
HAL Id: hal-03856765
https://hal.science/hal-03856765

Preprint submitted on 16 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SOME OPERATOR IDEAL PROPERTIES OF
VOLTERRA OPERATORS ON BERGMAN AND

BLOCH SPACES
Joelle Jreis, Pascal Lefèvre

To cite this version:
Joelle Jreis, Pascal Lefèvre. SOME OPERATOR IDEAL PROPERTIES OF VOLTERRA OPERA-
TORS ON BERGMAN AND BLOCH SPACES. 2022. �hal-03856765�

https://hal.science/hal-03856765
https://hal.archives-ouvertes.fr


SOME OPERATOR IDEAL PROPERTIES OF VOLTERRA OPERATORS ON
BERGMAN AND BLOCH SPACES

JOELLE JREIS PASCAL LEFÈVRE ∗

ABSTRACT. We characterize the integration operators Vg with symbol g for which Vg acts
as an absolutely summing operator on weighted Bloch spaces Bβ and on weighted Bergman
spaces Ap

α. We show that Vg is r-summing on Ap
α, 1 ≤ p < ∞, if and only if g belongs to a

suitable Besov space. We also show that there is no non trivial nuclear Volterra operators Vg

on Bloch spaces and on Bergman spaces.

Keywords: r-summing operators; Nuclear operators; Volterra operators; Bergman spaces;
Bloch spaces.

1. INTRODUCTION

The aim of this note is to investigate absolutely summing and nuclear operators of Volterra
type operator defined on certain classical spaces of analytic functions on the open unit disk
D of the complex plane.
For an analytic function g on the unit disk, we recall that the integration operator Vg is for-
mally defined by:

Vg( f )(z) =

∫ z

0
f (w) g′(w) dw, z ∈ D,

acting on the space H(D) of all analytic functions on D. We say that g is the symbol of this
operator.
These transformations appeared under various names in the literature: Volterra operators,
generalized Cesàro operators or integration operators.
This class of operators includes the classical integration operator,

f (z) 7−→
∫ z

0
f (w) dw

obtained with g(z) = z.
It also includes the Cesàro operator

C( f )(z) =

∞∑
n=0

( 1
n + 1

n∑
k=0

ak

)
zn+1,
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which is defined for every f ∈ H(D), whose Taylor expansion is f (z) =

∞∑
n=0

anzn. This is the

operator Vg where g(z) = log
( 1

1−z

)
.

The Volterra operator for holomorphic functions on the unit disk was introduced by Pom-
merenke [13]. He showed that Vg is bounded on the Hardy space H2 if and only if g belongs to
the space BMOA of analytic functions of bounded mean oscillation. Moreover, his proof can
be adapted to obtain that Vg is compact on H2 if and only if g belongs to the space V MOA of
analytic functions of vanishing mean oscillation. In [1], Aleman and Siskakis extended these
results to Hardy spaces Hp with 1 ≤ p < ∞. Moreover, the membership to Schatten classes
has been studied by these authors. They proved that Vg belongs to the Schatten class S p(H2)
if and only if g lies in the Besov space Bp for p > 1. They also proved that if Vg ∈ S 1 then
g′ = 0.
Later on, they considered the case of weighted Bergman spaces [2]: for a large class of
weights, they showed that Vg is bounded on the weighted Bergman space if and only if g
belongs to the Bloch space B. This class includes the classical weights (1− |z|2)α for α > −1.
Additionally, they obtained a similar result about compactness of Vg: in this case the function
g must belong to the little Bloch space B0. Furthermore, Rättyä [14], found a necessary and
sufficient condition for g such that Vg is bounded or compact between two different weighted
Bergman spaces.
In 2014, Anderson, Jovovic, and Smith [3] conjectured that this operator is bounded on H∞ if
and only if the symbol g belongs to the space BRV of holomorphic functions on the unit disk
of bounded radial variation. In 2017, Smith, Stolyarov and Volberg [16] gave a counterex-
ample to this conjecture, but they showed it is true when g is univalent. The characterization
of the boundedness of Vg on H∞ remains an open problem in full generality.
In [20], Yoneda studied the boundedness and compactness of the operator Vg defined on the
classical Bloch space B and the weighted Bloch space Bβ with β > 1 (see definition below in
section 2): when β > 1, he showed that Vg is bounded (resp. compact) on Bβ if and only if
g ∈ B (resp. g ∈ B0). For a survey regarding Volterra operators defined on spaces of analytic
functions, see [15].

Motivated by the works [6] and [10], we continue this line of research on Volterra-type
operators to completely characterize the absolutely summing and nuclear Volterra type inte-
gration operators Vg acting on Bergman spaces and on Bloch spaces. Actually, it turns out
that (1-) absolutely summing Volterra operators are nuclear operators on the Bloch spaces,
so that a specific study of nuclear operators is made for Bergman spaces only. Absolutely
summing operators on spaces of analytic functions were investigated in many ways since the
late 60’s (see for instance the monograph of Pełczyński [12]).

The first section is an introduction to the framework of this paper and the second one, gives
some preliminary results and recall some definitions and well known usual facts. The main
results of the paper appear in Section 3 and 4, where we characterize the absolutely summing
and nuclear Volterra operators on weighted Bloch spaces and on weighted Bergman spaces.
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Throughout the paper, A . B, for two real numbers A and B, means that there exists a
constant C such that A ≤ C B. Furthermore, the notation A ≈ B means that A . B and B . A.
In this case, we say that A and B are comparable. If X is a Banach space, we denote its closed
unit ball by BX. Finally, if 1 ≤ p < +∞ we define the conjugate index p′ by 1

p + 1
p′ = 1.

2. DEFINITIONS AND PRELIMINARY RESULTS

In this section, we collect some basic definitions and facts about Bergman, Bloch and
Besov spaces. We introduce some background and results that will be used throughout the
paper.
We will denote by Ap

α, 1 ≤ p < +∞ and −1 < α < +∞, the (weighted) Bergman space
consisting of analytic functions f on the open unit disk satisfying

|| f ||Ap
α

=

( ∫
D

| f (z)|p dAα(z)
)1/p

< ∞ ,

where dAα(z) = (α + 1)(1 − |z|2)αdA(z) and A denotes the normalized area measure on D.
When α = 0, we recover the classical Bergman spaceAp.

Let us begin now with the definition of the weighted Bloch space, Bβ where β is a real
number. An analytic function f on D belongs to Bβ if

sup
z∈D

(1 − |z|2)β | f ′(z)| < +∞ .

Equipped with the norm

|| f ||Bβ = | f (0)| + sup
z∈D

(1 − |z|2)β | f ′(z)| ,

it is easy to check that Bβ is a Banach space. When β = 1, we recover the classical Bloch
space and we shall write B instead of B1 in this case. Let us remark that when β < 0, Bβ

contains only the constant functions.
We will also be interested in the little Bloch space B0 consisting of functions f in B such

that
lim
|z|→1−

(1 − |z|2)| f ′(z)| = 0.

Thus, we let Bβ0 denote the subspace of Bβ consisting of functions f such that

lim
|z|→1−

(1 − |z|2)β| f ′(z)| = 0.

It is well known that Bβ0 is a closed subspace of Bβ (see [22] for instance). Actually, when
β ≤ 0, Bβ0 is also trivially reduced to the constant functions.

We introduce the space Bp, γ with 1 ≤ p < ∞ and γ ≥ 0 which consists of analytic functions
f on D such that ∫

D

| f ′(z)|p (1 − |z|2)γ dλ(z) < ∞
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where dλ(z) =
dA(z)

(1 − |z|2)2 is the Möbius invariant measure on D.

Two special cases are worth mentioning. When γ = p + α + 2, we recover the weighted
Bergman space Ap

α and when γ = p, we recover the classical Besov space Bp consisting of
analytic functions f on D such that

|| f ||pBp
= | f (0)|p +

∫
D

| f ′(z)|p(1 − |z|2)p dλ(z) < ∞ .

Note that for p = 2, B2 is actually the classical Dirichlet space D2 which is the space of
analytic functions f : D→ C such that

|| f ||2
D2 = | f (0)|2 +

∫
D

| f ′(z)|2 dA(z) < ∞.

The following crucial proposition is certainly well known from the specialists. Strangely we
did not find this result explicitly in the literature (even for γ = p, i.e for Besov spaces), so we
give a proof for the sake of completeness.

Proposition 2.1. Let γ > 0 and 1 ≤ p ≤ q < +∞ . Then we have

Bp, pγ ⊂ Bq, qγ .

In particular, when γ = 1 we have
Bp ⊂ Bq .

Proof. Using [17, Lemma 5] (with say r = 1
2 ), we have

| f ′(z)|p(1 − |z|2)pγ .

∫
D

| f ′(w)|p (1 − |w|2)pγ dλ(w) (2.1)

where the underlying constant depends only on p and γ.
Now, let f ∈ Bp, pγ and q ≥ p, then∫
D

| f ′(z)|q (1 − |z|2)qγ dλ(z) ≤ sup
z∈D
| f ′(z)|q−p (1 − |z|2)(q−p)γ

∫
D

| f ′(z)|p (1 − |z|2)pγ dλ(z)

= sup
z∈D

(
| f ′(z)|p(1 − |z|2)pγ) q−p

p

∫
D

| f ′(z)|p (1 − |z|2)pγ dλ(z)
(2.2)

Combining (2.1) and (2.2), we get∫
D

| f ′(z)|q (1 − |z|2)qγ dλ(z) .
( ∫
D

| f ′(w)|p (1 − |w|2)pγ dλ(w)
) q−p

p
∫
D

| f ′(z)|p (1 − |z|2)pγ dλ(z)

.
( ∫
D

| f ′(z)|p (1 − |z|2)pγ dλ(z)
)q/p

Hence f ∈ Bq, qγ . �

There are many excellent references concerning these spaces, we refer the reader to [8],
[21], [22] and [23].

The notion of absolutely summing operator will play a crucial role in our work, so we
recall
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Definition 2.2. Let r ≥ 1 and T : X → Y be a linear operator between Banach spaces.
We say that T is r-summing if there is a constant C ≥ 0 such that regardless of the natural
number n and regardless of the choice of x1, x2, . . . , xn in X, we have( n∑

k=1

‖T xk‖
r
Y

)1/r

≤ C sup
x∗∈BX∗

( n∑
k=1

|x∗(xk)|r
)1/r

= C sup
a∈Blr′

∥∥∥∥ n∑
k=1

akxk

∥∥∥∥
X

where X∗ denotes the dual space of X. The best constant C for which inequality always holds
is denoted by πr(T ).

Let us mention that (1-)absolutely summing operators are the operators T : X → Y which
do take unconditionally summable sequences {xn} in X to absolutely summable sequences
{T xn} in Y .

We shall also focus on a particular family of compact operators, the nuclear operators:

Definition 2.3. Let X, Y be two Banach spaces. An operator T : X −→ Y is said to be
nuclear if there are two sequences (x∗n) ⊂ X∗ and (yn) ⊂ Y such that

∑
n ‖x∗n‖ ‖yn‖ < ∞ and

T =

∞∑
n=1

x∗n ⊗ yn

where x∗n ⊗ yn : X → Y is defined to be the mapping x 7→ x∗n(x)yn.

In other words, nuclear operators are absolutely convergent series of rank one operators.
Therefore they are compact. It is easy to see that any nuclear operator is absolutely sum-
ming but the converse is not true since the canonical injection from C([0, 1]) into L1([0, 1])
is 1-summing but not even compact. See [4] and [19] to know more on these notions. Never-
theless absolutely summing and nuclear operators coincide in the case of Bloch spaces (see
[6, Lemma 2.1]). It is due to the fact that Bloch spaces are isomorphic to `∞ (see [11]).

The unit disk D is endowed with a hyperbolic metric (also called the Bergman metric)
given by

β(z,w) =
1
2

log
1 + ρ(z,w)
1 − ρ(z,w)

where

ρ(z,w) =
|z − w|
|1 − zw|

is the pseudohyperbolic metric. For z ∈ D and r > 0, D(z, r) = {w ∈ D; β(z,w) < r} is called
hyperbolic disk.

Given a positive Borel measure µ on D, we can consider the identity operator Jµ viewed
fromAp

α into Lq(µ) with 1 ≤ p, q < ∞, formally defined until now by

Jµ :Ap
α −→ Lq(µ)

f 7−→ f
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Actually, we are interested in the case 1 ≤ p ≤ q < ∞ :
It is defined and bounded precisely when µ is a (2 +α) q

p - Carleson measure (see for example
[18]) i.e when

sup
a∈D

µ(D(a, r))

(1 − |a|2)(2+α) q
p
< +∞ .

And Jµ is compact if and only if µ is a vanishing Carleson measure (in the hyperbolic sense),
that is

lim
|a|→1−

µ(D(a, r))

(1 − |a|2)(2+α) q
p

= 0 .

For simplicity, we shall use the terminology Carleson measure instead of ”(2 + α) q
p -

Carleson” or ”Ap
α-Carleson” measure and we will write Dz instead of D(z, r0) for some fixed

r0 ∈ (0, 1).

In [9], the main result about the Carleson embedding Jµ viewed on weighted Bergman
spaceAp

α states the following:

Theorem 2.4. [9, Theorem 10.1]
Let α > −1 and µ be a Carleson measure onAp

α. Then
(1) Let 1 < p ≤ 2 and r ≥ 1 . Then Jµ : Ap

α → Lp(µ) is r-summing if and only if∫
D

(
µ(Dz)

)2/p

(1 − |z|2)(α+2)(1+2/p) dAα(z) < ∞ .

Moreover, we have

π2(Jµ) ≈
( ∫
D

(
µ(Dz)

)2/p

(1 − |z|2)(α+2)(1+2/p) dAα(z)
)1/2

. (2.3)

(2) Let p ≥ 2 and 1 ≤ r ≤ p′. Then Jµ : Ap
α → Lp(µ) is r-summing if and only if∫

D

(
µ(Dz)

)p′/p

(1 − |z|2)(α+2)p′ dAα(z).

Moreover, we have

π1(Jµ) ≈ πr(Jµ) ≈
( ∫
D

(
µ(Dz)

)p′/p

(1 − |z|2)(α+2)p′ dAα(z)
)1/p′

. (2.4)

(3) Let p ≥ 2 and p′ ≤ r ≤ p . Then Jµ : Ap
α → Lp(µ) is r-summing if and only if∫

D

(
µ(Dz)

)r/p

(1 − |z|2)(α+2)(1+r/p) dAα(z).

Moreover, we have

πr(Jµ) ≈
( ∫
D

(
µ(Dz)

)r/p

(1 − |z|2)(α+2)(1+r/p) dAα(z)
)1/r

. (2.5)
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(4) Let p ≥ 2 and r ≥ p . Then Jµ : Ap
α → Lp(µ) is r-summing if and only if∫

D

1
(1 − |z|2)2+α

dµ(z) < ∞ .

Moreover, we have

πr(Jµ) ≈
( ∫
D

1
(1 − |z|2)2+α

dµ(z)
)1/p

. (2.6)

3. THE CASE OF BERGMAN SPACES

In this section, we characterize r-summing and nuclear Volterra operators acting on weighted
Bergman spaces for any r ≥ 1. But first, let us recall the results on the boundedness and the
compactness of the Volterra operators on Bergman spaces.

3.1. Boundedness and compactness.
Rättyä [14] characterized the boundedness and the compactness of Volterra operator acting

between different weighted Bergman spaces. Let us recall the results in the case p ≤ q and
we will give a direct proof using the point of view of Carleson embeddings (we could also
use the same point of view to treat the case q < p, but we only work with p = q in the sequel).

Theorem 3.1. [14, Th. 2 and Cor. 7]
Let γ = 1 + 2+α′

q −
2+α

p with −1 < α, α′ < ∞ and 1 ≤ p ≤ q < ∞. Let g be an analytic
function on D, then we have

(1) Vg : Ap
α → A

q
α′ is bounded if and only if g ∈ Bγ.

(2) Vg : Ap
α → A

q
α′ is compact if and only if g ∈ Bγ0 .

Let us remark that:
(1) If γ < 0, Vg is never bounded unless g′ = 0.

(2) If γ ≤ 0, Vg is never compact unless g′ = 0.

(3) In particular, Vg : Ap
α → A

p
α′ is bounded if and only if g ∈ B1+ α′−α

p and Vg is compact

if and only if g ∈ B
1+ α′−α

p

0 .

Proof of Theorem 3.1. Using [8, Prop.1.11], we can see easily that Vg : Ap
α → A

q
α′ is

bounded (resp. compact) if and only if

Jµ :Ap
α −→ Lq(D, µ)

f 7−→ f
(3.1)

is bounded (resp. compact) where dµ(z) = |g′(z)|q(1 − |z|2)q+α′dA(z).
Therefore, (see section 2), it is equivalent to the fact that µ is a Carleson measure (resp.
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vanishing Carleson measure), i.e

µ(D(w, ρ)) . (1 − |w|2)(2+α) q
p

resp.
µ(D(w, ρ)) = o

(
(1 − |w|2)(2+α) q

p
)

where D(w, ρ) is the Bergman disk with 0 < ρ < 1 (fixed).

Hence, Vg is bounded if and only if∫
D(w, ρ)

|g′(z)|q(1 − |z|2)q+α′dA(z) . (1 − |w|2)(2+α) q
p

and Vg is compact if and only if

lim
|w|→1

1

(1 − |w|2)(2+α) q
p

∫
D(w, ρ)

|g′(z)|q(1 − |z|2)q+α′dA(z) = 0

Using [23, Prop. 4.13] and the fact that 1 − |z|2 ≈ 1 − |w|2 whenever z ∈ D(w, ρ), we get that
Vg is bounded if and only if

|g′(w)|q(1 − |w|2)q+α′+2 . (1 − |w|2)(2+α) q
p

and Vg is compact if and only if

lim
|w|→1
|g′(w)|q(1 − |w|2)q(1+ 2+α′

q −
2+α

p ) = 0 .

Finally, we conclude that Vg is bounded (resp.compact) if and only if g ∈ Bγ (resp. g ∈
B
γ
0). �

Remark 3.2. From now on, we focus on the case q = p. Moreover, thanks to the remark
after Th.3.1, we shall only consider the non trivial case of compactness where γ > 0, i.e
α′ − α > −p.

3.2. Absolutely summing operators.
We focus now on absolutely summing operators between Bergman spaces. Actually, let us

point out that in this framework absolutely summing operators are compact.
Let α, α′ > −1 and p ≥ 1.

When p = 1, assume that T : A1
α → A

1
α′ is absolutely summing then T is weakly compact.

But, A1
α′ is isomorphic to the space `1, since we have A1

α′ ∼ (B0)∗ (see [23, Th. 5.15]) and
B0 ∼ c0 (see [11, Th. 1.1]). The space `1 has the Schur property, hence T is compact.
When p > 1, and T : Ap

α → A
p
α′ is absolutely summing then T is a Dunford Pettis operator

(see for instance [4, Th. 2.17]). Since Ap
α is reflexive, compact operator and Dunford Pettis

operator coincide. Hence T is compact.
That is why, thanks to remark 3.2, we assume in the sequel that α′ − α > −p.

Theorem 2.4 will play a key role in this study in the case p > 1, but we first need several
technical lemmas.
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Lemma 3.3. Let a ∈ R, b > 0, α > −1 and h be an analytic function on D. Then we have:∫
D

|h(z)|b

(1 − |z|2)a dAα(z) ≈
∫
D

1
(1 − |z|2)a sup

w∈Dz

|h(w)|b dAα(z) ≈
∫
D

sup
w∈Dz

|h(w)|b

(1 − |w|2)a dAα(z)

where the underlying constants depend only on a and r0.

Let us recall that r0 is involved in the definition of the hyperbolic disk Dz = D(z, r0).

Proof. Obviously the second quantity in the statement is equivalent to the third one because

1 − |z|2 ≈ 1 − |w|2 for w ∈ Dz .

It is clear that
|h(z)|b

(1 − |z|2)a ≤ sup
w∈Dz

|h(w)|b

(1 − |w|2)a ·

Integrating over D, we get∫
D

|h(z)|b

(1 − |z|2)a dAα(z) ≤
∫
D

sup
w∈Dz

|h(w)|b

(1 − |w|2)a dAα(z)

To see the reverse inequality, we fix z ∈ D. By [23, Lemma 4.13], we have:

|h(w)|b .
1

(1 − |w|2)2+α

∫
Dw

|h(u)|b dAα(u)

for every w ∈ Dz.
Since Dw ⊂ D(z, 2r0) and 1 − |z|2 ≈ 1 − |w|2 whenever w ∈ Dz, we get

|h(w)|b .
1

(1 − |z|2)2+α

∫
D(z,2r0)

|h(u)|b dAα(u).

Once again since 1 − |z|2 ≈ 1 − |u|2 whenever u ∈ D(z, 2r0) :

|h(w)|b

(1 − |z|2)a .
1

(1 − |z|2)(2+α)+a

∫
D(z,2r0)

|h(u)|b dAα(u) ≈
∫

D(z,2r0)

|h(u)|b

(1 − |u|2)(2+α)+a dAα(u) .

It follows that for z ∈ D, we have:

sup
w∈Dz

|h(w)|b

(1 − |w|2)a .

∫
D(z,2r0)

|h(u)|b

(1 − |u|2)(2+α)+a dAα(u) .

Finally, integrating over D and using Fubini’s Theorem, we get∫
D

sup
w∈Dz

|h(w)|b

(1 − |w|2)a dAα(z) .
∫
D

∫
D(z,2r0)

|h(u)|b

(1 − |u|2)(2+α)+a dAα(u) dAα(z)

=

∫
D

|h(u)|b

(1 − |u|2)(2+α)+a Aα(D(u, 2r0)) dAα(u)

≈

∫
D

|h(u)|b

(1 − |u|2)a dAα(u) .

�
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Now, we prove an Lp-version of the previous lemma.

Lemma 3.4. Let α, α′ > −1, a ∈ R, b > 0 and h be an analytic function on D. Let p > 0,
then we have∫

D

(
|h(z)|p

(1 − |z|2)a−(2+α′)

)b

dAα(z) ≈
∫
D

( ∫
Dz

|h(w)|p

(1 − |w|2)a dAα′(w)
)b

dAα(z)

≈

∫
D

1
(1 − |z|2)ab

( ∫
Dz

|h(w)|p dAα′(w)
)b

dAα(z)

where the underlying constants depend only on a, b and r0 .

Proof. Once again, the second quantity in the statement is equivalent to the third one.
Now, from [23, Lemma 4.13], we have for every z ∈ D

|h(z)|p .
1

(1 − |z|2)2+α′

∫
Dz

|h(w)|p dAα′(w) .

Since 1 − |z|2 ≈ 1 − |w|2 whenever w ∈ Dz, we get

|h(z)|p(1 − |z|2)(2+α′)−a .

∫
Dz

|h(w)|p

(1 − |w|2)a dAα′(w).

Integrating over D and since b > 0, it follows that∫
D

(
|h(z)|p

(1 − |z|2)a−(2+α′)

)b

dAα(z) .
∫
D

( ∫
Dz

|h(w)|p

(1 − |w|2)a dAα′(w)
)b

dAα(z).

To see the reverse inequality: since Aα′(Dz) ≈ (1 − |z|2)2+α′ ≈ (1 − |w|2)2+α′ whenever w ∈ Dz,
we get ∫

D

( ∫
Dz

|h(w)|p

(1 − |w|2)a dAα′(w)
)b

dAα(z) .
∫
D

(
sup
w∈Dz

|h(w)|p

(1 − |w|2)a Aα′(Dz)
)b

dAα(z)

.

∫
D

sup
w∈Dz

|h(w)|pb

(1 − |w|2)b(a−(2+α′)) dAα(z)

From Lemma 3.3, we have that∫
D

sup
w∈Dz

|h(w)|pb

(1 − |w|2)b(a−(2+α′)) dAα(z) ≈
∫
D

|h(z)|pb

(1 − |z|2)b(a−(2+α′)) dAα(z)

and the reverse inequality is proved. �

The following lemma is a weighted version of [5, Lemma 7 p.49].

Lemma 3.5. Let α > −1, t ∈ (0, 1), f and g be analytic functions on D. Then, we have∫
D

f (tz) g(tz) dAα(z) =
t2

α + 1

∫
D

W( f )(tz) g′(tz) (1 − |z|2) dAα(z) + f (0)g(0) (3.2)
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where W( f ) is the analytic function defined by W( f )(z) =
f (z) − f (0)

z
·

In particular, if f ∈ H∞ with f (0) = 0 and g ∈ A1
α , then we have

(α + 1)
∫
D

f (z) g(z) dAα(z) =

∫
D

f (z)
z

g′(z) (1 − |z|2) dAα(z) (3.3)

Proof. We compute both integrals by using Taylor expansion of involved functions and inte-
grate with polar coordinates:

If f (z) =

∞∑
n=0

anzn and g(z) =

∞∑
m=0

bmzm, we have on one hand

∫
D

f (tz) g(tz) dAα(z) = 2(α + 1)
∞∑

n=0

t2n an bn

∫ 1

0
r2n+1(1 − r2)αdr

=

∞∑
n=0

(α + 1) t2n an bn B(n + 1, α + 1)

=

∞∑
n=0

t2n n! Γ(2 + α)
Γ(n + 2 + α)

anbn

(3.4)

where Γ is the classical Euler function and B is the beta function.

On the other hand,∫
D

W( f )(tz) g′(tz) (1 − |z|2) dAα(z) = 2(α + 1)
∞∑

n=1

t2n−2 n an bn

∫ 1

0
r2(n−1)+1(1 − r2)α+1dr

= (α + 1)
∞∑

n=1

t2n−2 n! Γ(2 + α)
Γ(n + 2 + α)

anbn .

(3.5)

Combining (3.4) and (3.5), we get (3.2).

In particular, for any f ∈ H∞ with f (0) = 0 and g ∈ A1
α , lim

t→1

∫
D

f (tz) g(tz) dAα(z) exists,

and is equal to
∫
D

f (z) g(z) dAα(z) . In the same way, lim
t→1

∫
D

f (tz)
z

g′(tz) (1−|z|2) dAα(z) exists,

and is equal to
∫
D

f (z)
z

g′(z) (1 − |z|2) dAα(z). From (3.2), we get (3.3). �

Now we can state the main theorem in this section.

Theorem 3.6. Characterization of absolutely summing Volterra operators.
Let α′, α > −1, γ = 1 + α′−α

p > 0 and g be an analytic function. Then we have the following
statements:
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(1) Let 1 ≤ p ≤ 2 and r ≥ 1. Then Vg : Ap
α → A

p
α′ is r-summing if and only if g ∈ B2, 2γ .

Moreover,

π2(Vg) ≈
( ∫
D

|g′(z)|2 (1 − |z|2)
2
p (α′−α)dA(z)

)1/2

. (3.6)

(2) Let p ≥ 2 and 1 ≤ r ≤ p′. Then Vg : Ap
α → A

p
α′ is r-summing if and only if

g ∈ Bp′, p′γ .
Moreover,

πr(Vg) ≈
( ∫
D

|g′(z)|p
′

(1 − |z|2)
p′
p (α′−α)+p′−2 dA(z)

)1/p′

. (3.7)

(3) Let p ≥ 2 and p′ ≤ r ≤ p. Then Vg is r-summing if and only if g ∈ Br, rγ .
Moreover,

πr(Vg) ≈
( ∫
D

|g′(z)|r (1 − |z|2)
r
p (α′−α)+r−2 dA(z)

)1/r

. (3.8)

(4) Let p ≥ 2 and r ≥ p. Then Vg is r-summing if and only if g ∈ Bp, pγ .
Moreover,

πr(Vg) ≈
( ∫
D

|g′(z)|p (1 − |z|2)(α′−α)+p−2 dA(z)
)1/p

. (3.9)

Proof. We use the same viewpoint as in the proof of Theorem 3.1. Using [8, Prop. 1.11] and
since Vg( f )(0) = 0, we have:

||Vg f ||Ap
α′
≈

( ∫
D

| f (z)|p |g′(z)|p (1 − |z|2)p dAα′(z)
)1/p

= || f ||Lp(µ)

where dµ(z) = |g′(z)|p(1 − |z|2)pdAα′(z) is a positive measure on D.
Therefore, Vg is r-summing if and only if Jµ is r-summing from Ap

α to Lp(µ). Point out that
µ is finite if and only if g belongs toAp

α′ .
We need to split the proof into different cases according to the value of p:

• The case p > 1.
In order to use Theorem 2.4, we need to justify that µ is finite, either when one of the integrals
in (3.6), (3.7), (3.8) and (3.9) is finite or when Vg is r-summing for some r ≥ 1. Let us justify
this fact.
If Vg is r-summing then it is bounded fromAp

α intoAp
α′ and by testing the function 1, we get

that Vg(1) = g − g(0) belongs toAp
α′ and then g ∈ Ap

α′ . Hence, µ is a finite measure.
Now, when p ≥ 2 if (3.9) is satisfied, i.e g ∈ Bp, pγ , then g ∈ Ap

α′ since α′+ p > (α′−α)+ p−2
and µ is finite. If (3.7) or (3.8) is satisfied then (3.9) is satisfied as well since by Prop. 2.1:
Bp′, p′γ ⊂ Br, rγ ⊂ Bp, pγ when p′ ≤ r ≤ p, therefore µ is also finite in this case.
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When p ≤ 2, we have∫
D

|g′(z)|p(1 − |z|2)α
′+p dA(z) =

∫
D

|g′(z)|p (1 − |z|2)(α′−α)+p+α dA(z)

≤

∫
D

|g′(z)|p (1 − |z|2)(α′−α) dA(z)

≤

( ∫
D

|g′(z)|2 (1 − |z|2)
2
p (α′−α)dA(z)

)p/2

< ∞

where we used in the last equality the fact that ||(1− |z|2)
α′−α

p g′||Lp(D,A) ≤ ||(1− |z|2)
α′−α

p g′||L2(D,A)
since p ≤ 2.
Therefore, we conclude that if one of the conditions (3.6), (3.7), (3.8) and (3.9) is fulfilled, µ
is finite.

From now on, we can assume that µ is finite and we can apply Theorem 2.4 to the measure
µ. Moreover, Lemma 3.4 (applied separately according to the different values of a and b)
leads to our characterizations.

Let us clarify the first case and we could proceed in the same way for the other cases:
When 1 < p ≤ 2 and r ≥ 1, we have from Theorem 2.4

πr(Vg) ≈ π2(Vg) ≈
( ∫
D

(
µ(Dz)

)2/p

(1 − |z|2)(α+2)(1+2/p) dAα(z)
)1/2

≈

( ∫
D

1
(1 − |z|2)(α+2)(1+2/p)

( ∫
Dz

|g′(w)|p dAα′+p(w)
)2/p

dAα(z)
)1/2 (3.10)

Using Lemma 3.4 applied with h = g′, a = (α + 2)( p
2 + 1), b = 2

p and α′ + p instead of α′, we
get:

π2(Vg) ≈
( ∫
D

(
|g′(z)|p

)2/p

(1 − |z|2)(α+2)(1+2/p)− 2
p (α′+p+2)

dAα(z)
)1/2

≈

( ∫
D

|g′(z)|2 (1 − |z|2)
2
p (α′−α)dA(z)

)1/2

.

(3.11)

The case p > 1 is proved.

• The case p = 1.

First, we assume that
∫
D

|g′(z)|2 (1 − |z|2)2(α′−α)dA(z) < ∞ , and we consider the operator:

Ṽg :A1
α −→ L1(D, ν)

f 7−→ f .g′(1 − |z|2)2α−α′+1

where dν = (1 − |z|2)2(α′−α)dA, which can be infinite when α′ − α ≤ − 1
2 (here we only know

that α′ − α > −1) but it is not a problem in the sequel.
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We can factorize Ṽg as follows:

A1
α

M1
−→ L2(D, ν)

M2
−→ L1(D, ν)

where M1 is the multiplier operator by (1− |z|2)2α−α′+1 and M2 is the multiplier operator by g′.
The operator M1 is bounded since the point evaluation at point z is a bounded linear func-

tional onA1
α with norm equal to ||δz||(A1

α)∗ = 1
(1−|z|2)2+α ·More precisely, we have

||M1( f )||2L2(D,ν) =

∫
D

| f (z)|2 (1 − |z|2)2(α+1) dA(z)

. || f ||A1
α

∫
D

| f (z)| dAα(z)

= || f ||2
A1
α
.

(3.12)

Thanks to Grothendieck’s theorem, we get that M1 is an absolutely summing operator since
A1

α ∼ `
1.

The operator M2 is bounded by the Cauchy-Schwarz inequality since g′ ∈ L2(D, ν) by as-
sumption.
Hence, Ṽg is absolutely summing since Ṽg = M2 ◦ M1.

Finally, for every f ∈ A1
α , we have ||Vg( f )||A1

α′
≈ ||Ṽg( f )||L1(D,ν) , hence Vg is absolutely sum-

ming as well.

Now we assume that Vg : A1
α → A

1
α′ is absolutely summing, and we want to prove that∫

D

|g′(z)|2 (1 − |z|2)2(α′−α)dA(z) < ∞ .

Since Vg is 2-summing, Vg factorizes through an Hilbert space H (see for instance [4, Cor.
2.16]). Hence, using the fact that the dual space ofA1

α can be identified with the Bloch space
B (see [21, Th. 5.3]), V∗g : B → B factorizes through the Hilbert space H∗ = H′ as well:

V∗g : B
u
−→ H′

v
−→ B .

But, we know that B ∼ `∞ (see for instance [11, Th. 1.1]) and we know from [19, Th. 29,
p.223], that any operator from `∞ into an Hilbert space is 2-summing. Hence, V∗g is a 2-
summing operator.
Let us compute V∗g(h) when h ∈ H∞ with h(0) = 0. Using [23, Th. 5.3] and Lemma 3.5, we
have for every f ∈ H∞

〈V∗g(h), f 〉B,A1
α

= 〈h,Vg( f )〉B,A1
α′

=

∫
D

h(s) Vg( f )(s) dAα′(s)

=
1

α′ + 1

∫
D

h(s)
s

g′(s) f (s) (1 − |s|2) dAα′(s)

(3.13)
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In particular, fixing z ∈ D and testing f (s) = kz(s) = (1 − zs)−2−α, the Bergman reproducing
kernel, we get on one hand

〈V∗g(h), kz〉B,A1
α

=
1

α′ + 1

∫
D

g′(s) h(s) (1 − |s|2)
s (1 − zs)2+α

dAα′(s) .

On the other hand, using the duality between Bergman and Bloch spaces [23, Th. 5.3]:

〈V∗g(h), kz〉B,A1
α

=

∫
D

V∗g(h)(s) kz(s) dAα(s)

=

∫
D

V∗g(h)(s)

(1 − sz)2+α
dAα(s)

= V∗g(h)(z) .

Hence,

V∗g(h)(z) =
1

α′ + 1

∫
D

g′(s) h(s) (1 − |s|2)
s (1 − zs)2+α

dAα′(s) . (3.14)

We consider now, for any w ∈ D, the function

Fw(z) =
z (1 − |w|2)α

′+2

(1 − wz)α′+3 ∈ B0 ∩ H∞ .

Since Fw(0) = 0, and Fw ∈ H∞, we can apply (3.14) with h = Fw and we get

(
V∗g(Fw)

)′
(z) =

α + 2
α′ + 1

∫
D

s g′(s) (1 − |s|2) (1 − |w|2)α
′+2

(1 − ws)α′+3 (1 − zs)α+3 dAα′(s) .

Let us lower estimate the norm of V∗g(Fw) in the Bloch space B:

||V∗g(Fw)||B = sup
z∈D

(1 − |z|2)
∣∣∣(V∗g(Fw)

)′(z)
∣∣∣

≥
α + 2
α′ + 1

∣∣∣∣∣ ∫
D

s g′(s) (1 − |s|2) (1 − |w|2)α
′+3

(1 − ws)(α−α′) |1 − ws|2(α′+3) dAα′(s)
∣∣∣∣∣ , (3.15)

using that the supremum over z ∈ D is larger than the value at point w.
We recall that for any analytic function G on D, we have ([8, p.7]):

G(w) = (1 − |w|2)3+α′
∫
D

G(s) (1 − |s|2)
|1 − sw|2(3+α′) dAα′(s) .

Applying this formula to the function s 7→ Gw(s) =
s g′(s)

(1 − ws)(α−α′) we get

||V∗g(Fw)||B ≥
α + 2
α′ + 1

|w| |g′(w)| (1 − |w|2)α
′−α . (3.16)

Now, we return to the fact that we know that V∗g is 2-summing on B. Its restriction to B0,
whose dual space isA1

α′ , is 2-summing as well and π2(V∗g |B0
) ≤ π2(V∗g) .
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Using [19, Prop. 33 (b) p. 225] to the B0-valued random variable: w ∈ D 7→ Fw ∈ B0, we
get ∫

D

||V∗g(Fw)||2B dA(w) ≤ π2(V∗g) sup
h∈B

A1
α′

∫
D

|〈h, Fw〉|
2 dA(w) . (3.17)

On one hand, from the reproducing kernel formula, we get:

〈h, Fw〉A1
α′
,B0

=

∫
D

u h(u)(1 − |w2|)α
′+2

(1 − wu)α′+3 dAα′(u)

= (1 − |w|2)α
′+2

∫
D

u h(u)
(1 − wu)α′+3 dAα′(u) =

1
α′ + 2

(1 − |w|2)α
′+2 h′(w).

From the last equality, we also see that

|h′(w)| ≤ (α′ + 2)
||h||A1

α′

(1 − |w|2)α′+3 ·

It follows that:

sup
h∈B

A1
α′

∫
D

|〈h, Fw〉|
2 dA(w) ≈ sup

h∈B
A1
α′

∫
D

(1 − |w|2)2(α′+2) |h′(w)|2 dA(w)

. sup
h∈B

A1
α′

∫
D

(1 − |w|2)2(α′+2) |h′(w)|
||h||A1

α′

(1 − |w|2)α′+3 dA(w)

. sup
h∈B

A1
α′

||h||A1
α′

∫
D

(1 − |w|2) |h′(w)| dAα′(w)

≈ sup
h∈B

A1
α′

||h||2
A1
α′

= 1 .

(3.18)

On the other hand, using [7, Lemma 3.3], we get:∫
D

||V∗g(Fw)||2B dA(w) ≥
(
α + 2
α′ + 1

)2 ∫
D

|w|2 |g′(w)|2(1 − |w|2)2(α′−α) dA(w)

≈

∫
D

|g′(w)|2(1 − |w|2)2(α′−α) dA(w) .
(3.19)

Hence, combining (3.17), (3.18) and (3.19), it follows that:∫
D

|g′(w)|2(1 − |w|2)2(α′−α) dA(w) . 1 . (3.20)

�

We get for free the characterizations for Volterra operators on weighted Bergman spaces
A

p
α, taking α′ = α.

Corollary 3.7. Let −1 < α < ∞ and g be an analytic function on D. Then we have the
following statements:
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(1) Let 1 ≤ p ≤ 2 and r ≥ 1. Then Vg : Ap
α → A

p
α is r-summing if and only if g is in the

Dirichlet spaceD2 = B2.
Moreover,

π2(Vg) ≈
( ∫
D

|g′(z)|2dA(z)
)1/2

.

(2) Let p ≥ 2 and 1 ≤ r ≤ p′. Then Vg : Ap
α → A

p
α is r-summing if and only if g ∈ Bp′ .

Moreover,

πr(Vg) ≈
( ∫
D

|g′(z)|p
′

(1 − |z|2)p′−2 dA(z)
)1/p′

.

(3) Let p ≥ 2 and p′ ≤ r ≤ p. Then Vg is r-summing if and only if g ∈ Br .

Moreover,

πr(Vg) ≈
( ∫
D

|g′(z)|r (1 − |z|2)r−2 dA(z)
)1/r

.

(4) Let p ≥ 2 and r ≥ p. Then Vg is r-summing if and only if g ∈ Bp .

Moreover,

πr(Vg) ≈
( ∫
D

|g′(z)|p (1 − |z|2)p−2 dA(z)
)1/p

.

Remark 3.8. As a particular case (α = 0), we get the characterizations of absolutely sum-
ming Volterra operators on (unweighted) classical Bergman spacesAp for p ≥ 1. It turns out
that the preceding characterizations do not depend on α > −1.

3.3. Nuclear Volterra operators.

Lemma 3.9. Let h be an analytic function on D. If
∫
D

|h(w)|
1 − |w|2

dA(w) is finite, then h = 0.

Proof. Let H1 be the classical Hardy space and m the normalized Lebesgue measure on the
torus.
Using polar coordinates:∫

D

|h(w)|
1 − |w|2

dA(w) =

∫ 1

0

2r
1 − r2

(∫
T

|h(rξ)| dm(ξ)
)

dr

=

∫ 1

0

2r
1 − r2 ‖hr‖H1 dr

≥ ‖h 1
2
‖H1

∫ 1

1/2

2r
1 − r2 dr ,
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since r ∈ (0, 1)→ ‖hr‖H1 is non-decreasing.
But, ∫ 1

1/2

2r
1 − r2 dr = +∞ ,

so ‖h 1
2
‖H1 = 0 and then h 1

2
= 0 on D. Hence h = 0 as well on D since h is analytic on D. �

Theorem 3.10. Characterization of nuclear Volterra operators.
Let p ≥ 1, −1 < α < ∞ and g be a symbol. Then, we have Vg : Ap

α → A
p
α is a nuclear

operator if and only if g′ = 0.
In other words, there is no non trivial nuclear operator onAp

α .

Let us mention as an immediate consequence that, when α ≥ α′, Vg : Ap
α → A

p
α′ is nuclear

if and only if g′ = 0. Indeed, it suffices to point out that, for such indexes, the formal identity
fromAp

α′ toAp
α is bounded.

Proof. Let p > 1 :
We assume that Vg is nuclear. Then, by definition there exist two sequences ( fn)n ∈ A

p
α and

(φn)n ∈ (Ap
α)∗ such that

∑
n || fn|| ||φn|| < ∞ and

Vg =

∞∑
n=1

φn ⊗ fn (3.21)

where φn ⊗ fn : Ap
α → A

p
α is defined as the rank one operator f 7→ φn( f ) fn.

Since (Ap
α)∗ ' Ap′

α with equivalence of norms (cf. [8, p.19]), there exists hn ∈ B
A

p′
α

such that

φn( f ) = 〈 f , hn〉 =

∫
D

f (z) hn(z) dAα(z)

for every f ∈ Ap
α.

Let f ∈ Ap
α. Since the pointwise derivation functional is continuous on Ap

α, from (3.21) we
get for every w ∈ D

g′(w) f (w) =

∞∑
n=1

( ∫
D

hn(z) f (z) dAα(z)
)
. f ′n(w) .

Let us test the following function, which belongs toAp
α:

z ∈ D 7−→
1

(1 − wz)α+2 where w ∈ D .

We get
g′(w)

(1 − |w|2)α+2 =

∞∑
n=1

(∫
D

hn(z)
(1 − zw)α+2 dAα(z)

)
. f ′n(w) .

But, since hn ∈ A
p′
α , thanks to the reproducing kernel formula, we have for every w ∈ D∫

D

hn(z)
(1 − zw)α+2 dAα(z) = hn(w)
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Hence, integrating over D and using Hölder’s inequality, we get∫
D

|g′(w)|
(1 − |w|2)α+1 dAα(w) ≤

∞∑
n=1

∫
D

|hn(w)| | f ′n(w) (1 − |w|2)| dAα(w)

≤

∞∑
n=1

||hn||Ap′
α
|| fn||Ap

α
< ∞.

(3.22)

By Lemma 3.9, we get g′ = 0.

This proof can be adapted to the case p = 1, but we shall give in the next result another
proof which extends for Volterra operators between two different Bergman spaces. �

Theorem 3.11. Characterization of nuclear Volterra operators for p = 1.
Let −1 < α, α′ < ∞ and g be a symbol. Then, we have Vg : A1

α → A
1
α′ is a nuclear

operator if and only if ∫
D

|g′(z)|
(1 − |z|2)1+α−α′

dA(z) < ∞ . (3.23)

In particular, when α ≥ α′, Vg is nuclear if and only if g′ = 0.

Proof. If Vg : A1
α → A

1
α′ is a nuclear operator with α, α′ > −1, then the operator

Ṽg :A1
α −→ L1(D, (1 − |z|2) dAα′

)
f 7−→ f g′

is nuclear. Indeed, let us consider this composition

A1
α

Vg
−→ A1

α′
D
−→ L1(D, (1 − |z|2) dAα′

)
,

where D is the derivation operator defined by D( f ) = f ′ for f ∈ A1
α′ , which is bounded since

||D( f )||
L1
(
D,(1−|z|2) dAα′

) . || f ||A1
α′

. Hence Ṽg = D ◦ Vg is nuclear.

From [4, Cor. 5.24], it follows that Ṽg is 1-integral. Therefore, from [4, Th. 5.19], it follows
that Ṽg is order bounded: there exists some h ∈ L1(D, (1 − |z|2) dAα′

)
such that for every

f ∈ BA1
α

we have | f g′| ≤ h a.e on D. SinceA1
α is separable, we get that∫

D

sup
f∈A1

α
‖ f ‖≤1

| f (z)| |g′(z)| (1 − |z|2) dAα′(z) < ∞ .

Since the point evaluation at point z is a bounded linear functional onA1
α with norm equal to

||δz||(A1
α)∗ = 1

(1−|z|2)2+α , we get ∫
D

|g′(z)|
(1 − |z|2)1+α−α′

dA(z) < ∞ .

In other words, the condition (3.23) is satisfied.
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Now, assume that (3.23) is satisfied, we want to prove that Vg : A1
α → A

1
α′ is nuclear. Let

f ∈ A1
α, hence from [23, Prop. 4.23 ] we have for every w ∈ D

f (w) =

∫
D

f (u)
(1 − ūw)α+2 dAα(u)

=

∞∑
n=0

Γ(n + α + 2)
n! Γ(α + 2)

( ∫
D

f (u) ūn dAα(u)
)

wn

where Γ is the classical Euler function (see [23, p.78]).
This suggests to define the following functional onA1

α:

e∗n( f ) =
Γ(n + α + 2)
n! Γ(α + 2)

∫
D

f (u) ūn dAα(u) where f ∈ A1
α .

In other words, e∗n( f ) is the nth Taylor coefficient of f .
Let us compute the norm of e∗n in the dual space ofA1

α:

||e∗n||(A1
α)∗ = sup

|| f ||
A1
α
≤1
|e∗n( f )| ≤

Γ(n + α + 2)
n! Γ(α + 2)

sup
|| f ||
A1
α
≤1

∫
D

| f (u)| |u|n dAα(u)

≤
Γ(n + α + 2)
n! Γ(α + 2)

sup
|| f ||
A1
α
≤1

∫
D

| f (u)| dAα(u) =
Γ(n + α + 2)
n! Γ(α + 2)

·

Furthermore, for every f ∈ A1
α and every z ∈ D

Vg( f )(z) =

∫ z

0
f (w) g′(w)dw

=

∞∑
n=0

e∗n( f )
( ∫ z

0
g′(w) wn dw

)
=

∞∑
n=0

e∗n( f ). hn(z)

where hn := Vg(zn).
And using [8, Prop.1.11], we get

||hn||A1
α′
≈

∫
D

|h′n(z)| (1 − |z|2) dAα′(z)

≈

∫
D

|z|n |g′(z)| (1 − |z|2)α
′+1 dA(z) .

Finally, we have
∞∑

n=0

||e∗n||(A1
α)∗ . ||hn||A1

α′
.

∫
D

∞∑
n=0

Γ(n + α + 2)
n! Γ(α + 2)

|z|n |g′(z)| (1 − |z|2)α
′+1 dA(z) (3.24)

≈

∫
D

|g′(z)|
(1 − |z|2)1+α−α′

dA(z) < ∞. (3.25)
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We conclude that the sequences {e∗n} ⊂ (A1
α)∗ and {hn} ⊂ A

1
α′ satisfy

∑
||e∗n||(A1

α)∗ ||hn||A1
α′
< ∞,

so that the operator T =

∞∑
n=0

e∗n ⊗ hn is a nuclear operator fromA1
α toA1

α′ .

Moreover, for every f ∈ A1
α and every z ∈ D we have Vg( f )(z) = T ( f )(z).

Hence, Vg = T onA1
α. Therefore, Vg is nuclear. �

Remark 3.12. When α′ > α, we can give easily examples of non-trivial symbols such that
Vg : A1

α −→ A
1
α′ is a nuclear operator: it suffices to choose g in the Bloch space Bη for some

η < α′ − α. In particular, for any polynomial g, Vg : A1
α −→ A

1
α′ is a nuclear operator.

4. THE CASE OF BLOCH SPACES

In this section, we focus on Bloch spaces.
We shall need the following lemma which is well known from the specialists and a proof can
be found in [6].

Lemma 4.1. Let T : `∞ −→ Y be an operator. Then T is an absolutely summing operator if
and only if T is a nuclear operator.

Our first result is:

Theorem 4.2. Let g be an analytic function on D and η, β > 0. The following assertions are
equivalent:

(a) Vg : Bη −→ Bβ is nuclear.

(b) Vg : Bη −→ Bβ is absolutely summing.

(c) Q =

∫
D

sup
z∈D

(1 − |z|2)β |g′(z)|
|1 − wz|1+η

dA(w) < +∞.

Remark 4.3. We can easily see that Q & ||g||Bβ . Indeed, we have
1

|1 − wz|1+η
≥

1
21+η
·

Proof. (a) is equivalent to (b) from Lemma 4.1 and the fact that Bη is isomorphic to `∞ (see
[11, Th.1.1]).
Assume now that Vg : Bη → Bβ is absolutely summing, then by restriction Vg |

B
η
0

: Bη0 → B
β

is also absolutely summing (see [4, p.37]).

Now, for w ∈ D, we consider fw(z) =
1

(1 − wz)1+η
which belongs to Bη0 ∩ H∞.

Using [19, Prop. 33 (b)] to the Bη0-valued random variable: w ∈ D 7→ fw ∈ B
η
0, and the fact

that the dual space of Bη0 is the spaceA1, we get∫
D

||Vg( fw)||Bβ dA(w) ≤ π1(Vg) sup
h∈B

A1

∫
D

|〈h, fw〉| dA(w) . (4.1)



22 JOELLE JREIS PASCAL LEFÈVRE ∗

Thanks to the reproducing kernel formula, we have

〈h, fw〉A1,B
η
0

=

∫
D

h(z) fw(z)(1 − |z|2)η−1dA(z)

=

∫
D

h(z)
(1 − zw)1+η

(1 − |z|2)η−1dA(z)

=
1
η

∫
D

h(z)
(1 − zw)2+η−1 dAη−1(z)

=
1
η

h(w)

Therefore, (4.1) becomes

∫
D

sup
z∈D

(1 − |z|2)β|g′(z)|
|1 − wz|1+η

dA(w) ≤
π1(Vg)
η

sup
h∈B

A1

∫
D

|h(w)| dA(w)

≤
π1(Vg)
η

sup
h∈B

A1

‖h‖A1

≤
1
η
π1(Vg) ·

It remains to prove that (c) implies (b). Suppose that Q is finite, we want to show that Vg

is absolutely summing. We consider f1, ... , fN ∈ B
η. Then,

N∑
j=1

‖Vg( f j)‖Bβ =

N∑
j=1

sup
z∈D

(1 − |z|2)β |g′(z)| | f j(z)|

We fix an arbitrary c > 1. For each j ∈ {1, ... ,N}, there exists some z j ∈ D such that

sup
z∈D

(1 − |z|2)β |g′(z)| | f j(z)| ≤ c(1 − |z j|
2)β |g′(z j)| | f j(z j)|

Hence, we have

N∑
j=1

‖Vg( f j)‖Bβ ≤ c
N∑

j=1

(1 − |z j|
2)β |g′(z j)| | f j(z j)|

= cT
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where T =

N∑
j=1

(1 − |z j|
2)β |g′(z j)| | f j(z j)|.

We assume now that f j(0) = 0. Then, we have using [22, Cor. 4]

T .
N∑

j=1

(1 − |z j|
2)β |g′(z j)|

∫
D

| f ′j (w)|(1 − |w|2)η

|w|.|1 − wz j|
1+η

dA(w)

.
N∑

j=1

(1 − |z j|
2)β |g′(z j)|

∫
D

| f ′j (w)|(1 − |w|2)η

|1 − wz j|
1+η

dA(w) thanks to [6, Lemma 3.4]

.

∫
D

N∑
j=1

(1 − |z j|
2)β |g′(z j)|

| f ′j (w)|(1 − |w|2)η

|1 − wz j|
1+η

dA(w)

.

∫
D

N∑
j=1

| f ′j (w)| (1 − |w|2)η
(
sup

j

(1 − |z j|
2)β|g′(z j)|

|1 − wz j|
1+η

)
dA(w)

.

sup
w∈D

N∑
j=1

| f ′j (w)| (1 − |w|2)η
 ∫
D

sup
z∈D

(1 − |z|2)β|g′(z)|
|1 − wz|1+η

dA(w)

. Q

sup
w∈D

N∑
j=1

| f ′j (w)| (1 − |w|2)η
 .

(4.2)

Let us remark that for every w ∈ D, we have

N∑
j=1

| f ′j (w)|(1 − |w|2)η = sup
|ε j |=1

∣∣∣∣ N∑
j=1

ε j f ′j (w)(1 − |w|2)η
∣∣∣∣ . (4.3)

Hence,

N∑
j=1

‖Vg( f j)‖Bβ . c Q

sup
|ε j |=1

sup
w∈D

∣∣∣∣ N∑
j=1

ε j f ′j (w)(1 − |w|2)η
∣∣∣∣

. c Q

sup
|ε j |=1

∣∣∣∣∣∣ N∑
j=1

ε j f j

∣∣∣∣∣∣
Bη

 .
Therefore, Vg is absolutely summing.
We now remove the restriction f j(0) = 0. Take the function f̃ j = f j − f j(0) which belongs
also to Bη . Since f̃ j(0) = 0, we have from the first case

N∑
j=1

‖Vg( f̃ j)‖Bβ . c Q

sup
|ε j |=1

∣∣∣∣∣∣ N∑
j=1

ε j f̃ j

∣∣∣∣∣∣
Bη

 .
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Now,
N∑

j=1

‖Vg( f j)‖Bβ =

N∑
j=1

‖Vg( f̃ j + f j(0))‖Bβ

≤

N∑
j=1

‖Vg( f̃ j)‖Bβ +

N∑
j=1

| f j(0)| ||Vg(1)||Bβ

But, from the remark 4.3 we have

||Vg(1)||Bβ = ||g − g(0)||Bβ ≤ ||g||Bβ . Q < ∞

and from
N∑

j=1

| f j(0)| = sup
|ε j |=1

∣∣∣ N∑
j=1

ε j f j(0)
∣∣∣

we get
N∑

j=1

‖Vg( f j)‖Bβ . c Q sup
|ε j |=1

∣∣∣∣∣∣ N∑
j=1

ε j f̃ j

∣∣∣∣∣∣
Bη

+ Q sup
|ε j |=1

∣∣∣ N∑
j=1

ε j f j(0)
∣∣∣

≤ c Q sup
|ε j |=1

∣∣∣∣∣∣ N∑
j=1

ε j f j

∣∣∣∣∣∣
Bη

+ Q sup
|ε j |=1

∣∣∣∣∣∣ N∑
j=1

ε j f j

∣∣∣∣∣∣
Bη

. Q sup
|ε j |=1

∣∣∣∣∣∣ N∑
j=1

ε j f j

∣∣∣∣∣∣
Bη

Therefore, Vg is absolutely summing. �

Corollary 4.4. Vg is nuclear on Bη if and only if g′ = 0.
In other words, there is no non trivial nuclear operator on Bη.

Proof. Assume that Vg is nuclear on Bη, it follows from the preceding theorem that∫
D

sup
z∈D

(1 − |z|2)η |g′(z)|
|1 − wz|1+η

dA(w) ≥
∫
D

|g′(w)|
(1 − |w|2)

dA(w)

using that the supremum over z ∈ D is larger than the value at point w.
From Lemma 3.9, we get that g′ = 0. �

Our second result is:

Theorem 4.5. Let r ≥ 1 and η, β > 0. Let g be an analytic function on D and we consider
the following assertions:

(a) Vg : Bη −→ Bβ is r-summing.

(b) Vg : Bη0 −→ B
β is r-summing.
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(c) K =

∫
D

sup
z∈D

(1 − |w|2)2(r−1) (1 − |z|2)βr |g′(z)|r

|1 − wz|(1+η)r dA(w) < +∞.

Then, we have (a)⇒ (b)⇒ (c).
If, in addition η > 1, then (a), (b) and (c) are equivalent. Moreover,

πr(Vg) ≈ K1/r .

Proof. (a)⇒ (b) is obvious.
(b) implies (c): we assume that Vg : Bη0 −→ B

β is r-summing.

Let us consider, for every w ∈ D, fw(z) =
(1 − |w|2)2/r′

(1 − wz)1+η
which belongs to Bη0 ∩ H∞.

Again, using [19, Prop. 33 (b)] to the Bη0-valued random variable: w ∈ D 7→ fw ∈ B
η
0, and

the fact that the dual space of Bη0 is the spaceA1, we get∫
D

‖Vg( fw)‖r
Bβ

dA(w) ≤ πr
r(Vg) sup

h∈B
A1

∫
D

|〈h, fw〉|
r dA(w) . (4.4)

Thanks to the reproducing kernel formula, we have

〈h, fw〉A1,B
η
0

=

∫
D

h(z) fw(z)(1 − |z|2)η−1 dA(z)

= (1 − |w|2)2/r′
∫
D

h(z)
(1 − zw)1+η

(1 − |z|2)η−1 dA(z)

=
1
η

(1 − |w|2)2/r′
∫
D

h(z)
(1 − zw)2+η−1 dAη−1(z)

=
1
η

(1 − |w|2)2/r′h(w) .

Using the fact that the point evaluation δz is bounded onA1, with norm equal to ||δz||(A1)∗ =
1

(1 − |z|2)2 , we get from (4.4)

K =

∫
D

sup
z∈D

(1 − |w|2)2(r−1) (1 − |z|2)βr |g′(z)|r

|1 − wz|(1+η)r dA(w) ≤
πr

r(Vg)
ηr sup

h∈B
A1

∫
D

|h(w)|r (1 − |w|2)2(r−1) dA(w)

≤
πr

r(Vg)
ηr sup

h∈B
A1

∫
D

|h(w)|
‖h‖r−1

A1

(1 − |w|2)2(r−1) (1 − |w|2)2(r−1) dA(w)

≤
πr

r(Vg)
ηr sup

h∈B
A1

‖h‖r
A1

≤
πr

r(Vg)
ηr ·
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It remains to see that (c) implies (a) when η > 1. We consider f1, ... , fN ∈ B
η, then

N∑
j=1

‖Vg( f j)‖rBβ =

N∑
j=1

(
sup
z∈D

(1 − |z|2)β |g′(z)| | f j(z)|
)r

We fix an arbitrary c > 1. For each j ∈ {1, ... ,N}, there exists some z j ∈ D such that

sup
z∈D

(1 − |z|2)β |g′(z)| | f j(z)| ≤ c (1 − |z j|
2)β |g′(z j)| | f j(z j)|

Hence, we have
N∑

j=1

‖Vg( f j)‖rBβ ≤ cr
N∑

j=1

(1 − |z j|
2)βr |g′(z j)|r | f j(z j)|r .

Since f1, ..., fN belong to Bη, then for all j ∈ {1, ...,N}, f j ∈ A
1
α for α ≥ η. Using [7, Lemma

3.1] with α = (1 + η)r − 1 ≥ η, we get

N∑
j=1

(1 − |z j|
2)βr |g′(z j)|r | f j(z j)|r .

N∑
j=1

(1 − |z j|
2)βr |g′(z j)|r

∫
D

| f j(w)|r(1 − |w|2)(1+η)r−1

|1 − wz j|
(1+η)r+1 dA(w)

.

∫
D

N∑
j=1

(1 − |z j|
2)βr |g′(z j)|r

| f j(w)|r(1 − |w|2)(1+η)r−1

|1 − wz j|
(1+η)r+1 dA(w)

.

∫
D

N∑
j=1

| f j(w)|r (1 − |w|2)(η−1)r sup
j

(1 − |w|2)2(r−1)(1 − |z j|
2)βr|g′(z j)|r

|1 − wz j|
(1+η)r dA(w)

. sup
w∈D

N∑
j=1

| f j(w)|r (1 − |w|2)(η−1)r
∫
D

sup
z∈D

(1 − |w|2)2(r−1)(1 − |z|2)βr|g′(z)|r

|1 − wz|(1+η)r dA(w)

. K
(

sup
w∈D

N∑
j=1

| f j(w)|r (1 − |w|2)r(η−1)
)
.

For every w ∈ D, we have:
N∑

j=1

| f j(w)|r (1 − |w|2)(η−1)r = sup
a∈B

`r′

∣∣∣∣ N∑
j=1

a j f j(w) (1 − |w|2)(η−1)
∣∣∣∣r .

Using [23, Prop. 7], since η > 1, we get
N∑

j=1

| f j(w)|r (1 − |w|2)(η−1)r ≤ sup
a∈B

`r′

∥∥∥∥ N∑
j=1

a j f j

∥∥∥∥r

Bη
.

Hence, ( N∑
j=1

‖Vg( f j)‖rBβ
)1/r

. K1/r sup
a∈B

`r′

‖

N∑
j=1

a j f j‖Bη .
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We obtain that Vg : Bη → Bβ is r-summing and πr(Vg) . K1/r. �

As an immediate corollary of this result:

Corollary 4.6. If Vg : Bβ −→ Bβ is r-summing, where β > 0, and γ > max(1, β) then
Vg : Bγ −→ Bγ is r-summing.

Remark 4.7. Let us give an example of non-trivial symbols such that Vg : Bη −→ Bβ is a
nuclear operator.

If β−η > 1, and g ∈ Bβ−η−1, then the Volterra operator Vg : Bη −→ Bβ is a nuclear operator.
Indeed, let us remark that

Q =

∫
D

sup
z∈D

(1 − |z|2)β |g′(z)|
|1 − wz|1+η

dA(w) ≤ sup
z∈D

(1 − |z|2)β−η−1|g′(z)|

= ||g||Bβ−η−1

(4.5)

Hence, Q < +∞ and the conclusion follows from Theorem 4.2.
In particular, if g is a polynomial, then Vg : Bη −→ Bβ is nuclear when β > η + 1.
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PASCAL LEFÈVRE, UNIV. ARTOIS, UR 2462, LABORATOIRE DE MATHÉMATIQUES DE LENS (LML),
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