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Time-frequency analysis of event-related brain
recordings: Connecting power of evoked potential

and inter-trial coherence
Jonas Benhamou, Michel Le Van Quyen, and Guillaume Marrelec

Abstract—Objective. In neuroscience, time-frequency analysis
has been used to get insight into brain rhythms from brain
recordings. In event-related protocols, one applies it to investigate
how the brain responds to a stimulation repeated over many
trials. In this framework, three measures have been considered:
the amplitude of the transform for each single trial averaged
across trials, avgAMP; inter-trial phase coherence, ITC; and
the power of the evoked potential transform, POWavg. These
three measures are sensitive to different aspects of event-related
responses, ITC and POWavg sharing a common sensitivity to
phase resetting phenomena. Methods. In the present manuscript,
we further investigated the connection between ITC and POWavg
using theoretical calculations, a simulation study and analysis of
experimental data. Results. We derived exact expressions for the
relationship between POWavg and ITC in the particular case
of the S-transform of an oscillatory signal. In the more general
case, we showed that POWavg and ITC are connected through
a relationship that roughly reads POWavg ≈ avgAMP2 × ITC2.
This result was confirmed on simulations. We finally compared
the theoretical prediction with results from real data. Conclusion.
We showed that POWavg and ITC are related through an
approximate, simple relationship that also involves avgAMP.
Significance. The presented relationship between POWavg, ITC,
and avgAMP confirms previous empirical evidence and provides
a novel perspective to investigate evoked brain rhythms. It may
provide a significant refinement to the neuroscientific toolbox for
studying evoked oscillations.

Index Terms—Time-frequency transform; inter-trial coher-
ence; brain recordings; electroencephalography (EEG); magne-
toencephalography (MEG); High frequency oscillations (HFOs).

I. INTRODUCTION

IN signal processing, time-frequency (TF) analysis is a
generic term that encompasses a variety of methods—such

as the short-time Fourier transform [1], wavelets [2], and the
S-transform [3]—for the analysis of signals whose frequency
features vary with time [4], [5]. All methods have in common
that they map a one-dimensional real or complex signal
x(t) into a two-dimensional complex-valued function Tx(t, f),
called time-frequency transform. This transform provides, for
each time t and frequency f , a modulus |Tx(t, f)| (also called
amplitude) and an argument arg[Tx(t, f)] or θx(t, f) (also
called phase). The terms amplitude and phase are meant to
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emphasize the expected relation between the amplitude and
phase of an oscillatory signal and the modulus and argument
of its time-frequency transform [2, Chap. 4]. Time-frequency
analysis has been used in a wide variety of research fields,
from geophysics to engineering to medicine [6].

In neuroscience, neuronal assemblies are hypothesized to
generate oscillating electromagnetic fields within specific fre-
quency ranges, also called brain rhythms. There has been over-
whelming evidence that these brain rhythms can be captured
by in-vivo brain recording techniques, from noninvasive meth-
ods, such as electroencephalography (EEG) or magnetoen-
cephalography (MEG), to invasive methods, such as intracra-
nial EEG (iEEG) or microelectrode recordings (measuring
local field potentials, LFPs) [7]–[12]. A common procedure
to investigate brain rhythms in brain recordings is the so-
called event-related protocol, where one records how the brain
responds to a given stimulation over many repetitions, called
trials. For N trials, one then has a collection of N signals
xn(t), n = 1, . . . , N . The brain activity measured in response
to each stimulation is called an event-related response. The
exact interpretation of event-related responses remains an open
issue in neuroscience. It was suggested that they may result
from a variable combination of two phenomena: stimulus-
evoked neuronal activity and stimulus-induced phase resetting
of ongoing neuronal dynamics [13]–[16]. In the former, the
stimulus leads to the activation of specific neuronal popula-
tions, which contribute to new time-locked oscillations at each
trial, translating into new power contributions to the ongoing
brain activity. In the latter, the stimulus resets the phase of pre-
existing oscillations so that a portion of the ongoing activity
becomes transiently phase-locked in a particular frequency
range. To analyze brain recordings from event-related proto-
cols and be able to discriminate between evoked responses and
phase resetting / induced responses, increasingly sophisticated
methods have been used, including time-frequency analysis
[17]–[19]. So far, three time-frequency measures have been
considered. A first measure is the average time-frequency
amplitude, i.e., the amplitude |Txn(t, f)| of the transform for
each single trial n averaged across trials, [20, Chap. 9]

avgAMP =
1

N

N∑
n=1

|Txn(t, f)| . (1)

A second measure is the so-called inter-trial phase coherence
(ITC), which quantifies the phase consistency of brain re-

ar
X

iv
:2

21
1.

08
81

1v
1 

 [
q-

bi
o.

N
C

] 
 1

6 
N

ov
 2

02
2



2

sponses over experimental trials [15]

ITC =

∣∣∣∣∣ 1

N

N∑
n=1

eiθxn (t,f)

∣∣∣∣∣ . (2)

A last measure applies the time-frequency transform to the
evoked potential, i.e., the average through trials of all signals,
and extracts its power: If xn(t) is the the signal averaged over
all N trials, then [21]

POWavg = |Txn(t, f)|2 . (3)

Importantly, these three measures are sensitive to differ-
ent aspects of event-related responses: evoked responses for
avgAMP, and phase resetting for ITC and POWavg [15], [21].
To date, with these three measures, evidence for both evoked
and induced oscillations has been reported in multiple cog-
nitive protocols generating time-locked responses to specific
sensory, cognitive or motor events [22]–[24].

We are here interested in the observed common sensitivity
of ITC and POWavg to induced responses as well as the overall
similarity of their outputs [25]. More precisely, we investi-
gate the theoretical underpinning of this empirical evidence.
Intuitively, we would expect a low ITC to correspond to a
low POWavg, as distinct components with phases that are not
consistent across trials (i.e., with low ITC) should cancel out
in the averaging process, leading to an average signal with
low POWavg. In the present manuscript, we further investigate
the connection between ITC and POWavg using theoretical
calculations and a simulation study. We show that POWavg
is approximately equal to the product of avgAMP squared by
ITC squared,

POWavg ≈ avgAMP2 × ITC2, (4)

under certain conditions. More precisely, we first derive several
approximations of the relationship between POWavg, ITC
and avgAMP in the particular case of the S-transform of an
oscillatory signal with increasing levels of complexity. We
then investigate the more general case and derive both the
exact form of this relationship—see (71)—, as well as the
assumptions leading to the simpler form of (4). We show that
this result also holds in the different setting of synthetic data
simulating high frequency oscillations. We finally investigate
the validity of this result for experimental data.

The outline of the manuscript is the following. In Section II,
we derive several variants of (4). In Section III, we perform
a time-frequency analysis of synthetic data originating from
a simulation study. The real data are analyzed in Section IV.
Further issues are discussed in Section V.

II. THEORETICAL DEVELOPMENTS

In this section, we provide the theoretical connection be-
tween ITC and POWavg, thus specifying the form of (4).
We start by stating some basic results (Section II-A). We
then expose the general framework for time-frequency analysis
(Section II-B) and give some results regarding avgAMP, ITC,
and POWavg (Section II-C). We then provide an intuition for
the existence of a relationship (Section II-E1) and derive the
its exact form, both in the particular case of the S-transform

of an oscillatory signal (Section II-D), and in the general case
(Section II-E).

A. Some basic results

We need the following results.
1) Complex numbers: First, for any complex number z,

absolute value |z| and conjugate z∗ are related by |z|2 = zz∗.
We also have z + z∗ = 2<(z), where <(z) is the real part of
z.

2) Random variables: If K random variables X1, . . . , XK

are independent, then the expectation of their product is equal
to the product of their expectations [26, §2.2.3]

E

(
K∏
k=1

Xk

)
=

K∏
k=1

E (Xk) . (5)

For two complex-valued random variables X and Y , we have

Cov(X,Y ) = E(XY ∗)− E(X)E(Y )∗. (6)

In particular, this entails that

Var(X) = E
(
|X|2

)
− |E(X)|2 . (7)

A circular random variable is a random variable that, like
an angle, is defined on the unit circle, i.e., whose value is only
relevant modulo 2π. A key quantity for any circular random
variable θ is its circular mean, defined as

E
(
eiθ
)

=

∫
p(θ) eiθ dθ. (8)

The argument of E
(
eiθ
)

is the mean angle or mean direction,
while the modulus of E

(
eiθ
)

is the mean resultant length. It
lays between 0 and 1 and is a measure of concentration of
p(θ).

A circular variable θ is said to follow a von Mises distri-
bution with mean direction θ0 and concentration parameter κ,
denoted θ ∼ VonMises(θ0, κ), if its distribution is given by
[27, §3.5.4]

p(θ) =
1

2πI0(κ)
eκ cos(θ−θ0),

where I0(κ) is the modified Bessel function of order 0,

I0(κ) =
1

2π

∫ π

−π
eκ cos(θ−θ0) dθ. (9)

The usual Gaussian distribution with mean µ and variance
σ2 is denoted by N (µ, σ2).

3) Unbiased estimator: For the estimator θ̂ of a quantity
θ, the bias is defined as the difference between the sampling
expectation of θ̂ and θ,

bias(θ̂) = E(θ̂)− θ. (10)

If the bias is equal to 0, then the estimator is said to be
unbiased. If the bias vanishes as the data size tends to infinity,
then the estimator is said to be asymptotically unbiased.

4) Bachmann–Landau notation: Finally, a function f(N) is
said to be O(1/N) if it is bounded by a function proportional
to 1/N , that is, for which there exists an N0 and a k > 0 such
that

∀N > N0 |f(N)| < k

N
.
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B. Time-frequency analysis

We here introduce the general framework for time-frequency
analysis. More specifically, we consider N signals xn(t), n =
1, . . . , N , each signal being measured as the response to a
repetition of the stimulus. The xn(t)’s are assumed to be N
independent and identically distributed (i.i.d.) realizations of
a signal x(t). Time-frequency analysis maps each xn(t) into
a complex time-frequency function Txn(t, f) that we express
as

Txn(t, f) = |Txn(t, f)| eθxn (t,f). (11)

|Txn(t, f)| is the amplitude of the time-frequency transform
and |Txn(t, f)|2 its power; θxn(t, f) is the phase of the
time-frequency transform. Since the xn(t)’s are i.i.d., so
are their time-frequency transforms. As a consequence, the
Txn(t, f)’s can be considered as i.i.d. realizations of a random
time-frequency transform denoted Tx(t, f) with amplitude
|Tx(t, f)| and phase θx(t, f).

C. Three quantities of interest

We can now go back to our three quantities of interest:
avgAMP, ITC and POWavg. To emphasize the fact that they
depend on a a series of signals x1(t), . . . , xN (t), as well as on
the time t and frequency f at which the time-frequency trans-
form is computed, we write avgAMPx1:N

(t, f), ITCx1:N
(t, f)

and POWavgx1:N
(t, f).

1) avgAMP: avgAMP is defined as in (1). It can be shown
(see §1.1 of Supplementary Material #1) that the expectation
of avgAMP2 can be expressed as

E
[
avgAMPx1:N

(t, f)2
]

= E [|Tx(t, f)|]2+
1

N
Var [|Tx(t, f)|] .

(12)
This first shows that E(avgAMP2) is only a function of
|Tx(t, f)|, the amplitude of the time-frequency transform—
and therefore not of the phase θx(t, f). Also, from (12),
we obtain that E[avgAMPx1:N

(t, f)2] tends to E[|Tx(t, f)|]2
as N → ∞, i.e., avgAMP2 is an asymptotically unbiased
estimator of E[|Tx(t, f)|]2. For finite N , its bias is given
by Var[|Tx(t, f)|]/N . A last expression that can be derived
from (12) is the following asymptotic expression obtained by
applying Bachmann–Landau notation:

E
[
avgAMPx1:N

(t, f)2
]

= E [|Tx(t, f)|]2 +O

(
1

N

)
. (13)

2) ITC: ITC is defined as in (2). It can be shown (see §1.2
of Supplementary Material #1) that the expectation of ITC2

yields

E
[
ITCx1:N

(t, f)2
]

=
∣∣∣E [eiθx(t,f)

]∣∣∣2 +
1

N
Var

[
eiθx(t,f)

]
.

(14)
This result shows that E(ITC2) is a only function of
θx(t, f), the phase of the time-frequency transform—and
therefore not of the amplitude |Tx(t, f)|. It also shows that
E[ITCx1:N

(t, f)2] tends to |E[eiθx(t,f)]|2 when N → ∞,
that is, ITC2 it is an asymptotically unbiased estimator of
|E[eiθx(t,f)]|2, the squared mean resultant length of θx(t, f).

For finite N , the bias is given by Var[eiθx(t,f)]/N . Finally,
we obtain from (14) the asymptotic expansion

E
[
ITCx1:N

(t, f)2
]

=
∣∣∣E [eiθx(t,f)

]∣∣∣2 +O

(
1

N

)
. (15)

3) POWavg: POWavg is defined as in (3), with

xn(t) =
1

N

N∑
n=1

xn(t). (16)

Due to the linearity of the time-frequency analysis, Txn(t, f)
is equal to the average of the time-frequency transforms,

Txn(t, f) =
1

N

N∑
n=1

Txn(t, f), (17)

so that

POWavgx1:N
(t, f) =

∣∣∣∣∣ 1

N

N∑
n=1

Txn(t, f)

∣∣∣∣∣
2

. (18)

It can be shown (see §1.3 of Supplementary Material #1) that
the expectation of POWavg reads

E
[
POWavgx1:N

(t, f)
]

= |E [Tx(t, f)]|2 +
1

N
Var [Tx(t, f)] .

(19)
Importantly, this result shows that, unlike avgAMP and ITC,
POWavg depends on both the amplitude and the phase of
the time-frequency transform through the modulus and argu-
ment of Tx(t, f)—recall (11). From (19), we also have that
E[POWavgx1:N

(t, f)] tends to |E[Tx(t, f)]|2 as N → ∞,
leading to the conclusion that POWavg is an asymptotically
unbiased estimator of |E [Tx(t, f)]|2. For finite N , the bias
is given by Var[Tx(t, f)]/N . Similarly to the two other
measures, we asymptotically have

E
[
POWavgx1:N

(t, f)
]

= |E [Tx(t, f)]|2 +O

(
1

N

)
. (20)

4) Summary: Results regarding the general properties of the
expectation of avgAMP2, ITC2 and POWavg are summarized
in §1.4 of Supplementary Material #1.

D. Investigation of oscillatory model

In this section, we investigate the behaviors of avgAMP,
ITC, and POWavg in the particular case of an oscillatory
signal.

1) Model: We assume that x(t) is a cosine with amplitude
Ω, frequency ν, and phase φ, i.e., of the form

x(t) = Ω cos(2πνt+ φ). (21)

The parameters Ω, ν, and φ will either be assumed be constant,
or follow a certain distribution over trials depending on the
model (see §2.6 of Supplementary Material #1 for a summary
of models and results).
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2) S-transform: The S-transform is defined as [3]

Tx(t, f) =
1√
2π

∫ +∞

−∞
x(u) |f | e−

f2(u−t)2
2 e−2iπfu du. (22)

This is of the form

1√
2πα2

∫ +∞

−∞
x(u) e−

(u−t)2

2α2 e−2iπfu du

with1 α = 1/f . The S-transform can therefore be seen as
a band-pass filter or a windowed Fourier transform with a
window whose width decreases with increasing frequency.

3) time-frequency transform of signal: Direct calculation
shows that the S-transform of x(t) is given by (see §2.2 of
Supplementary Material #1)

Tx(t, f) =
Ω

2
e−

1
2 (2π)2(1− νf )

2

ei[φ−2π(f−ν)t]

+
Ω

2
e−

1
2 (2π)2(1+ ν

f )
2

ei[−φ−2π(f+ν)t].

(23)

The amplitude and phase of this complex number do not have
simple exact forms. Still, it can be shown that a very good
approximation of Tx(t, f) can be obtained by only keeping
the first term of the right-hand side of (23). More precisely,
we have (see §2.3 of Supplementary Material #1)

Tx(t, f) = T †x(t, f) [1 + ε(t, f)] (24)

with

T †x(t, f) =
Ω

2
e−

1
2 (2π)2(1− νf )

2

ei[φ−2π(f−ν)t] (25)

and
|ε(t, f)| = e−8π2 ν

f . (26)

The modulus and argument of T †x(t, f) are given by∣∣T †x(t, f)
∣∣ =

Ω

2
e−

1
2 (2π)2(1− νf )

2

(27)

and
arg
[
T †x(t, f)

]
= φ− 2π(f − ν)t, (28)

respectively. Since we are mostly interested in frequencies
in the range 0 < f < 10ν, the relative error ε(t, f) is
bounded by |ε(t, f)| < 3.8×10−4 (see §2.3 of Supplementary
Material #1). The amplitude of Tx(t, f) is given by

|Tx(t, f)| = Ω

2
e−

1
2 (2π)2(1− νf )

2

[1 + εm(t, f)] (29)

and the phase of Tx(t, f) by

θx(t, f) ≈ φ− 2π(f − ν)t+ εa(t, f). (30)

For more detail on the errors εm(t, f) and εa(t, f), see §2.3
of Supplementary Material #1.

As expected, there is a strong connection between the am-
plitude and phase of the signal and those of the time-frequency
transform: the amplitude of the time-frequency transform,
(29), only depends on the amplitude (and frequency) of the

1Note that α is sometimes defined as 1/(f
√

2π), so that 1/
√

2πα2 = |f |
and 1/(2α2) = πf2.

signal, while the phase of the time-frequency transform, (30),
only depends on the phase (and frequency) of the signal.

Note that the amplitude of the time-frequency transform is
not a function of t. As a function of f , it is maximal for f = ν
(and equal to Ω/2) and decreases when f moves away from
ν. The phase of the time-frequency transform is a (bilinear)
function of both t and f that is equal to φ for pairs (t, f) of
the form either (0, f) for any f or (t, ν) for any t.

4) Simplest model of repetition: We now consider N repeti-
tions of the oscillatory signal of (21) with constant amplitude
(Ω = Ω0) and frequency (ν = ν0) but varying phases φn,
n = 1, . . . , N ,

xn(t) = Ω0 cos(2πν0t+ φn), n = 1, . . . , N. (31)

We assume that the φn’s are i.i.d. repetitions of φ ∼
VonMises(φ0, κ). We define the circular mean as in (8)

E(eiφ) = ρeiφ0 , (32)

with φ0 the mean direction and ρ the mean resultant length.
Applying the approximation of (25), the time-frequency trans-
form of each signal xn(t) is given by

T †xn(t, f) =
Ω0

2
e−

1
2 (2π)2(1− ν0f )

2

ei[φn−2π(f−ν0)t]. (33)

The amplitude is equal to∣∣T †xn(t, f)
∣∣ =

Ω0

2
e−

1
2 (2π)2(1− ν0f )

2

, (34)

and the phase to

arg
[
T †xn(t, f)

]
= φn − 2π(f − ν0)t. (35)

In this model, the phase depends on n and is random (as it
depends on φn), whereas the amplitude does not depend on n
and is deterministic. From (1) and (34), we obtain

avgAMP†x1:N
(t, f) =

Ω0

2
e−

1
2 (2π)2(1− ν0f )

2

, (36)

and, from (2) and (35),

ITC†x1:N
(t, f) =

∣∣∣∣∣ 1

N

N∑
n=1

eiφn

∣∣∣∣∣ . (37)

Besides, the time-frequency transform of the average signal
can be calculed using (17) and (33), yielding

T †xn(t, f) =
Ω0

2
e−

1
2 (2π)2(1− ν0f )

2

e−2iπ(f−ν0)t 1

N

N∑
n=1

eiφn ,

(38)
which has amplitude∣∣∣T †xn(t, f)

∣∣∣ =
Ω0

2
e−

1
2 (2π)2(1− ν0f )

2

∣∣∣∣∣ 1

N

N∑
n=1

eiφn

∣∣∣∣∣ (39)

(the phase is irrelevant for our calculation). This, together with
(3), leads to

POWavg†x1:N
(t, f) =

[
Ω0

2
e−

1
2 (2π)2(1− ν0f )

2
]2
∣∣∣∣∣ 1

N

N∑
n=1

eiφn

∣∣∣∣∣
2

.

(40)
From (36), (37), and (40), it is straightforward to see that we
have the following relationship

POWavg† =
(

avgAMP†
)2

×
(

ITC†
)2

. (41)
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5) Model with varying amplitude and phase: We now con-
sider a more complex model, in which we observe repetitions
of an oscillatory signal with constant frequency (ν = ν0) but
varying amplitude and phase,

xn(t) = Ωn cos(2πν0t+ φn), n = 1, . . . , N. (42)

We assume that the Ωn’s are i.i.d. repetitions of Ω ∼
N (Ω0, τ

2
Ω), while the φn’s are i.i.d repetitions of φ ∼

VonMises(φ0, κ). Furthermore, Ωn and φn are assumed to
be independent from each other for every n.

According to (25), the (approximate) S-transform of each
signal is given by

T †xn(t, f) =
Ωn
2
e−

1
2 (2π)2(1− ν0f )

2

ei[φn−2π(f−ν0)t], (43)

which has amplitude∣∣T †xn(t, f)
∣∣ =

Ωn
2
e−

1
2 (2π)2(1− ν0f )

2

(44)

and phase

arg
[
T †xn(t, f)

]
= φn − 2π(f − ν0)t. (45)

In this case, both amplitude and phase vary with n and are
random (through their dependence in Ωn for amplitude, and
φn for phase). Also, since Ωn and φn are independent for
every n, so are |T †xn(t, f)| and arg[T †xn(t, f)].

From (1) and (44), we have

avgAMP†x1:N
(t, f) =

1

2
e−

1
2 (2π)2(1− ν0f )

2 1

N

N∑
n=1

Ωn, (46)

and, from (2) and (45),

ITC†x1:N
(t, f) =

∣∣∣∣∣ 1

N

N∑
n=1

eiφn

∣∣∣∣∣ , (47)

so that

avgAMP†x1:N
(t, f)2 × ITC†x1:N

(t, f)2

=

[
1

2
e−

1
2 (2π)2(1− ν0f )

2
]2
(

1

N

N∑
n=1

Ωn

)2 ∣∣∣∣∣ 1

N

N∑
n=1

eiφn

∣∣∣∣∣
2

.

(48)

Besides, the time-frequency transform of the average signal
is equal to the average of the Txn(t, f)’s from Equation (43),
that is,

T †xn(t, f) =
1

2
e−

1
2 (2π)2(1− ν0f )

2

e−2iπ(f−ν0)t 1

N

N∑
n=1

Ωn e
iφn .

(49)
The amplitude of this quantity is given by∣∣∣T †xn(t, f)

∣∣∣ =
1

2
e−

1
2 (2π)2(1− ν0f )

2

∣∣∣∣∣ 1

N

N∑
n=1

Ωne
iφn

∣∣∣∣∣ . (50)

Incorporating this result into (3), we are led to

POWavg†x1:N
(t, f) =

[
1

2
e−

1
2 (2π)2(1− ν0f )

2
]2
∣∣∣∣∣ 1

N

N∑
n=1

Ωne
iφn

∣∣∣∣∣
2

.

(51)

Comparing (48) and (51), we see that, in this particular case,
the relationship of (41) does not hold. Indeed, the influences
of the signals’ amplitudes (the Ωn’s) and phases (the φn’s) are
separated in (48) but appear jointly in (51).

Still, one can take advantage of the statistical independence
of the Ωn’s and the φn’s to derive the expectations of the
various quantities. We start by calculating the expectation of
amplitude from (44), leading to

E
[∣∣T †xn(t, f)

∣∣] =
Ω0

2
e−

1
2 (2π)2(1− ν0f )

2

. (52)

An asymptotic approximation of E[(avgAMP†)2] is then
available from (13) and (52)

E
[
avgAMP†x1:N

(t, f)2
]

=

[
Ω0

2
e−

1
2 (2π)2(1− ν0f )

2
]2

+O

(
1

N

)
.

(53)
One can also compute the circular mean by using (8) and (45),

E
[
ei arg[T †xn (t,f)]

]
= ρei[φ0−2π(f−ν0)t], (54)

and, from (15),

E
[
ITC†x1:N

(t, f)2
]

= ρ2 +O

(
1

N

)
. (55)

The product E[(avgAMPL†)2] by E[(ITC†)2] can then be
calculated from (53) and (55), yielding

E
[
avgAMP†x1:N

(t, f)2
]
× E

[
ITC†x1:N

(t, f)2
]

=

[
Ω0ρ

2
e−

1
2 (2π)2(1− ν0f )

2
]2

+O

(
1

N

)
.

Since |Tx(t, f)| and arg[T †x(t, f)] are independent, so are
avgAMP† and ITC†, so that, according to (5),

E
[
ITC†x1:N

(t, f)2 × avgAMP†x1:N
(t, f)2

]
=

[
Ω0ρ

2
e−

1
2 (2π)2(1− ν0f )

2
]2

+O

(
1

N

)
. (56)

Deriving an asymptotic form for E(POWavg†) from (20) and
(49) is lengthier, but it can be done and leads to (see §2.4 of
Supplementary Material #1)

E[POWavg†x1:N
(t, f)] =

[
Ω0ρ

2
e−

1
2 (2π)2(1− ν0f )

2
]2

+O

(
1

N

)
.

(57)
Equality of (56) and (57) shows that we have

E
(

POWavg†
)

= E

[(
avgAMP†

)2

×
(

ITC†
)2
]
+O

(
1

N

)
.

(58)
This result is weaker than in the simplest model leading to
(41), in that (i) it involves an equality in expectation, and (ii)
it is only true asymptotically.

6) Model with varying amplitude, frequency, and phase:
We finally consider repetitions of the oscillatory signal with
varying amplitude, phase, and frequency

xn(t) = Ωn cos(2πνnt+ φn), n = 1, . . . , N. (59)

We assume that we have Ωn ∼ N (Ω0, τ
2
Ω), νn ∼ N (ν0, τ

2
ν ),

and φn ∼ VonMises(φ0, κ).
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The approximate time-frequency transform of each signal
is given by

T †xn(t, f) =
Ωn
2
e−

1
2 (2π)2(1− νnf )

2

ei[φn−2π(f−νn)t], (60)

with amplitude∣∣T †xn(t, f)
∣∣ =

Ωn
2
e−

1
2 (2π)2(1− νnf )

2

(61)

and phase

arg
[
T †xn(t, f)

]
= φn − 2π(f − νn)t. (62)

Note that, in this case, amplitude and phase are not indepen-
dent, as they both depend on νn. As in the previous model,
we will need to calculate expectations. From Equation (61),
we obtain (see §2.5.2 of Supplementary Material #1)

E
[∣∣T †xn(t, f)

∣∣] =
Ω0

2

1√(
2πτν
f

)2

+ 1

e
− 1

2
(2π)2

( 2πτν
f )

2
+1

(1− ν0f )
2

(63)
and, from (13),

E
[
avgAMP†x1:N

(t, f)2
]

(64)

=

Ω0

2

1√(
2πτν
f

)2

+ 1

e
− 1

2
(2π)2

( 2πτν
f )

2
+1

(1− ν0f )
2


2

+O

(
1

N

)
. (65)

From (62), we obtain (see §2.5.3 of Supplementary Mate-
rial #1)

E
{
ei arg[T †xn (t,f)]

}
= ρe−

1
2 (2πt)2τ2

ν ei[φ0−2π(f−ν0)t], (66)

so that ∣∣∣E{ei arg[T †xn (t,f)]
}∣∣∣ = ρe−

1
2 (2πt)2τ2

ν , (67)

and, from (15),

E
[
ITC†x1:N

(t, f)2
]

= ρ2
[
e−

1
2 (2πt)2τ2

ν

]2
+O

(
1

N

)
. (68)

To calculate POWavg†, we need the following quantity (see
§2.5.4 of Supplementary Material #1):

E
[
T †xn(t, f)

]
=

1

2
E(Ωn)E

(
eiφn

)
×E

[
e−

1
2 (2π)2(1− νnf )

2−2iπ(f−νn)t
]

=
Ω0ρ

2

1√(
2πτν
f

)2

+ 1

e−2iπ(f−ν0)t

×e
− 1

2
(2π)2

( 2πτν
f )

2
+1

[
(1− ν0f )

2
+τ2

ν t
2
]
.

Finally, from (20),

E
[
POWavg†x1:N

(t, f)
]

=

Ω0

2

1√(
2πτν
f

)2

+ 1

e
− 1

2
(2π)2

( 2πτν
f )

2
+1

(1− ν0f )
2


2

×ρ2

e− 1
2

(2π)2

( 2πτν
f )

2
+1
τ2
ν t

2

2

+O

(
1

N

)
. (69)

From (65), (68), and (69), we are now in position to calculate

E
[
POWavg†x1:N

(t, f)
]

−E
[
ITC†x1:N

(t, f)2 × avgAMP†x1:N
(t, f)2

]

=

Ω0ρ

2

1√(
2πτν
f

)2

+ 1

e
− 1

2
(2π)2

( 2πτν
f )

2
+1

(1− ν0f )
2


2

×


e− 1

2
(2π)2

( 2πτν
f )

2
+1
τ2
ν t

2

2

− 1

+O

(
1

N

)
. (70)

This difference, which is negative, does not tend to 0 as
N → ∞. However, it becomes increasingly smaller when τν
becomes smaller and vanishes for τν = 0, which corresponds
to a situation where the signal frequency is fixed, leading
to independent amplitude and phase for the time-frequency
transform.

E. General expression

In this section, we confirm the results of the previous section
and show in a more general setting that

E
[
POWavg − ITC2 × avgAMP2

]
= O

(
1

N

)
, (71)

provided that a certain condition is met, which includes the
case where the covariance between the amplitude |Tx(t, f)|
and phase θx(t, f) of Tx(t, f) is equal to 0. Since indepen-
dence entails a covariance of 0, independence is a sufficient
condition.

1) Case of independent amplitude and phase: Given the
asymptotic expansions of avgAMP, ITC, and POWavg, we can
expect the following behaviors for large N . On the one hand,
from (13) and (15), we obtain

avgAMPx1:N
(t, f)2 × ITCx1:N

(t, f)2

= E [|Tx(t, f)|]2
∣∣∣E [eiθx(t,f)

]∣∣∣2 +O

(
1

N

)
(72)

On the other hand, starting from (20) and, remembering the
expression of Tx(t, f) in terms of |Tx(t, f)| and eiθx(t,f), (11),
we have

E
[
POWavgx1:N

(t, f)
]

=
∣∣∣E [|Tx(t, f)|eiθx(t,f)

]∣∣∣2 +O

(
1

N

)
. (73)
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Now, if we assume independence of |Tx(t, f)| and eiθx(t,f),
we can apply (5), leading to

E
[
POWavgx1:N

(t, f)
]

= E [|Tx(t, f)|]2
∣∣∣E [eiθx(t,f)

]∣∣∣2 +O

(
1

N

)
. (74)

Since (72) and (74) are identical, we showed that

E(POWavg) = E(avgAMP2 × ITC2) +O

(
1

N

)
(75)

in the case of independent amplitude and phase of the time-
frequency transform.

2) General case: We now proceed to a more general proof,
showing in the process that having a covariance of 0 is a
sufficient condition. To this end, we first calculate avgAMP2

× ITC2 from (1) and (2), expanding the product by brute
force, and then calculate its expectation term by term. We then
calculate POWavg and its expectation using (20), (11), and (6).
Calculating the difference between the two terms leads to (see
§3 of Supplementary Material #1):

E(POWavg − ITC2 × avgAMP2)

=
∣∣∣E [eiθx(t,f)

]
E [|Tx(t, f)|] + Cov

[
eiθx(t,f), |Tx(t, f)|

]∣∣∣2
−
∣∣∣E [eiθx(t,f)

]∣∣∣2 E [|Tx(t, f)|]2 +O

(
1

N

)
. (76)

If Cov
[
eiθx(t,f), |Tx(t, f)|

]
= 0, then the right-hand side of

the equation is equal to O(1/N). A sufficient condition for
this covariance to be equal to 0 is for eiθx(t,f) and |Tx(t, f)|
to be statistically independent. But this is not a necessary
condition, as we can have non-independent (non-Gaussian)
variables whose covariance is equal to 0. If the covariance
is different from 0, it is still possible for the right-hand side
of (76) to be O(1/N), although the corresponding solutions
cannot be associated with simple cases.

III. SIMULATION STUDY

In this section, we investigated the connection between
avgAMP, ITC, and POWavg by generating synthetic data in the
context of high-frequency oscillations (HFOs). Application of
time-frequency analysis to brain recordings from event-related
protocols involving sensory stimulation have indicated that
phase locking of ongoing EEG activity strongly contributes
to HFOs (range 400–800 Hz) which are superimposed on
the somatosensory evoked potential (SEP) [25], [28]–[30].
The corresponding detailed temporal components of short
durations and small amplitudes were generally identified by
measuring latencies of the averaged evoked potential in time
domain [30]. In addition, ITC analysis was found to mimic
the time-frequency power distribution of the HFOs, while the
average of the single-sweep time-frequency power transforms
did not show any significant increment of power [25].

A. Data generation

We generated signals on a time window of [−100, 100] ms at
a sampling rate of fs = 2 kHz (corresponding to a recording
every δt = 0.5 ms). Signals corresponding to the different

trials were generated independently. For each trial n, we
simulated an induced response in the [20, 30] ms time window,
and ongoing activity the rest of the time. Both the ongoing
and the induced activities were generated using (21) with the
same amplitude Ωn and frequency νn, but with different phase:
φ

(o)
n for the ongoing activity, and φ(i)

n for the induced activity.
The exact values of parameters were sampled according to
specific distributions (see Table I). To limit the effect of
spectral leakage on ITC, we added Gaussian white noise with
a standard deviation of 0.01 (corresponding to 1% of the
expected signal amplitude). The signals were analyzed using
the S-transform, as well as two wavelet transforms (Morse
wavelet and analytic Morlet wavelet). Only results of the S-
transform applied to the signals with κ(i) = 10 are reported
here; see §1 of Supplementary Material #2 for all results.

TABLE I
SIMULATION STUDY. VALUES OF PARAMETERS FOR DATA GENERATION.

Parameter Distribution Parameters
Ωn N (Ω0, τ2

Ω) Ω0 = 1 τΩ = 0.1
νn N (ν0, τ2

ν ) ν0 = 500 τν ∈ {0, 5}
φ

(o)
n vonMises[φ0, κ(o)] φ0 = 0 κ(o) = 0

φ
(i)
n vonMises[φ0, κ(i)] φ0 = 0 κ(i) ∈ {1, 10}

B. Assessment analysis

Based on the simulated data, we computed avgAMP2, ITC2,
POWavg, as well as the difference between POWavg and
avgAMP2 × ITC2. To assess the validity of the assumption
of a covariance of 0 between the amplitude and phase of the
time-frequency transform, we also computed the module of
the sample covariance between eiθx(t,f) and |Tx(t, f)|.

C. Results

Results are summarized in Fig. 1 and in §1 of Supple-
mentary Material #2. avgAMP2 evidenced a (mostly) constant
signal power around 500 Hz. For an oscillatory signal of
the form given by (21), the maximum of the power for the
S-transform is reached around f = ν, with value close to
Ω2

0/4 = 0.25. The values of avgAMP2 were in agreement
with this result.

ITC behaved as expected. It was able to detect the increase
in phase synchrony between 20 and 30 ms, with very low
values (close to 0) outside the 20–30 ms window, and large
values (close to 1) within this range. As predicted by our
calculations, high values in the 20–30 ms window were not
limited to frequencies close to 500 Hz.

POWavg was found to well fit the values predicted by
avgAMP2×ITC2. As a consequence, it shared the localization
properties of both avgAMP and ITC. Like avgAMP, it was
larger for frequencies close to 500 Hz; and, like ITC, it was
larger in the 20–30 ms window. Both features put together
made it so that it was able to precisely localize both the
frequency of the signal and the time of increased phase
synchronization.

Looking more specifically at the error made by the rela-
tionship of (4), we observed that it had a maximum value of
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about 10% of the maximum value of POWavg. Its distribution
in terms of time and frequency was very specific, as it was
lower than 0.005 (corresponding to 2% of the maximum value
of POWavg) for most values of t and f , with a relative
exception around 20 and 30 ms. These two times corresponded
to discontinuities in all measures; see below. Also, largest
error values were observed for small values of POWavg: for
values of POWavg larger than 0.1 (corresponding to at least
40% of the maximum), the error was smaller than 0.0025
(corresponding to 1% of the maximum value of POWavg).
The absolute value of the covariance between eiθx(t,f) and
|Tx(t, f)| was found to follow a distribution in terms of t and
f that was similar to that of the error, with a maximal value
around 0.08.

These results bring evidence in favor of the validity of
the approximations made in the theoretical calculations: (i)
approximating measures by their expectations; (ii) using an
approximation of the S-transform, (25); (iii) using asymptotic
approximations in O(1/N).

We also noticed a discontinuity in avgAMP2 around 20 ms
and 30 ms, as well as artifacts of ITC2 at lower frequencies.
These are probably artifacts of the time-frequency transform
are due to the sudden change in phase at 20 ms (from φ

(o)
n to

φ
(i)
n ) and at 30 ms (back from φ

(i)
n to φ(o)

n ) and limited amount
of noise in the data, i.e, artifacts due to the simple model
we used. In particular, the artifacts observed for ITC2 were
likely a consequence of spectral leakage and were reduced by
increasing the standard deviation of the noise.

IV. APPLICATION TO EXPERIMENTAL DATA

We rely on [25], who previously investigated the connection
between the behaviors of POWavg, avgAMP, and ITC in the
context of high-frequency oscillations (HFOs) in early cortical
somatosensory evoked potentials.

A. Data

Somatosensory evoked potentials following median nerve
stimulations were recorded in a healthy subject. Brain re-
sponses were acquired using multichannel EEG with a sam-
pling frequency of 3 kHz. Electrical median nerve stimulation
of 1 ms duration was applied to median nerve at the wrist level
to elicit a burst of high-frequency oscillations (HFOs) in the
400–800 frequency range superimposed onto the cortical N20
potential [28]–[30]. The stimulus was applied 300 times, with
a 500-ms inter-trial interval. Following previous recommenda-
tions [30], we studied the fronto-central channels (CP3–Fz).
Data acquisition was performed at the Center for Neuroimag-
ing Research (CENIR) of the Brain and Spine Institute (ICM,
Paris, France). The experimental protocol was approved by the
CNRS Ethics Committee and by the national ethical authorities
(CPP Île-de-France, Paris 6 – Pitié-Salpêtrière and ANSM).

B. Analysis

The data was analyzed in the window 10–100 ms after
stimulation. We started at 10 ms after stimulus to avoid
consequences of the artifacts generated by the stimulation.

For the time-frequency transform, we used the S-transform.
Akin to what was done for the simulation study, we computed
the three measures POWavg, avgAMP2, and ITC2; the error∣∣POWavg − avgAMP2 × ITC2

∣∣; and the absolute value of
the covariance between eiθx(t,f) and |Tx(t, f)|.

C. Results

Results are summarized in Fig. 2 and in §2 of Supplemen-
tary Material #2. avgAMP2 did not exhibit a clear frequency
band with larger values. POWavg and ITC2 both exhibited
an increase around 20 ms in the range of 800–850 Hz. We
found evidence for a linear relationship between POWavg and
avgAMP2 × ITC2, even though the proportionality factor
was found to be rather in the range 0.6–0.7 than close the
predicted value of 1. The error made by the approximation
of (4) was observed to be roughly proportional to POWavg,
corresponding to relative error of the order of 30%, conse-
quently exhibiting larger values where POWavg was larger.
The covariance between eiθx(t,f) and |Tx(t, f)| was also
observed to be larger in the same time-frequency region.

V. DISCUSSION

In neuroscience, time frequency analysis is a key method
for the investigation of brain rhythms from brain recordings,
in particular when considering event-related protocols. In this
framework, three measures have been proposed, which we de-
fined in (1)–(3) and coined avgAMP, ITC, and POWavg. While
these three measures are sensitive to different features of brain
responses, similarities between ITC and POWavg have been
observed. In the present manuscript, we further investigated
the connection between ITC and POWavg using theoretical
calculations and a simulation study. With the theoretical cal-
culations, we derived several variants of a relationship that
roughly read POWavg = avgAMP2 × ITC2 and whose exact
forms depended on the specifics of the underlying models and
assumptions. The simulation study nicely confirmed the global
form of the relationship, thereby bringing evidence in favor
of the validity of the approximations made in the theoretical
calculations.

The relationship between POWavg, ITC and avgAMP might
seem obvious and highly anticipated, as (i) these three mea-
sures are computed from the same brain signals, and (ii)
empirical results have showed strong similarities between
POWavg and ITC2, e.g., [25]. Yet, we argue that the results
developed in the present manuscript are novel in at least two
ways. First, we started with the observed common similarity
of results produced using POWavg and ITC and investigated
its theoretical underpinning. We then proved that the relation-
ship between these two measures actually also involves the
third measure, avgAMP. We believe that the involvement of
avgAMP was not anticipated. The second novelty is that the
relationship takes a very simple form, one of proportionality.
We do not think that this result was largely expected either.

We advocate that both results are an unlikely coincidence
that is the very consequence of the choice of POWavg, ITC
and avgAMP as measures of interest. For instance, changing
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Fig. 1. Simulation study. Results from time-frequency transform with the S-transform for signals with κ(i) = 10 and τν = 0. Around the expected signal
frequency, f = ν0, the expected value of the power should be close to Ω2

0/4 = 0.25.

ITC to another measure of angular dispersion, e.g., the circular
mean deviation [27, §2.3.4]

d0(φ̃) =
1

N

N∑
n=1

[
π −

∣∣∣π − ∣∣∣θxn(t, f)− φ̃
∣∣∣∣∣∣] , (77)

where φ̃ is the sample median of the θxn(t, f)’s, would
render the relationship invalid. Similarly, changing avgAMP
(a measure of amplitude) to a measure of power,

avgPOW =
1

N

N∑
n=1

|Txn(t, f)|2 , (78)

would make for a more complex relationship, as we have

E(avgPOW) = E [|Tx(t, f)|]2 + Var [|Tx(t, f)|] , (79)

to be compared with (12). In the expression of E(avgPOW),
the variance term does not vanish with increasing N , while it
does for E(avgAMP2)—see (13). As a consequence, we have

POWavg 6= avgPOW × ITC2. So it is a subtle interplay
between the three measures selected that make the existence
of the relationship possible.

As a consequence, the observed similarity between the two
measures POWavg and ITC actually emphasizes the fact that
the three measures POWavg, ITC and avgAMP are “naturally”
connected in ways that remain to be fully understood, and
provide three views of the same core time-frequency feature
of the signal.

With the calculations, we first investigated the particular
case of oscillatory signals (Section II-D). Recordings of brain
activity are hypothesized to be interpretable in terms of brain
rhythms, i.e., of signals of specific frequency ranges. This is a
major reason why time-frequency transform is applied to this
kind of signals. It is also evidence that oscillatory signals are
natural candidates for realist models of brain activity.

To perform the time-frequency transform, we applied the
S-transform. There are two reason for this choice. First, it is
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POWavg avgAMP2

ITC2 avgAMP2 × ITC2 as a function of POWavg

Fig. 2. Real data. Results from time-frequency transform with the S-transform: POWavg, avgAMP2, ITC2,
∣∣POWavg − avgAMP2 × ITC2

∣∣, and relation
between POWavg and avgAMP2 × ITC2. Horizontal solid lines were added at 800 and 850 Hz, and vertical dashed lines were added at 19 and 23 ms.

a method that is commonly applied in the analysis of brain
recordings. Furthermore, it had the advantage of rendering
our calculations tractable. Its main drawbacks are its (relative)
computational burden and the fact that it is not analytic, i.e., its
Fourier transform has nonzero power in negative frequencies.
As a consequence, it splits the power of the signal on positive
and negative frequency components. Our calculations with the
S-transform were made possible by replacing the true time-
frequency transform Tx(t, f) of (23) with the approximation
T †x(t, f) of (25). We showed that such an approximation was
valid over a wide range of frequencies.

Using theoretical calculations, we also tackled the general
case (Section II-E). There, we showed that the relationship
was of the form of (71), provided that the covariance between
the amplitude and phase of the time-frequency transform was
equal to 0. To reach this conclusion, we relied on the as-
sumption that avgAMP, ITC, and POWavg, which are averages
computed over many repetitions N of the same experiment

(typically, N is equal to one to several hundreds), could be
approximated by expectations. This is equivalent to neglecting
the variability of the measures, i.e., equivalent to assuming low
variance.

We finally used a simulation study (Section III) to gen-
erate synthetic HFOs as observed in event-related protocols
involving sensory stimulation. The generative model allowed
for a certain level of variability that could not be taken into
account in the calculations. Note that we did not simulate the
main SEP (N20), as this was not necessary: Since the time-
frequency transform is linear, the time-frequency transform of
the SEP would only be superimposed to the time-frequency
transform of th HFOs. Since frequencies do not overlap, the
SEP is expected to have very limited influence on our analysis.

The synthetic data were then analyzed using the S-
transform. Despite the above-mentioned variability, the global
relationship of (4) still seemed to hold relatively well. In
particular, the results showed that both ITC and POWavg were



11

sensitive to the simulated phase resetting phenomenon.
Unexpectedly, the results also hinted that ITC might not be

able to determine the frequency at which the phase resetting
occurs, while POWavg seemed to be able to. This is in agree-
ment with our theoretical calculations—compare, on the one
hand, (37), (55), and (68), which show that these expressions
of ITC (or ITC2, or its expectation) are not a function of f ,
and, on the other hand, (40), (51), and (69), which show that
POWavg (or its expectation) are. However, to the best of our
knowledge, this is contrary to empirical evidence on real data,
where ITC is usually localized in frequency, making possible
to narrow the range where the induced oscillations take place
[21], [25]. We aim to find an explanation to this discrepancy.

Besides the S-transform, another common ways to per-
form time-frequency transform is to use the wavelet trans-
form. Wavelets transforms are fast and, when using analytic
wavelets, only decompose a signal in the range of positive
frequencies. For instance, the expected power at f = ν0 of
our oscillatory signal is 1 instead of 0.25. In our simulation
study, we found that the practical difference between S-
transform and wavelet transform was very limited; see, e.g.,
§3 of Supplementary Material #2 for analysis of the synthetic
data using wavelet transforms (Morse and analytic Morlet
wavelets).

Note that the simulation study used a crude model of brain
response. As a consequence, we observed on the simulated
data some results that are not typical of time-frequency
diagrams of real brain recordings. Some of these atypical
results corresponded to theoretical predictions, while others
did not. For instance, as mentioned above, the fact that ITC
on simulated HFOs was not localized in a limited frequency
band around the true oscillation frequency was to be expected
from the theoretical calculations but not from the literature.
Other features of the simulated time-frequency diagrams did
not correspond to what is typically observed on time-frequency
diagrams of real brain recordings. This includes a discontinuity
in avgAMP2 at 20 ms and 30 ms, as well as artifacts of ITC2

at lower frequencies. These are probably artifacts of the time-
frequency transform might be due to the sudden change in
phase at 20 ms (from φ

(o)
n to φ

(i)
n ) and at 30 ms (back from

φ
(i)
n to φ

(o)
n ) and limited amount of noise in the data. As a

consequence, the possibility that we had in our simulations
to detect phase resetting in avgAMP is merely an artifact
resulting from an oversimplified simulation model rather than
an empirically confirmed result.

While we focused on HFOs for the simulation study, nothing
in the theoretical developments depends on the frequency
of the underlying signal. As a consequence, we expect the
general relationship to hold for different brain frequency
ranges as well. As a confirmation, we ran a new simulation
with ν0 = 40 Hz. As expected, the results were very similar to
the ones obtained for the simulated HFOs (for details, see §4
of Supplementary Material #2). This is particularly relevant in
the context of auditory evoked steady-state responses (ASSR)
which are increasingly being used to probe the ability of
auditory circuits to produce synchronous activity at 40 Hz, in
response to repetitive external stimulation [31]. Perturbation
in both power or phase-locking has been also observed in

various neuropsychiatric disorders [32], [33]. Because the
ASSR is composed of complex time-dependent frequency
responses [34], the present study suggests that the combination
of different methods (avgAMP, ITC, and POWavg) can be used
to avoid a misleading or wrong interpretation of the neuronal
modulations, especially as markers of brain dysfunctions in
psychiatric disorders.

Also, the present work focused on the case of a signal
composed of a single frequency. We expect the presence
of multiple frequencies to have a limited impact on the
calculation of avgAMP beyond mere additivity, but to strongly
interfere with the calculation of ITC, potentially reducing the
frequency range over which a phase resetting phenomenon
is associated with a larger value of ITC. Further simulation
studies could help assess the validity of such an assumption.
It would also be interesting to investigate the particular case
where there exists dependencies between frequencies, e.g., in
the form of cross-frequency coupling.

From the theoretical calculations, we found that the rela-
tionship (4) between POWavg, avgAMP, and ITC requires
that amplitude and phase have 0 covariance. This requirement
is slightly more general than independence, as there exist
variables that have 0 covariance but are not independent. On
the simulated data, we quantified the level of validity of this
assumption and found a rather good fit, at the exception of
around 20 and 30 ms, where we observed spectral leakage.
On the experimental data, we found the presence of a linear
relationship between quantities, albeit with a proportionality
factor that was lower than the expected value of 1. Also,
the values of both |POWavg − avgAMP2 × ITC2| and
|Cov[eiθx(t,f), |Tx(t, f)|]| were roughly linearly related to the
values of POWavg. We hypothesize that the departure from
theoretical expectations might be related to the presence of
noise.

Regarding noise, it has to be mentioned that the present
work is based on the assumption that there is no noise and
that the totality of the signal measured is relevant. This is
usually not the case, as brain recordings are subject to noise.
The influence of this noise on time-frequency transform needs
to be further investigated. In particular, we need to investigate
whether it could be the source of the “dampening” effect on
the linear relationship observed in the real data. Note that, by
contrast, [35, §19.3] expects noise to increase ITC. We hope to
be able to clarify this point in the near future. In this endeavor,
the relationship of (4) might prove to be a valuable tool.

We can now conclude regarding the implication of
the present development to neuroscientific practice. Time-
frequency analyses have been widely used in electrophysiolog-
ical research for the characterization of oscillatory responses to
stimuli in a large range of brain processes, from simple sensory
processing to higher order cognition [15], [17], [22]. Multiple
studies have reported evidence that evoked oscillations are
not exclusively composed of either a stimulus phasic-related
component or some stimulus-induced phase resetting, but
usually include a combination of both in variable proportions
[24], [36]. As a consequence, the respective contributions
of both types of components have to be clarified before
attempting to draw physiological conclusions. Unfortunately,
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distinguishing between the two phenomena remains quite a
challenge, in particular when multiple oscillations are present
in neighboring frequency bands [37], [38]. One potentially
fruitful approach for future research could be to develop
measures quantifying to what extent changes in ITC and in
avgAMP are correlated in the time and frequency domains.
The exact bearing of the relationship will become increasingly
clearer as real data are analyzed with this result in mind.

VI. CONCLUSION

In this manuscript, we showed that avgAMP, ITC, and
POWavg were related through the approximate, simple re-
lationship given by (4). This result, based on theoretical
calculations and a simulation study, confirms previous empiri-
cal evidence and provides a novel perspective to investigate
evoked brain rhythms. In particular, looking at ITC and
avgAMP as two distinct measures quantifying different aspects
of rhythmic brain activity, and taking into consideration their
level of correlation may help disentangle contributions from
additive evoked activity and phase-reset oscillatory activity.
In this context, the presented relationship between POWavg,
ITC, and avgAMP may provide a significant refinement to the
neuroscientific toolbox for studying evoked oscillations.

As a final note, time-frequency analysis is a method that is
commonly used in many fields of scientific research, includ-
ing fluids mechanics, engineering, other fields of biomedical
imaging and medicine, and geophysics [6]. We hope that the
present development will find applications in these fields as
well.
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