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Acoustoelasticity in transversely isotropic soft tissues:
Quantification of muscle nonlinear elasticity
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ABSTRACT:
Recent developments in the field of elastography aim at developing the quantification of new mechanical properties

of tissues, that are complementary to the shear modulus, which is characteristic of the linear elastic properties of a

quasi-incompressible medium. In this context, measurement of the elastic nonlinearity of tissues was recently pro-

posed based on acoustoelasticity. Up to now, most of the experimental applications of acoustoelasticity theory using

Landau formalism in human tissues have assumed isotropy. However, this strong hypothesis does not hold in all

human tissues, such as muscles that are generally considered as transversely isotropic (TI). In this work, after

reviewing the constraints imposed by TI symmetry on the linear and nonlinear elastic properties of TI media, the

acoustoelasticity theory in TI incompressible media is developed and implemented experimentally on a TI polyvinyl

alcohol phantom and on ex vivo muscular tissues. Based on this theory and on the evolutions of the shear wave

speed, with respect to uniaxial static stress, the nonlinear elastic parameter A is experimentally quantified. The esti-

mations of A in ex vivo bovine and porcine muscles are on the order of hundreds of kPa. This work paves the way

for more thorough muscle mechanical properties characterization as well as for the development of a potential new

biomarker. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0008976

(Received 30 April 2021; revised 17 November 2021; accepted 19 November 2021; published online 28 December 2021)

[Editor: James F. Lynch] Pages: 4489–4500

I. INTRODUCTION

In the field of biomedical imaging, elastography aims at

measuring mechanical properties of tissues to provide physi-

cians with a quantifiable, reproducible, and precise alterna-

tive to palpation. By using ultrasound imaging, shear wave

elastography (SWE) consists in deducing tissues’ mechanical

properties from the characteristics of shear wave propaga-

tion. Among the different techniques available, supersonic

shear imaging (SSI) produces a conical shear wave in a

supersonic regime based on the acoustic radiation force, by

focusing ultrasound waves at successive depths (Bercoff

et al., 2004). SSI benefits from ultrasound ultrafast imaging

to image the propagation of the generated shear wave. From

this propagation movie, the shear wave speed vs in the tissue

is deduced and used to estimate the second order linear shear

modulus (l) of the tissues, based on the assumptions of tis-

sues as linear, elastic, homogeneous, and isotropic media.

However, the linear stress–strain relation assumption is

a simplifying hypothesis as tissues exhibit a nonlinear

mechanical behavior, in part because of the finite extensibil-

ity of macromolecules composing tissues (Rosen and Jiang,

2019). For a more thorough mechanical characterization of

tissues and for the development of new biomarkers,

Gennisson et al. (2007) developed a measure of the 3rd

order elastic nonlinear shear modulus (NLSM) of tissues,

which appears in the expression of the strain energy, using

the invariants of the Green–Cauchy strain tensor (Landau

et al., 1985).

NLSM can be quantified by using the acoustoelasticity

(AE) theory that was first established by Brillouin (1925)

and further developed by Hugues and Kelly (1953) and

Hayes and Rivlin (1961) in compressible and incompress-

ible solids, respectively. Gennisson et al. (2007) then

adapted the theory for quasi-incompressible soft solids with

the aim of applying it on soft tissues. The AE theory consists

in measuring the speed of shear waves in media under uni-

axial stress and in deducing the NLSM from the variations

of shear wave speeds with respect to the applied uniaxial

stress. Bernal et al. (2016) combined SSI and static elastog-

raphy to quantify locally the shear wave speed and the local

stress to map the local NLSM, in in vivo breast lesions. This

study proved the NL elastic modulus to be a potential new

interesting biomarker available for physicians.

However, the AE theory, as it is derived by Gennisson

et al. (2007), relies on the strong assumption of tissue isot-

ropy. This hypothesis does not hold in all biological tissues,

as in muscles. Indeed, such organs are composed of elon-

gated thin cells (muscular fibers or myocytes) that are

aligned in one specific direction. In the plane perpendicular

to this direction, cells are more or less arranged randomly.

Muscles can therefore be considered as a transverse isotro-

pic (TI) medium.

TI media require a more complex characterization of

their elastic properties to consider the specificities of their
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geometry. For example, the linear elastic behavior of

incompressible TI media is fully described by the specifica-

tion of three independent parameters (the shear moduli

along and across the principal axis, respectively l// and l?,

and the Young modulus along the fibers, E//) (Chadwick,

1993; Spencer, 1984), while isotropic incompressible

media are characterized by one single linear elastic modu-

lus. Besides, at the first nonlinear order, there are four 3rd-

order constants for incompressible TI media, as opposed to

only one in incompressible isotropic media (Destrade et al.,
2010). Therefore, to characterize the elastic NL of TI

quasi-incompressible media, such as muscles, the AE the-

ory must be first revisited to include the TI geometry

hypothesis.

In this paper, the AE theory is first developed for TI

incompressible media to retrieve the expression of shear

wave speed as a function of uniaxial stress. Based on these

equations, a method for quantification of one of the 3rd

order shear moduli of TI incompressible media is proposed.

The latter is then implemented on a TI polyvinyl alcohol

cryogel (PVA) phantom and on ex vivo bovine and porcine

muscular tissues. To that end, the experimental setup and

data processing are described, prior to presentation and dis-

cussion of estimations of TI nonlinear elasticity in biological

tissues.

II. THEORETICAL BACKGROUND

In this section, a transversely isotropic (TI) incompress-

ible material is considered. TI media are characterized by an

infinite order rotation symmetry axis defining their principal

axis. A plane perpendicular to this axis is therefore isotropic.

To identify particle positions in the material, a Cartesian

coordinate system (x1, x2, x3) with the x3 direction coincid-

ing with the principal axis of the TI material is used.

Finally, we recall that the linear elastic behavior of an

incompressible TI material is fully described by three inde-

pendent elastic moduli (Chadwick, 1993; Spencer, 1984;

Bower, 2010): lk, l?(the shear moduli parallel and perpen-

dicular to the principal axis, respectively), and Ek (the

Young modulus parallel to the principal axis).

The AE theory derived here for TI incompressible loss-

less media is highly inspired from the AE theory in isotro-

pic media of Gennisson et al. (2007). The aim of the

following development is to express the speed of shear

waves in the considered medium under uniaxial stress. Note

that it recovers the results of Destrade et al. (2010), who

used a different approach, based on the equations of incre-

mental elasticity.

A. Overall governing equations for the retrieval of the
motion equation of particles

Acoustic wave equations can be derived from the equa-

tion of motion of the medium’s particles (given by

Newton’s second law), which is expressed in terms of

Lagrangian coordinates ~a (i.e., the particles’ equilibrium

positions) as (Einstein’s summation convention of repeated

indices is used)

q0€ui ¼
@Pik

@ak
; (1)

where q0 is the medium’s density, ui the displacement of

particles in the i direction, and Pik is the components of the

first Piola–Kirchhoff stress tensor. In the general case (with-

out any incompressibility constraint), the latter is derived

from the strain energy density e of the medium,

Pik ¼
@e

@
@ui

@ak

� � : (2)

B. Expression of the strain energy density of TI
incompressible media

Developed up to the 3rd order in terms of the

Green–Lagrange strain tensor e, the strain energy e of a

compressible TI medium for which the principal direction is

along ~xp , is (Johnson, 1982; Spencer, 1984)

e ¼ k
2

I2
1 þ l?I2 þ aI1I4 þ

b
2

I2
4 þ 2 lk � l?ð ÞI5

þ A

3
I3 þ BI1I2 þ CI3

1 þ DI2
1I4

þ EI1I2
4 þ FI1I5 þ GI3

4 þ HI4I5 þ JI2I4; (3)

where eij ¼ 1
2
@ui=@aj þ @uj=@ai þ ð@ul=@aiÞð@ul=@aj

� �
Þ.

I1 ¼ Tr eð Þ, I2 ¼ Tr e2ð Þ; and I3 ¼ Tr e3ð Þ are the invariants of e
defined by Landau and Lifshitz (1985). I4 ¼ ~xp :e:~xp and

I5 ¼ ~xp :e2:~xp are the two additional e invariants to consider in

a TI medium and that are defined relative to the principal axis

of the medium (note that for ~xp ¼ ~x3 , I4 ¼ e33 and I5 ¼ e2
13

þe2
23 þe2

33). k, a, b, l// and l? are the five linear elastic coeffi-

cients of a TI medium defined by Spencer (1984) that appear

naturally in the definition of the elastic tensor of the medium.

Their relations with the engineering parameters for TI media

(the two Young moduli, shear moduli, and Poisson ratios)

appearing conventionally in the elastic compliance tensor are

given elsewhere (Bower, 2010; Namani et al., 2012). The nine

3rd order elastic parameters of a TI medium are (A, B, C, D, E,

F, G, H, J). Note that for convenience, these parameters are lin-

ear combinations of those originally used by Johnson (1982).

In TI incompressible media, there is no relative volume

change, which translates into IIIC ¼ q2
0

q2 ! 1, where IIIC is

the 3rd principal invariant of the Green deformation tensor.

Due to the relation between IIIC and the Green–Lagrange

strain tensor invariants (Destrade et al., 2010), this condition

implies that I1 is a second order term in terms of e,

I1 ¼ I2 �
4

3
I3 � I2

1 þ 2I1I2 �
2

3
I3
1: (4)

Moreover, in terms of the linear elastic parameters, the

incompressibility assumption yields k!1. Consequently,

using the relations of correspondence between (k, a, b, l//,
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l?) and the engineering parameters (Bower, 2010; Namani

et al., 2012), b and E// are linked through the relation

Ek ¼ bþ 4lk � l?: (5)

Therefore, after inserting Eqs. (4) and (5) in Eq. (3) and

neglecting all fourth and upper order terms in e, the strain

energy e of a TI incompressible medium, for which the prin-

cipal direction is ~x3 ; is up to a constant

e ¼l?I2 þ
Ek � 3l?

2
e2

33 þ 2 lk � l?ð Þ e2
13 þ e2

23

� �
þ A

3
I3 þ Gþ H þ Kð Þe3

33 H þ 2Kð Þe33 e2
13 þ e2

23

� �
þ Ke33 e2

11 þ e2
22 þ 2e2

12

� �
: (6)

In the previous equation, the invariant I2 has been developed

in terms of e elements when appearing in the 3rd order strain

terms, and the K ¼ J þ a modulus has been introduced. Note

that in the incompressibility limit, k tends toward infinity

(Bower, 2010; Namani et al., 2012): without prior knowledge

of the value of the 3rd order elastic modulus J, K can there-

fore potentially be infinite. This also raises the question of

the implications of the latter remark for the finite nature of the

strain energy. Similar to Hamilton et al. (2004) work in the

isotropic case, further repackaging of the strain energy density

for TI material in the incompressible limit based on compari-

sons between the Green–Lagrange strain terms and logarith-

mic strain considerations is needed to address the issue raised

by the potential infinite nature of K. However, such a theoreti-

cal work is out of the scope of this article. Nevertheless, the

strain energy expression [Eq. (6)] has already been used in

previous works (Destrade et al., 2010; Remenieras et al.,
2021: the K modulus corresponds to their a3 modulus) that

did not raise the issue. Moreover, the experimental quantities

we report in the next sections, as well as those measured by

Remenieras et al. (2021), are finite, even though they theoreti-

cally involve the K (or a3) modulus. Despite this remark, the

expression of the strain energy in Eq. (6) is used as the start-

ing point of the AE theory developed hereafter in Sec. II C.

C. Equation of motion of particles of a TI
incompressible medium in the context of AE SWE
experiments

After injecting the expression of the strain energy of TI

incompressible media [Eq. (6)] in Eq. (2), the first Piola-

Kirchhoff stress tensor is obtained. Note that compared to

previous works (Ogden, 1984; Chadwick, 1993), the first

Piola–Kirchhoff stress tensor should include a supplemen-

tary Lagrange multiplier term to ensure the incompressibil-

ity constraint. Indeed, as demonstrated by Chadwick (1993),

the first Piola–Kirchhoff stress tensor expression obtained

from Eq. (2) in a compressible TI medium includes an addi-

tional term involving the jTr(e) product where j is the bulk

modulus. However, in the incompressible limit, j tends to

infinity and Tr(e) towards zero. Therefore, to remove the

ambiguity of the jTr(e) limit, a Lagrange multiplier is

introduced and results in an additional pressure term in the

first Piola–Kirchhoff tensor. The specific expression of this

Lagrange multiplier term can be determined separately con-

sidering the boundary conditions [see Eq. (3.7) in Chadwick

(1993) for details]. Here, beyond the consideration of the

strain energy expression of TI incompressible media

[Eq. (6)], the static displacement field created by the uniax-

ial external stress in an AE experiment is assumed to be

isochoric [we refer the readers to Eq. (11)], which is consis-

tent with the incompressibility hypothesis. Incompressibility

is thus enforced at that point and the Lagrange multiplier

term is therefore not considered at this stage.

Knowing the expression of the first Piola–Kirchhoff

stress tensor, the equation of motion of particles is retrieved

based on Eq. (1). In the context of AE experiments, different

assumptions can be made to further simplify the equation of

motion derived at this stage.

First, in an AE experiment, an acoustic wave propagates

in a stressed medium. The displacement ~u of any particle in

the medium can therefore be decomposed into two compo-

nents: a static term ~uS due to the uniaxial stress and a

dynamic term ~uD induced by the propagation of the elastic

wave. This implies: ~u ¼ ~uS þ ~uD . When considering AE

SWE experiments, the acoustic wave at hand is a shear

wave generated by the acoustic radiation force (Bercoff

et al., 2004). This implies that the dynamic displacement

amplitude is micrometric, which is very small compared to

the static displacement. Therefore, in the equation of

motion, the non-linear propagation of the shear wave (i.e.,

product terms implying ~uD derivatives) can be neglected.

Furthermore, higher order static deformations (i.e., second

order derivatives in ~uS) will be neglected.

Second, shear waves generated in SSI are linearly polar-

ized and studied in the imaging plane: the measured shear

wave speed is therefore an estimation of that of linearly

polarized plane shear waves. Therefore, the following devel-

opment will be restricted to the case of linearly polarized

plane shear waves. For a plane shear wave linearly polarized

in the i direction, the dynamic displacement ~uD is reduced to

its’ xi component (~uD ¼ uD
i ~ni , where ~ni is the unit vector in

the i direction) and only depends on time and on ap, the

position along the propagation direction p of the wave

(
@uD

i

@al
¼ 0 for l 6¼ p). Furthermore, for simplification, the

polarization and propagation directions of the shear waves

are chosen to be either parallel or perpendicular to the prin-

cipal direction of the TI medium (see Fig. 1 for definition of

the considered configurations): thus, they coincide with two

of the axes of the coordinate system (which includes one

axis parallel to the principal direction of the TI medium).

Finally, the medium is subjected to a uniaxial stress, imply-

ing that only longitudinal static strains are non-zero. Static

displacements therefore verify:
@uS

l

@aj
¼ 0 for l 6¼ j.

The aforementioned approximations and simplifications

yield the following equation of motion (dm,n is the

Kronecker delta):
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q0

@2uD
i

@t2
¼ l?

@2uD
i

@ap
2
þ 2 l? þ

A

4

� �
@uS

i

@ai

@2uD
i

@ap
2
þ
@uS

p

@ap

@2uD
i

@ap
2

 !
þ Ek � 3l?
� � @uS

3

@a3

@2uD
i

@a3
2

þ lk � l?ð Þ

(
di;3

@2uD
3

@a1
2
þ @

2uD
3

@a2
2
þ 2

@uS
3

@a3

@2uD
3

@a1
2
þ @

2uD
3

@a2
2

� �� �
þ di;1

@2uD
1

@a3
2
þ 2

@uS
1

@a1

@2uD
1

@a3
2

� �

þ di;2
@2uD

2

@a3
2
þ 2

@uS
2

@a2

@2uD
2

@a3
2

� �)
þ H þ 2K

2
di;3

@uS
3

@a3

@2uD
3

@a1
2
þ @

2uD
3

@a2
2

� �
þ di;1

@uS
3

@a3

@2uD
1

@a3
2
þ di;2

@uS
3

@a3

@2uD
2

@a3
2

� �

þ K di;1
@uS

3

@a3

@2uD
1

@a2
2
þ di;2

@uS
3

@a3

@2uD
2

@a1
2

� �
: (7)

D. Derivation of the NL elastodynamic equation in the
configuration where wave polarization and stress are
along ~x2 , and wave propagation along ~x3

(configuration 8)

Let us now consider, as in the experimental configura-

tions represented in the 3rd line of Fig. 1, plane shear waves

linearly polarized in the x2 direction and propagating along

the x1 direction. For such configurations, the equation of

motion [Eq. (7)] reduces to

q0

@2uD
2

@t2
¼ @

2uD
2

@a1
2

l? þ 2 l? þ
A

4

� �
@uS

1

@a1

þ @uS
2

@a2

� �
þK

@uS
3

@a3

" #
:

(8)

To go further and get the wave equation in a form, such that

the wave velocity can be retrieved, the equation of motion

must be expressed with respect to the current state

(Eulerian) coordinates and not using that of the equilibrium

state. In an AE experiment, three different states can be used

FIG. 1. (Color online) The 9 simplest configurations considered for the derivation of the AE theory in TI medium in this paper. The principal axis of the TI

medium is chosen to be along ~x3 (in blue). For each configuration, the directions of polarization ~u and propagation ~k of the shear wave are specified in red,

as well as the orientation of the stress r in green. In the framework of SSI (used for experimental validation and use of the theory), the positioning and orien-

tation of the ultrasound probe are represented. The indicated configuration numbers are used to refer to each configuration throughout the article. Note that

in the two first lines, due to TI symmetry, the ~x2 and ~x1 orientations can be interchanged. To get back to configurations equivalent to those defined in the fig-

ure, the stress orientations (along ~x2 and ~x1 ) must also be rotated.
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to refer to a particle: the equilibrium state ~a, the initial state

~x (i.e., the medium under stress:~x ¼ ~a þ ~uS) and the current

state ~y, which is related to the shear wave propagation

(~y ¼~x þ ~uD) and corresponds to the Eulerian coordinates.

Because of the infinitesimal amplitude of the shear wave,

the initial and current states are considered to coincide

~y �~x. Therefore, a change of variable from ~a to ~x (with

~a ¼~x � ~uS ) must be undertaken in Eq. (8) to get the desired

form of the wave equation. By use of the chain rule and by

neglecting the nonlinear static displacement terms, this

change of variables consists in applying the following

approximations:

@uS
k

@ak
� @uS

k

@xk
;

@2uD
i

@ak
2
� @

2uD
i

@xk
2

1þ 2
@uS

k

@xk

� �
(9)

for i,k ¼ 1, 2, or 3.

This change of variable in the equation of motion

expressed in Eq. (8) yields

q0

@2uD
2

@t2
¼ @2uD

2

@x2
1

l? þ
@uS

1

@x1

4l? þ
A

2

� ��

þ @uS
2

@x2

2l? þ
A

2

� �
þ K

@uS
3

@x3

�
: (10)

Since the uniaxial stress is small, NL static displacement

terms can be neglected and Hooke’s law in TI incompress-

ible media (Bower, 2010; Namani et al., 2012) can therefore

be used to express the static displacement derivatives as a

function of the local stress. Let us consider a uniaxial stress

along the ~x2 axis (case number 8 as defined in Fig. 1); then

the application of Hooke’s law yields (r22 is set positive but

a compression is applied; hence, the negative sign for e22)

@uS
1

@x1

� e11 �
�?
E?

r22;
@uS

2

@x2

� e22 � �
1

E?
r22;

@uS
3

@x3

� e33 �
�31

Ek
r22 (11)

[with �? ¼ Ek�l?
Ekþl?

, E? ¼ 4l?
Ekþl?

Ek and �31 ¼ 1
2

for TI incom-

pressible media (Namani et al., 2012)]. Note that these rela-

tions are valid only in the case of uniaxial stress and that r22

refers to the local stress. However, if the applied stress is

assumed to be uniform in the medium, r22 corresponds to

the external stress applied by the experimenter on the

medium.

Replacing the static displacement derivatives in Eq.

(10) by their expressions in Eq. (11) yields the following

shear wave speed vs relation for configuration 8:

q0v2
s ¼ l? þ

r22

2Ek
Ek � 3l? �

A

2
þ K

� �
: (12)

The previous reasoning has been applied in the eight other

configurations defined in Fig. 1, yielding the equations

specified in Table I.

Note that at zero stress, the elastic linear behavior of the

medium is recovered. In the case of incompressible isotropic

media [which translates into l// ¼ l? ¼ l0, E// ¼ E? ¼ E
¼ 3l0, and H ¼ K ¼ 0 (Johnson, 1982)], the equations

obtained match those found by Gennisson et al. (2007) in

the corresponding configurations.

TABLE I. Nonlinear elastodynamic equations in the simplest nine AE configurations for a TI incompressible medium. Refer to Fig. 1 and its legend for the

definition of the configurations and variables~u, ~k , and r.

Shear wave Stress axis Configurations Nonlinear elastodynamic equations

~u k ~x2 r11 1
q0v2

s ¼ lk þ
r

2Ek
Ek � l? þ lk þ

lkEk
l?
þ A

4
1þ

Ek
l?

� �
þ H þ 2K

2

" #

r22 2
q0v2

s ¼ lk þ
r

2Ek
Ek � l? þ lk �

lkEk
l?
þ A

4
1�

Ek
l?

� �
þ H þ 2K

2

" #~k k ~x3

r33 3
q0v2

s ¼ lk �
r
Ek

Ek � l? þ lk þ
A

4
þ H þ 2K

2

� �
~u k ~x3 r11 4

q0v2
s ¼ lk þ

r
2Ek

Ek � l? þ lk þ
lkEk
l?
þ A

4
1þ

Ek
l?

� �
þ H þ 2K

2

" #

r22 5
q0v2

s ¼ lk þ
r

2Ek
�Ek � l? þ lk �

lkEk
l?
þ A

4
1�

Ek
l?

� �
þ H þ 2K

2

" #~k k ~x2

r33 6
q0v2

s ¼ lk �
r
Ek
�l? þ lk þ

A

4
þ H þ 2K

2

� �
~u k ~x2 r11 7

q0v2
s ¼ l? �

r
2Ek

Ek þ 3l? þ
A

2
� K

� �
r22 8

q0v2
s ¼ l? �

r
2Ek

�Ek þ 3l? þ
A

2
� K

� �~k k ~x1

r33 9
q0v2

s ¼ l? þ
r
Ek

3l? þ
A

2
� K

� �
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E. Method for quantification of the nonlinear shear
modulus A of incompressible transversely isotropic
media

In all nine derived AE equations, there is an affine rela-

tionship between the apparent shear modulus of the stressed

medium (l ¼ q0.vS
2) and the applied stress (r). Moreover,

the equations are not independent from each other. Indeed,

by naming ci the multiplying coefficient associated with the

stress in configuration i (configuration numbers defined in

Fig. 1), one finds (note that only non-equivalent relations

are written)

c1¼ c4; c2� c5¼ 1; c3� c6¼�1;

c7� c8¼�1; c8þ
c9

2
¼ 1

2
; c1þ c2þ c6¼ 1: (13)

Configurations 1 and 4 are therefore strictly equivalent.

Indeed, in both configurations, the shear deformations gen-

erated by the shear waves are in the same plane (defined by

the polarization and propagation directions) with respect to

the principal axis of the TI medium. Moreover, the stress is

applied perpendicularly to the shear plane.

Based on Eq. (13) and on the expressions of ci in terms

of the linear (l//, l?, E//) and NL (A, H, K) shear moduli, A
can be experimentally estimated using the measurements of

c1 and c2,

A ¼ 4l? c1 � c2 �
lk
l?

� �
: (14)

In Secs. III and IV, the SSI technique will be used to assess

the evolution of the shear wave speed with respect to stress

in a TI PVA phantom and in ex vivo muscles, with the aim

of validating the AE theory developed previously and pro-

viding the first estimations of A, one of the NLSM of TI

incompressible media.

III. MATERIAL AND METHODS

A. Transverse isotropic samples

AE experiments were carried on a TI phantom and on

ex vivo muscular tissues.

1. Transverse isotropic polyvinyl alcohol phantom

TI polyvinyl alcohol (PVA) phantoms were produced

based on previous work by Chatelin et al. (2014). PVA

(Polyvinyl alcohol hydrolyzed, Sigma-Aldrich, St. Louis, MO)

(10% in mass) was dissolved in 95 �C heated water. Sigmacell

(Sigmacell Cellulose type 20, Sigma-Aldrich, St. Louis, MO)

(1% in mass) was added as scatterers in the cooled solution (at

room temperature). The mixture was then poured in a parallele-

pipedal mould for three successive isotropic freezing–thawing

cycles (15 h at �18 �C for freezing, 9 h at 25 �C immersed in

water for thawing). Anisotropy was generated during the next

3 freezing-thawing cycles, during which the phantom was

removed from the mould, placed in a jaw system, and stretched

in the jaw direction to its maximum [Fig. 2(A)]. Stretching dur-

ing these freezing–thawing cycles causes PVA to polymerize

in the stretching direction, which defines therefore, the principal

direction of the resulting TI PVA phantom. The phantom was

cut to preserve only the parts undamaged by the jaw system: its

final dimensions were 6.0� 7.0� 5.0 cm3. The phantom was

stored at room temperature in water.

2. Biological transverse isotropic soft tissues

Beef and pork tenderloins with the most visible and

aligned muscular fibers were chosen at the butcher on the

morning of the experiments. They were then carefully cut to

obtain a parallelepipedal sample with the long edges parallel

to the muscular fibers. This way, the two faces perpendicular

to the long edges correspond to isotropic planes of the TI

medium. The ex vivo muscular tissues were typically

FIG. 2. (Color online) Experimental setups for TI phantom construction and AE experiments. (A) Picture of the jaw system allowing the stretching of

the PVA phantom during the anisotropic freezing–thawing cycles for anisotropy generation in the phantom. (B) Diagram of the experimental setup

used for AE experiments. By filling the water tank with a known water mass, a controlled uniaxial stress is generated. Ultrasound probes are placed at

the bottom or on the side of the sample and oriented relatively to the principal direction of the TI sample to match any of the nine configurations defined

in Fig. 1.
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5.0–6.0 cm thick. Their surface ranged from 7.0� 7.0 cm2 to

13.0� 11.5 cm2 (the precise dimensions of the samples are

specified in Table II). These samples were assumed to be

homogenous and TI.

B. Experimental setup

1. Uniaxial stress

The experimental setup designed to carry out the AE

experiments is highly inspired from Gennisson et al. (2007)

and is represented in Fig. 2(B). Briefly, the sample lies in

between two plexiglass plates. To generate uniaxial (vertical)

stresses, a water tank covering the entire surface of the sample

is positioned on top of the upper plate. Stresses of various and

known amplitudes are applied by filling the tank with water

incrementally by 0.1 or 0.2 kg steps up to 10–12 times,

depending on the sample’s hardness and on the stability of the

system. The contact surface S between the sample and the top

plexiglass plate is measured to compute the amplitude of the

stress r: r ¼ mg
S (with m the total mass on top of the sample,

g ¼ 9:81 m � s�2 the standard gravity). Up to 2 kPa stresses

were obtained. The plates are covered with coupling gel to

minimize friction with the sample. This way, the generated

stresses are assumed to be applied homogeneously in the

whole sample: in such conditions, the local stress in the sam-

ple is considered equal to the applied external stress. Besides,

the strains resulting from stresses applied using this setup are

considered linear with stress, as suggested by Latorre-Ossa

et al. (2012) work, in which they validated such an assumption

by comparing simulations and experimental results.

2. Measurement of the shear wave group velocity

Two ultrasound probes [SL-10-2 (6 MHz central frequency)

or SLH-20-6 (12 MHz central frequency), SuperSonic Imaging,

Aix-en-Provence, France] were connected to an ultrafast ultra-

sound scanning device Aixplorer V12 (SuperSonic Imagine,

Aix-en-Provence, France), set on the musculo-skeletal preset.

The shear wave group velocity is measured using the elastogra-

phy mode of the scanner, based on the SSI technique (Bercoff

et al., 2004). The focusing of ultrasounds at four successive

depths creates an ultrasonic radiation force, generating a quasi-

cylindrical shear wave for which polarization is aligned with

the probe axis. The central frequency of this generated broad-

band shear wave is around 250 Hz: hence, its wavelength is on

the order of the centimeter. Given the larger size of the samples,

shear body waves are considered to be at hand. Moreover, no

dispersion effects ex vivo, are observed in accordance with liter-

ature (Gennisson et al., 2010). The propagation of the wave in

the imaging plane is imaged at an 8 kHz frame rate using ultra-

fast ultrasound imaging. In post-processing, the axial displace-

ments due to the shear wave are quantified by correlating each

frame with the next one and thanks to a time-of-flight algo-

rithm, the local shear wave speed is retrieved. This sequence is

repeated four times at four different lateral positions to cover

the whole field of view. The local shear wave speed map is

obtained and exported for processing using the AE theory.

The two probes were placed in contact with the sample

[Fig. 2(B)]: either below the sample thanks to a SL-10-2 (SL

10-2, SuperSonic Imagine, Aix-en-Provence, France) probe

mold embedded in the bottom plexiglass plate, or on the side

of the sample, vertically or horizontally depending on the mea-

sured configuration. Since SLH-20-6 (SLH 20-6, SuperSonic

Imagine, Aix-en-Provence, France) probes are half as long as

SL-10-2 probes, the former were used in the vertical configura-

tions to cope with the limited thickness of the sample. The

probes were oriented as desired with respect to the principal

axis of the medium which was detected beforehand by eye.

C. Data analysis based on the AE theory

For each AE measurement series (i.e., a set of shear

wave speed maps corresponding to one configuration and

TABLE II. Experimental AE data obtained for each configuration and investigated sample. The surface of each sample, necessary for the computation of

the stress, is specified. For each configuration, the linear shear modulus lk or l? (depending on the configuration at hand) and the slope of the apparent shear

modulus-stress relation are reported. The R-squared values associated with each linear regression are also specified.

Sample TI-PVA Beef muscle (1) Beef muscle (2) Pork muscle (3) Pork muscle (4)

Surface of the sample (length x width in cm) 6.0� 7.0 13.0� 11.5 7.0� 7.0 8.0� 10.0 6.0� 9.0

Config. 1 lk (kPa) 29.4 6 2.1 58.8 6 15.6 53.2 6 1.5 38.7 6 2.7 21.1 6 6.2

c1 3.0 6 0.4 15.0 6 5.6 27.1 6 7.4 7.1 6 3.9 18.4 6 3.7

(r2 ¼ 0.979) (r2 ¼ 0.783) (r2 ¼ 0.886) (r2 ¼ 0.867) (r2 ¼ 0.933)

Config. 2 lk (kPa) 30.4 6 2.0 54.4 6 10.5 55.4 6 2.3 45.3 6 6.5 25.3 6 4.6

c2 �4.7 6 1.8 19.5 6 1.9 15.4 6 1.9 4.0 6 2.4 12.0 6 4.2

(r2 ¼ 0.873) (r2 ¼ 0.981) (r2 ¼ 0.968) (r2 ¼ 0.786) (r2 ¼ 0.843)

Config. 4 lk (kPa) 28.6 6 2.1 34.5 6 4.5 25.1 6 2.5

c4 2.4 6 0.7 9.0 6 4.4 22.0 6 6.9

(r2 ¼ 0.881) (r2 ¼ 0.769) (r2 ¼ 0.872)

Config. 7 l? (kPa) 29.5 6 4.7 22.7 6 4.8 17.2 6 2.3

c7 9.9 6 2.7 15.9 6 3.3 8.7 6 3.1

(r2 ¼ 0.896) (r2 ¼ 0.948) (r2 ¼ 0.938)

Config. 8 l? (kPa) 13.3 6 0.7 23.7 6 4.5 19.0 6 2.4 21.4 6 3.5

c8 1.0 6 0.3 10.0 6 2.0 6.0 6 1.0 8.0 6 1.9

(r2 ¼ 0.824) (r2 ¼ 0.942) (r2 ¼ 0.965) (r2 ¼ 0.909)
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obtained on one sample, under different stresses), a region

of interest (ROI) was defined: the mean shear wave speed

was computed on this ROI and the apparent shear modulus

l ¼ q0v2
s is deduced (with q0 the density of the medium of

interest, values of 1050 kg �m�3 and 1060 kg �m�3 were used

for the TI PVA phantom (Fromageau et al., 2007), and the ex
vivo muscular tissues (M�endez and Keys, 1960), respectively.

In this ROI, the standard deviation of the shear wave speed

was used to compute the error on l. At zero stress, l// and l?
were estimated depending on the configuration.

The relations between the measured apparent shear mod-

ulus l and the applied stress r are analyzed based on the pre-

viously derived AE theory in TI incompressible media. In

each configuration and for each sample, the relation between

l and the applied stress r is plotted. A least squares linear

regression is used to fit experimental data and to retrieve the

slopes ci, with i the configuration number (Fig. 1). The slopes

ci enable to study the expected relations [Eq. (13)] between

the AE equations and to estimate the NLSM A of each stud-

ied sample by using Eq. (14). The errors on the estimated

parameters are derived using the error propagation formula

based on the errors on the slopes (estimated from the linear

regression), and on l// and l?. Particularly, based on

Eq. (14), the expression of the error on the NLSM A is as

follows (the D signs preceding A, l//, l?, c1, and c2 is used to

refer to the error on the corresponding variable):

DA ¼ 4 l? Dc1 þ Dc2ð Þ þ Dlk þ c1 � c2j jDl?
� 	

(15)

IV. RESULTS

AE experiments on four muscular tissue samples and one

TI PVA phantom are presented in this section. Data acquired

at zero stress first allowed the assessment of the linear elastic

characteristics of the TI samples. As an example, Figs. 3(A)

and 3(B) show B-mode images acquired on the same muscular

tissue sample, at zero stress, with the probe oriented parallel

[Fig. 3(A)] and perpendicular [Fig. 3(B)] to the fibers. These

images helped to validate the orientation of the probe with

respect to the fiber axis for the rest of the experiment. In the

PVA phantom, such fibers were naturally not visible, but the

stretching direction guided the positioning of the probe. In

such configurations, SWE measurements yield maps of the

local shear wave speed vs, on which the estimations of the lin-

ear shear moduli parallel l// [Fig. 3(C)] and perpendicular l?
[Fig. 3(D)] are based (l k;?ð Þ ¼ q0v2

s k;?ð Þ) depending on the

orientation of the probe. The shear wave speed values

obtained in the configuration where the probe is parallel to the

FIG. 3. (Color online) B-mode ultrasound images and local shear wave velocity maps of a bovine muscular tissue at zero stress for lk and l? estimations.

The four images in this figure have been acquired on the same bovine muscular tissue [referred to as the beef muscle (1) sample in Tables II and III] at zero

stress. (A) and (B) B-mode ultrasound images obtained with the probe placed parallelly (A) or perpendicularly (B) to the fiber axis (configurations 2 and 8,

respectively). (C) and (D) Local shear wave velocity maps measured using SSI on B-mode images (A) and (B), respectively. The white rectangles on (A)

and (B) indicate the position of the shear wave speed measurement ROIs of (C) and (D), respectively.
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fiber axis [Fig. 3(C)] are globally higher than that for which

the probe was placed perpendicular to the fibers [Fig. 3(D)].

The differences between the estimated shear moduli of a given

sample (with l up to twice as high as l?; see Table III) dem-

onstrate its anisotropic (TI) nature.

Note that shear wave speeds measured with the probe’s

axis in the direction of the medium’s principal axis (configu-

rations 4 to 6 at zero stress) were also used to estimate lk.
Figure 4 depicts the evolution of the shear wave speed

of one muscular tissue submitted to increasing uniaxial com-

pression in configurations 2 and 8. These two configurations

differ only in the propagation direction of the shear wave

with respect to the fiber axis (parallel in configuration 2, per-

pendicular in configuration 8). In these two cases, the shear

wave speed increases with stress and the evolution of the

mean shear modulus over the studied ROI is represented on

Fig. 5(B) (orange circles and purple squares for configura-

tions 2 and 8, respectively). Nevertheless, the shear modulus

evolution is different in the two configurations, as expected

in the AE theory since the evolution depends on specific

combinations of both the linear and NL elastic coefficients

of the medium.

For configuration i measured on a given sample, lk or

l? (depending on the configuration number) is estimated at

zero stress, and the slope ci is obtained through a least

squares linear regression of the apparent shear modulus ver-

sus stress.

AE experiment measurements were carried out inde-

pendently on each sample and the evolutions of the apparent

shear modulus as a function of stress are presented in Fig. 5

for the TI PVA phantom and for one muscular tissue. For

each sample, as many configurations as possible were inves-

tigated, given its size and the stability of the system. Note

that in the case of muscular tissues, configurations 4 to 6

were difficult to measure due to the low signal to noise ratio

of the ultrasonic signal when the ultrasound axis is parallel

to the fiber axis. Besides, configurations 3, 6, and 9 were not

measured as the sample was not rigid enough to keep the

fibers correctly oriented during the experiment. Indeed, con-

figurations 3, 6, and 9 require the stress to be applied paral-

lel to the fibers, meaning the fibers need to be oriented

vertically. This would have resulted in irreproducible mea-

surements not matching the three theoretical configurations

at hand.

In each configuration and sample, the apparent shear

modulus increases with stress (except for the TI PVA phan-

tom in configuration 2). As expected in the AE theory, this

evolution is linear with stress. Experimental data were fitted

using a least squares linear regression (the estimated linear

relation is represented on the plots with colored lines in

TABLE III. Linear (l//, l?) and nonlinear (A) elastic characterization of the investigated TI samples and validation of two theoretical relations (13) among

the AE equations (c1�c4 ¼ 0 and c7�c8 ¼ –1).

Sample TI-PVA Beef muscle (1) Beef muscle (2) Pork muscle (3) Pork muscle (4)

lk (kPa) 29.5 6 2.1 56.6 6 13.1 54.3 6 1.9 39.5 6 4.6 23.9 6 4.4

l? (kPa) 13.3 6 0.7 26.6 6 4.6 19.0 6 2.4 22.7 6 5.0 19.3 6 2.9

A (kPa) 292.8 6 146.5 �709.4 6 931.7 677.1 6 821.4 122.9 6 649.1 391.8 6 704.7

c1 � c4 0.6 6 1.1 �1.9 6 8.3 �3.6 6 10.6

c7 � c8 �0.1 6 4.8 0.6 6 5.0

FIG. 4. (Color online) Evolution of the shear wave speed in a bovine muscular tissue under increasing uniaxial stress. (A-D, E-H) Local shear wave speed

maps measured in configurations 2 and 8, respectively under 0, 0.60, 1.13, and 1.52 kPa uniaxial stresses oriented parallelly to the probe axis. All shear

wave speed maps have been obtained on bovine muscular sample 1, for the two ROIs indicated on Fig. 3(A) (for A–D maps) and Fig. 3(B) (for E–H maps).
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Fig. 5) to quantify the apparent shear modulus change with

respect to stress. The values of the slopes shown in Table II

for each sample vary from one sample to the other and from

one configuration to the other (except between configura-

tions 7–8 and 1–4). Note that the determination coefficients

obtained from the linear regressions range from 0.769 to

0.981, confirming the qv2
s - r linear relations.

By using Eq. (14), the NLSM A of the investigated sam-

ples were estimated based on the values of the slopes of con-

figurations 1 and 2, as well as on the measured shear moduli

l// and l? (Table III). In ex vivo muscular tissues, A was of

hundreds of kPa, either negative or positive. Note that when

available, configuration 4 data could have been also used to

retrieve A. However, since the quality of the SWE data is

poorer in configuration 4 than in configuration 1, data from

configuration 1 were preferred to that of configuration 4.

Finally, when data were available for one given sample,

the relations [Eq. (13)] between equations related to differ-

ent configurations were tested. Differences between the

slopes related to configurations 1 and 4 on the one hand, and

to configurations 7 and 8 on the other, were computed

(Table III). For each sample and tested relation, the theory-

based expected values [0 and –1 for (1)–(4) and (7)–(8),

respectively) lay within the confidence interval of the com-

puted differences.

V. DISCUSSION

In this work, the AE theory in TI incompressible media

was successfully developed, making the investigation of the

elastic NL of TI soft tissues, and more particularly of

muscles, possible. Up to now, most NL elasticity studies

were based on the AE theory previously developed for soft

tissues under the reductive hypothesis of isotropy

(Gennisson et al., 2007). The adaptation of the AE theory to

TI soft tissues required to consider the specificities of the TI

geometry in terms of its second (linear) and 3rd order elastic

properties. Using a different formalism, Destrade et al.

(2010) had already developed the AE theory for TI biologi-

cal soft tissues submitted to a stress parallel to the fiber axis.

They expressed the speed of shear waves as a function of

the angle h between the propagation direction of the wave

and the fiber axis (the polarization and propagation direc-

tions of the wave form a plane containing the fiber axis). For

specific values of h matching with the previously defined

configurations (h ¼ 0 and p
2

corresponding to configurations

3 and 6 defined in Fig. 1, respectively), the two develop-

ments get to the same shear wave speed expressions.

Compared to Destrade et al. (2010), our contribution here is

to cover the cases where stress is perpendicular to the

principal direction of the TI medium. Nevertheless, our

development is restricted to the nine simplest configurations

(Fig. 1), where the principal direction, stress, shear wave

polarization and propagation are either parallel or perpen-

dicular to each other.

To take advantage of the developed theory and verify it,

AE experiments were carried out on two types of TI mate-

rial: a TI PVA phantom and ex vivo muscular tissues. The

relations predicted by the theory between different AE con-

figurations were verified, and the first experimental mea-

surements of the NLSM A of ex vivo biological TI tissues

were successfully proposed. Note that Remenieras et al.
(2021) recently characterized in vivo skeletal striated

muscles using the AE theory in TI incompressible media. In

particular, they quantified the slopes of the flexor digiti min-
imi muscle’s apparent shear modulus–stress relationships in

configurations 3 and 9, by using the contraction of the mus-

cle of interest as a source of stress. Nevertheless, since the

NLSM A cannot be retrieved from the measurements of the

slopes in these 2 configurations, it is difficult to compare

their results with the estimations reported in this paper.

In all biological samples, the order of magnitude of the

estimated NLSM A is of hundreds of kPa (in absolute

value), which is approximatively 10 times higher than the

linear shear moduli lk and l?. The order of magnitude of

our A estimations for muscular tissues is similar to that of

FIG. 5. (Color online) AE data sets acquired on two samples. Apparent shear modulus as a function of stress in each measured configuration in the TI PVA

phantom (A) and in the bovine muscular sample #1 (B). Each color and marker shape correspond to a given configuration. The colored lines correspond to

the linear relations between the apparent shear modulus and stress estimated through a least squares linear regression. The error on the apparent shear modu-

lus is estimated based on the standard deviation of the local shear wave speed over the analyzed region of interest (ROI).
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previous NLSM measurements in ex vivo isotropic tissues,

such as bovine liver (Latorre-Ossa et al., 2012; Bernal et al.,
2016). Experimentally, in the present paper and previous

ones (Gennisson et al., 2007; Latorre-Ossa et al., 2012;

Bernal et al., 2016), a factor 10 is found between l and A.

This can be put into question since theoretically Destrade

and Ogden (2010) showed that these two parameters are of

the same order. Nevertheless, two quantities are of the same

order of magnitude if their ratio is close or less to 10. Table

III shows that this ratio varies from 3.1 to 16.4. Thus, we

can assume that l and A are of the same order, considering

the experimental errors affecting the estimation of l and A.

Note that since the estimated NLSM A of TI incompressible

media is related to only isotropic strain tensor invariants

(independent from the principal direction) similarly to the

isotropic NLSM A, this comparison is meaningful.

However, the reported NLSM values in isotropic tissues are

negative, while three of our estimations tend to be positive.

Nevertheless, this needs to be considered cautiously given

the size of the confidence intervals of our A estimations,

which include negative values for each estimation. The dif-

ference in the nature of muscular and liver tissues can also

explain discrepancies in their NL elastic characteristics.

From our estimations, the porcine or bovine origin of

the muscular tissues seems to have little impact on the val-

ues of the NLSM, but more measurements are needed to

confirm this assertion. However, the precision of the NLSM

A estimation is very poor (the order of magnitude of the

associated measurement uncertainties is similar to that of

the estimated A values). This stems from the fact that the A
estimation relies on the experimental measurements of four

parameters (l//, l?, and the slopes of configurations 1 and 2,

c1 and c2), each associated with their error. Altogether, the

amplitude of the resulting confidence interval related to A is

high. Nevertheless, among the different terms in the expres-

sion of the error on A [Eq. (15)], the first term which

involves the errors on the c1 and c2 slopes dominates others.

Therefore, the improvement of c1 and c2 estimations would

reduce the experimental error associated with A.

Furthermore, due to the highlighted dependence

between the nine AE equations [Eq. (13)] giving six rela-

tions among the nine equations, A is the only NLSM that

can be estimated out of the three NLSM present in the AE

equations, even if all configurations were experimentally

accessible. Indeed, the linear elastic parameter E// adds up to

the three unknown NLSM, making the system (i.e., the nine

slope value expressions) undetermined. To access the values

of H and K based on AE, E// must be therefore measured

beforehand independently. Due to the TI nature of the

media, E// is independent from l// and l? and cannot be

deduced from simple SWE measurements (Royer et al.,
2011), unlike in isotropic incompressible media for which

the Young modulus E is usually estimated based on the

shear modulus l0 using E � 3l0. In the magnetic resonance

(MR) elastography field, a measure of E// was proposed by

Guo et al. (2016) based on the full shear wave field mea-

surement and its inversion. In the ultrasound field, however,

the measure of E// is delicate and not yet fully developed.

Recent work based on the variations of the velocity of SV

(shear vertical) mode waves with respect to the polarization

direction managed to put forward the first estimations of E//

by using SWE (Knight et al., 2020; Li et al., 2016a; Li

et al., 2016b). But the experimental application of this

method is challenging in terms of precision and its imple-

mentation on all muscles is not simple. To retrieve E//,

another possible strategy would be to experimentally mea-

sure the ratios of lateral and axial static strains when the TI

medium is submitted to a stress perpendicular to the princi-

pal direction axis. (These ratios can be shown to depend

upon E//, l//, and l?). Nevertheless, lateral strain estimations

remain a major challenge (Lopata et al., 2009).

We were faced with several experimental difficulties,

challenging our data. First of all, the investigated muscular tis-

sues were not perfectly homogeneous, as it can be seen on

shear wave speed maps [Figs. 3(C) and 3(D)] at the submilli-

metric scale, but also at the scale of the entire tissue. This can

explain the discrepancies between the estimations of l// and

l? from different configurations [Fig. 5(B); Table II], since

the probes were necessarily placed at different positions on

the muscular tissue to match with the different configurations.

Moreover, since the estimation of A relies on measurements

from at least three different configurations, and so from at

least three different positions, the accuracy of our A estimation

can be impacted by the heterogeneity of the medium.

Second, the simplifying hypotheses defining the configu-

rations (Fig. 1) for which the AE equations were developed in

this paper, were difficult to verify experimentally. The posi-

tioning of the muscle sample with its principal axis aligned or

not with the probe axis or the stress axis was operator depen-

dent. In the future, AE experiments in TI media may benefit

from methods, such as Backscatter Tensor Imaging (BTI)

(Papadacci et al., 2014), for more precise detection of fiber

orientation. Nevertheless, positioning the muscle tissue sam-

ple such that the uniaxial stress is rigorously perpendicular or

parallel to the fibers will remain an issue.

Finally, there was an experimental trade-off between

the size of the sample, to measure as many configurations as

possible (particularly this was an issue when the probe was

to be oriented vertically), and the evenness of the upper sur-

face of the sample, on which relied the homogeneity of the

applied stress. Therefore, in some configurations, the esti-

mation of the applied stress might not be perfectly accurate,

affecting the values of the slopes obtained from linear

regressions of q0vS
2 with respect to stress (Fig. 5).

All in all, this work on the AE theory in TI incompress-

ible media proposes a first and new approach for the estima-

tion of the NLSM A of muscles. The method in and of itself

remains difficult to implement due to the experimental con-

straints to respect to match the defined configurations.

Indeed, the latter imply that the principal direction of the TI

medium, the ultrasound probe axis and the stress axis have

to be either parallel or perpendicular to one another. Further

development (more tedious but using the same reasoning) is

needed to include the angle dependency of stress and of the
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shear plane to remove these constraints. Besides, a future

perspective, even more challenging but no less substantial,

is to translate such measurements in in vivo muscles. In

addition to the aforementioned challenges, this would imply

developing a setup enabling the application of uniaxial,

homogeneous, and quantifiable stress on in vivo muscles.

Depending on the investigated muscle, a specific setup

would have to be developed, to apply a uniaxial stress

in vivo. Similarly, a specific algorithm would be needed to

track fiber orientation. Nevertheless, such measurements

would contribute to bringing insight on the NL elastic

behavior of muscles and might provide physicians with new

clinical biomarkers. Furthermore, by linearly relating the

apparent shear modulus to local stress, this theoretical work

proposes a possible framework for the estimation of local

stress in muscles.
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