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INTRODUCTION 
 

The structure of glasses and the melts from which they are formed is intrinsically disordered, 

making their structural characterization difficult. Whilst the structure of solid minerals can be 

readily determined from the periodicity of the crystallographic unit cell, the absence of long-

range symmetry in glasses and melts means their “unit cell” is essentially of infinite extent. 

However, although structurally disordered, the atomic-scale arrangements in glasses and melts 

are not strictly random. As detailed in chapter 2 by Henderson and Stebbins (2020, this volume), 

glasses typically exhibit a high degree of local short-range order (SRO) in the form of well-

defined coordination polyhedra and chemical bond lengths, often similar to the corresponding 

crystal. This is illustrated in figure 1a for pure silica (SiO2) glass where, as for crystalline 

polymorphs of SiO2, every silicon atom is bonded to four oxygen atoms in tetrahedral units 

bonded to the next tetrahedron by a bridging oxygen atom. 



In a glass, periodicity breaks down beyond the scale of a few atoms. Nevertheless, different 

patterns of medium range order (MRO), also called intermediate range order, may occur beyond 

the next nearest neighbour length-scale at ~ 5-20 Å (1 Ångstrom = 10-10 m) related to the 

topology of the glass network (Elliot 1991; Price 1996). Chemical ordering may also persist in 

some network glasses on extended length scales up to nanometer distances (Salmon and Zeidler 

2013). In the silica glass example in figure 1a, substantial MRO arises from ring structures that 

enclose open regions in the network of corner shared SiO4 tetrahedra. Ring statistics (LeRoux 

and Jund 2010) or more recently persistent homology (Hiraoka et al. 2016; Hosokawa et al. 

2019) techniques are commonly applied to characterize the nature of MRO arising from glass 

and melt network connectivity. 

With the addition of other cations, the silicate network is disrupted with the formation of 

non-bridging oxygens (see chapter 2). Two models have been proposed to describe the structure 

of modified silicate glasses: the perturbed cation distribution (PCD) model (Lee and Stebbins 

2003), and the modified random network (MRN) model (Greaves 1985) The PCD model 

assumes a relatively homogeneous distribution of modifier cations in the glass network. In 

contrast, the MRN model predicts the development of MRO formed by modifier cations in 

dynamic channels which percolate through the disrupted silicate tetrahedral network (figure 

1b). While some evidence from experiments and simulations appears to substantiate the 

Greaves MRN model in alkali silicate glasses, the question of whether cation diffusion channels 

are a general feature of modified silicate glasses is yet to be resolved. 

Diffraction (x-ray and neutron) and vibrational spectroscopies (Raman and IR) provide 

detailed information on SRO in glasses. Raman spectroscopy is also sensitive to MRO and can 

be exploited to identify ring structures in glasses. Pre-peaks observed in diffraction 

measurements of glasses can also be highly indicative of MRO. Combining the strengths of 

diffraction measurements, Raman spectroscopy, and computer simulation (Jahn 2020, this 

 

Figure 1: (a) Structural model of pure silica (SiO2) glass. 3-, 4-, and 5-membered rings of 

SiO4 tetrahedra are shown by the red, yellow, and blue shaded regions, respectively. Si = small blue 

spheres; O = large red spheres. Created using the SiO2 glass configuration from Le Roux and Petkov 

(2010). (b) The Greaves modified random network (MRN) model. Modifier cations (solid black 

circles with dashed lines denoting ionic bonds) form percolation channels in the covalently bonded 

glass network represented by open circles within the hatched region (Reprinted (permission pending) 

from Greaves 1985. © Elsevier.). 



volume) enables detailed structural insight to be obtained on SRO and MRO in non-crystalline 

materials including glasses and their melts, offering a complementary perspective to the 

cationic environment probed by Nuclear Magnetic Resonance (NMR) or x-ray absorption 

spectroscopy.  

In this chapter, we provide an overview of Raman spectroscopy and x-ray or neutron 

diffraction experiments to determine the SRO and MRO structure of geologically relevant 

silicate and aluminate glasses and their high-temperature (T) melts under both ambient and 

high-pressure (p) conditions. 

X-RAY, NEUTRON, AND RAMAN SCATTERING OF GLASSES AND MELTS 

 

A brief overview of the theory of diffraction and Raman spectroscopy to obtain information 

on SRO and MRO in the atomic-scale structure in glasses and melts is provided in the following 

by reference to pure SiO2 (silica), one of the principal components of all-natural and most 

commercial silicate glasses. For more exhaustive theoretical treatment of x-ray and neutron 

diffraction studies of liquids and glasses we refer the reader to the reviews by Fischer et al. 

(2006), Hannon (2015), Benmore (2015), and Cormier (2019). For the theory of Raman 

scattering and required data treatment and normalization procedures for oxide glasses we 

recommend Rull (2012), Rossano and Mysen (2012), and Neuville et al. (2014). 

 

X-ray and neutron diffraction 

 

X-ray diffraction (XRD), pioneered by M. von Laue, W. H. Bragg, and L. Bragg in the early 

20th century, is a powerful tool for characterizing structure of materials at the atomic level. 

Although less widely available and requiring large-scale reactor or accelerator sources, 

diffraction by neutrons provides highly complementary information: while x-ray sensitivity 

increases with atomic number, the scattering power of neutrons varies between elements and 

 
Figure 2: a) crystalline and b) amorphous structure of SiO2 (small blue spheres: Si atoms, large red 

spheres: O atoms) shown together with their corresponding x-ray diffraction (Warren 1934a) and 

Raman (Gross and Ramanova 1929) photographs in c) and d). 



isotopes such that neutron diffraction is more sensitive to some light elements including 

oxygen.  

Consider first a crystalline solid composed of atoms organized in a highly ordered repeating 

periodic arrangement in three dimensions (e.g. crystalline SiO2, figure 2a). The interatomic 

distances are of the order of Ångström, the same order of magnitude as x-ray wavelengths: a 

crystal thus constitutes a three-dimensional network which can diffract x-rays in accordance to 

Bragg’s law, producing sharp constructive interference peaks associated with the crystalline 

lattice spacings. Similarly, inelastic light scattering from crystalline materials typically 

produces intense narrow bands corresponding to specific vibrational modes or chemical bonds. 

In the case of a non-crystalline solid (e.g. SiO2 glass, figure 2b), the structure is disordered with 

no long-range translational periodicity such that diffraction patterns exhibit broad diffuse peaks. 

This is demonstrated by the first XRD patterns (Warren 1934a,b,c) measured for SiO2 crystal 

(quartz) (figure 2c) and glass (figure 2d), with sharp intense peaks observed for the crystal 

diffuse features for the glass measurements. However, despite the structural disorder in glasses 

and melts, chemical bonding constraints give rise to a high degree of SRO which, together with 

MRO, is encoded in the diffuse scattering signal. 

Diffraction provides information on liquid and glass structure by measurement of the 

structure factor, S(q), obtained after processing the diffracted intensity, where the magnitude of 

the reciprocal space scattering vector 𝑞 = 4𝜋 sin 𝜃 /𝜆 for scattering angle θ and x-ray or 

neutron beam wavelength λ (Fischer et al. 2006). The real space pair distribution function, G(r), 

provides a measure of the probability of finding two atoms a distance r apart and is given by 

the Fourier transform relation 

 

𝐺(𝑟) − 1 =
1

2𝜋2𝑟𝜌0
∫ 𝑞

∞

0

[𝑆(𝑞) − 1] sin(𝑞𝑟) 𝑑𝑞, (1) 

where ρ0 denotes the atomic number density. For a glass containing n different chemical 

species, the S(q) and G(r) are comprised of a weighted sum of the Faber-Ziman partial structure  

factors 𝑆𝛼𝛽(𝑞) (Faber and Ziman 1965) or partial pair distribution functions 𝑔𝛼𝛽(𝑟) for 

n(n+1)/2 atomic pairs for chemical species  or : 
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and  𝐺(𝑟) =  ∑ ∑ 𝑊𝛼𝛽
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For neutrons 𝑊𝛼𝛽
𝐺 = 𝑊𝛼𝛽

𝑆 = 𝑐𝛼𝑐𝛽𝑏𝛼𝑏𝛽/(∑ 𝑐𝛼𝑏𝛼𝛼 )2, where c denotes concentration and b is 

the neutron scattering length (Sears 1992). X-ray form-factors are q-dependent and the 𝑆𝛼𝛽(𝑞) 

weighting factors in XRD are 𝑊𝛼𝛽
𝑆 (𝑞) = 𝑐𝛼𝑐𝛽𝑓𝛼(𝑞)𝑓𝛽

∗(𝑞)/(∑ 𝑐𝛼𝑓𝛼𝛼 (𝑞))
2
, where 𝑓(𝑞) and 

𝑓∗(𝑞) denote the complex atomic scattering factor and its conjugate (e.g. Waasmaier and Kirfel 

1995). As such, the x-ray G(r) cannot be described in terms of simple weighted linear 

combination of 𝑔𝛼𝛽(𝑟). The Warren-Krutter-Morningstar (WKM) approximation (Warren 

1936) in which 𝑊𝛼𝛽
𝑆 (𝑞) is assumed to be independent of q such that the weighting factor 𝑊𝛼𝛽

𝐺 =

𝑊𝛼𝛽
𝑆 (𝑞=0), can be used to eliminate this complication. In most cases, the WKM is a good 

approximation, however an expansion to higher order can be made for improved accuracy 

(Masson and Thomas 2013). Alternatively, if a real-space peak of interest arises solely from 



one distinct partial pair distribution function then its real-space weighting factor can be 

eliminated by division prior to Fourier transformation (Zeidler et al. 2009). 

The average number of neighboring atoms in a coordination shell between r1 and r2 can be 

calculated by integrating the radial distribution function, RDF(r) (Fischer et al. 2006): 

 

𝑛̅𝛼
𝛽

= ∫ 𝑅𝐷𝐹(𝑟)

𝑟2

𝑟1

= 4𝜋𝜌0 ∫ 𝑟2𝐺(𝑟).

𝑟2

𝑟1

 (4) 

The S(q) and G(r) functions measured for SiO2 (silica) glass by XRD are shown in figure 3 

(Kohara and Suzuya 2005). The pronounced first sharp diffraction peak (FSDP) in S(q) at 

q1=1.55 Å-1 is observed in many different glasses and is a signature of MRO in the glass with 

a periodicity 2π/q1 (Price et al. 1989; Elliot 1991; Salmon 1994). The coherence length, which 

estimates the distance in real space over which the intermediate range ordering persists, is given 

by 2π/Δq1, where Δq1 full width at half maximum of the FSDP, estimates the distance in real 

space over which the MRO persists (Salmon 1994). Hence, a lower position q1 reflects 

increasingly longer-range order, and a sharper peak reflects MRO persisting for a longer 

distance in real space. The FSDP is highly sensitive to variations in MRO induced by p, T, and 

compositional changes (discussed later).  

Under ambient conditions, the FSDP observed in the S(Q) for SiO2 glass is attributed to 

tetrahedral units in ring arrangements (figure 1a). While information on the ring structure can 

potentially be extracted directly from its real-space representation (Shi et al. 2019), in practice 

simulation methods (Jahn 2020, this volume) are required to quantify the full nature of MRO 

and ring structure. 

The oscillatory features in S(q) at high-q relate to local structural ordering, as manifested in 

real-space peaks in G(r) at the characteristic interatomic distances of short-range chemical 

 
 
Figure 3: a) Total structure factor S(q) and b) pair distribution function, G(r), for SiO2 glass, from 

synchrotron x-ray diffraction measurements reported by Kohara & Suzuya (2005). Regions of S(q) 

associated with SRO and MRO are indicated including the first sharp diffraction peak (FSDP). 



bonds. The Fourier transform integral in equation 1 requires S(q) to be known to infinitely high 

q but in practice diffraction measurements have a finite maximum scattering vector, qmax. While 

termination ripples can be minimized by multiplying S(q) by a smooth modification function 

that decays to zero at qmax (Fischer et al. 2006), high-energy neutron or x-ray beams, and 

detectors that cover a wide range of scattering angles, are required to probe the bulk structure 

of glasses and melts with a sufficiently high qmax for good resolution in G(r). As such, these 

experiments are typically performed at large-scale spallation or reactor neutron sources, or 

synchrotron x-ray user facilities. The G(r) for pure silica glass (figure 3b) is dominated by the 

first peak at 1.60 Å, followed by a second peak at 2.61 Å, corresponding to the nearest neighbor 

Si-O and O-O bond distances in a SiO4 tetrahedron, respectively. The angle O-Si-O calculated 

from these two distances using the law of cosines is very close to the perfect intra tetrahedral 

angle. The G(r) becomes increasingly featureless at distances greater than ~ 6 Å due to the lack 

of long-range ordering. 

 

Raman Spectroscopy 

 

Raman spectroscopy, discovered by C. V. Raman and K. S. Krishnan in 1928 using filtered 

sunlight, relies on the inelastic scattering of light and provides information on the vibrational 

modes in the system. In principle, vibrational spectroscopy is possible using any source of 

monochromatic light, including x-rays. Raman spectroscopy in most modern laboratory settings 

typically employs laser light from near ultraviolet to visible and near infrared wavelengths in 

the order of 10-6-10-7m (energy ~ 1-10eV, frequency ~ 3.1014-3.1015 Hz). 

In a Raman experiment, a sample is irradiated by a focused beam of monochromatic laser 

light with wavelength 𝜆0 and energy 𝐸0 = ℎ𝑐/𝜆0, where h is Planck’s constant and c the speed 

of light. Most of the incident photons undergo an elastic scattering process (Rayleigh scattering) 

with the energy of the scattered light 𝐸 = 𝐸0. A small fraction of the incident photons exchange 

energy with molecular bond vibrations producing very weak inelastic Raman scattering 

intensity with energy 𝐸 = 𝐸0 ± 𝐸𝑚. Here 𝐸𝑚 = ℎ𝑐/𝜆𝑚 corresponds to the energy of an 

elementary excitation of a molecule measured in Raman spectroscopy relative to the incident 

energy 𝐸0. If a photon is absorbed, exciting the molecule to a higher vibrational mode, then 

𝐸 < 𝐸0 and the measured intensities are referred to as ‘Stokes’ lines. Alternatively, if the 

molecule is de-excited into a lower vibrational mode then a photon with 𝐸 > 𝐸0 is emitted 

giving rise to ‘Anti-Stokes’ lines. The ‘Anti-Stokes’ intensity is typically weaker and normally 

only the ‘Stokes’ side of the Raman spectrum is measured.  

In practice, Raman spectra are expressed as a function of wavenumber (in cm-1) instead of 

the energy with the Raman shift of the vibrational mode given by: 

∆𝜔 =
1

𝜆0
−

1

𝜆𝑚
 . 

Raman active vibration modes are determined by selection rules, where only molecular 

excitations that result in a change in polarizability will produce a Raman signal (Rull 2012).  

Raman spectroscopy provides a spectral signature of a given material. The position of the 

Raman lines or bands are characteristic of the composition and the intensities correlate with the 

concentration of the chemical species. The line width can provide information including the 

size of crystallites in polycrystalline materials or the degree of structural disorder. Like 

diffraction measurements, glasses and disordered materials yield broad diffuse Raman peaks 

(figure 2d). The Raman spectrum of SiO2 glass and two crystalline polymorphs, quartz and 

cristobalite, are shown for comparison on figure 4. The Raman spectrum of silica glass has been 



well characterized and, as described in chapter 2 (Henderson and Stebbins 2020, this volume) 

the specific Raman bands annotated in figure 4 can be attributed to distinct vibrational features. 

The Boson peak (BP) at ~ 80 cm-1, so-called because the temperature dependence of the 

peak intensity obeys Bose-Einstein statistics, is a ubiquitous yet controversial feature of glass 

Raman spectra (Nakayama 2002) which may be a signature of longer-range vibrational 

structure (discussed in more detail below). The Raman spectrum below ~ 1000 cm-1 has a strong 

sensitivity to MRO, typically related to Si-O-Si breathing modes from SiO4 tetrahedra in ring 

arrangements (Sharma et al. 1981; Galeener, 1982a,b; Galeener et al. 1983; Geissberger and 

Galeener 1983; Barrio et al. 1993; McMillan et al. 1994; Pasquerello and Car 1998; Umari & 

Pasquarello, 2002; Umari et al., 2003; Rahmani et al. 2003; Kalampounias et al. 2006). The 

broad peak at 440 cm-1 (R) corresponds to bending vibrations associated with the broad 

distribution of inter tetrahedral Si-O-Si angles in n-membered rings with n > 5. The narrow D1 

(~ 495 cm-1) and D2 (~ 606 cm-1) bands are associated with the well-defined bending Si-O-Si 

modes in 4- and 3-membered rings, respectively. The asymmetric peaks centered at ~ 800 cm-1 

and ~ 1070 cm-1 are attributed Si-O stretching vibrations in SiO4 tetrahedra (McMillan 1984, 

Sarnthein et al. 1997, Kalampounias et al. 2006). 

 

The Boson Peak: A signature of SRO or MRO? 

The BP observed in Raman, inelastic neutron, and infrared spectroscopy arises from excess 

low frequency, 𝜔, contributions in THz range of the vibrational density of states (VDOS), 𝑔(𝜔) 

compared to the Debye elastic continuum model [𝑔(𝜔) ∝  𝜔2] obeyed by crystalline materials. 

The BP appears to be a universal feature of inorganic glasses; however, its origin remains 

 
 

Figure 4: Raman spectra of SiO2 polymorphs: quartz, cristobalite and glass (redrafted from Neuville 

et al. (2014)). See the text for the assignment of the BP, R, D1, D2, and other peaks in the glass 

spectrum. 



controversial and several competing theories have been developed (Nakayama 2002; Greaves 

and Sen 2007; Brink et al. 2016; Wang et al. 2018; Baggliolo and Zaccone 2019).  

The soft-potential model has been used to explain the BP (Buchenau et al. 1992; Gurevich 

et al. 1993; Parshin 1993), in which quasi-localised vibrational modes are associated with 

“defects” in the disordered structure (Laird and Schober 1991). Quasi-local vibrations caused 

by linked “rigid” SiO4 tetrahedra which rotate against each other without distortion are offered 

as an explanation for the BP in the Raman spectrum of pure SiO2 glass (Buchenau et al. 1986; 

Taraskin and Elliot 1999; Hehlen et al. 2000, 2002). However, the ubiquity of the BP in a wide 

range of glasses indicates the requirement for a more generalized interpretation.  

Experimental evidence for a correlation between the positions of the FSDP and BP in some 

glasses is strongly suggestive of a connection to MRO (Novikov and Sokolov 1991; Sokolov 

et al. 1992; Börjesson et al. 1993; Price 1996). Several interpretations of the BP invoke a degree 

of MRO or extended range ordering, including nano-structured clusters (Duval 1986; Mermet 

et al. 1996), density fluctuations intrinsic to the disordered structure (Elliot 1992), or 

heterogeneity in the elastic constant producing “soft” regions in the material (Sokolov 1999; 

Schirmacher et al. 2007; Schirmacher 2013; Schirmacher et al. 2015; Marruzzo et al. 2013). 

Recent Raman measurements showing an increase in BP intensity on substitution of Na by K 

in aluminosilicate glasses indicates that the BP may be related to the development of nano-

structured percolation channels (Le Losq et al. 2017). 

Another explanation indicates there is a relationship between the BP and the glass transition 

temperature (Tg) associated with marked changes in MRO at Tg (Levelut et al. 1995; Takahashi 

et al. 2009; Stavrou et al. 2010; Tomoshige et al. 2019), where theoretical interpretations predict 

a phonon-saddle transition (Grigera et al. 2003). Alternatively, it has been suggested that the 

BP simply originates from a broadening or shift of the lowest Van Hove singularity of the 

corresponding crystalline state (Taraskin et al. 2001; Chumakov et al. 2011) and as such relates 

to SRO in the glass.  

 

MULTICOMPONENT SILICATE GLASSES 

 

Natural glasses and melts contain a variety of oxide components, typically including SiO2, 

Al2O3, MgO, CaO, FeO, and other metal oxides. A conventional structural model of a multi-

component silicate glass is illustrated in figure 5a. Here, the small Si4+ or Al3+ cations are the 

network formers, denoted T, bonded to 4 oxygen atoms in tetrahedral units interlinked by 

bridging oxygen (BO) atoms to form the backbone of a network structure with three, four, five, 

and more membered rings. Larger lower-charged cations, denoted M (e.g. alkaline, alkaline-

earth, other metal cations), adopt varying roles as either charge compensators or network 

modifiers forming larger structural motifs and perturbing the network structure via the 

formation of non-bridging oxygen (NBO) atoms. 

An example of a pair distribution function G(r) for this silicate glass model is shown in 

figure 5b featuring three distinct peaks which can be attributed to local structural ordering; the 

first from nearest neighbour intra tetrahedral bonds (T-O), the second peak arising from cation-

oxygen (M-O) or oxygen-oxygen (O-O) distances, and the third peak and features at higher 

distances due to tetrahedra-cation (T-M), tetrahedra-tetrahedra (T-T), cation-cation (M-M) 

correlations. As discussed earlier, for a glass containing n different chemical species the G(r) 

comprises a weighted sum of n(n+1)/2 individual partial pair correlations. Due to the 

complexity of these overlapping atom-atom correlations it becomes increasingly difficult to 

assign peaks to specific structural features in higher-order coordination shells at length scales 

greater than ~3 Å. However, information on these correlations may be obtained by making a 

systematic survey of simple systems, or individual partial pair correlations may be resolved 

directly by using specialist element selective techniques such as neutron diffraction with isotope 



subsitution (NDIS). This method exploits the contrast in neutron scattering length for isotopes 

of the same element by measuring the diffraction patterns of two or more samples that are 

identical in every respect, except for the isotopic enrichment of one or more element. Using 

different function methods, these patterns are subtracted to extract the correlations involving 

the substituted species. The resolution of structural information on a parital pair distribution 

function level using NDIS, as well as conventional total scattering measurements, offer a 

rigourous test of the efficacy of molecular dynamics (MD) simulations (Jahn 2020, this volume) 

which can provide a full-picture of glass and melt structure and properties.  

An example Raman spectrum for the model multicomponent silicate glass structure is shown 

in figure 5c. The biggest difference compared to the spectrum of pure SiO2 glass (figure 4) is 

in the appearance of a strong peak in the high wavenumber region centered at around 1100 cm-1. 

This intensity arises from T-O stretching vibrations in different tetrahedral species with n BO 

and 4-n NBO: i.e. the Qn units, from isolated (Q0) to fully polymerized tetrahedra (Q4) (see 

chapter 2 by Henderson and Stebbins (2020, this volume) and discussion therein). 

 

Binary silicate glasses 

 

In the following, we present some x-ray diffraction (XRD) and Raman measurements of 

binary silicate glass compositions in the system (MO)x(SiO2)1-x for M= Li2, Na2, K2, Mg, Ca, 

Ba, Pb, with mole fraction x from 0 to 0.7 and discuss the effect of the network modifier on the 

silicate glass network. The results presented illustrate all of the salient features observed in the 

G(r) functions and Raman spectra of binary silicate glasses and melts. Specific compositions 

are denoted by concatenating the element M with the mole fraction in per cent X (MX, e.g. Ca50 

= (CaO)0.5(SiO2)0.5). 

 
 

Figure 5: (a) Schematic of a model aluminosilicate glass structure, where network formers T=Si, Al 

are represented by the small blue spheres, bridging and non-bridging oxygen atoms by the red and 

gold spheres, and modifier cations M in green. (b) The corresponding pair distribution function G(r) 

and (c) Raman spectrum are shown with specific peaks corresponding to specific SRO and MRO 

structural features highlighted.  



 

Diffraction measurements  

 

First, we consider x-ray pair distribution functions G(r) measured for Ca- and Pb-silicate 

glasses shown in figure 6 which have features typical for all alkali, alkaline earth, and metal-

oxide silicate glasses. The first peak between 1.6 and 1.7 Å arises from the nearest neighbour 

Si-O bond, with its intensity and variation dependent upon the nature of the M cation and the 

proportion of silica. The peak is relatively insensitive to the proportion of NBO as the difference 

in Si-BO or Si-NBO bond lengths is less than 0.05 Å (Cormack and Du 2001; Du and Cormack 

2004). On addition of CaO we observe a peak at 2.3 Å arising from Ca-O bonds in Ca-centered 

polyhedra with an average 6-fold coordination by oxygen.  New Ca-Ca correlations also give 

rise to a peak at ~ 3.5 Å. With increasing CaO fraction, both the Ca-O and Ca-Ca peaks become 

progressively more significant with a corresponding reduction in height of the Si-O peak. This 

is even more evident in the G(r) functions measured for Pb-silicate glasses, due to the high 

atomic number of Pb (Z=82) compared to Si, O, or Ca, leading to a higher x-ray scattering 

cross-section. At high Pb concentrations (x > 0.5) two clear Pb-O peaks at 2.2 Å and 2.6 Å are 

resolved, corresponding to Pb in 4- and 6-fold coordination, respectively. 

 NDIS is a powerful tool for isolating weaker, heavily overlapped pair correlations. Figure 

7 shows the first order (Eckersley et al. 1988) and second order “double” (Gaskell et al. 1991) 

difference functions from 44Ca/natCa NDIS measurements of CaSiO3 (Ca50) glass (with 

3 mol. % Al2O3 added to prevent nucleation, Eckersley et al. 1989). The results reveal well 

 

Figure 6: Total pair distribution functions G(r) SiO2 and silicate glasses in the system 

(MO)x(SiO2)1-x for a) M = Ca and b) M = Pb (previously unpublished x-ray diffraction measurements 

made at beamline ID11 at the European Synchrotron Radiation Facility (ESRF), Grenoble, France). 



defined Ca-O and Ca-Ca distances indicating ordering of the modifier Ca2+ cations up to 10Å. 

Originally attributed by Gaskell et al. to sheets of edge shared CaO6 octahedra, subsequent MD 

simulations reveal this cationic ordering on medium range length scales arises from chainlike 

linkages or channels of Ca-centered polyhedra (Mead and Mountjoy 2006; Benmore et al. 2010; 

Skinner et al. 2012a; Cormier and Cuello 2013). A similar distribution of Mg-centered 

polyhedra contributing to MRO is observed from a 25Mg/natMg NDIS study of MgSiO3 glass 

(Cormier and Cuello 2011). These inhomogeneous distributions of cation centered polyhedra 

pervading the silicate network appears to substantiate the Greaves MRN model (figure 1b).  

Further NDIS measurements of the development of cationic ordering on vitrification of oxide 

melts are discussed later in this chapter.  

 

Raman spectroscopy measurements 

 

We now consider unpolarized Raman spectra for full range of M-silicate compositions are 

shown in figure 8, for which distinct and progressive changes are observed with the type and 

proportion of M cation content. In the following, we discuss the structural information provided 

by these spectra with respect to the four key spectral regimes; the boson (20-200 cm-1), low 

(200-600cm-1), intermediate (600-800cm-1), and high (800-1200 cm-1) wavenumber regions. 

 

 
Figure 7: (a) First order difference function ΔG(r) and (b) reduced partial pair distribution 

function 𝑑CaCa(𝑟) = 4𝜋𝑟𝜌[𝑔CaCa(𝑟) − 1] by double difference from the 44Ca/natCa NDIS results 

reported in Eckersley et al. (1989) and Gaskell et al. (1991) for (CaO)0.48(SiO2)0.49(Al2O3)0.03 glass. 

The dashed curve in (b) below the first Ca-Ca interatomic distance arises in part from an incomplete 

subtraction of partials 𝑔𝛼𝛽≠CaCa(𝑟). 



The Boson region: At low wavenumbers, the BP generally experiences an increase in 

frequency with reducing SiO2 concentrations, indicating a correlation between the BP 

frequency and glass depolymerization (Neuville, 2006, 2014). The BP is also influenced by the 

introduction of different network modifiers, where at constant SiO2 concentration (hence 

constant polymerization) the BP shifts to higher frequency with the addition of small or medium 

ions and lower frequency with the introduction of larger heavier ions (Neuville 2005, 2006).  

These changes are accompanied by a narrowing of the BP width for glasses containing heavier-

 
Figure 8: Unpolarized Raman spectra of SiO2 and silicate glasses in the system (MO)x(SiO2)1-x 

for M=Li2, Na2, K2, Mg, Ca, Ba, Pb. The spectra are labelled MX for cation fraction X in mole %. 

Original data are in Neuville et al. (2014) and Ben Kacem et al., (2017). 



elements (Ba, Pb) compared to lighter-elements (Na, Li, Mg, Ca), consistent with a very narrow 

boson peak observed in the Raman spectra of cesium silicate glasses (O'Shaughnessy et al. 

2016).  This appears to point towards a modification of MRO in the silicate glasses, and perhaps 

the development of ordering of the modifier cations. Changes in intensity and position of the 

BP may also be explained by distortion of the SiO4 tetrahedra (Hehlen et al. 2002). 

 

The low frequency region: With the addition of modifier oxides, the R, D1, and D2 bands in 

the spectral domain between ~ 250 and 600 cm-1 evolve into a broad peak in the region of the 

D2 vibration at ~580 to 680 cm-1, reflecting the breaking of Si-O-Si bonds and introduction of 

NBO leading to a reduction in the size of the ring structures formed from interconnected SiO4 

tetrahedra.  However, for lighter modifier elements (e.g. Li-silicate glass) the spectrum retains 

significant resemblance to the pure SiO2 glass spectrum indicating the presence of silica-rich 

regions in the glass (Matson et al. 1983). This has been interpreted as consistent with the MRN 

model, where Li atoms form MRO clusters within an underlying silicate network (Le Losq et 

al. 2019). 

The R, D1, and D2 bands are highly polarized. Polarized Raman measurements of Na-silicate 

glasses, where spectra are recorded with parallel (VV) or perpendicular (VH) polarizations of 

incident and scattered light, reveal a strong reduction in intensity of the R-band in polarized 

(VV) spectra accompanied by the development of a strong narrow band between ~ 540 to 

600 cm-1 with increasing Na2O fraction (Hehlen and Neuville 2015). This is consistent with a 

reduction in the Si-O-Si angle due to a reduction in ring size and increasing preponderance of 

D2 modes. The R, D1, and D2 bands are inactive in the depolarized (VH) spectra which instead 

reveal the development of a peak at ~ 350 cm-1 and a lower frequency peak at ~ 175 cm-1 with 

increasing cation concentration and are attributed to cation motions (Hehlen and Neuville 

2015). This will be discussed in more detail in relation to the dual role of cations as network 

modifiers or compensators in aluminosilicate compositions. 

 

The intermediate frequency region: The asymmetric band observed in silica and silica-rich 

glasses at around 800 cm-1 is attributed to bending vibrations in SiO4 tetrahedra (Sarnthein et 

al. 1997; Taraskin and Elliott 1997; Spiekermann et al. 2012). It is, however, interesting to note 

the presence of a high frequency shoulder in this peak for pure SiO2. This asymmetry has been 

attributed to two different structures of SiO4 units with distinct inter-tetrahedral Si-O-Si angles 

coexisting in the glass (Seifert et al. 1982; Neuville and Mysen 1996; Kalampounias et al. 

2006). However, direct structural studies have not observed a bimodal distribution of the Si-O-

Si angle in SiO4 units and we note that different n-membered rings will have different Si-O-Si 

angles. As such the Si-O stretching frequency in tetrahedral units should vary as a function of 

ring size (Le Losq et al. 2019). This is supported by the loss of this high-frequency shoulder 

with the addition of modifier cations and hence reduction in the ring size and Si-O-Si 

distributions. 

 

 The high frequency region: The high frequency Raman bands for silicate glasses centered at 

~1100 cm-1 are associated with Si-O stretching vibrations in different Qn tetrahedral units and 

typically interpreted by spectral deconvolution (Mysen et al. 1982a,b; McMillan 1984), as 

discussed in detail in chapter 2 (Henderson and Stebbins 2020, this volume). Here we provide 

additional details for selected glass compositions.  

 Spectral deconvolution of these high-frequency bands into their constituent components by 

Gaussian curve fitting is illustrated in figure 9 for Na40 and Ca40 glass spectra (Neuville 2006). 

Here the Gaussian bands at ~ 900 cm-1, 960 cm-1, and 1080 cm-1 can be attributed to the 

vibrations of Q1, Q2, and Q3 species, respectively. To fully model the high-frequency region, it 

is necessary to include an additional band at 1020 cm-1 for Ca40 and 1040 cm-1 for Na40. This 



contribution can be compared to the band observed at ~ 1070 cm-1 in the pure SiO2 glass 

spectrum (figure 4). This band has been attributed to the T2 stretching mode of Q4 units 

(Neuville et al. 2014a) although recent studies (Bancroft et al., 2018, O’Shaughnessy et al., 

2020) assigned this band to Q3 tetrahedra close to alkali cations. The Raman spectrum of the 

Na1 glass (figure 8) shows that the addition of only 1 mol % of Na2O in silica leads to a slight 

increase of the intensity of the peak at 1070 cm-1. Further addition of modifier leads to a large 

increase of the intensity corresponding to the A1 mode (Bancroft et al. 2018; O’Shaughnessy 

et al. 2020).  At low alkali oxide contents, the A1 mode is composed of 2 bands which merge 

into a single band after the addition of 20 mol% alkali oxide (O’Shaughnessy et al. 2020).  

The band at 1135 cm-1 in the Ca40 spectrum is attributed to the A1 stretching mode of Q4 

units. Substitution of Ca by Na reduces the network polymerization as evident by the complete 

absence of this Q4 band in the Na40 glass spectrum. With increasing modifier cation 

concentration, increasingly depolymerized species are present, including Q0 and Q1 species, 

leading to a significant shift in the intensity maximum of the Si-O stretching bands to lower 

frequencies (see e.g. the spectra for Mg62 and Mg56 and figure 12 of Neuville et al. 2014a). 

 

Lead Silicate Glasses 

 

The high-frequency domain, 850-1300 cm-1, in the Raman spectra of lead silicate glasses 

appears less intense compared to other glass compositions. This is a result of the normalization 

process as Pb-silicate glasses exhibit the highest intensity peaks at low frequency. Two very 

intense low-frequency peaks at 100 cm−1 and 141 cm−1 are dominant features in Raman spectra 

of Pb-silicate glasses (Worrell and Henshall 1978; Furukawa et al. 1978; Ohno et al., 1991; 

Zahra et al. 1993; Feller et al. 2010, Ben Kacem et al. 2017). The peak at 141 cm−1 is  attributed 

to covalent Pb-O-Pb bonding in interconnected tetrahedral PbO4 units (Furukawa et al.1978; 

Worrell and Henshall (1978); Zahra et al.1993) and correlates with NMR spectra which show 

the proportion of Pb-O-Pb linkages increases with PbO content (Lee and Kim 2015).  

 A variety of charge balancing models have been reported which predict MRO in the form of 

different extended networks of interconnected Pb-centered units in the glass, including dimeric 

zigzag chains of covalently bonded PbO4 tetrahedra (Morikawa et al. 1982), screw chains of 

PbOn polyhedra (n = 3 or 4) (Imaoka et al. 1986), Pb cations in predominantly edge-shared 

PbO3 trigonal pyramid arrangements (Takaishi et al. 2005), and pyramidal PbOn units with a 

mix of corner and edge sharing with electron lone-pairs organizing to form voids in the glass 

(Alderman et al. 2013).  

XRD reveals Pb can adopt both 4- and 6-fold coordinated sites in Pb-silicate glasses (figure 

6b), where Pb in 4-fold coordination acts as a network former and Pb in 6-fold coordination 

 
Figure 9: Decomposition of Raman spectra in Gaussian bands for Ca40 and Na40, redrafted 

from (Neuville 2006), bands are from low to high frequency, Q1, Q2, T2s, Q
3 and Q4. No Q4 species 

are present in the Na40 glass. 



depolymerizes the glass via the generation of non-bridging oxygens. The Raman band at 

100 cm−1 has been attributed to ionic Pb-O bond, implying the presence of Pb2+ compensated 

by O2– (Worrell and Henshall 1978; Ohno et al. 1991) which can be attributed to the two 

additional NBO atoms in the PbO6 unit. The attribution of this band can be confusing. Since 

this band remains constant along the PbO-SiO2 join, while the intensity of the Pb-O-Pb band at 

141 cm−1 increases, this peak was previously attributed to “free oxygen” (oxygen atoms only 

bonded to Pb atoms) whose proportion increases above the orthosilicate composition (Bockris 

and Mellors 1956; Nesbitt and Fleet 1981; Hess, 1975). 

To summarize, Pb in lead-silicate glasses adopts a dual role as network former and modifier 

in 4- and 6-fold coordination sites, respectively (Ben Kacem et al. 2017). Pb in 6-fold 

coordination plays similar role to alkali or alkaline-earth elements breaking up the silicate 

network polymerization by forming NBO’s. Pb in 4-fold coordination is a “soft network 

former” that forms an interconnected sub-network or percolation channel, mixing mechanically 

with the SiO4 tetrahedral network without chemical interaction. This is supported by the glass 

transition temperature for PbO-SiO2 glasses which varies almost linearly between 30 and 

90 mol. % of SiO2 fraction (Ben Kacem et al. 2017) implying heterogenous mixing. 

 

Aluminosilicate glasses 

 

Aluminosilicate glasses and their melts are of interest due to their relevance to natural 

magmas. Aluminium is classed as an intermediate glass former due to its ability to both compete 

with Si to form a 4-fold coordinated network structure or to behave as a network modifier 

assuming 5- or 6-fold coordination and reducing the glass network connectivity via the 

formation of non-bridging oxygens. This behaviour is particularly sensitive to the relative 

proportions of Al and other modifier cations. To form a perfectly connected network of AlO4 

tetrahedra the Al:O ratio needs to be precisely 1:2 such that any two Al atoms are connected by 

a single bridging oxygen. For the (MO)x(Al2O3)1-x compositions this occurs at the ratio R = 

MO/Al2O3 = 1 (x = 0.5), where modifier cations, assuming a uniform distribution, will perfectly 

charge compensate AlO4 units which have an overall charge of -1. Aluminosilicate 

compositions along this join are denoted tectosilicate or meta-aluminosilicate glasses. 

Peraluminous aluminosilicates, classified as glasses with the ratio R = MO/Al2O3 < 1, have an 

excess of Al and are unable to form an ideal charge compensated corner-sharing network of 

AlO4 tetrahedra. This oxygen deficiency may be compensated for by the formation of highly 

coordinated AlO5 and AlO6 units and/or a change in network connectivity. In peralkaline 

glasses (R = MO/Al2O3 > 1) there are excess modifier cations which will act to charge 

compensate AlO4 tetrahedra and potentially depolymerize the network. There is, however, 

increasing evidence for deviations from this simple model, with significant proportions of 5-

fold coordinated Al and even 5-fold Si observed in glasses that are sufficiently charge 

compensated by metal cations (Stebbins et al. 1997; Toplis et al. 2000; Stebbins et al. 1991). 

Significant fractions of AlO4 have also been observed in the alumina-rich glasses (Mysen 

2005), where charge neutrality is accomplished by the formation of O:Al3 tri-clusters in which 

one O atom is shared by three AlO4 tetrahedra (Lacy 1963). 

 

Diffraction and Raman measurements along the tectosilicate join 

 

The G(r) functions from neutron diffraction experiments and Raman spectra for 

MO-Al2O3-SiO2 (M = Ca, Sr) glasses along the tectosilicate join (R = MO/Al2O3 = 1) are shown 

in figure 10. Compositions are denoted by concatenating the modifier element M with the mole 

fraction X of SiO2 and Y of Al2O3 in per cent (MX.Y). With increasing substitution of Si by Al 

the nearest neighbour peak T-O in G(r) is broadened and shifts to higher distances from 1.60 Å 



in pure SiO2 to 1.76 Å in silica-free Ca0.50 glass. This results from Al-O correlations with 

longer nearest neighbour lengths overlapping the shorter Si-O correlations (Cormier et al. 2000, 

2003; Hennet et al. 2016). For the Ca-aluminosilicate glasses, the peak at ~ 2.30 to 2.35 Å is 

attributed to the first Ca-O bond and becomes increasingly conspicuous with reducing SiO2 

concentration due to higher weighting on the gCaO(r) partial pair distribution functions. It is 

difficult to precisely determine the Ca-O coordination environment using conventional x-ray or 

neutron diffraction due to considerable overlap by the gOO(r) partial pair distribution functions 

(Hannon and Parker 2000; Benmore et al. 2003; Mei et al. 2008a, 2008b; Drewitt et al. 2011; 

Hennet et al. 2016). Direct measurements of the first Ca-O coordination shell in both calcium-

silicate and -aluminate glasses by NDIS provide average Ca-O coordination numbers of ~ 6.2 

to 6.5 (Eckersley et al. 1988; Drewitt et al. 2012), with MD simulations revealing a broad 

distribution of Ca-O polyhedra centered ~ 6 (Jakse et al. 2012; Drewitt et al. 2012). 

Despite the larger neutron scattering length 𝑏Sr =0.702(2) fm, compared to 𝑏Ca = 0.470(2) fm 

(Sears 1992), the nearest neighbour Sr-O correlations are not discernible in the G(r) functions 

for Sr-aluminosicate glasses. This is due to the larger ionic radius of Sr2+ cf. Ca2+ (Shannon, 

1976) due to both higher atomic number and larger Sr-O coordination number of ~8 to 9 

(Novikov et al. 2017; Charpentier et al. 2018). Furthermore, the O-O correlations associated 

with these highly coordinated Sr-centered polyhedra are shifted to lower distances compared to 

Ca-aluminosilicate measurements. As a result, the nearest neighbour peak in 𝑔SrO(𝑟) is 

completely overlapped by the 𝑔OO(𝑟) correlations (Florian et al. 2018). 

Similar spectral features and vibrations are observed for Al as for Si, where Al can adopt Q4, 

Q3 and Q2 speciation depending on silica fraction (McMillan and Piriou 1983; Neuville et al. 

2008ab, 2010; Licheron et al. 2011).  The substitution of Al for Si in tetrahedral positions leads 

to detectable shifts in frequency, broadening, and reduction in spectral resolution of the Raman 

bands relative to the SiO2 glass spectrum (Mysen et al. 1981; Seifert et al. 1982; McMillan et 

 

Figure 10: Neutron total pair distribution functions for M-aluminosilicate (M = Ca,Sr) glasses 

along the tectosilicate (R = 1) join (data from Bowron, 2008; Hennet et al, 2016; Florian et al, 2018; 

unpublished data). Compositions are denoted by MX.Y for mole per cent fraction X of SiO2 and 

Y of Al2O3, where the fraction MO = 100 – (X+Y). 



al 1982; McMillan and Piriou 1982, 1983; McMillan 1984; Neuville and Mysen 1996; Neuville 

et al. 2004, 2006, 2008a,b; Le Losq and Neuville, 2013; Le Losq et al. 2017). In particular, the 

T-O stretching vibrations shift to lower wavenumber, with a corresponding increase in position 

of T-O-T bending modes, as a result of a reduction in the (Si,Al)-O force constant and/or Si,Al 

coupling (Rossano and Mysen, 2012). These changes are illustrated for calcium aluminosilicate 

glasses in Figure 11 showing the Raman spectra along the tectosilicate join. Along this join, 

glasses are fully polymerized and Al3+ substitutes for Si4+ in Q4 tetrahedral sites regardless of 

the modifier element (Neuville and Mysen 1996; Neuville et al. 2004, 2006, 2008; Novikov et 

al. 2017; Le Losq and Neuville 2013; Le Losq et al. 2017, Ben Kacem, 2017). This is illustrated 

in figure 12a, where the Q4I, Q4II and T2s vibrational modes determined by Gaussian 

deconvolution, experience a linear shift to lower wavenumbers with increasing substitution of 

 
Figure 11: Raman spectra for calcium aluminosilicate glasses along the tectosilicate (R = 1) join 

(data from REFERENCE). Compositions are denoted by the notation CaX.Y for mole per cent 

fraction X of SiO2 and Y of Al2O3, where the fraction CaO = 100 – (X+Y). 

 
Figure 12: a) Wavenumber of the 3 Gaussian bands as a function of SiO2 for NAS, MAS, CAS, 

SAS and BAS tectosilicate glasses (Neuville and Mysen 1996, Neuville et al. 2004, 2006, 2008; 

Novikov et al. 2017) and b) 27Al NMR chemical shift, iso and T-O distance obtained from the G(r) 

as a function of SiO2 for CAS glass system (Figure 10). 

 



Si for Al associated with a continuous shift from the Si-O-Si vibration to pure Al-O-Al 

vibrations in the CA50.00 glass (McMillan and Piriou 1983; Neuville and Mysen, 1996; 

Neuville et al., 2004, 2006, 2008, 2010; Licheron et al. 2011; Novikov et al., 2017). This 

variation correlates well with 27Al NMR chemical shift for Al in four-fold coordination and the 

T-O bond length measured by diffraction (Figure 12b), which both increase linearly with 

increasing Al fraction (Neuville et al., 2004, 2006, 2008).  

Along the tectosilicate join, M acts as a charge compensator and does not disturb the network 

structure significantly. However, some differences are apparent in the Raman R, D1 and D2 

bands associated with ring arrangements, particularly with the incorporation of large cations. 

For example, in the K2O-Al2O3-SiO2 system, the frequency of the Q4I, Q4II and T2s bands and 

the chemical shift of the 4-fold coordinated Al from 27Al NMR follow a similar trend as for the 

other aluminosilicate systems. Furthermore, percolation channels have been suggested to occur 

in these glasses (Le Losq et al., 2017), with their presence indicated by an increase of the D1 

and D2 peak intensity. 

 

Charge compensator versus network modifier 

 

As noted above the substitution of an alkali or alkaline-earth element by Al has a significant 

influence on the Raman spectra of aluminosilicate glasses. Some of the changes are related to 

whether the added alkali or alkaline-earth cations behave as charge compensators or network 

modifiers. The dual role of the cations can be explored through analysis of the depolarized (VH) 

component of polarized Raman spectra. (Neuville et al. 2014a; Hehlen and Neuville, 2015). 

 The VH Raman spectra of calcium aluminosilicate glasses along the 50% SiO2 join are 

shown in figure 13. A strong band is apparent in near 350cm-1 for the alumina-free calcium 

silicate glass (Ca50.00) which is not visible in unpolarized Raman spectra of the Ca50.X series 

(figure 8). The intensity of this peak reduces with decreasing CaO/Al2O3 ratio and its position 

 
Figure 13: VH Raman spectra of calcium aluminosilicate glasses along the 50% SiO2 join 

(redrafted from Hehlen and Neuville, 2015). 



is sensitive to the mass of the cation (Na: 350 cm-1, Mg: 360 cm-1, Ca: 352 cm-1, Sr: 334 cm-1, 

Ba: 310 cm-1, Hehlen and Neuville 2015, 2020). This low frequency vibration is attributed to 

cations acting as network modifiers. When cations adopt a charge compensation role for the 

AlO4
- tetrahedra this vibration disappears. 

This variable role of modifier cations is supported by the change of the pre-edge observed 

in x-ray absorption near edge structure (XANES) measurements at the Ca K-edge of Ca-

aluminosilicate glasses from Ca50 to Ca50.25 compositions (Cicconi et al. 2016). Similar 

changes are also observed in 23Na NMR spectra of Na-aluminosilicate glasses, which exhibit a 

shift from -2 to -18 ppm when Na switches roles from a network modifier to a charge 

compensator. This also appears to correlate with the disappearance of the peak at 350cm-1 

observed in the VH Raman spectra between sodium silicate and sodium tectosilicate glasses 

(Hehlen and Neuville, 2015).  Being able to determine the behaviour of alkali and alkaline-

earth cations as compensators or formers is very useful. Clearly, there is potential in examining 

the VH spectra and more work needs to be done.  

 

GLASSES AND MELTS UNDER EXTREME CONDITIONS 

 

Despite decades of research focused on aluminosilicate glasses, much less direct information 

is available on the structure of magmas in their high temperature liquid state or under the high 

p conditions of deep planetary interiors. This is due to the challenges associated with making 

measurements above the high melting temperatures of aluminosilicates (> 1500 K), where 

conventional furnaces present a high risk of chemical reaction with a sample, spectroscopy 

measurements are inhibited by thermal radiation, and the thermal motions and structural 

disorder lead to weaker signals compared to the solid glass. Measurements at high-p and/or -T 

are doubly challenging, requiring specialized instrumentation to generate these extreme 

conditions while simultaneously allowing good accessibility to the sample and minimizing 

unwanted contributions from the sample environment. As a result, quenched glasses have long 

been used as analogues for the study of melts (Henderson 2005). However, while important, 

information obtained on glass structure is not always representative of melts in their natural 

liquid state (Wilding et al. 2010; Drewitt et al. 2012). This is particularly apparent for so-called 

fragile liquids such as depolymerized silicate melts (Giordano and Dingwell 2003) in which 

dynamical properties such as viscosity exhibit a marked deviation from Arrhenius behaviour, 

compared to more traditional strong glass forming liquids such as pure silica (Angell 1995). 

Glasses and melts also experience significant reorganization in SRO and MRO under 

compression such that measurements made at high-p conditions are necessary to understand the 

full nature of magmas at depth. 

 

High temperature containerless processing 

 

In recent years, containerless techniques such as aerodynamic-levitation with laser-heating 

have enabled in situ diffraction and spectroscopy measurements of the structure of liquid oxides 

(Price 2010; Hennet et al. 2011a; Benmore and Weber 2017). Levitating liquids on a stream of 

inert gas eliminates the possibility of chemical reaction with containment material and 

experiments provide clean data sets of the liquid sample enabling advanced techniques such as 

NDIS to be applied (Drewitt et al. 2012; Skinner et al. 2012a; Drewitt et al. 2017; Drewitt et al. 

2019). The high flux of synchrotron sources means that XRD measurements using ultra-fast 

millisecond acquisition times are possible with large area detectors. This enables diffraction 

patterns to be measured as an oxide liquid is supercooled into the solid glass state (Hennet et 

al. 2007; Hennet et al. 2011b; Skinner et al. 2013a; Drewitt et al. 2019). Another key advantage 

of levitation is the absence of a container suppresses heterogenous nucleating to promote deep 



supercooling which combined with rapid quenching facilitates the formation of glass 

compositions such as peridotite (Auzende et al. 2011) or pure aluminates (Drewitt et al. 2019) 

that cannot ordinarily be formed using conventional methods. 

 

Aluminate melts 

 

Pure liquid alumina has a poor glass forming ability and cannot be quenched to a glass 

(Skinner et al. 2013b; Shi et al. 2019). However, the glass forming ability of aluminate 

compositions is significantly enhanced by the addition of alkali, alkaline earth, or metal oxides. 

Extensive experimental and simulation studies have been made to understand the structure of 

silica-free calcium aluminate glasses and their melts typically by using containerless processing 

techniques (McMillan and Piriou 1983; Morikawa et al. 1983; Poe et al. 1993; Poe et al. 1994; 

Massiot et al. 1995; McMillan et al. 1996; Daniel et al. 1996; Hannon and Parker 2000; Weber 

et al. 2003; Benmore et al. 2003; Iuga et al., 2005; Kang et al., 2006; Thomas et al., 2006; 

Hennet et al. 2007; Mei et al., 2008a,b; Cristiglio et al. 2010; Neuville et al. 2010; Mountjoy et 

al. 2011; Licheron et al. 2011; Drewitt et al. 2011, 2012, 2017, 2019; Liu et al. 2020). Other 

compositions have also been investigated, including barium (Licheron et al. 2011; Skinner et 

al. 2012b), strontium (Weber et al. 2003; Licheron et al. 2011; Novikov et al. 2017), lead 

(Barney et al. 2007), and rare-earth aluminates (Wilding et al. 2002; Weber et al. 2004a; Du 

and Corrales, 2007; Barnes 2015). A liquid-liquid phase transition (LLPT) has been proposed 

in the yttria-aluminate system, inferred from the observation of coexisting low-density and 

high-density phases in the supercooled melts (Aasland and McMillan 1994). However, 

although further studies purportedly support this finding (Wilding et al. 2002; Weber et al. 

2004a,b; Wilson and McMillan 2004; Wilding et al. 2005; Greaves et al. 2008; Wilding et al. 

2015), the result is disputed by subsequent measurements that find no structural or thermal 

signatures consistent with a LLPT (Barnes et al. 2009) with the observations attributed to 

nanocrystalline inclusions forming within the glassy material (Nagashio and Kuribayashi 2002; 

Tangeman et al. 2004; Skinner et al. 2008; Barnes et al. 2009). 

Molten calcium aluminates are very fragile refractory liquids. Fragile liquids tend to exhibit 

greater variation in SRO and MRO compared to strong glass forming liquids and encounter 

high potential energy barriers during supercooling such that they become trapped in deep local 

energy minima on approach to the glass transition (Drewitt et al. 2019). The comprehensive 

range of techniques that have been brought to bear on the calcium aluminate system reveal 

significant transformations in SRO and MRO structure take place in these liquids during glass 

formation.  

Neutron and XRD G(r) functions for (CaO)x(Al2O3)1-x glasses and melts with x = 0.5 

(CaAl2O4, CA) and x = 0.75 (Ca3Al2O6, C3A) are shown in figure 14 (Drewitt et al. 2011, 2012, 

2017, 2019). The results of MD simulations made using aspherical ion model (AIM) potentials, 

which consider polarization effects up to the quadrupolar level (see Jahn 2020, this volume), 

are also shown (Drewitt et al. 2011; Drewitt et al. 2012; Drewitt et al. 2019). The first peak in 

G(r) for the melts at ~ 1.78 Å is attributed to the nearest neighbour Al-O bond, with the second 

peak at ~ 2.3 Å arises from Ca-O correlations (Drewitt et al. 2011). On vitrification, the 

intensity and resolution of the Al-O and Ca-O peaks is significantly enhanced, reflecting the 

thermal motions and higher overall structural disorder in the liquid state. The Al-O and Ca-O 

peak positions experience shifts to ~ 1.75 Å and ~ 2.35 Å, consistent with a reduction and 

increase in Al-O and Ca-O coordination numbers, respectively. However, accurate 

quantification of these coordination numbers is hindered by the penetration of Ca-O 

correlations into the first Al-O coordination shell and considerable overlap with other atom-

atom interactions at higher bond lengths. This is particularly acute for the liquids, but also 
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affects the glass measurements (Hannon and Parker 2000; Mei et al. 2008a,b; Drewitt et al. 

2011). Element selective techniques are, therefore, required to isolate the Al and Ca 

coordination environments. This represents a significant challenge at high temperatures: 27Al 

NMR spectroscopy measurements observe the fast exchange limit such that individual 

coordination populations cannot be resolved in the high temperature melts (Coté et al. 1992; 

Poe et al. 1993; Poe et al. 1994; Massiot et al. 1995; Florian et al. 2018), 43Ca NMR is limited 

by low sensitivity and natural abundance (Dupree et al. 1997), x-ray absorption measurements 

of high temperature levitated melts are difficult to perform, and NDIS is limited by the sample 

size and neutron flux. 

Drewitt et al. have successfully applied NDIS to precisely measure the Al-O and Ca-O 

coordination environments in levitated liquid CA and C3A (Drewitt et al. 2012, 2017), despite 

the small size (~ 2-3 mm diameter) of the levitated droplets. The pseudo-binary pair distribution 

functions 𝑔𝜇𝜇(𝑟) and 𝑔Ca𝜇(𝑟) for the CA and C3A melts and the quenched CA glass are shown 

in figure 15. In 𝑔𝜇𝜇(𝑟) all interactions involving Ca are eliminated and the function contains 

contributions from µ-µ (µ = Al, O) pair correlations only, showing well resolved peaks 

corresponding to Al-O nearest neighbours and O-O bonds.  In contrast, 𝑔Ca𝜇(𝑟) is comprised 

solely from Ca-µ pair correlations and the main peak corresponds to the Ca-O nearest 

neighbours. The NDIS experiments for liquid C3A and CA glass go one step further to provide 

direct measurement of the 𝑔Ca𝐶𝑎(𝑟) partial pair distribution function, as shown in figure 16. 

Overall, the AIM-MD model is in excellent agreement with the NDIS and XRD 

measurements. The CA composition has an Al:O ratio of 1:2 such that it is feasible to form a 

fully polymerized network of Q4 in which any two Al atoms are connected by a single bridging 

 
 

Figure 14: Total pair distribution functions G(r) from a) x-ray and b) neutron diffraction of 

CA and C3A glasses (solid black curves) and liquids (solid red curves) together with the 

corresponding  functions computed directly from MD simulations (dotted curves) (data 

from Drewitt et al. 2011, 2012, 2017, 2019). 



oxygen. The C3A composition on the other hand is significantly depolymerized with a 

theoretical mean number of 2 bridging oxygens per Al atom. The combined NDIS, XRD, and 

AIM-MD results reveal that the structure of liquid CA deviates from this simple network model 

containing 83 % AlO4 tetrahedra with 12 % non-bridging oxygens and 15 % AlO5 units, many 

of which share edges (Drewitt et al. 2012). Considering all Al-O pairs, 18 % oxygen atoms have 

a coordination > 2, with 7 % formal triclusters in which one oxygen is connected to three AlO4 

tetrahedra. Liquid C3A is composed of a higher fraction of AlO4 tetrahedra (93 %) with 60 % 

non-bridging oxygen and 36 % bridging oxygen atoms (Drewitt et al. 2017), where the latter is 

slightly higher than expected from the O:Al ratio (Skinner et al. 2012b). This is accounted for 

by the presence of 3 to 4 % “free oxygen” ions, which do not participate in Al-O bonding, and 

~1 % oxygen triclusters. While the majority of AlO4 tetrahedra in C3A melt belong to a single 

 
 

Figure 15: The real-space pseudo-binary pair distribution functions gµµ(r) and gCaµ(r) for the 

CA (Drewitt et al. 2012) and C3A (Drewitt et al. 2017) melts from NDIS measurements (solid 

curves) and AIM-MD simulations (Drewitt et al. 2011; Drewitt et al. 2012). (Reprinted from 

Drewitt et al. 2019 doi:10.1088/1742-5468/ab47fc © SISSA Medialab Srl. Reproduced by 

permission of IOP Publishing. All rights reserved). 

https://doi.org/10.1088/1742-5468/ab47fc


infinitely connected network, 15 to 20 % belong to smaller clusters with ~ 10 % forming Al2O7 

dimers or isolated AlO4 tetrahedra. 

On vitrification, the over coordinated CA glass structure reorganizes to form a predominantly 

corner shared network of AlO4 tetrahedra. The C3A glass is also characterised by a 

preponderance (99 %) of aluminium in AlO4 tetrahedra with 85% belonging to a single infinite 

network. This is consistent with 27Al NMR (Neuville et al. 2006, 2007) and XANES 

spectroscopy at the L and K-edges (Neuville et al. 2008b, 2010) which show Al is 

predominantly four-fold coordinated by oxygen in glasses with compositions x = 0.5 to 0.75. 

There is, however, a residual 3.5 % Al in AlO5 units remaining in CA glass (Neuville et al. 

2006) and the AIM-MD results indicate the presence of ~ 4% residual AlO5 units in CA glass, 

accompanied by 7 % non-bridging oxygens and 5 % formal oxygen triclusters (Drewitt et al. 

2012). This latter result is consistent with 5 % oxygen triclusters detected in the glass by 

heteronuclear correlation NMR spectroscopy (Iuga et al. 2005). 

Differences in network connectivity are apparent from the Raman spectra of CA, C12A7 

(x = 0.632, Ca12Al14O33) and C3A glasses shown in figure 17. All spectra exhibit a Boson peak 

at ~ 90 cm-1, a strong band at ~ 560 cm-1 with significant asymmetry at higher wavenumbers, 

and another strong band at ~ 780 cm-1, which increases in intensity relative to the 560 cm-1 band 

with increasing CaO content. The 560 cm-l band is attributed to transverse motions of bridging 

oxygens in Al-O-Al linkages, with the high frequency asymmetry caused by Al-O stretching 

vibrations of the fully polymerized tetrahedral aluminate groups (McMillan and Piriou 1983). 

This band experiences a shift to higher frequencies and reduction in intensity with increasing 

CaO content associated with changes in the polarizability of the Al-O-Al vibrations resulting 

from an increase in the Al-O force constant as Q2 species are introduced into the glass network. 

This is consistent with a shift to lower energies of the L2,3-edge in Al XANES spectroscopy 

measurements attributed to the presence of Q2 species and associated stronger hybridization of 

non-bridging oxygens (Neuville et al. 2010). The weak band in the CA glass spectrum at 

780 cm-1, and shoulder at 910 cm-1, are attributed to Al-O stretching vibrations of Q4 Al species. 

The increase in intensity and shift to lower frequencies of the 780 cm-1 band with increasing 

CaO content is attributed to increasing fractions of non-bridging oxygens giving rise to more 

intense vibrations compared to bridging oxygens (McMillan and Piriou 1983). This is consistent 

 
 

Figure 16: The partial pair distribution function gCaCa(r) for CA glass (Drewitt et al. 2012) and 

C3A melt (Drewitt et al. 2017) determined directly from NDIS experiments (solid curves) and 

generated from the AIM-MD simulations (Drewitt et al. 2011; Drewitt et al. 2012). (Reprinted from 

Drewitt et al. 2019 doi:10.1088/1742-5468/ab47fc © SISSA Medialab Srl. Reproduced by 

permission of IOP Publishing. All rights reserved). 

https://doi.org/10.1088/1742-5468/ab47fc


with 27Al NMR (Neuville et al. 2006) and Al K-edge XANES results (Neuville et al. 2008a,b), 

which suggest Al units predominantly in Q2 and Q3 speciation in C3A glass. It also implies that 

the C12A7 glass contains a significant fraction of non-bridging oxygens. 

Calcium has a broad distribution of 4- to 9-fold Ca-O coordination sites, with average Ca-O 

coordination numbers of 6.2 in CA (Drewitt et al. 2012) and 5.6 in C3A (Drewitt et al. 2017) 

melts. In CA melt, edge- and face-sharing Ca-centered polyhedra form small clusters. In C3A 

melt all Ca-centered units are connected by corners to a single network with 90 % edge- and 

face-sharing. The direct measurement of 𝑔Ca𝐶𝑎(𝑟) by NDIS (figure 16) gives an average Ca-

Ca coordination number of ~ 8 (~ 8.5 from AIM-MD) compared to a value ~ 5 determined in 

CA melt, reflecting the greater fraction of Ca in the C3A composition and hence greater 

 
Figure 17: Raman spectra of CA, C12A7, C3A glasses (data from Neuville et al. 2006; Neuville 

et al. 2010; Licheron et al. 2011). 

 
Figure 18: Snapshots illustrating the largest clusters of edge-sharing Ca-centered polyhedra in 

the AIM-MD simulations of CaAl2O4 from Drewitt et al. (2012) for (a) the melt 2500 K and (b) the 

glass at 350 K. The clusters are represented by the light (yellow), dark (blue), and medium (green) 

shaded units which involve 16, 9, and 8 Ca atoms in the liquid or 44, 24, and 19 Ca atoms in the 

glass, respectively. Reprinted figure with permission from Drewitt et al. Physical Review Letters 

109:235501 (2012) doi:10.1088/0953-8984/24/9/099501. Copyright (2012) by the American 

Physical society. 

https://doi.org/10.1088/0953-8984/24/9/099501


tendency towards clustering. However, on vitrification, the CA glass experiences a remarkable 

development of cationic MRO with edge- and face-sharing Ca-O polyhedra with an average 

coordination of 6.4 which form large branched chains that weave through the glass network 

(figure 18). 

To summarize, at the Al2O3-rich limit of the glass forming region of calcium aluminate melts 

up to 20 % of the Al reside in AlO5 coordination sites (Drewitt et al. 2011), increasing to over 

30 % in pure alumina (Skinner et al. 2013b). These highly coordinated Al units are incompatible 

with glass formation. However, although the equimolar (CA) melt contains 15 % AlO5 

polyhedra (Drewitt et al. 2011), these highly coordinated units and oxygen triclusters 

breakdown on vitrification and the supercooled melt structure reorganizes to form a 

predominantly corner-shared AlO4 tetrahedral glass network (Drewitt et al. 2012). This is 

accompanied by the development of cationic ordering associated with the formation of long 

chains of edge- and face-sharing Ca-centered polyhedra (figure 18). While significantly 

depolymerized, the structure of C3A melt remains largely composed of AlO4 tetrahedra 

(Drewitt et al. 2011). Although many of these tetrahedra belong to a single infinite network, 

~ 20 % aluminium in in C3A melt belong to smaller clusters with ~ 10% unconnected Al2O7 

dimers and AlO4 monomers (Drewitt et al. 2017). On vitrification, C3A glass is characterized 

by a tetrahedral aluminium network structure, where 85 % of AlO4 units belong to a single 

infinite structure with only 5 % isolated tetrahedra or dimers (Drewitt et al. 2019). Beyond the 

CaO-rich limit of the glass forming region, the number of isolated AlO4 units is expected to 

increase such that the glass can no longer support the formation of an infinitely connected 

network of AlO4 units (Drewitt et al. 2017).  

The significant structural transformations that take place during glass formation in the 

calcium aluminate glasses are captured by time-resolved measurements of aerodynamically 

levitated liquid calcium aluminates recorded during solidification of the high temperature melts 

through their glass transition (Hennet et al. 2007; Drewitt et al. 2019). In particular, the changes 

in MRO associated with the development of cationic ordering is indicated by the evolution of 

the FSDP in S(q) attributed to cation-cation correlations (figure 19). The work reviewed here 

for a representative fragile glass-forming system demonstrates that caution is required when 

considering glasses as proxies for geological melts. Similar differences in the local structural 

environment has been observed in fragile MgO-SiO2 liquids (Wilding et al. 2010). Natural 

 
 

Figure 19: Time resolved x-ray diffraction measurements of the structure factors S(q) of 

aerodynamically levitated liquid (a) CA and (b) C3A during glass formation with 30 ms acquisition 

times. (Reprinted from Drewitt et al. 2019 doi:10.1088/1742-5468/ab47fc © SISSA Medialab 

Srl. Reproduced by permission of IOP Publishing. All rights reserved). 

https://doi.org/10.1088/1742-5468/ab47fc
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silicate melts in the CaO-MgO-Al2O3-SiO2 (CMAS) system encompass a range of kinetic 

fragilities (Giordano and Dingwell 2003; Giordano and Russell 2007; Giordano et al. 2008). As 

such measurements made on glasses cannot be assumed to be representative of melts in their 

natural liquid state and models should be based, where possible, on liquid-state measurements. 

 

Aluminosilicate melts 

 

As for aluminates, aluminosilicate melts have high melting points and only a few diffraction 

studies have been reported, mainly using laser heating with aerodynamic levitation at neutron 

sources (Jakse et al 2012, Hennet et al 2016, Florian et al 2018) or levitation inside the bore of 

a NMR spectrometer (Poe et al. 1992; Florian 2018). Alternatively, wire furnace methods, in 

which a small quantity of sample is placed in a small hole (~ 500 µm diameter) in a Pt-Ir wire 

and melted by resistive heating (Mysen and Frantz, 1992; Richet et al. 1993; Neuville et al. 

2014), has been adopted for XAS (Neuville et al, 2008b), Raman spectroscopy (Neuville and 

Mysen 1996; Daniel et al. 1995), and x-ray diffraction (Neuville et al. 2014b) of aluminosilicate 

melts.  

In contrast to aluminate melts, which can be stably levitated for days without significant 

mass loss (Drewitt et al. 2012; Drewitt et al. 2017), aerodynamically levitated laser heated 

silicate melts experience significant sample vaporization at high SiO2 fractions. This leads to 

significant changes in composition, as experienced by in situ XRD measurements of liquid SiO2 

(Mei et al. 2007; Skinner et al. 2013a) and NDIS measurements of CaSiO3 melt (Skinner et al. 

2012a) for which sample mass loss is particularly detrimental due to the requirement for the 

different isotopically enriched samples to have identical composition. Thus, neutron diffraction 

experiments of aluminosilicate melts, which require counting times of several hours, have been 

limited to compositions up to about 33% of silica in melts containing CaO (Hennet et al. 2016) 

and 42% in melts containing SrO (Florian et al. 2018). 

Figure 20a shows a comparison of the neutron structure factors measured for a range of 

calcium aluminosilicates melts along the charge compensator line together with the 

corresponding glass. On melting, the FSDP becomes less distinct with lower intensity and 

increased broadening, which is indicative of increased disorder in the organization of polyhedra 

at intermediate distances. This augmentation of disorder is also evident in the broadening and 

reduction in structure of the peaks over the full q-range. Similar changes are observed for other 

CaO/Al2O3 ratios (Hennet et al. 2016). Along the join R=1, this disorder is mainly related to an 

increase of the proportion of AlO5, which is apparent from the asymmetric high-r broadening 

of the first peak in G(r) (figure 20b), related to a slight increase of the Al-O distance (Drewitt 

et al. 2012). As previously observed for glasses, the CaO correlation, which was largely 

overlapped with the O-O correlations coming from the SiO4 tetrahedra, is now fully overlapped 

at high temperature making the interpretation difficult. Thus, molecular dynamics simulations 

have been employed to provide more insight on the liquid structure revealing the AlO5 units 

are accompanied by increased proportions of NBO and oxygen triclusters (Jakse, 2012). 

The MD simulations reveal that the addition of silica to aluminate compositions reduces the 

quantity of AlO5 present from ~ 18% in Ca0.50 to ~ 10% in Ca12.44 and Ca19.40 melts. These 

melts contain ~ 14% OAl3 triclusters and ~ 12% NBO. The simulations reveal a continuous 

development in the AlO4 network and corresponding reduction in AlO5 units, oxygen 

triclusters, and NBOs during supercooling to a glass. Calcium occupies a distribution of 

coordination sites ranging from 4 to 8 with an average Ca–O coordination number of ~ 6. This 

structural environment describes relatively well the dynamical behavior of these melts 

(Bouhadja et al, 2013). 

hennet
Texte surligné 

hennet
Texte surligné 

hennet
Note
With As at teh beginning, should it be a comma instead of and. 




Neutron diffraction measurements of SrO-Al2O3-SiO2 melts reveal similar SRO associated 

with the Al and Si atoms as for calcium aluminates with an increase in the fraction of AlO5 

units in the melts estimated at 5-6% (Florian et al 2018). As for the glasses, it is difficult to 

extract information from the SrO contribution, which is overlapped by O-O correlations arising 

from Si-O and Al-O tetrahedra and highly coordinated Sr-O polyhedra (cf. figure 10). By 

looking at the possible O-O correlations coming from these Sr-O polyhedra, the Sr-O 

coordination number was estimated to be ~ 8 for the join R = 3 and somewhat less for R = 1 

(Florian et al. 2018). 

The in situ high temperature NMR experiments (Florian et al. 2018) give more information 

about the network structure. Along the R=1 join, Al is gradually replaced by Si with increasing 

Si content. The same behavior is found along the join R=3 for Si content such as Si/(Al+Si)>  

0.7. Below this composition, NBOs are found on the AlO4 units, breaking the aluminosilicate 

network. Consequently, for a given silica content, the addition of SrO reduces the medium range 

order (smaller ring sizes for R=3 than for R=1). For per-aluminous compositions, large amounts 

of 5- and 6-fold coordinated aluminium are found in in the melts. Different mechanisms that 

those observed along the joins R = 1 and 3, especially at low silica content could also suggest 

the presence of oxygen triclusters. 

 

    Iron silicate melts and glasses 

 

As the fourth most abundant element in the Earth’s crust, iron plays an important role due 

to its high mass having a strong influence on the density and viscosity of natural volcanic 

magmas. Iron adopts a dual character as both a network former and modifier in silicate glasses, 

typically used as proxies for melts. This behaviour is modulated by the coexistence of ferrous 

(Fe2+) and ferric (Fe3+) iron cations which adopt different structural roles. The redox ratio 

Fe3+/∑Fe is strongly influenced by chemical composition, temperature, and oxygen fugacity 

 

 
 

Figure 20: Total structure factors S(q) of some CAS glasses measured using neutron scattering 

(a) and corresponding total pair distribution functions (b). The liquid temperatures are reported in 

the figure. (Data from Hennet et al. 2016). 
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(Wilke 2005). This mixed valency complicates the interpretation of the local coordination 

environment in structural measurements. In general, Fe3+ in silicate glasses is predominantly a 

network former in 4-fold coordination (Burkhard 2000), although this is highly dependent on 

composition and oxidation state with Fe3+ potentially occupying higher coordination sites when 

excess Fe3+ is added to charge-balanced glasses (Kim and Lee 2020). In traditional models of 

iron silicate glasses, Fe2+ is assumed to occupy 6-fold coordinated sites (Mysen and Richet, 

2005). However, a wide distribution of 4-, 5-, and 6-fold coordination with oxygen has been 

reported in synthetic and natural iron silicate glasses by using x-ray, Mössbauer and optical 

absorption spectroscopies (Calas and Petiau 1983; Virgo and Mysen 1985; Binsted et al. 1986; 

Iwamoto et al. 1987; Dingwell and Virgo 1988; Hannoyer et al. 1992; Keppler 1992; Wang et 

al. 1993; Rossano et al. 1999; Wu et al. 1999; Rossano et al. 1999, 2000a,b; Galoisy et al. 2001; 

Giuli et al, 2002;  Farges et al. 2004; Wilke et al. 2004; Jackson et al. 2005; Mysen 2006; Wilke 

et al. 2007; Bingham et al. 2007; Giuli et al. 2011; Giuli et al. 2012; Nyrow et al. 2014; Zhang 

et al. 2016; Alderman et al. 2017a; Nayak et al. 2019) and x-ray and neutron diffraction 

(Johnson et al. 1999; Holland et al. 1999; Weigel et al. 2006; Wiegel et al. 2008a,b; Drewitt et 

al. 2013; Wright et al. 2014).   

More limited direct information is available on the local coordination environment of iron 

in silicate melts by comparison with the quenched glass. Using a conventional XRD source, 

 
Figure 21: Gaussian fits to the main peaks in T(r) = 4πrG(r) from synchrotron XRD 

measurements by Drewitt et al. (2013) for (a) liquid fayalite (Fe2SiO4) and (b) liquid ferrosilite 

(FeSiO3). The black cicles are the measured data and the solid black curves are the superposition 

of the fitted Gaussian functions. Reprinted figure with permission from Drewitt et al. Physical 

Review B 87:224201 (2013) doi:10.1103/PhysRevB.87.224201 Copyright (2013) by the American 

Physical society. 

https://doi.org/10.1103/PhysRevB.87.224201
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Waseda et al. were the first to report the structure of iron silicate melts suggesting a reduction 

in Fe-O coordination from 6- to 4-fold with increasing SiO2 fraction (Waseda and Toguri 1978; 

Waseda et al. 1980). However, serious inconsistencies have been found in this data including 

the assignment of unrealistically small Fe-Si bond distance and Fe-O-Si bond angle (Jackson 

et al. 1993; Drewitt et al. 2013). High temperature x-ray absorption spectroscopy (XAS) 

measurements alkali silicate (Waychunas et al. 1988) melts indicated Fe2+ residing solely in 4-

fold sites, and a complete conversion from 6-fold Fe2+ sites in crystalline fayalite (Fe2SiO4) to 

4-fold in the melt (Jackson et al. 1993). A subsequent XAS study found only slightly higher 

quantities of low coordinated Fe2+ in reduced silicate melts (Wilke et al. 2007). This is 

confirmed by in situ synchrotron XRD measurements of laser heated silicate liquids, including 

Fe2SiO4 and FeSiO3, levitated on an Ar gas stream in air (Drewitt et al. 2013). Here, two distinct 

Fe-O peaks are resolved (figure 21) with bond lengths 1.93 and 2.20 Å corresponding to FeO4 

and FeO6 units, respectively, with average Fe-O coordination numbers of 4.8 (Fe2SiO4) and 5.1 

(FeSiO3). Both Fe-O peaks are also apparent in the measurements of a basalt glass and melt. 

Although only two Fe-O peaks are apparent, the results do not exclude the presence of up to 

~ 10-25 % FeO5 units in the iron silicate melts and glasses studied (Drewitt et al. 2013). The 

coexistence of 4-, 5-, and 6-fold coordinated iron in silicate melts has important implications 

for the partitioning behaviour of iron in natural melts or transport properties of magmas. The 

ratio of these different units is affected by oxygen fugacity, with in situ Fe K-edge XANES and 

synchrotron XRD measurements of levitated fayalitic melts revealing average Fe-O 

coordination numbers increasing from 4.4 in the reduced melt to 4.7 at higher Fe3+/∑Fe 

(Alderman et al. 2017b).  

 
 

Figure 22: a) Raman spectra at room temperature for a series of iron-pyroxene glasses (redrafted 

from Magnien et al. 2006). The Fe3+/ΣFe redox ratio is indicated and the spectra are displaced 

vertically for clarity. The spectra were normalized to the maximum intensity of the spectra corrected 

from the excitation lines (see Neuville et al., 2014). b) Deconvolution of Raman spectrum of 

pyroxene glass with redox ratio Fe3+/ΣFe = 0.09, and c) Fe3+/ΣFe = 0.99. 

 



Raman spectroscopy has also been used to interpret the structural role of iron in silicate 

glasses and melts and link the redox equilibrium to the silicate structure (Mysen et al. 1980, 

Fox et al. 1982, Mysen et al. 1984,1985; Wang et al. 1993, 1995), and more recently to quantify 

the Fe redox ratio (Magnien et al. 2006, 2008; Roskosz et al. 2008; Di Muro et al. 2009; Cochain 

et al. 2012; Di Genova et al. 2015, 2016, 2017; Le Losq et al. 2019). Raman spectra of iron 

silicate glasses and melts vary systematically with varying Fe3+/∑Fe ratio due to the different 

roles of Fe2+ and Fe3+ influencing the network structure and Qn speciation in different ways 

(LeLosq et al. 2019). Samples with high Fe3+/∑Fe ratio have characteristically strong intensity 

at ~ 900cm-1 assigned to Fe3+-O stretching vibrations (Wang et al. 1995; Magnien et al. 2004, 

2006, 2008; Di Muro et al. 2009; Cochain et al. 2012; Le Losq et al. 2019). This is illustrated 

in figure 22 for an iron-pyroxene glass composition with variation of the redox state Fe3+/ΣFe 

from 0.09 to 0.97. Here the intensity of the Fe3+-O stretching band at 910cm-1 increases 

significantly with increasing Fe3+ fraction. This peak correlates perfectly with the Fe pre-edge 

peak of XANES spectra at the K-edge attributable to 4-fold coordinated Fe3+ (Wilke et al. 

2001), and its frequency is dependent upon the glass or melt silica fraction (Mysen et al. 1980; 

Wang et al. 1995).  

 

Glasses and melts at high pressure  

 

Pressure can lead to considerable reorganization of SRO and MRO in glasses and melts. The 

structural response of melts at high p determines the density and dynamical properties of natural 

magmas in deep planetary interiors. Understanding the link between structure and properties of 

melts at high-p is integral to understanding a range of problems including the distribution and 

causes of chemical alteration (metasomatism) of the mantle due to upward or lateral migration 

of melts, large scale differentiation from an early magma ocean, and mantle melting at mid-

ocean ridges and subduction zones. Gravity driven melt transportation is proportional to melt 

mobility, which is dependent upon the viscosity of the melt and the density contrast between 

the melt and solid mantle. Early equation of state data for melts indicated that basaltic magmas 

are more compressible than mantle minerals leading to the possible existence of a melt-crystal 

density crossover at depth (Stolper et al. 1981; Rigden et al. 1984; Agee and Walker 1988). 

To some extent, glass structure can exhibit irreversible behaviour on recovery from cold (i.e. 

room temperature) compression (Bridgman and Šimon 1953; Grimsditch 1984; Polian and 

Grimsditch 1990; Susman et al. 1991; Ishihara et al. 1999; Inamura et al. 2001; Trachenko and 

Dove 2002; Sampath et al. 2003; Champagnon et al. 2008; Rouxel et al. 2008). Further 

permanent densification may be promoted by heat treatment during compression (Polian and 

Grimsditch 1990; Ishihara et al. 1999; Trachenko and Dove 2002; Inamura et al. 2004).  

Notably, glasses synthesized from temperature quenched high-p melts can preserve the 

equilibrium structure of the high-p liquid-state for subsequent examination under ambient 

conditions (Li et al. 1995; Yarger et al. 1995; Ohtani et al. 1985; Xue et al. 1989; Stebbins and 

Poe 1999). However, to fully capture the evolution in SRO and MRO in glasses and melts at 

high p, in situ measurements are required and are clearly essential for melts which do not 

quench to a glass. 

Recent advances in experimental and analytical techniques now allow for the measurement 

of the structure and properties of glasses and melts to be measured in situ at high-p. Pressure 

cells used for high-p research can be classified into two main types: large volume devices, such 

as a piston cylinder devices or multi anvil (MA) apparatus (Ito 2007), or the diamond anvil cell 

(DAC) (Mao and Mao 2007).  

Large volume devices are typically used for ex situ phase equilibrium experiments under 

simultaneous high-p-T conditions using resistive heating. Piston cylinder devices can achieve 

moderate p up to 5-6 GPa and 1800 C (Holloway and Wood 1988), corresponding to upper 



mantle or lunar core conditions. As the name suggests, the MA apparatus utilizes multiple 

anvils to compress a sample from four or more directions to generate conditions of up to 30 GPa 

and 3000 C (Holloway and Wood 1988), corresponding to mid to lower mantle conditions. 

Use of sintered diamond MA cubes, in place of standard tungsten carbide cubes, allows p as 

high as 90 GPa to be generated (Zhai and Ito 2011), providing access to deep lower mantle 

conditions. MA devices with x-ray transparent apertures are now commonplace at most third-

generation synchrotron radiation sources (Liebermann 2011) and have been exploited for in 

situ high-p measurements of the structure and properties of silicate glass and melts (Funamori 

et al. 2004; Ohtani et al. 2005). However, MA devices are expensive to build and operate and 

sample accessibility is limited by their large-scale bulky nature of the apparatus. The Paris-

Edinburgh (PE) cell is a large volume press specifically designed to optimize sample 

accessibility for in situ powder neutron diffraction experiments at p up to ~ 25 GPa (Besson et 

al. 1992; Klotz et al. 1995). The PE cell has been adapted for simultaneous high-p-T 

synchrotron x-ray diffraction experiments (Besson et al. 1996; Mezouar et al. 1999; Crichton 

and Mezouar 2005) and used for in situ x-ray scattering measurements of silicate melts 

(Yamada et al. 2011; Sakamaki et al. 2012; Kono et al. 2014). Recently, a double-stage large 

volume cell was developed by incorporating a pair of secondary diamond anvils into a primary-

stage PE cell to generate pressures in the megabar (1 Mbar = 100 GPa) regime (Kono et al. 

2019) and has been used for measuring structure of different glasses at ultrahigh pressure (Kono 

et al. 2016; Kono et al. 2018; Ohira et al. 2019; Shibazaki et al. 2019; Wilding et al. 2019). 

The DAC generates extremely high static pressures by compressing a sample between two 

opposing single crystal diamond anvils (Bassett 2009). High-p experiments up to ~ 1 megabar 

(1 Mbar = 100 GPa) are routine in the DAC (Li et al. 2018), with multimegabar pressures 

feasible by employing beveled (Bell et al. 1984) or toroidal (Dewaele et al. 2018) anvils to 

provide access to static p corresponding to Earth’s core and beyond, with p in the Terapascal 

(1000 GPa) regime achievable using secondary micro-ball nanocrystalline diamond anvils 

(Dubrovinsky et al. 2012; Dubrovinskaia et al. 2016). The DAC is an extremely versatile and 

highly portable device which is relatively inexpensive to manufacture, and the transparency of 

diamonds across the electromagnetic spectrum offers a key advantage over other high-p 

methods. Thus, the sample can be observed in situ under compression using optical microscopy, 

spectroscopy, and x-ray scattering techniques. This also enables laser heating techniques to heat 

the sample at high-p at temperatures up to ~ 5000 K and dedicated laser heated diamond anvil 

cell (LHDAC) setups for in situ high-p-T structure measurements are now widely available at 

synchrotron sources around the world (Watanuki et al. 2001; Shen et al. 2001; Meng et al. 2006; 

Caldwell et al. 2007; Liermann et al. 2010; Petitgirard et al. 2014).  The LHDAC method 

combined with synchrotron XRD has been exploited in the Earth Sciences to study metallic 

(Shen et al. 2004; Morard et al. 2013; Morard et al. 2017) and silicate (Sanloup et al. 2013b; 

Drewitt et al. 2015) melt structure under deep mantle and core conditions. Simultaneous high-

p-T conditions may also be achieved in a resistively heated (RH) DAC. Although the maximum 

attainable temperature is lower than for the LHDAC, the RHDAC has the distinct advantage of 

providing homogeneous heating over the whole sample allowing the measurement of larger 

wholly molten samples without contamination from thermal insulation media or laser coupling 

material (de Grouchy et al. 2017; Louvel et al. 2020; Drewitt et al. 2020).  

Regardless of whether large volume or DAC apparatus are used, measuring glass or melt 

structure in situ at high-p requires accurate characterization of the p-dependent background 

scattering from the cell to extract a precise measurement of the diffuse glass or melt signal 

(Shen et al. 2003; Drewitt et al. 2010). This background scattering can be reduced using spatial 

collimation (Mezouar et al. 2002) or by reducing the fraction of non-sample components within 

the path of the incident beam: e.g. much of the x-ray Compton scattering from DAC anvils can 

be eliminated by using perforated diamonds (Soignard et al. 2010). 
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Pressure induced modifications in MRO and SRO in SiO2 and GeO2 glass 

 

In situ high-p spectroscopy (Grimsditch 1984; Hemley et al. 1986; Williams and Jeanloz 

1988; Zha et al. 1994; Polsky et al. 1999; Lin et al. 2007; Champagnon et al. 2008; Murakami 

and Bass 2010), and x-ray (Meade et al. 1992; Inamura et al. 2004; Sato and Funamori 2008; 

Sato and Funamori 2010; Benmore et al. 2010; Shen et al. 2011; Prescher et al. 2017) and 

neutron (Zeidler et al. 2014) diffraction have been used extensively to determine the p-induced 

structural modifications of pure SiO2 glass. Extensive spectroscopy (Itié et al. 1989; Durben 

and Wolf 1991; Polsky et al. 1999; Hong et al. 2007; Vaccari et al. 2009; Baldini et al. 2010; 

Dong et al. 2017; Spiekermann et al. 2019), and x-ray (Guthrie et al. 2004; Hong et al. 2007; 

Mei et al. 2010; Hong et al. 2014; Kono et al. 2016) and neutron (Guthrie et al. 2004; Drewitt 

et al. 2010; Salmon et al. 2012; Wezka et al. 2012) diffraction measurements reveal GeO2 glass 

undergoes analogous p-induced transformations to SiO2 but over a much lower-p regime. 

There is firm consensus from these studies for the operation of two key densification 

mechanisms in pure SiO2 and GeO2 glass starting with a steady collapse in MRO associated 

with the closure of open ring structures which is accompanied at higher pressures by a 

continuous transformation from a tetrahedral to octahedral glass network. The changes in MRO 

are evident in the reciprocal space diffraction patterns from a shift in position of the FSDP at 

1.55 Å-1 at ambient-p to higher q values with increasing p (figure 23). This change is 

accompanied by the development of a second peak at ~3 Å-1. The emergence of a new peak 

observed at ~ 3 Å-1 in S(q) for SiO2 and GeO2 glass at high-p is observed for many other types 

of oxide glasses and melts including calcium aluminate (CaAl2O4) and anorthite (CaAl2Si2O8) 

(Drewitt et al. 2015), forsterite (Mg2SiO4) (Benmore et al. 2011; Adjaoud et al. 2008), and 

jadeite (NaAlSi2O6), albite (NaAlSi2O6) and diopside (CaMgSi2O6) (Sakamaki et al. 2014a,b). 

For SiO2 glass, this peak was originally associated with the breakdown of MRO and emergence 

of SiO6 octahedra (Meade et al. 1992; Benmore et al. 2010). More generally, this peak is 

consistent with the development of short-range topological ordering arising from a more 

densely packed structure (Elliot 1995; Salmon et al. 2005,2006; Sakamaki et al. 2014b; Drewitt 

 
Figure 23: Total structure factors S(q) for GeO2 glass as measured by in situ neutron diffraction 

at high pressure in the PE cell from ambient to 8.0 GPa. The changes in intensity and position of the 

FSDP and principal peak are indicated by the arrows. (Data from Drewitt et al. 2010).  



et al. 2015). Advances made in neutron diffraction methodologies for high precision in situ 

measurements of glasses at high p (Drewitt et al. 2010) have enabled NDIS measurements of 

GeO2 glass to resolve the individual Ge and O environments (Wezka et al. 2012). From these 

measurements, the p-dependence of the mean Ge-O-Ge bond angle was found, which reduces 

with increasing p consistent with compaction of the open corner shared tetrahedral network 

structure. 

The transformation in SRO from a tetrahedral to octahedral glass network occurs over the p 

range of ~ 10 to ~ 40 GPa (SiO2) and ~5 to 30 GPa (GeO2). The onset of coordination change 

in network forming structural motifs for a wide range of oxide glasses can be rationalised in 

terms of the oxygen packing fraction (Wang et al. 2014; Zeidler et al. 2014; Zeidler and Salmon 

2016). The upper limit of stability for tetrahedral motifs in both SiO2 and GeO2 glass occurs at 

the same oxygen packing fraction of ~0.58 consistent with random loose packing of hard 

spheres. The conversion to an octahedral network is largely completed at an oxygen packing 

fraction of ~ 0.64 consistent with random close packing of hard spheres (Zeidler et al. 2014). 

Molecular dynamics simulations reveal that GeO5 and SiO5 units act as important 

intermediaries on transformation towards an octahedral glass, where the coordination changes 

primarily from 4 → 5 and 5 → 6 (Wezka et al. 2012; Zeidler et al. 2014). This is supported by 

the measured mean O-Ge-O bond angle from NDIS (Wezka et al. 2012) and can be understood 

in terms of a ‘zipper’ mechanism for ring closure developed for SiO2 glass in which a tetrahedral 

SiO4 unit belonging to a ring structure forms a new bond with a bridging oxygen within the 

ring, leading to the formation of distorted square pyramidal SiO5 units and threefold 

coordinated oxygen atoms (Wezka et al. 2012; Zeidler et al. 2014). This demonstrates a striking 

interrelation between the changes experienced in SRO and MRO which is underscored by a 

correlation between the position of the FSDP in S(q), relative to its position at ambient-p, and 

the onset of coordination change (Zeidler and Salmon 2016).  

Some studies using in situ XRD (Sato and Funamori 2010), Brillouin spectroscopy 

(Murakami and Bass 2010) and K’’ x-ray emission spectroscopy (Spiekermann et al. 2019) 

suggest a plateau in octahedral coordination persisting in SiO2 and GeO2 glass beyond 100 GPa. 

However, molecular dynamics simulations of both SiO2 and GeO2 glass (Brazhkin et al. 2011) 

and SiO2 melt (Karki et al. 2007) indicate a continuous increase in coordination number > 6 at 

100 GPa. Recent in situ XRD measurements for SiO2 glass in a DAC up to 172 GPa (Prescher 

et al. 2017) and GeO2 glass in a double stage large-volume cell up to 91.7 GPa (Kono 2016) 

appear to confirm this, indicating that after the initial continuous 4 → 5 → 6 transition at lower 

p there follows a gradual increase in coordination number approaching 7-8 in the megabar 

regime. 

 

Silicate melt structure at high pressure 

 

In situ diffraction measurements of the structure of silicate melts have advanced significantly 

in the last decade. Exploratory in situ diffraction study of molten silicates were first reported 

for CaSiO3 and MgSiO3 melts up to 6 GPa using a cubic multi-anvil device with synchrotron 

XRD (Funamori et al. 2004). In the last decade, the structure of a range of silicate melts have 

been measured by diffraction using large volume pressure cells at pressures up to ~ 10 GPa 

including forsterite-enstatite (Mg2SiO4-MgSiO3) (Yamada et al. 2007; Yamada et al. 2011), 

albite (NaAlSi3O8) (Yamada et al. 2011), jadeite (NaAlSi2O6) (Sakamaki 2012, 2014a; Wang 

et al. 2014), fayalite (Fe2SiO4) (Sanloup 2013a), diopside (CaMgSi2O6) (Wang et al. 2014), and 

basaltic melts (Sakamaki et al. 2013; Crépisson et al. 2014).  

A compilation of structure, density, and viscosity data of silicate melts under pressure 

reveals a reduction in isothermal viscosity of polymerized melts up to ~ 3-5 GPa where it 

encounters a turnover to a normal (positive) p-dependence (Wang et al. 2014). This viscosity 
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turnover is attributed to the tetrahedral packing limit, below which the structural 

transformations are dominated by changes in network connectivity and the collapse of MRO 

resulting in a reduction in inter-tetrahedral bond angle which leads to high compressibility. 

Above the viscosity turnover, the structural response is dominated by the increase in 

coordination of Si and Al atoms (Wang et al. 2014). The structural measurements for molten 

fayalite reveal an increase in average Fe-O coordination from 4.8 GPa at ambient-p (Drewitt et 

al. 2013) to 7.2 at 7.5 GPa (Sanloup et al. 2013a). It is suggested that this rapid increase in Fe 

coordination is responsible for the higher compressibility of fayalite melt compared with molten 

Mg-rich San Carlos olivine (Guillot and Sator 2007, Sanloup et al. 2013a). 

To date, only two studies have been reported for the in situ structure of silicate melts beyond 

10 GPa. Both studies utilise the LHDAC combined with synchrotron XRD, with molten basalt 

reported to lower mantle conditions up to 60 GPa using Yb-fibre laser heating (Sanloup et al. 

2013b) and liquid anorthite reported to 32.5 GPa using CO2 laser heating (Drewitt et al. 2015). 

The measurements of molten basalt reveal an increase in Si-O coordination change from 4 at 

ambient-p (Drewitt et al. 2013) to six at 35 GPa, consistent with the results for pure SiO2 glass 

discussed above. By normalising the x-ray intensities using an iterative procedure that 

minimises the unphysical low-r oscillations below the first interatomic bond distance (Eggert 

et al. 2002) a converged solution for melt density was determined directly from the liquid 

diffraction measurements. The results reveal that molten basalt experiences a density crossover 

with the solid mantle and may be gravitationally stable in the deep lower mantle (Sanloup et al. 

2013b). This supports the Labrosse layered model of a crystallising magma ocean, where a 

crystalline layer separates an upper and lower magma ocean (Labrosse et al. 2007). 

 

Al coordination change at high pressure 

 

NMR and x-ray spectroscopy measurements of permanently densified aluminosilicate 

glasses, synthesised from high-p melts (up to 12 GPa) in multi anvil apparatus and recovered 

to ambient conditions, revealed the development of highly coordinated AlO5 and AlO6 

populations occur at far lower pressures than changes observed for Si-O coordination and as 

such has a greater influence on controlling magma mobility in the shallow upper mantle (Li et 

al. 1995; Yarger et al. 1995; Allwardt et al. 2005a,b; Kelsey et al. 2009). Direct in situ 

synchrotron XRD measurements of Al coordination change in CaAl2O4 and CaAl2Si2O6 

(anorthite) glasses to 30 GPa reveal a continuous increase in Al-O coordination reaching an 

average value of ~6 by 25 GPa (Drewitt et al. 2015). The only reported in situ measurements 

of Al-O coordination change in a melt at high-p, made for liquid CaAl2Si2O6 to 32.4 GPa using 

synchrotron XRD in a DAC with CO2 laser heating, reveals a the change in local Al structure 

is comparable to the glass with average Al-O coordination of 5 by ~ 10 GPa and 6 by ~ 30 GPa 

(Drewitt et al. 2015). 

The increase in Al-O coordination from 4-, to 5-, to 6-fold up to 30 GPa measured for molten 

anorthite is consistent with the results of MD simulations (de Koker 2010; Drewitt et al. 2015). 

At ambient pressure, chemical ordering dominates in the form of AlO4 and SiO4 tetrahedra. On 

initial pressurization, the relatively open network structure is compressed and destroyed 

(Drewitt et al. 2015). This is supported by in situ Raman measurements of the glass which 

reveal a rapid reduction in the inter-tetrahedral bond angle below 2 GPa (Moulton et al. 2019). 

The increase in Al-O coordination number increases almost immediately on compression with 

the formation of AlO5 motifs and increasing fractions of AlO6 units after ~ 5 GPa (Drewitt et 

al. 2015). At 10-15 GPa, the fraction of AlO5 units reaches a maximum fraction of ~ 50% and 

are increasingly replaced by AlO6 units to become the dominant feature at  30 GPa (figure 

24a). These changes in coordination are accompanied by a reduction in NBO fraction to only a 

few per cent by 10-15 GPa (Drewitt et al. 2015), consistent with Raman spectroscopy 
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measurements which indicate that depolymerized Q2 and Q3 AlO4 units are the first to transform 

to higher coordination (Muniz et al. 2016). The Si-O coordination number follows a similar 

behaviour as for pure SiO2 glass. The Ca-O coordination begins to increase immediately on 

compression, rising continuously to an average value of ~ 10 at 30 GPa. The increase in highly 

coordinated Al and Ca units is accompanied by a development in polyhedral connectivity. At 

10 GPa, ~95 % Ca and 50 % Al atoms belong to single large clusters, increasing to 100 % Ca 

and 90 % Al atoms by 30 GPa (figure 24b). 

At higher pressures, recent in situ synchrotron XRD measurements of an aluminosilicate 

glass using a double-stage PE cell suggest the Al-O coordination number remains constant at 

~ 6 up to 110 GPa (Ohira et al. 2019). However, molecular dynamics simulations indicate a 

continuous increase in Al-O coordination number in aluminosilicate glasses and melts, 

approaching values of ~ 7 at 100 GPa (de Koker 2010; Bajgain et al. 2015; Ghosh and Karki 

2018). We note that it is not possible to separate the Si-O and Al-O nearest neighbour 

contributions in the total pair distribution functions of aluminosilicate glass measured by Ohira 

et al. (2019). This contrasts with the measurements reported by Drewitt et al. (2015) in the Al-

O coordination environment was unambiguously quantified directly from the measurement of 

silica-free CaAl2O4 glass. 

 

 

 

 

 

 
 

Figure 24: Snapshots from MD simulations of liquid CaAl2O4 at 2500 K at ambient, 10 GPa, 

and 30 GPa. (a) AlOx coordination with x = 4 (yellow), 5 (red), 6 (blue), and 7 (brown). (b) clusters 

of > 100 (blue), 10-100 (red), 5-9 (orange), 2-4 (green), and 1 (yellow) of edge- and face-sharing 

AlOx polyhedra.  Reprinted figure with permission from Drewitt et al. Journal of Physics: Condensed 

Matter 27:105103 (2015) doi:10.1088/0953-8984/27/10/105103 Copyright (2015) by the 

Institute of Physics. 
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