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ABSTRACT
This paper proposes a strategy to handle missing data for
the classification of electroencephalograms using covariance
matrices. It relies on the observed-data likelihood within an
expectation-maximization algorithm. This approach is com-
pared to two existing state-of-the-art methods: (i) covariance
matrices computed with imputed data; (ii) Riemannian aver-
ages of partially observed covariance matrix. All approaches
are combined with the minimum distance to Riemannian
mean classifier and applied to a classification task of two
widely known paradigms of brain-computer interfaces. In
addition to be applicable for a wider range of missing data
scenarios, the proposed strategy generally performs better
than other methods on the considered real EEG data.

Index Terms— Missing data, Electroencephalography,
Brain-computer interfaces, Covariance estimation, Rieman-
nian geometry.

I. INTRODUCTION
Electroencephalography (EEG) is a non-invasive neu-

roimaging modality pioneered by Hans Berger [1], which
consists in recording the electrical activity of the brain by
placing electrodes on the scalp. The low cost, simplicity
and high temporal resolution (it captures well the brain
activity dynamics) of EEG have made its popularity and
allowed for its use in various applications. EEG is indeed
widely used in brain research for instance to study sleep
or epilepsy. It is also central for brain-computer interfaces
(BCI), where the subject interacts with a computer through
brain signals. These can for example be employed to control
exoskeleton [2] or help mechanical ventilation [3].

This paper focuses on BCI and more specifically on one
of the various possible paradigms: event related potentials
(ERP), which are specific time-locked responses of the
brain to some stimuli, such as flashes [4]. Given the brain
signals, the goal is to determine if the subject was exposed
to the stimulus, i.e., find out if the specific time-locked
response is in the EEG recording. Thus, BCI boils down to a
classification task of brain signals at hand. Various methods
have specifically been designed to achieve this; see [5] for
a recent review. In this work, we consider one of the most
efficient approach, called minimum distance to Riemannian

mean (MDRM) [6], which exploits covariance matrices of
the data along with their natural Riemannian geometry.

BCI classification methods have shown good performance
on a number of classical datasets; see e.g., [7]. However,
these datasets have been recorded in laboratories, which are
well controlled environments, and data have been curated
by hand to ensure the quality of the recordings. In real life
scenarios, obtaining such idealistic data seems unrealistic.
One can expect the data at hand to contain faulty mea-
surements due for instance to impedence change, electrode
disconnections [8] or artifacts coming from movements of
the subject, blinks, etc. These can lead to missing data in
EEG recordings as one may decide to discard it from the
data. When it comes to classification tasks, missing data
impedes the exploitation of complementary information in
non-missing channels. Considering this, it is of primary
importance to develop an appropriate procedure to classify
incomplete EEG signals.

To achieve this, several strategies can be employed. A
first possibility is to exploit some missing data imputation
technique in order to retrieve a complete EEG recording. It
has for instance been considered for EEG in [9] with an
algorithm relying on spherical spline interpolation. Imputa-
tion can also be performed through the K-nearest neighbors
(KNN) algorithm [10]. Another possibility is to directly work
in the covariance space. When a channel is missing, an
imputation of symmetric positive definite (SPD) matrices
with uncorrelated white noise has been proposed in [11].
In a similar vein, the authors of [12] propose to estimate the
Riemannian mean of partially observed covariance matrices
with missing variables (channels) to later perform a classifi-
cation task with the MDRM. When the data contains missing
samples1, it is possible to estimate the covariance matrix
of incomplete data using an expectation-maximization (EM)
algorithm [13]. More recently, a neural network approach
was designed to interpolate missing electrodes in EEG [14].

In this paper, we propose to adapt the state-of-the-art
EEG classification pipeline [6] to handle missing data by
exploiting an EM algorithm to compute covariance matri-

1To appreciate the different nature of works handling missing samples
in the data and those treating on missing variables in the data and/or the
covariance matrix, see Table 1 in [12].



ces. Compared to two state-of-the-art approaches – missing
data imputation using KNN [10] and Riemannian averaging
over incomplete covariance matrices [12] – our method is
applicable in more missing data scenarios. Furthermore, ex-
periments conducted onto real ERP and motor imagery (MI)
EEG data tend to show that our method is competitive in
terms of performance as compared to others.

II. EEG CLASSIFICATION FOR COMPLETE DATA
To classify EEG data, rather than directly using the

raw data, one usually exploits their covariance matrices as
features [6]. The classification of these covariance matrices
is then performed by leveraging their Riemannian geometry:
a well-adapted distance is used to compute centers of mass
of the different classes and assigning the class to unknown
recordings.

II-A. Covariance matrix estimation
A common hypothesis for EEG signals is to assume a mul-

tivariate normal distribution [15]. Let X = [x1, . . . ,xn] ∈
Rp×n be a recorded EEG trial containing p-dimensional real
vectors, where p is the number of electrodes and n the time
samples. X follows a zero-mean Gaussian distribution with
covariance matrix Σ ∈ Rp×p, denoted X ∼ N (0,Σ). When
the data is complete, the Maximum Likehood Estimator
(MLE) is the well-known Sample Covariance Matrix (SCM):

Σ =
1

n
XX> (1)

II-B. Minimum distance to Riemannian mean
The idea consists in leveraging a non-Euclidean distance

based on the geometry of the space of SPD matrices
(thus covariance matrices). In peculiar, theoretical studies
have shown benefits to use the so-called affine invariant
distance [16]. Given two covariances matrices Σ1,Σ2, its
expression is given by:

δAF (Σ1,Σ2) =
∥∥∥log

(
Σ
−1/2
1 Σ2Σ

−1/2
1

)∥∥∥
F
, (2)

where ‖ · ‖F is the Frobenius norm and log is the matrix
logarithm. Then, given a classification problem of Z classes,
with training data {(Σ`, y`) : 1 ≤ ` ≤ L}, the training
phase consists in computing the mean of each class {Σ(z)

:
z ∈ {1, . . . , Z}} according to the affine-invariant distance
by using the iterative algorithm of [17]. A predicted label y
is then obtained on a new sample Σ by assigning it to the
closest mean:

y = arg min
z∈{1,...,Z}

δAF (Σ,Σ
(z)

) (3)

III. EXISTING STRATEGIES TO HANDLE
MISSING DATA FOR EEG CLASSIFICATION

III-A. Data imputation: KNN algorithm
A first possibility to handle missing data is to impute

them, which then allows to compute their covariance matrix

according to (1) – and thus apply the MDRM classification
method. We focus here on K-nearest neighbors (KNN)
interpolation [10]. If the jth electrode of xi is missing, KNN
finds its K-closest neighbors in the training set according to
an Euclidean distance d

(
xi, {xq}nq=1,q 6=i

)
compatible with

missing data, called the heterogeneous Euclidean-overlap
metric (HEOM) [18]. If {vk}Kk=1 represents the set of K-
selected neighbors, then the imputed value x̂ij is

x̂ij =
1

K

K∑
k=1

wkvkj , wk =
1

d(xi,vk)2
,

K∑
k=1

wk = 1 (4)

where wk denotes the corresponding weight of the k-th
nearest neighbor vk and d(xi,vk)2 is the squared HEOM.
The choice of K can be determined by cross-validation on
observed data only, which can be challenging with high
missing data ratio.

III-B. Masked Minimum to Riemannian mean
In [12], authors propose an implementation of the MDM

algorithm for incomplete data. Such design requires to
construct a mask to extract2 the observed data from an
incomplete input X ∈ Rp×n. A mask M ∈ Rp×(p−r) is
defined as the identity matrix with columns of the r missing
variables removed. IfX is incomplete, a complete (p−r)×n
submatrix X̌ can be extracted using M>X . The covariance
matrix becomes

Σ̌ =
1

n
M>ΣM (5)

where Σ is the complete covariance matrix as defined in (1).
The next step is to consider the set of {Σi}ni=1 incomplete
SPD matrices, where each Σi has ri missing variables and
an associated mask Mi. For each class z ∈ {1, . . . , Z}, the
masked Riemannian mean Σ̄ ∈ Sp++ is defined as:

Σ
(z)

= arg min
Σ∈Sp

++

1

2

n∑
i=1

wiδ
2
AF (M>

i ΣiMi,M
>
i ΣMi) (6)

Finally, the label prediction is performed as in (3) with the
suited mask added.

IV. AN EM ALGORITHM FOR COVARIANCE
ESTIMATION WITH MISSING DATA

A powerful strategy to deal with missing values is to
directly estimate the covariance feature without imputation.
In this case, one can rely on maximum likelihood estima-
tion using the EM algorithm developed in [19]. Here, the
unknown parameter to estimate is simply θ = {Σ}. In the
following EM algorithm, xi is transformed into x̃i such
that x̃i = Pixi =

(
xo
i xm

i

)>
, where Pi ∈ Rp×p is a

permutation matrix, xo
i and xm

i denote the observed and

2Such matrix is often called selection matrix.



missing elements of xi, respectively. The covariance matrix
of x̃i is

Σ̃i =

(
Σ̃i,oo Σ̃i,mo

Σ̃i,om Σ̃i,mm

)
= PiΣP

>
i (7)

where Σ̃i,mm, Σ̃i,mo, Σ̃i,oo are the block CM of xm
i , of xm

i

and xo
i , and of xo

i . Replacing xi by its permuted version x̃i,
the complete log-likelihood for the Gaussian distribution is
expressed as:

Lc(θ|x) ∝ −n log |Σ| −
n∑

i=1

(
xo
i

xm
i

)>
Σ̃−1i

(
xo
i

xm
i

)
(8)

The EM algorithm, which is given in Algorithm 1, can now
be formulated.
Initialization. At step t = 0 of the algorithm, initialize
the covariance matrix with the SCM computed from fully
observed xi (i.e., no missing values), denoted ΣSCM-obs.
E-step. Compute the expectation of the missing data condi-
tioned by the observed data and the estimated covariance at
the t-th iteration:

Qi(θ|θ(t)) = Exm
i |xo

i,θ
(t)

[
Lc(θ|xo

i ,x
m
i )
]

= tr(B(t)
i Σ̃−1i ) (9)

with B(t)
i =

(
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i |xo
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ix

m>

i ]

Exm
i |xo

i,θ
(t) [xm

i x
o>
i ] Exm

i |xo
i,θ

(t) [xm
i x

m>

i ]

)
.

The only expectation to compute are Exm
i |xo

i,θ
(t) [xm

i ] and
Exm

i |xo
i,θ

(t) [xm
i x

m>

i ], which are the expectation of the suf-
ficient statistics xm

i and xm
i x

m>

i (denoted E
[
xm
i

]
and

E
[
xm
i x

m>

i

]
hereafter). A classical result in conditional dis-

tributions [20] gives the following expressions:

E
[
xm
i

]
= Σ̃i,moΣ̃

−1
i,oox̃

o
i (10)

E
[
xm
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i

]
= Σ̃i,mm − Σ̃i,moΣ̃
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xm
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E
[
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M-step. Resolve the following maximization problem:

Σ(t+1) = arg max
Σ∈Sp

++

n∑
i=1

Qi(Σ|Σ(t)) (12)

where Sp++ is the set of symmetric positive definite (SPD)
matrices. Solving (12) requires to solve ∂Qi

∂Σ = 0. Fortunately
in this case, the following closed-form expression can be
found with simple derivation calculus:

Σ(t+1) =
1

n

n∑
i=1

PiB
(t)>
i P>i (13)

Algorithm 1 Estimation of Σ with the EM algorithm
Require: {x̃i}ni=1 ∼ N (0,Σ), {Pi}ni=1

Ensure: Σ̂
1: Initialization: Σ(0) = Σ̂SCM-obs
2: repeat

3: Compute B(t)
i =

(
xo
ix

o>
i E[xo

ix
m>

i ]

E[xm
i x

o>
i ] E[xm

i x
m>
i ]

)
4: Compute Σ(t+1) = 1

n

∑n
i=1PiB

(t)>
i P>i

5: t← t+ 1
6: until ||Σ(t+1) −Σ(t)||2F converges

V. NUMERICAL EXPERIMENTS

V-A. Data
The proposed procedures are assessed through a detection

task of EEG recordings of two distinct BCI experiments3:
i) P300 Event Related Potentials triggered from target

stimuli consisting of flashes [4]. This dataset consists in
3 recording sessions of EEG potentials on 10 subjects
using 16 electrodes4. The signals are band-pass filtered
between 1 and 20Hz, downsampled to 128Hz and
epoched into 1728 trials: one trial out of six corresponds
to the flash stimulus (class 1) while the rest correspond
to the absence of target (class 0). Before computing
covariance matrices, raw data are augmented by con-
catenating the prototyped ERP response as prescribed
in [22]. This leads for each subjects to a dataset of
L = 1728 covariance matrices as in (1) with p = 16
and n = 103.

ii) Motor Imagery: this dataset [23] consists of EEG data
from 9 subjects recorded using 22 electrodes. This BCI
paradigm consists of four different motor imagery tasks,
namely the imagination of movement of the left hand
(class 1), right hand (class 2), both feet (class 3), and
tongue (class 4). Two sessions were recorded for each
subject, with a total of 288 trials per session. This leads
for each subjects to a dataset of L = 576 covariance
matrices with p = 22 and n = 1001.

V-B. Missing data scenarios
We consider two realistic scenarios of incomplete EEG

signals: electrode popping (s1) and eye blinking (s2). As
illustrated in Fig.1, electrode popping yields one or multiple
missing electrodes during signal acquisition. Eye blinking
creates an undesired artifact over a short time period (typ-
ically ∼200 ms) over a group of electrodes. Such artifacts
are then removed, which creates missing data. As shown
in Table I, compared to the other methods considered, our
proposed strategy is the only one working in both cases.

3Both data sets are accessed through the moabb database [7].
4Fz, FCz, Cz, CPz, Pz, Oz, F3, F4, C3, C4, CP3, CP4, P3, P4, PO7,

PO8. Please refer to [21] for an extensive description of the dataset.
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Fig. 1: Illustration of electrode popping (red) and eye
blinking (purple).

KNN [10] Masked mean [12] EM [19]
Electrode popping (s1) × X X

Eye blinking (s2) X × X

Table I: Applicability (X: applicable; ×: not applicable) of
the proposed methods for different missingness scenarios.

For scenario s1, two electrodes are entirely removed. For
scenario s2, three groups of electrodes (11 for P300 and 12
for MI) during three time intervals are removed. In both
cases, removals are done on an increasing number of trials
to appreciate the effect on classification accuracy.

V-C. Results
To compare the accuracy of the classification of P300 and

Motor Imagery datasets, the MRDM classifier as described
in section II is used. The following strategies are considered
to estimate the covariance matrices: SCM: the SCM of
complete data, i.e., without missing values; KNN + SCM:
KNN imputer implemented from the scikit-learn pack-
age [24] applied to incomplete data with a number of k = 5
neighbors. Masked-SCM: MDRM classifier using a masked
version of the Riemannian mean [12]. EM-SCM: hybrid
strategy where the covariance matrix is estimated through
Algorithm 1 and fed into the MDRM classifier.

Performance is evaluated using the classical training-test
paradigm with stratified K-folding (K = 5). Algorithms are
calibrated on data recorded during the training phase, and
applied on data recorded during the test phase.
Electrode popping experiment. Accuracy results for this
experiment are presented in Figure 2. The best performance
is achieved on complete data (SCM), which serves as a
baseline. EM-based classification achieves equal or higher
scores than the masked MDRM for both datasets. On these
data, our proposed strategy thus appears more advantageous
than the masked version of the Riemannian mean.
Eye blinking experiment. Results for this experiment are
presented in Figure 3. For the motor imagery dataset, KNN
imputation does not perform as well as the EM-based
classification. For the P300 dataset, KNN imputation shows
higher accuracies as compared to the EM algorithm when
the amount of missing data increases.

VI. CONCLUSION
In this paper, a new strategy to handle missing data in

the context of EEG classification is proposed. It relies on
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Fig. 2: Electrode popping experiment: classification mean
accuracy as function of the incomplete epochs ratio.
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Fig. 3: Eye blinking experiment: classification mean accu-
racy as function of the incomplete epochs ratio.

an EM algorithm to directly estimate covariance matrices
in the presence of missing data. As compared to two other
state-of-the-art strategies – based on KNN imputation and
masked Riemannian means – our proposed method works
with a wider range of missing data scenarios. In addition,
experiments conducted on real EEG data tends to show that
our method is also competitve in terms of accuracy results.
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