3,εγ

2
n+1(1 + dσ2

n+1)
)

− γn+1

∥∥∥√|∇f(θn)|
∥∥∥4 + γn+1pnf(θn)

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2
+ c3,ε

[
tnf

2(θn) + tn
]
. �

Remark 5. Proposition 4 will permit do derive a Lyapunov function on (θn, wn)n≥1 (see the next
result) which implies the convergence of

E

∑
n≥1

γn+1 ‖∇f(θn)‖2
 < +∞.

This kind of bound has also been obtained in [DBBU20] (Theorem 4) with the help of a somewhat
artificial boundedness assumption of the noisy gradients, which is not used in our work. We also point
out that [ZSJ+19] propose another function that generates a mean reverting term:∑

n≥1

γn+1E[‖∇f(θn)‖4/3] <∞,

and the major difference with our result is the weaker 4/3 instead of 2 in the series. In particular, a
such 4/3 will not allow to prove the a.s. asymptotic pseudo-trajectory result, and consequently the a.s.
convergence of the trajectory towards a critical point of f .
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3.2 Proof of Theorem 2

Using Proposition 4, we are now ready to state the next important result, which will be key for the
almost sure convergence of (θn)n≥1.

Proposition 6. Under the assumptions of Proposition 4, then:

i) Two constants c(θ0, w0) and κ exist such that, for all n ≥ 1

E

(
n∑
k=1

γk+1

[
qk‖
√
wk‖2 + ‖

√
|∇f(θk)|‖4

])
≤ c(θ0, w0) exp

(
κ

n∑
k=1

(sk + tk)

)
+ κ

n∑
k=1

(sk + tk)

where (tn)n≥0 and (sn)n≥0 are the auxiliary sequences defined in Proposition 4.

ii) If
∑
n≥1(γ2n+1 + γn+1σ

2
n+1pn) < +∞ , then almost surely:∑
n≥1

γn+1

[
qn‖
√
wn‖2 + ‖

√
|∇f(θn)|‖4

]
< +∞ a.s. (18)

Proof. • Proof of i). Our proof relies on a Lyapunov function defined by:

Va,b(θ, w) := ‖
√
w + ε‖2 + af2(θ) + bf(θ)‖(w + ε)1/4‖2,

with a careful tuning of a and b.
Using i), iii) and iv) of Proposition 4 and the fact that f(θn) ≤ 1 + f(θn)2, we deduce that a

constant κ that depends on c1,ε, c2,ε, c3,ε and of the next choice of a and b exists such that:

E [Va,b(θn+1, wn+1) |Fn] ≤ Va,b(θn, wn) [1 + κ(sn + tn)] + κ(sn + tn)

− qnγn+1‖
√
wn‖2

+ γn+1

[
pn‖∇f(θn)‖2 − b‖

√
|∇f(θn)|‖4

]
+ γn+1[bpn − 2a]f(θn)

∥∥∥∥ ∇f(θn)

(wn + ε)1/4

∥∥∥∥2 .
We observe that for any vector u, we have ‖

√
|u|‖4 ≥ ‖u‖2 and that (pn)n≥1 is a bounded sequence,

so that we can find b large enough to have b > 2 supn≥1 pn, and 2a ≥ bpn such that ∀n ≥ 1:

E [Va,b(θn+1, wn+1) |Fn] ≤ Va,b(θn, wn) [1 + κ(tn + sn)] + κ(tn + sn)

− γn+1

[
qn‖
√
wn‖2 +

b

2
‖
√
|∇f(θn)|‖4

]
.

We then conclude using a straightforward recursion. �
• Proof of ii). This point proceeds with standard arguments: we use the Robbins Siegmund Lemma

(see [RS71]): the series
∑
γ2n+1 and

∑
γn+1σ

2
n+1pn are convergent and obtain that:

1. Va,b(θn, wn)→ V∞ a.s. (and in L1) and supn E[Va,b(θn, wn)] < +∞

2. More importantly, the next series are convergent:∑
n≥0

γn+1‖∇f(θn)‖2 <
∑
n≥0

γn+1‖
√
|∇f(θn)|‖4 < +∞ a.s. (19)

and ∑
n≥0

γn+1qn‖
√
wn‖2 < +∞ a.s. (20)
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This ends the proof of ii) �

We emphasize that i), ii) are standard consequences of the Robbins-Siegmund approach on stochas-
tic algorithms. In particular, the use of i) with the calibrations of (γn)1≤n≤N , (σn)1≤n≤N and (pn)1≤n≤N
that are given in the statement of Theorem 2 instantaneously lead to the conclusion of the proof. We
also point out that the basic fact to obtain this result is a tuning of the parameters thats leads to

N∑
n=1

(sn ∨ tn) = Od(1).

Considering constant step-size sequences, it entails the following constraints on (p, γ, σ):

γ2 ∨ γpσ2d ∨ γ2σ2d = Od(N−1),

whereas the size of N needed to obtain a δ approximation should verify that:

E

[
1

N

N∑
k=1

‖
√
|∇f(θk)|‖4

]
≤ δ ⇐⇒ 1

Nγ
E

[
N∑
k=1

γ‖
√
|∇f(θk)|‖4

]
≤ δ ⇐= N ≥ (δγ)−1.

The computational cost associated to a such N is Nσ−2. Defining γ = γ̃N−1/2, we then observe that
N should be chosen larger than (γ̃δ)−2, which entails a computational cost of (γ̃σδ)−2. With this
setting, the constraints on the sequences become:

γ̃2σ2 .d
1

d
and γ̃σ2p .d

1

d
√
N
.

Hence, the computational cost is lower bounded by dδ−2 and this bound may be achieved as soon as

γ̃2σ2 =
1

d
and p =

γ̃√
N
,

which corresponds to the tuning described in iii) and iv) of Theorem 2.

3.3 Proof of Theorem 1

Asymptotic pseudo-trajectory For the sake of convenience, from now on we denote Vn = Va,b(θn, wn).
Since we are now interested in purely asymptotic result, we omit the dependency with d in the bounds
we obtain hereafter. The main difficulty here is to convert the result of Proposition 6 ii) into an a.s.
convergence result on (θn)n≥1. We remind the standard definition of asymptotic pseudo-trajectories
of a semiflow Φ.

Definition 7 (Pseudo-trajectory). A continuous trajectory Z is a pseudo-trajectory of Φ if for any
finite time horizon T > 0

lim
t−→+∞

sup
0<u<T

|Zt+u − Φu(Zt)| = 0.

We refer to [BH96, Ben99] for further details. We will use in particular the cornerstone result which
is reminded below:

Theorem 8 (Theorem 3.2 of [Ben99]). If Z is an asymptotic pseudo-trajectory of Φ with a compact
closure in Rd, then every limit point of Z is a fixed point of Φ.

In what follows we use the results of [Ben99] to show that a linear interpolation of the sequence
(Zn)n≥ is an asymptotic pseudo-trajectory of the flow induced by the vector field H : R2d → R2d of
our adaptive algorithm defined by:

H(θ, w) =

 − ∇f(θ)√
w + ε

p∞∇f(θ)�2 − q∞w

 . (21)
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Denote τ0 = 0, τn =
∑n
k=1 γk and consider (Z̄t)t≥0 the continuous time process corresponding to a

linear interpolation of (Zn)n≥0, given by :

Z̄(τn + s) = Zn + s
Zn+1 − Zn

γn+1
; ∀n ∈ N; ∀ 0 ≤ s ≤ γn+1.

The Robbins-Siegmund Lemma ensures that the sequence (Vn)n≥1 converges a.s. to a finite random
variable V∞. Since all the terms of Vn are positive, (f(θn))n≥0 and (‖wn‖)n≥0 are a.s. bounded as
well. The coercivity of f implies thus that (Zn)n≥0 is a.s. bounded.
The evolution of the sequence (Zn)n≥0 can be written as:

Zn+1 = Zn + γn+1(H(Zn) + en),

where en is a rest term:

en =

 ∇f(θn)− gn+1√
wn + ε

png
�2
n+1 − p∞∇f(θn)�2 − (qn − q∞)wn

 . (22)

The next result allows us to control the rest term and ensures that the assumptions of Proposition 4.1
of [Ben99] are fulfilled, which in turn implies that (Z̄t)t≥0 is indeed an asymptotic pseudo trajectory
of the flow induced by H.

Lemma 9. Under the assumptions of Proposition 4 and if
∑
γk+1σ

2
k+1pk < +∞ and (pn, qn) −→

(p∞, q∞). Let N(n, t) = supk≥0{t+ τn ≥ τk} and (en)n≥1 defined in Equation (22). For all T > 0:

lim sup
n→∞

sup
t∈[0,T ]

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γkek

∥∥∥∥∥∥ = 0 a.s. (23)

Proof. We consider a finite horizon T > 0. In order to deal with the previous sum, we write en as

an + ∆Mn+1 + cn, with an =

(
0

(pn − p∞)∇f(θn)�2 − (qn − q∞)wn

)
, ∆Mn+1 =

∇f(θn)− gn+1√
wn + ε

0


and cn =

(
0

pn(∇f(θn)�2 − g�2n+1)

)
. We use the fact that:

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γkek

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γkak

∥∥∥∥∥∥+

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γk∆Mk+1

∥∥∥∥∥∥+

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γkck

∥∥∥∥∥∥ ,
and proceed to upper bound each term on the right hand side.
• The convergence of the first term is mainly a consequence of Equations (19), (20) (convergence
of the Robbins-Siegmund series), of the convergence of (qn)n≥1 towards and q∞ and the fact that
(pn − p∞)n≥1 is a bounded sequence :

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γkak

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γk
(
(pk − p∞)∇f(θk)2 − (qk − q∞)wk

)∥∥∥∥∥∥
≤

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γk(pk − p∞)∇f(θk)2

∥∥∥∥∥∥+

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γk(qk − q∞)wk

∥∥∥∥∥∥
≤
N(n,t)+1∑
k=n+1

γk|pk − p∞|
∥∥∇f(θk)2

∥∥+

N(n,t)+1∑
k=n+1

γk|qk − q∞| ‖wk‖
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Assumption (HSteps − 1) ensures that a constant P exists such that |pn − p∞| < P and that for n

large enough |qn− q∞| ≤ qn. Moreover, ∀a, b ∈ R+,
√
a+ b ≤

√
a+
√
b thus ‖∇f(θn)�2‖ ≤ ‖∇f(θn)‖2

and ‖wn‖ ≤ ‖
√
wn‖2. Inserting these bounds in the previous inequality gives:∥∥∥∥∥∥

N(n,t)+1∑
k=n+1

γkak

∥∥∥∥∥∥ ≤
N(n,t)+1∑
k=n+1

Pγk ‖∇f(θk)‖2 +

N(n,t)+1∑
k=n+1

γkqk‖
√
wk‖2.

Using the convergence of the series (19) and (20) we conclude that, ∀t > 02:

lim sup
n→∞

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γkak

∥∥∥∥∥∥ = 0. (24)

• To control the second term we observe that (∆Mk+1)k≥0 is a sequence of martingale increments with
a bounded second order moment since

∀k ≥ 1 E
[

ξk+1√
wk + ε

|Fk
]

= 0,

and

sup
k≥0

E

[∥∥∥∥ ξk+1√
wk + ε

∥∥∥∥2
]
≤ sup

k≥0

1

ε
E
[
E
[
‖ξk+1‖2 |Fk

]]
≤ sup

k≥0

1

ε
σ2
k+1(d+ E[f(θk)]) < +∞.

The last inequality is implied by the fact that f(θk) ≤ 1 + f(θn)2 . 1 + Vk and the Robbins
Siegmund lemma guarantees that supk≥0 E[Vk] < +∞. Thus Corollary 11 of [MP87] applies (see also
Proposition 4.2 of [Ben99]) and we obtain that:

∀t > 0 lim sup
n→∞

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γk∆Mk+1

∥∥∥∥∥∥ = 0. (25)

• The assumptions made on the noise sequence and the fact that (E[Vn])n≥1 is uniformly bounded
(Vn −→ V∞ in L1) implies that the last term can be handled using the same type of arguments.

We start by decomposing ck as its expected value plus a martingale increment:∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γkck

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γk+1pkE[ξ�2k+1 |Fk]

∥∥∥∥∥∥
+

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γk+1pk
(
2ξk+1 · ∇f(θk) + ξ�2k+1 − E[ξ�2k+1|Fk]

)∥∥∥∥∥∥ .
Since

∑
n≥0 γn+1pnσ

2
n+1 < +∞ the first sum convergences to 0 when n goes to infinity.

The terms of the second sum are martingale increments:

E[2ξk+1 · ∇f(θk) + ξ�2k+1 − E[ξ�2k+1 |Fk] |Fk] = 0.

Using the fact that (a+ b)2 ≤ 2(a2 + b2), we get a first bound on their second order moments:

E[‖2ξk+1 · ∇f(θk) + ξ�2k+1 − E[ξ�2k+1|Fk]‖2] ≤ 8
(
E[‖ξk+1 · ∇f(θk)‖2] + E[‖ξ�2k+1‖

2]
)
.

2This last limit holds regardless t < T
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Now using Hp
σ for p = 2 and Inequality (13):

E[‖ξk+1 · ∇f(θk)‖2] = E

[
d∑
i=1

∂if(θk)2E[ξ2k+1,i|Fk]

]
≤ σ2

k+1E[(d+ f(θk))‖∇f(θk)‖2]

≤ cfσ2
k+1E[f(θk)(d+ f(θk))]

. cfσ
2
k+1(1 + E[Vk]).

The second term can be dealt with in a similar manner, using the assumption Hp
σ for p = 4:

E[‖ξ�2k+1‖
2] ≤ σ4

k+1E[‖ζk+1‖4] ≤ σ4
k+1E[(d+ f(θk))2] . σ4

k+1(1 + E[Vk]).

The sequence (σn)n≥1 is bounded and according to the Robbins-Siegmund Theorem, this is also true
for (E[Vn])n≥1 Consequently, we have:

sup
k≥0

E
[∥∥2ξk+1 · ∇f(θk) + ξ�2k+1 − E[ξ�2k+1|Fk]

∥∥2] < +∞,

and we can apply once more Corollary 11 of [MP] to conclude that:

lim sup
n→∞

∥∥∥∥∥∥
N(n,t)+1∑
k=n+1

γkck

∥∥∥∥∥∥ = 0, (26)

which ends the proof.

Proof of the almost sure convergence towards a critical point We now give the proof of the
leading result of Section 3.

Proof of Theorem 1. The proof is divided into two steps.
• Identification of the possible limit points. The a.s. boundness of (Zn)n≥0 and Lemma 9 show that

the assumptions of Proposition 4.1 of [Ben99] hold, which implies that (Z̄t)t≥0 is an asymptotic pseudo-
trajectory of the differential flow induced by H almost surely. It implies in particular that (wn)n≥1 is
a.s. bounded.

We shall deduct from Theorem 8 that all limit points Z∞ = (θ∞, w∞) of Z̄t are stationary points
for the differential equation ż = H(z) and thus that H(Z∞) = 0. Since ‖wn‖ is a.s. bounded, it
implies that ∇f(θ∞) = 0.

In the meantime, since ∇f(θn) → 0 when n → ∞, we observe that for any limit point Z∞,
H(Z∞) = 0 also implies that w∞ = 0.
• Convergence of (θn)n≥1. Thus (since wn is bounded) we have that wn converges to 0. Hence:

lim
n→∞

Va,b(θn, wn) = lim
n→∞

‖
√
wn + ε‖2 + af2(θn) + bf(θn)‖(wn + ε)1/4‖2

= lim
n→∞

af2(θn) + bd
√
εf(θn) + dε = V∞.

Since a and b are non-negative and f(θn) positive, the last equality implies that the sequence (f(θn))n≥0
is a.s. convergent:

lim
n−→+∞

f(θn) = f∞ a.s.

Now, (θn)n≥0 is an a.s. bounded sequence and the set of possible limit points for its sub-sequences

21



is connected since:

‖θn+1 − θn‖ =

∥∥∥∥−γn+1
gn+1√
wn + ε

∥∥∥∥
≤ 1√

ε
γn+1‖gn+1‖

≤ 1
√
pnε

γn+1

∥∥∥∥√wn+1 − wn
γn+1

+ qnwn

∥∥∥∥
≤ 1
√
pnε

√
γn+1‖

√
wn+1 − wn + γn+1qnwn‖

≤ K√
ε

√
γn+1

pn
−→ 0 as n −→ +∞.

Since {θ : f(θ) = f∞}∩{θ : ∇f(θ) = 0} is locally finite, we can conclude that (θn)n≥1 has a unique
adherence point and is a convergent sequence:

lim
n−→+∞

θn = θ∞ with ∇f(θ∞) = 0.

4 Almost sure convergence to a local minimum

In this paragraph, we prove that the sequence (θn)n≥1 almost surely converges towards a local minimum
of f and cannot converge towards an unstable (hyperbolic) point of the dynamical system, e.g. cannot
converge towards a saddle point or a local maximum of f .

4.1 Unstable equilibria

We begin with a simple statement that identifies the unstable points of the dynamical system

(θ̇t, ẇt) = H(θt, wt) with H(θ, w) =

(
− ∇f(θt)√

wt + ε
, p∞[∇f(θt)

�2]− q∞wt
)
. (27)

These equilibria may correspond to repulsive equilibria or hyperbolic points (saddle points). The
next proposition makes this last sentence more precise and introduce the cornerstone function η that
measures in each neighborhood of an unstable (or saddle) point the distance of any point x to the local
stable manifold in the expanding direction.

Proposition 10. Consider the dynamical system (27), and assume that f is twice differentiable, then:

(i) The equilibria are (t, 0) where t is a critical point of f .

(ii) If t is a local maximum of f , the dynamical system is unstable near (t, 0).

(iii) If t is a local minimum of f , the dynamical system is stable near (t, 0).

(iv) If t is an unstable equilibria, a compact neighborhood N of (t, 0) and a function η exist such that:

(a) ∀z ∈ N ∀u ∈ Rd × Rd η(z + u) ≥ η(z) + 〈∇η(z), u〉 − Γ‖u‖2.

(b) If E+ is the eigenspace associated to the negative eigenvalues of D2f(t), then:

∀z ∈ N ∀u = (u1, u2) ∈ Rd × Rd b〈∇η(z), u〉c+ ≥ c1‖π+(u1)‖.

(c) A constant κ > 0 exists such that:

∀z ∈ N 〈∇η(z), H(z)〉 ≥ κη(z). (28)
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Proof. • Proof of i). The proof of i) is immediate by observing that H(θ, w) = 0 and q∞ 6= 0 implies
that ∇f(θ) = 0 and w = 0.
• Proof of ii) and iii). We use a linearization of the drift around an equilibria (t, 0). Since t is a critical
point of f , we observe that:

∇f(t+ h) = D2f(t)h+ o(‖h‖).
Consequently, we observe that (∇f(t+ h))2 = (D2f(t)h)2 = O

(
‖h‖2

)
, which entails:

H(t+ h, ω) =

(
−D

2f(t)h√
ε

+O (‖h‖‖ω‖) , p∞O(‖h‖2)− q∞ω
)

=

(
−D

2f(t)√
ε

0

0 −q∞Id

)(
h
ω

)
+ o (‖h‖+ ‖ω‖) .

The conclusion follows from the spectral decomposition of D2f(t).
• Proof of iv). The last point is a consequence of Proposition 3.1 of [BH95] (see also Proposition 9.5
of [Ben99]). We only need to observe that the coordinates in u2 always correspond to the attractive
manifold so that π+(u) = π+(u1).

Remark 11. This proposition holds for any p∞ ∈ R+. In particular it does so for p∞ = 0.

4.2 Preliminary estimates

For a given integer n0 when (θn0 , wn0) is in a neighborhood N (given by (iv) of Proposition 10 ) of an
unstable point, we introduce the exit time of N defined by:

Tn0
:= inf {n ≥ n0 : (θn, wn) /∈ N} . (29)

We shall observe that if P (Tn0
< +∞) = 1, then (θn, wn) cannot converge almost surely to the unstable

point (t, 0) located in N since the exit time is almost surely finite. For this purpose, we introduce the
sequence of random variables (Xn)n≥n0+1 defined by:

∀n ≥ n0 Xn+1 := [η(θn+1, wn+1)− η(θn, wn)]1n<Tn0
+ αn+11n≥Tn0

(30)

where (αn+1)n≥1 will be made explicit later on, and the associated cumulative sum:

∀n ≥ n0 + 1 Sn := η(θn0
, wn0

) +

n∑
k=n0+1

Xk (31)

We prove the following upper bound on the second order moment of (Xn)n≥n0+1.

Proposition 12. A constant c > 0 exists such that:

∀n ≥ n0 E[X2
n+1 | Fn] ≤ c(γ2n+1 ∨ α2

n+1).

Proof. We decompose Xn+1 according to the position of n with respect to Tn0
:

Xn+1 = Xn+11n<Tn0
+Xn+11n≥Tn0

= Xn+11n<Tn0
+ αn+11n≥Tn0

If n ≥ Tn0
, there is nothing to prove.

We then consider the case when n < Tn0
and define m = supz∈N ‖∇η(z)‖. A first order Taylor

expansion yields:

X2
n+11n<Tn0

= (η(θn+1, wn+1)− η(θn, wn))21n<Tn0

≤ m2[‖θn+1 − θn‖2 + ‖wn+1 − wn‖2]1n<Tn0

≤ γ2n+1m
2

(∥∥∥∥ gn+1√
wn + ε

∥∥∥∥2 + ‖png�2n+1 − qnwn‖2
)

1n<Tn0

≤ γ2n+1

m2

ε

(
‖gn+1‖2 + 2(pn‖g�2n+1‖2 + qn‖wn‖2)

)
1n<Tn0

.
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When n < Tn0 , the process Zn = (θn, wn) ∈ N so that ‖wn‖2 is bounded. It remains to study the
terms that involve ‖gn+1‖2 and ‖g�2n+1‖2. We shall observe that:

1n<Tn0
E[‖gn+1‖2‖ Fn] = 1n<Tn0

(
‖∇f(θn)‖2 + E[‖ξn+1‖2| Fn]

)
≤ 1n<Tn0

(
sup
z∈N

(‖∇f(θn)‖2 + σ2
n+1

)
≤ K ′1n<Tn0

.

because (σn)n≥1 is bounded by definition and ∇f is continuous and N is compact.

We then study 1n<Tn0
E[‖g�2n+1‖2‖ Fn] and observe that:

‖g�2n+1‖2 = ‖(∇f(θn) + ξn)�2‖2 ≤ 4[‖∇f(θn)�2‖2 + ‖ξ�2n+1‖2] = 4[‖∇f(θn)�2‖2 + σ4
n+1‖ζ�2n+1‖2].

Thus from the assumption H∞σ it follows that:

1n<Tn0
E[‖Xn+1‖2‖ Fn] ≤ Kγ2n+11n<Tn0

,

where K is a constant that depends on ∇η, m, ε, ‖p‖∞ and ‖q‖∞. This ends the proof.

Below, we will use the consequence of iv) − (a) of Proposition 10: if z = (θ, w) is a point in N ,
then a constant Γ exists such that:

∀(z, u) ∈ N × Rd : η(z + u)− η(z) ≥ 〈∇η(z), u〉 − Γ‖u‖2 (32)

We write the joint evolution of the algorithm (Zn)n≥1 as:

Zn+1 = Zn + γn+1 (H(Zn) + ∆n+1 + Un+1) ,

where (∆n+1)n≥1 is a sequence of martingale increment defined by:

∆n+1 :=

(
∆Mn+1

∆Nn+1

)
with

• ∆Mn+1 = − ξn+1√
wn+ε

• ∆Nn+1 = pn(ξ�2n+1 + 2∇f(θn) · ξn+1 − E[ξ�2n+1|Fn])

and

Un+1 =

(
0

(pn − p∞)∇f(θn)�2 − (qn − q∞)wn + pnE[ξ�2n+1|Fn]

)
.

We introduce below the sequence (νn)n≥1 that stands for the convergence rate of (pn)n≥1 towards
p∞ and (qn)n≥1 towards q∞:

νn := |pn − p∞| ∨ |qn − q∞|. (33)

Proposition 13. For a large enough non negative constant c the sequence (δn)n≥1 defined by δn
def
=

cδ(νn + pnσ
2
n+1 + γn+1) is such that:

1Sn≥δnE[Xn+1| Fn] ≥ 0,

Proof. We start once more from the decomposition of (Xn)n≥n0+1 before or after Tn0
and observe

that:

E[1n>Tn0
Xn+1 |Fn] = αn+11n>Tn0

≥ 0. (34)
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The definition of the stopping time Tn0 ensures that when n < Tn0 , Zn belongs to the neighborhood
N so we can apply Equation (32) and obtain the following lower bound:

E[1n<Tn0
Xn+1| Fn] = 1n<Tn0

E[η(Zn+1)− η(Zn)| Fn]

≥ 1n<Tn0

(
E
[
〈∇η(Zn), γn+1(H(Zn) +

(
∆Mn+1

∆Nn+1

)
+

(
0

Un+1

)
〉 |Fn

]
− Γγ2n+1E

[∥∥∥∥H(Zn) +

(
∆Mn+1

∆Nn+1

)
+

(
0

Un+1

)∥∥∥∥2 | Fn
])

.

We treat the two terms separately:

1n<Tn0
E
[
〈∇η(Zn), γn+1(H(Zn) +

(
∆Mn+1

∆Nn+1

)
+

(
0

Un+1

)
〉 |Fn

]
= 1n<Tn0

γn+1

(
〈∇η(Zn), H(Zn)〉+ E

[
〈∇η(Zn),

(
∆Mn+1

∆Nn+1

)
〉|Fn

]
+ 〈∇η(Zn),

(
0

Un+1

)
〉
)

≥ 1n<Tn0
γn+1

(
kη(Zn) + 〈∇η(Zn),

(
0

Un+1

)
〉
)
,

where the last inequality comes from (iv)c of Proposition 10 (Equation (28)). Using that ‖∇η‖ is
upper bounded on N by m, the definition of Tn0

leads to:

1n<Tn0
‖∇η(Zn)‖ ≤ m. (35)

This inequality associated with the Cauchy-Schwarz inequality implies that:

1n<Tn0

∣∣∣∣〈∇η(Zn),

(
0

Un+1

)
〉
∣∣∣∣ ≤ 1n<Tn0

‖∇η(Zn)‖
∣∣∣∣∣∣∣∣( 0

Un+1

)∣∣∣∣∣∣∣∣
≤ m1n<Tn0

‖Un+1‖
≤ m1n<Tn0

‖νn‖∇f(θn)�2‖+ νn‖wn‖+ pnE[ξ�2n+1|Fn]‖

≤ m1n<Tn0

(
νn sup

z∈N
‖∇f(θn)�2‖+ νn sup

z∈N
‖wn‖+ pnE[‖ξ�2n+1‖ |Fn]

)
.

Observing that ‖ξ�2n+1‖ =
√∑d

i=1 ξ
4
n+1,i ≤

∑d
i=1 ξ

2
n+1,i = ‖ξn+1‖2, we deduce that:

E[‖ξ�2n+1‖ |Fn] ≤ σ2
n+1.

We then define k′ = sup(θ,w)∈N ‖∇f(θ)�2‖+‖w‖ < +∞ (because N is compact and ∇f is continuous).
We deduce that:

1n<Tn0

∣∣∣∣〈∇η(Zn),

(
0

Un+1

)
〉
∣∣∣∣ ≤ k′m1n<Tn0

(
2νn + pnσ

2
n+1

)
.

Concerning the last term, it is sufficient to show that the expected value is bounded. We start by
using the fact that (a+ b+ c)2 ≤ 4(a2 + b2 + c2) to split the squared norm and to obtain that:

E[‖H(Zn)+

(
∆Mn+1

∆Nn+1

)
+

(
0

Un+1

)
‖2 |Fn]

≤ 4

(
‖H(Zn)‖2 + E

[∥∥∥∥(∆Mn+1

∆Nn+1

)∥∥∥∥2 |Fn
]

+ ‖Un+1‖2
)
.

Since H is continuous, (‖H(Zn)‖2)n0≤n<Tn0
is a bounded sequence. Moreover, we have seen that when

n < Tn0
:

‖Un+1‖ ≤ k′(2νn + σ2
n+1pn),
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thus we only left to study E

[∥∥∥∥(∆Mn+1

∆Nn+1

)∥∥∥∥2 | Fn
]

.

E

[∥∥∥∥(∆Mn+1

∆Nn+1

)∥∥∥∥2 |Fn
]

= E
[
‖∆Mn+1‖2 + ‖∆Nn+1‖2|Fn

]
≤
σ2
n+1

ε
+ p2nE[‖ξ�2n+1 + 2∇f(θn) · ξn+1 − E[ξ�2n+1|Fn]‖2| Fn]

≤
σ2
n+1

ε
+ 4p2n

(
E[‖ξ�2n+1‖2 + 2‖∇f(θn) · ξn+1‖2| Fn] + E[‖ξ�2n+1‖2|Fn]

)
≤
σ2
n+1

ε
+ 4p2n

(
2E[‖ξn+1‖4| Fn] + 2E[‖∇f(θn) · ξn+1‖2| Fn]

)
.

When n < Tn0
, we observe that:

E[‖∇f(θn) · ξn+1‖2| Fn] ≤ sup
z∈N
‖∇f(θ)2‖∞E[‖ξn+1‖2| Fn],

and
E[‖ξn+1‖4| Fn] = σ4

n+1E[‖ζn+1‖4| Fn].

Again, using the compactness of N , the continuity of ∇f and the assumption H∞σ on the noise (ζn)n≥1,
we deduct that K2 > 0 exists such that:

E
[
‖∆Mn+1‖2 + ‖∆Nn+1‖2|Fn

]
≤ K2(σ2

n+1 + σ4
n+1).

We now gather all the terms and use the fact that the sequences (σn)n≥0, (pn)n≥0 and (νn)n≥0 are all
bounded, to conclude that a constant K3 exists such that:

E[1n<Tn0
Xn+1| Fn] ≥ 1n<Tn0

γn+1

(
kη(Zn)− k′m(2νn + pnσ

2
n+1)−K3γn+1

)
. (36)

Finally, as long as n < Tn0
, Sn = η(Zn) and thus setting cδ > max(2k′m,K3) and (δn)n≥1 as defined

in the statement ends the proof.

We now study the evolution of S2
n.

Proposition 14. Assume that δn = c(νn + pnσ
2
n+1 + γn+1) is such that γn+1δ

2
n = o(γ2n+1σ

2
n+1 ∧ α2

n)
then:

E[S2
n+1 − S2

n | Fn] & {γ2n+1σ
2
n+1} ∧ α2

n+1.

Proof. Our starting point is:

S2
n+1 − S2

n = (Sn +Xn+1)2 − S2
n

= X2
n+1 + 2SnXn+1

= X2
n+1 + 2Sn(1Sn≥δnXn+1 + 1Sn<δnXn+1).

We then use Proposition 13 and get:

E[S2
n+1 − S2

n | Fn] ≥ E[X2
n+1 | Fn] + 2Sn1Sn<δnE[Xn+1 |Fn]. (37)

To derive a lower bound of 2Sn1Sn<δnE[Xn+1 |Fn], we observe that (Sn)n≥0 and η are positive, so
that if we use Equations (36) and (34), we obtain:

2Sn1Sn<δnE[Xn+1 |Fn] ≥ −2Sn1Sn<δnE[1n<Tn0
|Xn+1| |Fn]

≥ −2δnγn+1[k′m(2νn + pnσ
2
n+1) +K3γn+1]

≥ −2δ2nγn+1.

26



We are led to analyze E[X2
n+1]. According to the definition of (Xn)n≥n0 , to the definition of the

hitting time Tn0
and to the construction of η, we observe that from Equation (32):

1n<Tn0
Xn+1 = 1n<Tn0

[η(Zn+1)− η(Zn)]

= 1n<Tn0
[η[Zn + (Zn+1 − Zn)]− η(Zn)]

≥ 1n<Tn0

[
〈∇η(Zn), Zn+1 − Zn〉 − k‖Zn+1 − Zn‖2

]
≥ 1n<Tn0

γn+1〈∇η(Zn), H(Zn)〉+ 1n<Tn0
γn+1〈∇η(Zn),∆n+1 + Un〉

− k1n<Tn0
γ2n+1‖H(Zn) + ∆n+1 + Un‖2

≥ κγn+1η(Zn)1n<Tn0
+ 1n<Tn0

γn+1〈∇η(Zn),∆n+1〉
− γn+11n<Tn0

‖Un‖‖∇η(Zn)‖ − k1n<Tn0
γ2n+1‖H(Zn) + ∆n+1 + Un‖2,

where in the last line we used the reverting effect translated in Equation (28) and the Cauchy-Schwarz
inequality. Since η is positive, we then obtain that:

1n<Tn0
Xn+1 ≥ 1n<Tn0

γn+1〈∇η(Zn),∆n+1〉
− 1n<Tn0

[
γn+1‖Un‖‖∇η(Zn)‖+ kγ2n+1‖H(Zn) + ∆n+1 + Un‖2

]
. (38)

We denote the positive part of any real value a by bac+ and we use that a ≥ b =⇒ bac+ ≥ bbc+
and the inequality

ba− |b|c+ ≥ bac+ − |b|.

Considering Equation (38), we then observe that:

b1n<Tn0
Xn+1c+ ≥1n<Tn0

γn+1 [b〈∇η(Zn),∆n+1〉c+
−‖Un‖‖∇η(Zn)‖ − kγn+1‖H(Zn) + ∆n+1 + Un‖2

]
Once more the regularity of ∇η, the compactness of N and the definition of Un, guarantee that a
constant κ > 0 exists such that:

1n<Tn0
‖Un‖‖∇η(Zn)‖ ≤ κ(νn + pnσ

2
n+1).

Computing the conditional expectation and using the arguments of (36), we have

1n<Tn0
E[‖H(Zn) + ∆n+1 + Un‖2 |Fn] < K3,

so that:

E[b1n<Tn0
Xn+1c+ |Fn] ≥1n<Tn0

γn+1E[b〈∇η(Zn),∆n+1〉c+ |Fn]

− 1n<Tn0

[
κ(νn + pnσ

2
n+1)γn+1 + kK3γ

2
n+1

]
.

Using that when n < Tn0 , Zn ∈ N , we can apply iv)− (b) of Proposition 10 so that:

E[b1n<Tn0
Xn+1c+ |Fn] ≥ 1n<Tn0

(
γn+1[E‖π+(∆Mn+1)‖ |Fn]−

[
κ(νn + pnσ

2
n+1)γn+1 + kK3γ

2
n+1

])
,

where π+ is the orthogonal projection on E+, the eigenspace associated to the negative eigenvalues of
D2f(t). For n large enough, the almost sure convergence of (wn)n≥0 to 0 and our elliptic assumption
H∞σ − ii) on the sequence (ξn+1)n≥0 yield:

E[‖π+(∆Mn+1)‖ |Fn] ≥ σn+1

2
,

which entails:

E[b1n<Tn0
Xn+1c+ |Fn] ≥ 1n<Tn0

γn+1

[σn+1

2
− C(νn + pnσ

2
n+1 + γ2n+1)

]
. (39)
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Decomposing now Xn+1 = bXn+1c+ − b−Xn+1c+, we then deduce that:

E[1n<Tn0
X2
n+1 |Fn] = E[1n<Tn0

bXn+1c2+ |Fn] + E[1n<Tn0
b−Xn+1c2+ |Fn]

≥ E[1n<Tn0
bXn+1c2+ |Fn]

≥ E[1n<Tn0
bXn+1c+ |Fn]2

≥ 1n<Tn0
γ2n+1

[σn+1

2
− C(νn + pnσ

2
n+1 + γ2n+1)

]2
.

& 1n<Tn0
γ2n+1σ

2
n+1.

The last line is justified by the assumption γn+1δ
2
n = o(γ2n+1σ

2
n+1) which ensures that δn = o(σn). We

shall also observe that:
E[1n≥Tn0

X2
n+1 |Fn] = α2

n+1.

We then deduce that:
E[X2

n+1 |Fn] & {γ2n+1σ
2
n+1} ∧ α2

n+1.

Since γn+1δ
2
n = o(γ2n+1σ

2
n+1 ∧ α2

n), we can now conclude by inserting the previous bounds in the
inequality (37).

4.3 End of the proof

We mimic the strategy of Lemma 9.6 of [Ben99] and of Theorem 3.2 of [GPS18] with the help of the
two sequences defined in (31) and (30).

Sn = η(Zn0) +

n∑
k=n0+1

Xk with Xn+1 = (η(Zn+1)− η(Zn))1n<Tn0
+ αn+11n≥Tn0

.

We summarize the preliminary results proven in the previous subsection as they will we used in what
follows:

(I1) Proposition 12 states that :
E[X2

n+1 Fn] ≤ c(γ2n+1 ∨ α2
n+1).

(I2) Proposition 13 yields that if δn = cδ(νn + pnσ
2
n+1 + γ2n+1), then

1Sn≥δnE[Xn+1 |Fn] ≥ 0.

(I3) Proposition 14 yields: if γn+1δ
2
n = o(γ2n+1σ

2
n+1 ∧ α2

n) (which also means that δn = o(σn)), then

E[S2
n+1 − S2

n |Fn] & {γ2n+1σ
2
n+1} ∧ α2

n+1.

For any integer q, we consider an integer n ≥ q and introduce the two sequences (un)n≥q and
(Ūn)n≥q defined by:

un =
∑
i≥n

(
{γ2i+1σ

2
i+1} ∧ α2

i+1

)
and Ūn =

n∑
i=0

(
{γ2i+1σ

2
i+1} ∧ α2

i+1

)
.

With the framework of Theorem 3 in mind we suppose that

γn = γ1n
−β , σn = σ1n

−s and pn = p1n
−r

with β ∈ (1/2, 1), s ≥ 0 and r > 0. Let us point out other restrictions on the choices of these
parameters in light of previous assumptions:

A first restriction follows directly from (HSteps − 3), namely that

2s+ r + β > 1

28



(to ensure that
∑
γn+1pnσ

2
n+1 < +∞). Furthermore, Theorem 1 demands that γn/pn → 0, implying

that
r < β.

To ease notations it is convenient to assume that the sequence (qn) converges to its limit q∞ > 0 at
least as fast as (pn) goes to 0 : νn = O(pn). With this in mind, the condition imposed by Proposition
14, δn = o(

√
γn+1σn+1) translates to r+ s > β/2, r > β/2 + s and 2β > β/2 + s, ie β > 2/3s. As soon

β > s all these conditions come down to:

r > β/2 + s

Other restrictions will be added in the following propositions and are summarized in Theorem 3.

For any positive real value b > 0 and any integer q > 0, we consider the sequence of stopping times
(T qb )q≥0 defined by:

T qb := inf
{
i ≥ q : Si ≥

√
bui

}
.

The stopping times T qb stands for the first time the sequence (Sn)n≥1 becomes larger than the threshold
(
√
un)n≥1, which converges towards zero with a controlled rate. We prove the following result.

Proposition 15. Assume that σ2
i ∼ σ2

1i
−2s with 0 ≤ s < 1/2 and γi = γ1i

−β, r > β/2 + s and choose
(αn)n≥1 as ∀n ≥ 0 : αn+1 = γn+1σn+1. Then a small enough b > 0 exists and a large enough q such
that:

P(T qb < +∞|Fq) ≥
1

2
.

Proof. Our starting point is the lower bound given by Proposition 14 and we observe that a small
enough a > 0 exists such that:

Mn := S2
n − aŪn

is a submartingale since:

E[Mn+1 |Fn] = E[S2
n+1 − aŪn+1 |Fn]

≥ S2
n + a

(
{γ2n+1σ

2
n+1} ∧ α2

n+1

)
− a(Ūn + {γ2n+1σ

2
n+1} ∧ α2

n+1)

=Mn.

We consider an integer n ≥ q + 1 and apply the Optional Stopping Theorem and verify that:

E[Mn∧T qb ]−Mq |Fq] ≥ 0⇐⇒ E[S2
n∧T qb

− S2
q |Fq] ≥ aE

n∧T qb∑
i=q

{γ2i+1σ
2
i+1} ∧ α2

i+1 |Fq


⇐⇒ E[S2

n∧T qb
− S2

q |Fq] ≥ aP (T qb > n |Fq)
n∑
i=q

{γ2i+1σ
2
i+1} ∧ α2

i+1. (40)

In the meantime, we observe that:

{Sn∧T qb }
2 − {Sq}2 = {Sn∧T qb }

2 − {S(n∧T qb )−1}
2 + {S(n∧T qb )−1}

2 − {Sq}2

= {S(n∧T qb )−1 +Xn∧T qb }
2 − {S(n∧T qb )−1}

2 + {S(n∧T qb )−1}
2 − {Sq}2

≤ {S(n∧T qb )−1}
2 + 2S(n∧T qb )−1Xn∧T qb + {Xn∧T qb }

2

≤ 2
(
{S(n∧T qb )−1}

2 + {Xn∧T qb }
2
)

≤ 2bu(n∧T qb )−1 + 2{Xn∧T qb }
2,

where the last inequality is a consequence of the definition of the stopping time T qb . Since (un)n≥0 is
a decreasing sequence, we then have that:

{Sn∧T qb }
2 − {Sq}2 ≤ 2buq−1 + 2{Xn∧T qb }

2, (41)
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and we are led to upper bound the term {Xn∧T qb }
2.

The definition of (Xn)n≥1 yields:

X2
n∧T qb

=
(
η(Zn∧T qb )− η(Z(n∧T qb )−1)

)2
1(n∧T qb )−1<Tn0

+ α2
n∧T qb

1(n∧T qb )−1≥Tn0
.

Using a similar argument as the one used in the proof of Proposition 12, a Taylor expansion associated
with the smoothness of η and f leads to:

1(n∧T qb )−1<Tn0

(
η(Zn∧T qb )− η(Zn∧T qb −1)

)2
. 1n∧T qb −1<Tn0

γ2n∧T qb

(
1 + ‖ξn∧T qb ‖

2 + ‖ξ2n∧T qb ‖
2
)

. 1n∧T qb −1<Tn0
γ2n∧T qb

(
1 + σ2

n∧T qb
‖ζn∧T qb ‖

2 + σ4
n∧T qb

‖ζn∧T qb ‖
4
)

. γ2q+1 +

n∑
i≥q

γ2i+1σ
2
i+1‖ζi+1‖2 +

n∑
i≥q

γ2i+1σ
4
i+1‖ζi+1‖4,

where in the last line we used that (γn)n≥q+1 is a decreasing sequence and a rough upper bound of
σn∧T qb ‖ζn∧T qb ‖. We then compute the expectation with respect to Fq and observe that E[‖ζi+1‖2 |Fq] ≤
1 and E[‖ζi+1‖4 |Fq] ≤ C and thus :

E[X2
n∧T qb

|Fq] . α2
q + γ2q+1 + uq.

This last bound together with inequality (41) implies that a constant C > 0 exists such that:

E[{Sn∧T qb }
2 − {Sq}2|Fq] ≤ C

(
buq + α2

q + γ2q+1

)
.

Finally we obtain from (40) that:

aP (T qb > n |Fq)
n∑
i=q

{γ2i+1σ
2
i+1} ∧ α2

i+1 ≤ C
(
buq + α2

q + γ2q+1

)
.

We therefore deduce an upper bound on the probability that the stopping time is larger than n:

P (T qb > n |Fq) ≤
C
(
buq + α2

q + γ2q+1

)
a
∑n
i=q{γ2i+1σ

2
i+1} ∧ α2

i+1

=
Cb

a

uq
uq − un

+
α2
q + γ2q

a(uq − un)

We then take the limit n −→ +∞ in the previous inequality and obtain that:

P (T qb = +∞|Fq) ≤
Cb

a
+ C

α2
q + γ2q
auq

,

because limn−→+∞ un = 0. Choosing now αn+1 = γn+1σn+1, we then observe that uq =
∑
i≥q γ

2
i+1σ

2
i+1

and then the second term on the right hand side goes to zero as soon as:

γ2q = o

∑
i≥q

γ2i+1σ
2
i+1

 .

Since we have chosen γq = γ1q
−β and σq = σ1q

−s, we verify that a constant υ exists such that:

uq ∼ υq1−2(β+s).

Therefore, the condition γ2q = o(uq) boils down to −2β < 1− 2(β + s)⇔ s < 1/2.
Hence, when s < 1/2 we can conclude the proof of the proposition by setting b small enough

(b < a/3C for example).
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The next result states that Sn may remain larger than 1
2

√
buq with a positive probability when

Sq ≥
√
buq. For this purpose, we introduce

S := inf

{
n > q : Sn <

1

2

√
buq

}
that stands for the first time (Sn)n≥q comes back below the threshold

√
buq.

Proposition 16. Assume that αn+1 = σn+1γn+1 and β+s−r < 1
2 , β ≤ 1−2s and that νn = o(

√
γnσn).

Then there exits q large enough and a constant c > 0 such that

1
Sq≥
√
buq

P (S = +∞|Fq) ≥ 1
Sq≥
√
buq

b

b+ c

Proof. Since δn ∼ pnσ2
n + νn + γn, we conclude with our settings that: δn ∼ n−r +n−β . Moreover, the

choice αi+1 = γi+1σi+1 implies that:

uq =
∑
i≥q+1

γ2i+1σ
2
i+1 ∼ n1−2(β+s).

We then observe that δn = o(
√
uq) as soon as:

n−r + n−β = o(n(1−2(β+s))/2)⇐⇒ β + s− r < 1

2
,

since β > 2(β+s)−1
2 always holds when s < 1

2 .

From our previous remark, we observe that for q large enough if Sq is greater than 1
2

√
buq then

Sq ≥ δq, so Proposition 13 implies that (Sn∧S)n≥q is a submartingale. For such a choice of n and q,
we can use the Doob decomposition and write that:

Sn∧S = Wn + In,

where In is an increasing Fn predictable process with Iq = 0 and Wn is a martingale. We then observe
that

P (S = +∞|Fq) = P
(
∀n ≥ q : Sn ≥

1

2

√
buq

)
≥ P

(
∀n ≥ q : Wn ≥

1

2

√
buq

)
Furthermore, if Sq ≥

√
buq, then Wq ≥

√
buq, which entails:

1
Sq≥
√
buq

P (S = +∞|Fq) ≥ 1
Sq≥
√
buq

P
(
∀n ≥ q : Wn −Wq ≥ −

1

2

√
buq

)
. (42)

Using the fact that (Wn)n≥q is a martingale and the definition of Sn, one can verify that:

E
[
(Wn −Wq)

2 |Fq
]
.
n−1∑
i=q

E[X2
i+1|Fq].

The upper bound obtained in Proposition 12 is not sharp enough to be directly applied here, so in
order to deal with the term on the right hand side we return to the upper bound obtained in the proof
of Proposition 12 which gives for all i:

X2
i+11i<Tn0

. γ2i+1

(
‖gi+1‖2 + 2(pi‖g�2i+1‖

2 + qi‖wi‖)
)
1i<Tn0

. (43)

Now, for i ≥ q we have :

E[‖gi+1‖2|Fq] = E[E[‖gi+1‖2|Fi]|Fq]
≤ 2(‖∇f(θi)‖2 + E[E[‖ξi+1‖2|Fi]|Fq])
≤ 2(‖∇f(θi)‖2 + σ2

i+1),
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and

E[‖g�2i+1‖
2|Fq] ≤ 8(‖∇f(θi)

�2‖2 + σ4
i+1E[E[‖ζ2i+1‖2|Fi]|Fq])

. ‖∇f(θi)
�2‖2 + σ4

i+1.

The sequence (σi)i≥0 is bounded, (pi)i≥0 converges to 0 and Theorem 1 shows that (‖∇f(θi)‖)i≥0
converge almost surely to 0, so there exists q > 0 such that ∀i ≥ q:

piσ
4
i+1 ≤ σ2

i+1 and ‖∇f(θi)
�2‖2 ≤ ‖∇f(θi)‖2.

Inserting this into our previous bound (43) we get that (for q large enough and i ≥ q)

X2
i+11i<Tn0

. γ2i+1

(
‖∇f(θi)‖2 + qi‖wi‖+ σ2

i+1

)
1i<Tn0

.

Since αi+1 = γi+1σi+1 we have that:

X2
i+1 . γ2i+1

(
‖∇f(θi)‖2 + qi‖wi‖+ σ2

i+1

)
,

which implies that:

E
[
(Wn −Wq)

2 |Fq
]
.
n−1∑
i=q

γ2i+1σ
2
i+1 +

n−1∑
i=q

γ2i+1

(
‖∇f(θi)‖2 + qi‖

√
wi‖2

)
.

The first series of the right-hand side is handled with the simple bound
∑n−1
i=q γ

2
i+1σ

2
i+1 . q1−2(β+s).

In dealing with the second term of the right-hand side we use the almost sure convergence of the series
stated in (18) of Proposition 6 and the fact that (γn)n≥0 is a decreasing sequence:

n−1∑
i=q

γ2i+1

(
‖∇f(θi)‖2 + qi‖

√
wi‖2

)
≤ γq+1

n−1∑
i=q

γi+1

(
‖∇f(θi)‖2 + qi‖

√
wi‖2

)
. γq+1,

These two ingredients yield:

E
[
(Wn −Wq)

2 |Fq
]
.
n−1∑
i=q

γ2i+1σ
2
i+1 + γq+1.

Thus there exists a constant a > 0 such that for all n ≥ q:

E
[
(Wn −Wq)

2 |Fq
]
≤ a(uq + γq).

Using a similar argument as the one of [BH95] or [GPS18], for all h, t ∈ R+ we deduce that:

P
(

inf
q≤i≤n

(Wi −Wq) ≤ −h |Fq
)
≤ P

(
sup
q≤i≤n

|Wi −Wq − t| ≥ h+ t |Fq
)

≤ E[(Wn −Wq)
2 |Fq] + t2

(h+ t)2
.

Setting t = a(uq + γq)/h in the last term we have :

E[(Wn −Wq)
2 |Fq] + t2

(h+ t)2
≤
a(γq + uq) +

a2(γq+uq)
2

h2

(h+
a(γq+uq)

h )2

=
a(γq + uq)h

2 + a2(γq + uq)
2

(h2 + a(γq + uq))2

=
a(γq + uq)

h2 + a(γq + uq)

32



Now when h = 1/2
√
buq we obtain that :

P

(
inf

q≤i≤n
(Wi −Wq) ≤ −

√
buq

2
|Fq

)
≤ 4a(γq + uq)

buq + 4a(γq + uq)
.

As soon as γq . uq, meaning that −β ≤ 1 − 2(β + s), there exists a constant c > 0 such that for q
large enough:

P

(
inf

q≤i≤n
(Wi −Wq) ≤ −

√
buq

2
|Fq

)
≤ c

b+ c
.

Inserting this bound in (42) ends the proof.

At this point, Propositions 15 and 16 enable us to prove that the sequence (Sn) does not converge
to 0 a.s. using the same arguments as [Ben99] and then we can conclude the proof of Theorem 3.

Remark 17. When the variance of the noise sequence does not converge to 0 (s = 0), the previous
conditions on the parameters can be summarized as : β ∈ (1/2, 1); r ∈ (1 − β, β), when β < 2/3 and
r ∈ (β/2, β) for β ≥ 2/3.

Proof of Theorem 3. The proof is divived into two steps.
Step 1: Sn does not converge to 0 a.s. Let G denote the event:

G :=

{
lim

n−→+∞
Sn 6= 0

}
.

The definition of T qb implies that for any q ∈ N∗ and n ≥ q:

E[1G |Fn]1T qb =n = E[1G |Fn]1T qb =n1Sn≥
√
bun

.

In the meantime, if S = +∞ then (Sn) does not converge to 0, so {S = +∞} ⊂ G. For q large enough,
such that Proposition 16 holds, and for all n ≥ q :

E[1G |Fn]1T qb =n1Sn≥
√
bun
≥ P(S = +∞|Fn)1T qb =n1Sn≥

√
bun
≥ b

c+ b
1T qb =n

1Sn≥
√
bun

.

Thus, if we consider all the integers n larger than q, we obtain:

E[1G |Fq] ≥
∑
n≥q

E[1G1T qb =n |Fq] =
∑
n≥q

E[E[1G | Fn]1T qb =n |Fq]

≥
∑
n≥q

b

c+ b
E[1T qb =n |Fq]

≥ b

c+ b
P(T qb < +∞|Fq).

We now apply Proposition 15 and obtain that:

E[1G |Fq] ≥
b

2(c+ b)
> 0.

By definition, G ⊂ F∞ so limq→+∞ E[1G |Fq] = 1G and thus the previous inequality guarantees that
1G = 1 almost surely.
Step 2: the algorithm escapes any neighborhood of an unstable point in a finite time a.s.

As mentioned before, we shall prove that if the algorithm is at step n0 in a neighborhood N of a
local maximum, it escapes N a.s. in a finite time, meaning that P(Tn0

= +∞) = 0, where Tn0
is the
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stopping time defined by (29)
Suppose that Tn0

= +∞. In this case by definition, Xn+1 = η(θn+1, wn+1)− η(θn, wn) for all n ≥ n0
and thus

Sn = η(θn, wn), ∀n ≥ n0
Theorem 1 ensures that (θn, wn) converges a.s to a point (θ∞, 0). This together with the regularity of
the function η implies that the sequence Sn goes to η(θ∞, 0) when n→ +∞.
Since N is compact, the limit point (θ∞, 0) belongs to N and according to Proposition 10 c) there
exists k > 0 such that:

0 ≤ kη(θ∞, 0) ≤ 〈∇η(θ∞, 0), H(θ∞, 0)〉.

As seen in the proof of Theorem 1, the limit point (θ∞, 0) is almost surely an equilibrium point for
the dynamical system driven by H, so H(θ∞, 0) = 0. As a result we have that

lim
n−→+∞

Sn = η(θ∞, 0) = 0.

From Step 1, we have seen that P( lim
n→+∞

Sn = 0) = 0, which concludes the proof.
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