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The combinatorial explosion

— A justification for SARs -

Dataset,
this work
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The atmosphere is a
complicated place

Our best view of
complexity comes from
automated mechanism
generation software
(AMG)

AMG produces a large
number of molecules
About which we don’t
know very much...

McGillen, M. R. et al. Database for the kinetics of the gas-phase atmospheric reactions
of organic compounds. Earth System Science Data 12, 1203-1216 (2020).
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* Ahigh degree of
multifunctionality

* Especially for
functional groups
that aren’t well
studied

10000 +

10

Number of compounds
—
o
S

A EEE RN o1 2 34506 78 91 * Prediction ofthese
g ;_.E— = = 8 "6 ) : « . .
g g g g 2 g Number of functional groups (per molecule) rate Coeff|C|entS is
§ 0 9 © o m database O n-octane
§ E“ ‘ B a-pinene B US emissions Su rely d grOSS

N extrapolation

* Clearly this is too
much for now...
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* Valorso, R. et al. Explicit modelling of SOA formation from a-pinene
photooxidation: sensitivity to vapour pressure estimation. Atmos. Chem. Phys. 11,
6895-6910 (2011).

* McGillen, M. R. et al. Database for the kinetics of the gas-phase atmospheric
reactions of organic compounds. Earth System Science Data 12, 1203-1216 (2020).




The Sandbox: a unique testing environment
containing hydrocarbons and halocarbons

 Only consider alkanes
and haloalkanes

 Atmospherically
important

* (relatively) high data
coverage

* Variation in reactivity

e Mechanistically
simpler

e Complementary
information

* Highly functionalized

 Different methods for
estimation




The Sandbox: a unique testing environment
containing hydrocarbons and halocarbons
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The Sandbox: a unique testing environment
containing hydrocarbons and halocarbons
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McGillen, M. R. et al. Database for the kinetics of the gas-phase atmospheric reactions
of organic compounds. Earth System Science Data 12, 1203-1216 (2020).
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The Sandbox: a unique testing environment
containing hydrocarbons and halocarbons

n-hexadecane

Variation in reactivity




The Sandbox: a unique testing environment
confaining hydrocarbons and halocarbons
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* Michelat et al. in preparation.
* El Othmani, H. et al. Gas-Phase Rate Coefficient of OH + 1,2-Epoxybutane
Determined between 220 and 950 K. ACS Earth Space Chem. 5, 960-968 (20
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The Sandbox: a unique testing environment
containing hydrocarbons and halocarbons

Quantum

_~ chem.data

Complementary
information




The Sandbox: a unique testing environmen
containing hydrocarbons and halocarbons

Highly functionalized




The Sandbox: a unique testing environment
containing hydrocarbons and halocarbons

Different methods for
estimation
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Group-additivity methods
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Atmos. Environ. 29, 1685-1695 (1995).
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Group-additivity methods
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* This approach is less commonly
used than the Atkinson
approach

* However, it is clearly superior
for haloalkanes, which may
relate to it’s “third-group
multiplier”

log k= log k(CH,) + G,...G,

* DeMore, W. B. Experimental and Estimated Rate Constants for the Reactions of
Hydroxyl Radicals with Several Halocarbons. J. Phys. Chem. 100, 5813-5820 (1996).
* Update of fitting parameters: this work
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Group-additivity methods
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of the atmospheric oxidations of the alkanes. (Oxford University Press, 2008).

. 3 -1 -1 . .
kOH expenment (Cm molecule s ) » Algorithm update: this work




: 3 A
Koy estimate (cm molecule s )

Linear free-energy relationship methods

10—'10 _
! This work (IP)
o4 0=0.0279 o
i PR . . o
1 fitting factors: 2 _
-12
10 3 | o
e o
10™"° E o ©°
- e
] (@) Q O
107" 4 [key:
3 ® bed | @ fluoroalkane
- @ @ chloroalkane
1 ® O bromoalkane
10'15 - @ iodoalkane
E ® HCFC
] ® halon
i ® alkane
10-16 LI |||l”| I T I|||||| T T |||l”| T I ]|||||I T 1 ||||”| T T TTITTH
10" 10" 10™ 10" 10" 10" 10

: 3 1 -1
Kon experiment (cm molecule s )

-10

* lonization potential (IP) has
been used previously to
correlate with kg,

* IP calculated using PM6, and
corrected against experimental
values (where available)

logk
—=m-IP+c
nH

* Percival, C. J., Marston, G. & Wayne, R. P. Correlations between rate parameters
and calculated molecular properties in the reactions of the hydroxyl radical with
hydrofluorocarbons. Atmospheric Environment 29, 305-311 (1995).

* Stewart, J. J. P. MOPAC2016.

* Algorithm update, IP calculations: this work
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Linear free-energy relationship methods
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* The OH—-Cl relationship has
been observed to work well
before

* It implies a similar mechanism,
probably C—H bond strength

* Although it is a reasonably
good predictor, there are some
problems with higher k values
(which can be corrected)

* T.J. Wallington and co-workers, various works, applied mainly to HFEs
* This work, focussing on a more complete alkanes and haloalkane dataset
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Linear free-energy relationship methods
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* The OH-O(3P) relationship has
also been observed to work
well before

* As with Cl, it implies a similar
mechanism, probably C—H bond
strength

* These types of measurements
seem to have gone out of
favour, so there is very little
new data to correlate

* Gaffney, J. S. & Levine, S. Z. Predicting gas phase organic molecule reaction rates
using linear free-energy correlations. I. O(3P) and OH addition and abstraction
reactions. Int. J. Chem. Kinet. 11, 1197-1209 (1979).

* This work, focussing on a more complete alkanes and haloalkane dataset




Linear free-energy relationship methods
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* Correlations between aqueous-
phase and gas-phase rate
coefficients have been
attempted previously

* For this set of compounds, it
appears (at least with the
quality of the data available)
that this relationship is too
scattered to be useful

* Klopffer, W., Kaufmann G. & Frank, R. Phototransformation of Air Pollutants: Rapid
Test for the Determination of kOH. Zeitschrift fiir Naturforschung A 40, 686 (1985).

* Wallington, T. J., Dagaut, P. & Kurylo, M. J. Correlation between gas-phase and
solution-phase reactivities of hydroxyl radicals towards saturated organic
compounds. J. Phys. Chem. 92, 5024-5028 (1988).

* This work, focussing on a more complete alkanes and haloalkane dataset




Linear free-energy relationship methods
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* But, it is more compelling if we
look at the broader picture

e Similarities between gas- and
solution-phase have been
observed for 2100 years!

* Alkanes and halocarbons are
among the biggest outliers,
which may result from
difficulties getting them into
aqueous solution

* Daniels, F. & Johnston, E. H. The thermal decomposition of gaseous nitrogen
pentoxide. A monomolecular reaction. J. Am. Chem. Soc. 43, 53—71 (1921).

* Lueck, R. H. The thermal decomposition of nitrogen pentoxide in solution. J. Am.
Chem. Soc. 44, 757-769 (1922).
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Linear free-energy relationship methods
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* It is expected that BDE is one of
the primary determinants in
this hydrogen abstraction
mechanism

e Accurate BDEs are few and far
between, a machine-learning
method is available

* This relationship appears to
break down for the more
reactive molecules (E, vs A?)

Ethers. J. Phys. Chem. 99, 11141-11146 (1995).
e St.John, P.C., Guan, Y., Kim, Y., Kim, S. & Paton, R. S. Prediction of organic

computational cost. Nat. Commun. 11, 2328 (2020).

* Hsu, K.-J. & DeMore, W. B. Temperature-Dependent Rate Constants and Substituent
Effects for the Reactions of Hydroxyl Radicals with Three Partially Fluorinated

homolytic bond dissociation enthalpies at near chemical accuracy with sub-second




Linear free-energy relationship methods

* Is the machine-learning

105+ approach accurate for BDEs in
g o o our dataset?
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g * It seems to perform quite well,
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* Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds. (CRC

I I I I Press, 2002). d0i:10.1201/9781420039863.
90 95 100 105 e St.John, P.C., Guan, Y., Kim, Y., Kim, S. & Paton, R. S. Prediction of organic
homolytic bond dissociation enthalpies at near chemical accuracy with sub-second

BDE experimental, Luo (2002) (kcal mol'1) computational cost. Nat. Commun. 11, 2328 (2020).
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Linear free-energy relationship methods
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* This method requires a lot of
independent variables: (A H, F, R)

* This isn’t very practical! However,
it becomes more practical with
ML

* This extends the applicability of
Poutsma’s approach, which is
otherwise quite reliable

log k(OH) = —0.000630A,H> — 0.151A,H — 1.056 Y. F — 1.053 Y R — 21.26
where ArH = BDE(R-H),,;, — BDE(HO-H)

* Poutsma, M. L. Evolution of Structure—Reactivity Correlations for the Hydrogen
Abstraction Reaction by Hydroxyl Radical and Comparison with That by Chlorine
Atom. The Journal of Physical Chemistry A 117, 6433—-6449 (2013).
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Linear free-energy relationship methods
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* This method was developed at
a time when there was less
kinetic information available

* Considering this, it performs
quite well, and it can probably
be improved in the future

k(T) = ngl08> M7 exp[~190(Dgy — 95.3) /T
where DRy = DRy,,, = BDE(R-H)u;

* Cohen, N. & Benson, S. W. Empirical correlations for rate coefficients for reactions
of hydroxyl radicals with haloalkanes. J. Phys. Chem. 91, 171-175 (1987).
* This work, extending application with ML BDEs




New approach: the electrotopological state
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3 4 Hall, L. H., Mohney, B. & Kier, L. B. The electrotopological state: structure information
kOH experiment (cm molecule s ) at the atomic level for molecular graphs. J. Chem. Inf. Model. 31, 76-82 (1991).




Can we combine these results somehow?

* It seems plausible that in a highly uncertain situation, you should make
use of as much information as possible

* The following statement may apply to our individual SAR models:

“Every attempt to represent nature in a set of equations, resolvable on a
digital computer, inevitably introduces inaccuracy.” (Hagedorn et al., 2005)

* Hagedorn et al. were discussing the macroscopic world of numerical
weather prediction — not the microscopic world of chemical reactivity

* However, there is an important parallel: we all must extrapolate
* To test the ensemble, | took a simple “multiple measurement” approach:

N N
k ensemble ~— Z wik; / Z w;
i=1 i=1

2
r =1 :
Whe €, Wi /O-l Hagedorn, R., Doblas-Reyes, F. J. & Palmer, T. N. The rationale behind the success of

multi-model ensembles in seasonal forecasting - |. Basic concept. Tellus A 57, 219-233
(2005).
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* The ensemble is less accurate
at reproducing the
experimental data than some
individual approaches

* This was (initially) disappointing

e But, we shouldn’t assume that
our database is perfect

* There is an interesting
asymmetry to the errors in
estimation space, with a
tendency towards
underprediction
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Is the ensemble helpful?

High UV cross sections
Low vapour pressure
Single measurements
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Conclusions and perspectives

* The Sandbox is a useful place to conduct this thought experiment

* There is a diversity of methods for making predictions, several of
which are at least as good as the Atkinson G-A approach

* In addition, | present you with an entirely new site-specific method
for rate coefficient estimation based on the electrotopological state

* The ensemble appears to be able to identify possibly erroneous data,
this should be checked with new experiments

* There are several things that | didn’t have time to discuss, but which
are also very important:

* Site-specific reaction channels; influence of temperature; consensus
in estimation space — next time

Thank you for vour attention,
and thavks to my colleagues in the CRC SAR panel for helpful discussions



