
HAL Id: hal-03856717
https://hal.science/hal-03856717v1

Submitted on 18 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Foremost non-stop journey arrival in linear time
Juan Villacis-Llobet, Binh-Minh Bui-Xuan, Maria Potop-Butucaru

To cite this version:
Juan Villacis-Llobet, Binh-Minh Bui-Xuan, Maria Potop-Butucaru. Foremost non-stop journey ar-
rival in linear time. SIROCCO 2022 - 29th International Colloquium on Structural Information and
Communication Complexity, Jun 2022, Paderborn, Germany. pp.283-301, �10.1007/978-3-031-09993-
9_16�. �hal-03856717�

https://hal.science/hal-03856717v1
https://hal.archives-ouvertes.fr

Foremost non-stop journey arrival in linear time

Juan Villacis-Llobet1,2, Binh-Minh Bui-Xuan1, and Maria Potop-Butucaru1

1 LIP6 (CNRS – Sorbonne Université), [buixuan,maria.potop-butucaru]@lip6.fr
2 Institut Polytechnique de Paris, juan.villacisllobet@ip-paris.fr

Abstract. A journey in a temporal graph is a sequence of adjacent
and dated edges preserving the increasing order of arrival dates to the
consecutive edges. When a journey never visits a vertex twice it is also
called a temporal path. Given a pair of source and target vertices, a
journey connecting them is foremost if the arrival date at the target
vertex is the earliest. Like in the static case, there always exists a foremost
journey which is also a temporal path because it is useless to circle around
an intermediary vertex. It is therefore equivalent to compute the arrival
date of a foremost journey or a foremost temporal path.
A non-stop journey is a journey where every pair of consecutive edges
must also fulfill a maximum waiting time constraint. Foremost non-stop
journeys can achieve strictly earlier arrival date than foremost non-stop
temporal paths. We present a linear time algorithm computing the ear-
liest arrival date of such a non-stop journey connecting any two given
vertices in a given temporal graph.

Keywords: temporal graph, foremost journey, non-stop journey.

1 Introduction

In a static graph, both ShortestWalk and ShortestPath ask for the same
computation, that is, a path joining two given vertices with the least number of
edges. There is no need to make a distinction between walks and paths because
a shortest walk never visits a vertex twice, hence, is also a path. Moreover,
shortest paths fulfill a very convenient local optimisation property called prefix
preservation: any prefix of a shortest path is itself a shortest path. Exploiting
prefix preservation, popular greedy algorithms such as Dijkstra or Bellman-Ford
algorithms can be used to compute shortest path in polynomial time [4].

Generalising to the temporal case, given a temporal graph whose edges are
weighted with cost function c and two vertices s and t, a journey from s to t
is a sequence of dated edges (d1, s = v1, v2), (d2, v2, v3), . . . , (dp, vp, vp+1 = t)
satisfying some condition of realizability over the dates di’s. Furthermore, when
a journey never visits a vertex twice, it is called a temporal path. A fundamental
realizability constraint we will impose on all journeys appearing in this paper is
being timely increasing, that is, di + c(di, vi, vi+1) ≤ di+1 for every 1 < i ≤ p.
Finding the earliest arrival date at destination dp + c(dp, vp, vp+1 = t) of a jour-
ney, resp. temporal path, satisfying the timely increasing property, or outputting

2 J. Villacis-Llobet et al.

a negative answer when such a date does not exist, is called the ForemostJour-
neyArrival, resp. ForemostTemporalPathArrival, problem. This helps
modelling both ground traffic [5] and TCP/IP transmission [10], where a vehicle
or a TCP/IP package need to be at successive checkpoints in increasing arrival
dates. Like in the static case, there is no need here to make a distinction be-
tween journeys and temporal paths because removing from any foremost journey
a cycle around an intermediary vertex does not modify the arrival date at its
final destination. Furthermore, prefix preservation can also be retrieved for such
journeys after a topological sort over the vertices [1]. From that point, the Dijk-
stra or Bellman-Ford approach can be extended to compute a foremost journey
in polynomial time. Prefix preservation also plays a crucial role in obtaining
algorithmic solutions for other path problems in temporal graphs [2,9].

In addition to the timely increasing property, a stronger realizability condi-
tion is to also have non-stop transit, that is, we also have the inequality the other
way around di+1 ≤ di + c(di, vi, vi+1) for every 1 < i ≤ p. Here, c(di, vi, vi+1)
represents exactly the time it takes for sailing from one vertex to another, where
the journey must continue without delays. This helps dealing with physical con-
straints when the traversal is performed by an aircraft or a boat [6]: while a
TCP/IP package can be retained at a vertex for an unlimited delay, an aircraft
can not perform a stationary flight at a vertex waiting for a better wind con-
dition. In the present paper, we address the slightly more general condition of
(α, β)-transit which allows for di+1 to depart within a time window, that is,
di + c(di, vi, vi+1) + α(vi+1) ≤ di+1 ≤ di + c(di, vi, vi+1) + β(vi+1) for every
1 < i ≤ p. This helps modeling disease spreading where an infection is supposed
not to stay on any infected individual vi+1 for more than β(vi+1) = 7 days.
With α being constantly equal to 0 and β constantly equal to 7 days, solving
the corresponding ForemostJourneyArrival under (α, β)-transit would let
us know if the destination vertex would be at risk of contamination whenever
the source vertex is infected.

On the theoretical side, not only ForemostJourneyArrival and Fore-
mostTemporalPathArrival strictly differ under (α, β)-transit, but it is also
unclear how to retrieve the prefix preservation property, as the topological sort
approach does not seem to give satisfying results. It is even more unfortunate
that ForemostTemporalPathArrival under (α, β)-transit is NP -hard [3].
The situation is better for ForemostJourneyArrival, where to the best of
our knowledge, it can be solved in O(n+m logm) time under (α, β)-transit, with
n being the number of vertices and m the number of dated edges in the input
temporal graph following a recent result in Ref. [8]. Therein, the main idea is
to slice the input temporal graph into graphs Gd containing arcs of the input
temporal graph dated with d, plus some well selected arcs with arrival date equal
to d. Then, by sliding the value of d over the time dimension, one can decompose
the original problem into a computation of journeys ending before d and what
will be remaining. Using a Dijkstra approach to solve the former part, one can
achieve a global O(n+m logm) time solution for ForemostJourneyArrival
under (α, β)-transit, along with a larger class of path-like problems [8].

Foremost non-stop journey arrival in linear time 3

We present a linear time solution for ForemostJourneyArrival under
(α, β)-transit. Unlike the previous decomposition approach, we focus in reduc-
ing a set of relevant arcs into one arc which achieves the desired foremost journey
arrival date. It is divided into four stages which will be called sequentially. In
a nutshell, we first compute a representation for the arc set of a large gadget
digraph (first two stages), then traverse it (third stage) before a last scan to
filter the output (fourth stage). Considering implementation matters, we devise
the first two stages and the fourth stage using the filter-map-reduce program-
ming paradigm. Additionally, these stages can easily be batch-performed in a
distributed setting. Our third stage computation is a graph traversal and it is
very unclear whether this stage can be parallelized. Nevertheless, we leave open
the question whether the third stage can also be implemented using functional
programming, which would be interesting among other things for reuse matters.

In order to achieve linear time complexity, we cope with the gadget digraph
using an implicit representation. Originally, each vertex of the gadget graph is a
pair (d, u) denoting that it is possible in the input temporal graph to leave u at d
(to any destination). There is an arc from (d, u) to (d′, v) if it is possible to leave
u at d to arrive to v, and leave again v at d′ while fulfilling the (α, β)-transit
condition at v. We show that the gadget graph allows for encoding every infor-
mation we need to solve ForemostJourneyArrival. However, its size is very
large. For every fixed v, we then exploit the total order of the time dimension,
and regroup only relevant values of d′ into disjoint-sets using a restricted version
of disjoint-set data structure [7]. Finally, we show a constant upper bound for
the out-going degree of the leftover implicit representation of the gadget graph,
and use it to prove the global linear time complexity.

Our paper is organised as follows. We formalise in Section 2 problem Fore-
mostJourneyArrival under (α, β)-transit. In Section 3 we present the main
structures to be computed before solving this problem. We show in Section 4
how to compute all these structures in linear time. In Section 5 we close the
paper with concluding remarks and open perspectives for further research.

2 Journey in a temporal (di)graph

In this paper, digraphs are simple loopless directed graphs. This encompasses
the case of simple loopless undirected graphs, whose formalism is equivalent to
that of symmetric digraphs. We denote V ⊗ V = V × V \ {(v, v) : v ∈ V } for
any finite set V . A temporal digraph is a tuple G = (τ, V,A, c) where:

– τ ∈ N is an integer called the timespan of G. We define interval T = J0, τ−1K
as the set of time instants used in G.

– V is a finite set called the vertex set of G.
– A ⊆ T × V ⊗ V is called the arc set of G.
– c : A → N represents the traversal time of every arc, it is called the cost

function for G.

For every arc a = (d, s, t) ∈ A, we denote s(a) = s the source vertex of the
arc, t(a) = t its target vertex, and d(a) = d its departure time. The traversal of

4 J. Villacis-Llobet et al.

arc a departs from s towards t at departure time d and arrives to t at arrival
time d+ c(a).

Remark 1. With this formalism, if a = (d, s, t) belongs to A and c(a) > 1, it is
still not necessarily the case that a′ = (d + 1, s, t) belongs to A. If both a and
a′ belong to A, the formalism allows for c(a) and c(a′) to differ arbitrarily. This
helps modeling the routing condition from s to t according to the moment the
arc is traversed.

We define journeys with waiting time constraints following the formalism
given in [8]. Let s, t ∈ V be two distinct vertices of G. Let α, β : V → N be two
functions representing the minimum and maximum waiting time at every vertex.
An (α, β)-journey from s to t is a sequence of arcs J = (a1, a2, . . . , ap) ∈ Ap,
where s(a1) = s, t(ap) = t, and for every 1 ≤ i < p we have both t(ai) = s(ai+1)
and d(ai) + c(ai) + α(t(ai)) ≤ d(ai+1) ≤ d(ai) + c(ai) + β(t(ai)). For 1 ≤ i < p,
the traversal of arc ai begins from source vertex s(ai) at departure time d(ai), it
takes c(ai) time steps to arrive at target vertex t(ai), where the journey has to
be delayed for at least α(t(ai)) and at most β(t(ai)) time steps before pursuing
with the traversal of arc ai+1. The arrival date of J is defined as d(ap) + c(ap).
A journey is called foremost when its arrival date is minimum.

On input a temporal graph G = (τ, V,A, c) with transit functions (α, β) and
two vertices s, t in G, the problem of computing the minimum value of arrival
date d(ap) + c(ap) taken over every (α, β)-journey J = (a1, a2, . . . , ap) from s
to t is called the ForemostJourneyArrival under (α, β)-transit problem.
When both α and β are constantly equal to 0, such a (0, 0)-journey J is called
a non-stop journey. Figure 1 exemplifies such journeys.

Fig. 1. A temporal digraph, the labels on the arcs denote the time instants where the
arcs are active. If the cost function is uniformly unitary, then the following journey
from A to E is foremost: A 1→ B

3→ E, while the journey A 1→ B
2→ C

3→ D
4→ E is

the foremost (0, 0)-journey, also known as non-stop.

3 From journey to time set

In this section we prepare the way for solving ForemostJourneyArrival un-
der (α, β)-transit. Lemma 1 below is crucial because it helps us reduce a path-like
problem down to a set problem. Then, Lemmas 2 and 4 introduce the structures

Foremost non-stop journey arrival in linear time 5

that will be used in next Section 4 to solve ForemostJourneyArrival under
(α, β)-transit. For the sake of clarity, the time complexity which will be given
in both Lemmas 2 and 4 is inefficient. In the next section, we depict optimised
replacements for these steps, reducing the time complexity down to linear.

Let G = (τ, V,A, c) be a temporal digraph. Let α, β : V → N be two func-
tions representing the minimum and maximum waiting time constraints. For
any source vertex s ∈ V , we define the set of (α, β)-reachable arcs from s as
R(s) = {ap ∈ A : ∃ (α, β)-journey J = (a1, a2, . . . , ap) ∈ Ap ∧ s(a1) = s}.
We show below how to compute, from the supposed knowledge of set R(s), the
minimum arrival date of an (α, β)-journey from s to any target vertex t.

Lemma 1 (Reachable arcs). On input a temporal digraph G, a pair of source
and target vertices s, t in G, two constraint functions α, β : V → N, and the
above defined (α, β)-reachable arc set R(s), it is possible to output in linear time
the minimum arrival date of an (α, β)-journey from s to t. More precisely, the
minimum arrival date is equal to min{d(a) + c(a) : a ∈ R(s) ∧ t(a) = t}, which
can be reduced from R(s) in linear time. Moreover, the reduction can be done
using a functional programming approach as showed in Remark 2 below.

Proof. We first address the case when there exists an (α, β)-journey from s to
t. Let mad be the minimum arrival date of such a journey. Let m = min{d(a) +
c(a) : a ∈ R(s) ∧ t(a) = t}. We claim that m = mad.

Indeed, let J = (a1, a2, . . . , ap) ∈ Ap be an (α, β)-journey from s to t min-
imising the arrival date. By definition, we firstly have that mad is the arrival
date of J , that is, mad = d(ap) + c(ap). Besides, it also follows from definition
of J that t(ap) = t. Moreover, J is also such that s(a1) = s, therefore, we have
from definition of R(s) that ap ∈ R(s). Now, we have both ap ∈ R(s)∧ t(ap) = t,
therefore, by definition of m we have that m ≤ d(ap) + c(ap). Combining with
earlier proven mad = d(ap) + c(ap) we obtain m ≤ mad.

Conversely, let a ∈ R(s) such that t(a) = t. We claim that mad ≤ d(a)+c(a).
By definition of a ∈ R(s), there exists an (α, β)-journey J = (a1, a2, . . . , ap) ∈ Ap

such that s(a1) = s and ap = a. Combining with t(a) = t we have that J is
exactly an (α, β)-journey from s to t. Since the arrival date of J is d(a) + c(a),
we have that mad ≤ d(a) + c(a) because mad is the minimal arrival date taken
over all (α, β)-journeys from s to t. We have proven that mad ≤ d(a) + c(a) for
every a ∈ R(s) ∧ t(a) = t. Hence, mad ≤ m.

All in all we have just proved that m = mad. Therefore it is sufficient to
compute m in order to output the value of mad. Finally, computing m from the
input of R(s), vertex t, and cost function c can be done in linear time by any
standard streaming process.

When there is no (α, β)-journey from s to t then mad =∞. In this case R(s)
contains no arc a such that t(a) = t and therefore m would have the value ∞
after performing the map-reduce (as no arc satisfies both properties needed to
be considered a suitable value for m). Therefore the result still holds for this
particular case. ut

6 J. Villacis-Llobet et al.

Remark 2. Lemma 1 is proper to temporal digraphs in the sense that we can
from input G = (τ, V,A, c) filter the set A to a smaller subset R(s) ⊆ A, then
filter further to the set of arcs whose target vertex is t, and finally reduce the
stream to find the minimum value d(a)+c(a). As a comparison no shortest path
algorithm on static (di)graphs allows for using filter-map-reduce programming
in such a straightforward manner.

We now introduce an intermediary step to compute the arc set R(s). We
define the set of valid transit departures in an (α, β)-journey from s as D(s) =
{(d, v) ∈ T × V : ∃ (α, β)-journey J = (a1, a2, . . . , ap) ∈ Ap, such that s(a1) =
s ∧ s(ap) = v ∧ d(ap) = d}.

Lemma 2 (Valid transit departures). On input a temporal digraph G, a pair
of source and target vertices s, t in G, two constraint functions α, β : V → N,
and the above defined set D(s) of valid transit departures in an (α, β)-journey
from s, it is possible to output in polynomial time the set R(s) of (α, β)-reachable
arcs from s.

Proof. A naive way to output R(s) from D(s) is as follows. We initialize a
boolean table R indexed by the elements of A. For any a ∈ A with a = (d, u, v),
we scan D(s) and check if (d, u) ∈ D(s). If this is the case we set R[a] to true.
At the end of the process, we scan R and output every index a where R[a] has
value true. ut

In the sequel we show how to compute in polynomial time the set D(s) from
the input of G. We first define a static digraph associated to temporal digraph
G, then we perform a graph search on the thus defined static graph.

The (α, β)-transit departure digraph of G, that we call GD = (VD, AD), is
defined as follows. First, VD = {(d, v) : ∃a ∈ A, s(a) = v ∧ d(a) = d} is the set
of all possible transit departures, including those not necessarily valid w.r.t. any
(α, β)-journey from s. In other words, D(s) ⊆ VD, however, VD could be much
larger than D(s). Then, for any pair of vertices x = (d, u) and y = (d′, v) of
VD, we define (x, y) ∈ AD if and only if we have both that a = (d, u, v) belongs
to A and that d + c(a) + α(v) ≤ d′ ≤ d + c(a) + β(v). Figure 2 exemplifies the
construction of a transit departure digraph.

We capture in the following property our main computational purposes of
defining GD. It gives a reasonable upper bound for both |VD| and |AD|.

Property 1. Let G = (τ, V,A, c) be a temporal digraph, α, β : V → N two
functions representing the minimum and maximum waiting time constraints, and
GD = (VD, AD) the (α, β)-transit departure digraph of G. Let γ = max{β(v) −
α(v) + 1 : v ∈ V }. Then, |VD| ≤ |A| and |AD| ≤ γ × |A|.

Proof. Note that two naive upper bounds for GD exist: |VD| ≤ τ × |V | and
|AD| = O(|VD|2). Furthermore, we can also note by definition VD = {(d, v) :
∃a ∈ A, s(a) = v ∧ d(a) = d} that |VD| ≤ |A| because there will be at most
one vertex in VD for every arc in A. As a side note, it could be the case that

Foremost non-stop journey arrival in linear time 7

Fig. 2. The corresponding static representation GD of the temporal graph in Figure 1
taking 0 as minimum waiting time, 2 as the maximum waiting time and a traversal
time of 1 for all arcs.

|VD| < |A|: if we have (d, v, w) ∈ A and (d, v, w′) ∈ A for distinct vertices
w 6= w′.

Now, let us examine (x, y) ∈ AD with x = (d, u) and y = (d′, v). By definition,
a = (d, u, v) must belong to A, and d′ must satisfy the waiting time constraints
d+c(a)+α(v) ≤ d′ ≤ d+c(a)+β(v). Let us define function f : AD → A×J0, γ−1K
as f((d, u), (d′, v)) = (d, u, v, d′ − d− c(a)). Then, we can check that f is a well-
defined injective function, and therefore, deduce that |AD| ≤ γ × |A|. ut

Essentially, the size of thus defined graph GD is not far from linear in |A|. We
now would like to extract from VD all vertices belonging to D(s). By definition,
we have the following closure property: (x, y) ∈ AD∧x ∈ D(s) implies y ∈ D(s).
Hence, D(s) encompasses the set of vertices in GD reachable from any vertex
of the set VD ∩ {(d, s) : 0 ≤ d < τ}. Moreover, we show in the following lemma
that D(s) is exactly the latter set.

Lemma 3. Let G = (τ, V,A, c) be a temporal digraph, α, β : V → N two func-
tions representing the minimum and maximum waiting time constraints, s ∈ V ,
and D(s) the set of valid transit departures in an (α, β)-journey from s. Let
GD = (VD, AD) be the (α, β)-transit departure digraph of G. Then, D(s) is
exactly the set of vertices in GD which are reachable from a (directed) path be-
ginning at any vertex of the set VD ∩ {(d, s) : 0 ≤ d < τ}.

Proof. We denote by RD(s) the set of vertices in GD which are reachable from
a (directed) path beginning at any vertex of the set VD ∩ {(d, s) : 0 ≤ d < τ}.
By definition of GD, we have the following closure property: if (x, y) ∈ AD and
x ∈ D(s) then y ∈ D(s). Besides, whenever (d, s) ∈ VD for any 0 ≤ d < τ ,
that is, whenever there exists a ∈ A such that s(a) = s and d(a) = d, we also
have that (d, s) ∈ D(s) by using the single-arc (α, β)-journey J = (a) in the
definition of D(s). Now, we use the above mentioned closure property in order
to deduce that RD(s) ⊆ D(s). Hence, the only thing left for us to show is that
D(s) ⊆ RD(s).

Let (d, v) ∈ D(s). We would like to prove that (d, v) ∈ RD(s). By definition of
D(s), there exists an (α, β)-journey J = (a1, a2, . . . , ap) ∈ Ap such that s(a1) =
s, s(ap) = v, and d(ap) = d. Let us consider Jq = (a1, a2, . . . , aq), for any

8 J. Villacis-Llobet et al.

1 ≤ q ≤ p. For convenience, we denote dq = d(aq), vq = s(aq), and xq = (dq, vq).
Since aq ∈ A we have from definition of VD that xq ∈ VD, for any 1 ≤ q ≤ p.
We claim that (x1, x2, . . . , xp) is a directed walk in the static digraph GD, with
x1 ∈ VD ∩ {(d, s) : 0 ≤ d < τ} and xp = (d, v).

Indeed, by definition of D(s) we have for any 1 ≤ q ≤ p that (dq, vq) ∈ D(s).
When q = 1, this implies v1 = s, and therefore x1 = (d1, v1) = (d1, s) belongs to
VD∩{(d, s) : 0 ≤ d < τ}. Since the original J is an (α, β)-journey, it must satisfy
the waiting time constraints, that is, we have dq + c(aq) + α(t(aq)) ≤ dq+1 ≤
dq + c(aq)+β(t(aq)), for every 1 ≤ q < p. Besides, since t(aq) = s(aq+1) = vq+1,
we have both (dq, vq, vq+1) = aq ∈ A and dq + c(aq) + α(vq+1) ≤ dq+1 ≤
dq + c(aq) + β(vq+1). This implies (xq, xq+1) belongs to AD for every 1 ≤ q < p.
In other words, (x1, x2, . . . , xp) is a directed walk in GD. Since dp = d(ap) = d
and sp = s(ap) = v, we also have xp = (d, v). We have shown a directed walk
in GD beginning from vertex x1 ∈ VD ∩ {(d, s) : 0 ≤ d < τ}, and ending at
vertex xp = (d, v). This also implies there exists a directed path in GD from x1
to xp = (d, v). Hence, (d, v) ∈ RD(s). We have proved for every (d, v) ∈ D(s)
that (d, v) ∈ RD(s). In other words, D(s) ⊆ RD(s). ut

Lemma 4. On input a temporal digraph G, a source vertex s in G, two con-
straint functions α, β : V → N, it is possible to output in polynomial time the
set D(s) of valid transit departures in an (α, β)-journey from s.

Proof. Let G = (τ, V,A, c), and GD = (VD, AD) its (α, β)-transit departure
digraph. By Lemma 3, D(s) can be computed by a graph search on GD, that
is, in O(|VD|+ |AD|) time from the knowledge of GD. From Property 1, the size
of VD and AD is polynomial in |A|, α, and β. Hence, it is straightforward to
construct VD in O(τ × |V | × |A|), then AD in O(|VD|2 × |A|). ut

All in all, we presented in Lemmas 1, 2 and 4 polynomial procedures for
computing the minimum arrival date of an (α, β)-journey from s to t. Whereas
the procedure presented in Lemma 1 requires linear time, the other two might
take more time to terminate. The total time complexity is significantly worse
than the recently known O(|V | + |A| log |A|) algorithm presented in [8]. In the
next section we present an improvement in the way we construct the graph GD

and traverse it in linear time in |A|.

4 Foremost non-stop journey arrival in linear time

In this section we show how to solve in linear time ForemostJourneyArrival
under (α, β)-transit from a source vertex s to a target vertex t in a temporal
digraph G = (τ, V,A, c). This encompass the case of foremost non-stop journeys
when both α and β are constantly equal to 0. We do this by an implicit traversal
of the (α, β)-transit departure digraph GD = (VD, AD) as defined in the previous
section. We suppose the three functions c, α, β are given as tables, so that the
cost for accessing c(a) for every a ∈ A, and the cost for accessing α(v) and β(v)
for every v ∈ V are constant.

Foremost non-stop journey arrival in linear time 9

Our algorithm is composed of four main stages, each one terminates in O(τ+
|V | + |A|) time: first we construct VD; then we construct a subset of AD of
representative arcs whose number is bounded by 2× |A|; in a third stage we use
the previously constructed structures to compute an implicit representation of
the set D(s) defined in the previous section; finally, we use this information and
construct the set R(s) defined in Lemma 1, and result as a byproduct in the
earliest arrival date of an (α, β)-journey from s to t.

For use in Algorithm 1, we perform two linear bucket sorting processes (a.k.a.
radix sorting) as follows. We first initialize two arrays containing τ buckets each.
Each bucket is to contain a list of arcs initially empty. Then, we stream through
A, where for every arc a ∈ A we: first append a to the list present in the bucket
numbered d(a) in the first array of buckets; second append a to the list present
in the bucket numbered d(a)+ c(a) in the second array of buckets. For later use,
we also keep a variable counting the number of elements in every bucket. After
the streaming process, we have filled two arrays of τ buckets each, where every
bucket contains a list of arcs, as well as the number of arcs in the bucket. We now
iterate over the buckets by increasing order and concatenate all the two times τ
lists consecutively, resulting in a list of arcs sorted in increasing departure time
from source vertex, and a list of arcs sorted in increasing arrival time to target
vertex. Since the number of elements in each list is known, each concatenation
can be done in constant time. The whole procedure is hence in O(τ + |A|).

From now on we suppose A is given twice: sorted by increasing departure
time from source vertex, and sorted by increasing arrival time to target vertex.

Algorithm 1 Construction of VD, the vertex set of GD.
1: procedure GenerateVertices(G = (τ, V,A, c), α, β)
2: Departures← ∅ . Set containing all the new vertices in GD

3: Initialize table VDep with |V | entries . Same set, fast track for later use
4: Arrivals← ∅
5: Initialize table VArr with |V | entries
6: for each vertex v ∈ V do
7: VDep[v]← ∅
8: VArr[v]← ∅
9: for each arc a ∈ A in increasing departure time do
10: Append (d(a), s(a)) to Departures if not already present
11: Append d(a) to VDep[s(a)] if not already present
12: for each arc a ∈ A in increasing arrival time do
13: Append (d(a) + c(a), t(a)) to Arrivals if not already present
14: Append d(a) + c(a) to VArr[t(a)] if not already present
15: Either output VDep or Departures as the vertex set VD

16: For later use in Algorithm 2, also output VArr.

Stage 1: Construction of VD. We stream through every element a ∈ A in in-
creasing departure time and append (d(a), s(a)) to a Departures list. Simi-

10 J. Villacis-Llobet et al.

larly, we stream through every element a ∈ A in increasing arrival time and
append (d(a) + c(a), t(a)) to an Arrivals list. By definition, the vertex set
VD contains exactly the elements present in the Departures list. Furthermore,
we will organise VD in the following manner, for later use in Stage 2. Let
V = {v1, v2, . . . , V|V |}. We create |V | buckets numbered by these vi’s, each
bucket is to contain a list of departure times initially empty. When stream-
ing through every element a ∈ A, we also append d(a) to the list present in the
bucket numbered s(a). After the streaming process, we keep the |V | lists in a
table named VDep, indexed by the vi’s. Thus, for every vertex v ∈ V , reading
VDep[v] gives a quick access to all the departure times d associated to that ver-
tex, i.e. where (d, v) ∈ VD. Since A is sorted by increasing departure time, it is
also the case with list Departures, as well as with list VDep[v], for every v ∈ V .
For later use in Stage 2, we also organise Arrivals into a table named VArr, in
a similar way. In reality, we do not use Departures and Arrivals in the rest of
the manuscript. However, we keep them in the discussion for more clarity. We
capture the pseudo-code in Algorithm 1, and result in the following lemma.

Lemma 5. On input a temporal digraph G = (τ, V,A, c) and two constraint
functions α, β : V → N, Algorithm 1 correctly generates in time O(|V |+ |A|) all
the vertices of GD, the (α, β)-transit departure graph of G.

Proof. The algorithm’s correctness follows from definition. Lines 3,5,6-8 take
O(|V |) times while lines 9-14 take O(|A|) time. ut

Stage 2: Implicit representation of AD in O(|A|) space. If β(v) − α(v) = 1 for
every v ∈ V , then a similar argument as in the proof of Property 1 implies
|AD| ≤ 2× |A|. Indeed, every arc (d, u, v) = a ∈ A gives rise to at most two arcs
in GD: one from (d, u) to (d′, v) with d′ = d + c(a) + α(v) if the latter vertex
(d′, v) belongs to VD; one from (d, u) to (d′, v) with d′ = d + c(a) + β(v) if the
latter vertex (d′, v) belongs to VD.

Now if β(v)−α(v) is an arbitrary integer, we remark the following organisa-
tion of AD. Consider set D′ = {d′ : ((d, u), (d′, v)) ∈ AD}, then if both d′1 ≤ d′3
belong to D′ and d′2 is such that we have both d′1 ≤ d′2 ≤ d′3 and (d′2, v) ∈ VD,
then d′2 belong to D′. Moreover, in the (ordered) list VDep[v], the elements of D′

appear consecutively. Therefore, in order to represent all arcs of AD of the form
((d, u), (d′, v)), for every given (d, u, v) = a ∈ A, we only need to store the arc
from (d, u) to (d′min, v) and the arc from (d, u) to (d′max, v), where d′min = minD′

and d′max = maxD′. All the other arcs of the form ((d, u), (d′, v)) can be obtained
by enumerating from VDep[v] all d′ such that d′min ≤ d′ ≤ d′max.

In order to implement this idea, we define DPmin and DPmax to be two
tables, indexed by the elements of A. For every (d, u, v) = a ∈ A, we de-
fine DPmin[(d, u, v)]= min{d′ : ((d, u), (d′, v)) ∈ AD} and DPmax[(d, u, v)]=
max{d′ : ((d, u), (d′, v)) ∈ AD}. Then, we will use in Stage 3 and Stage 4 the
input of VDep, DPmin, and DPmax as an implicit representation ofGD = (VD, AD).

In order to avoid computing DPmin and DPmax in quadratic time in |A|,
our main trick is to break down the total transit time cost into two parts: the
traversal time represented by function c : A→ N, and the delay time represented

Foremost non-stop journey arrival in linear time 11

by functions α, β : V → N. For this, we build auxiliary tables FirstTransit
and LastTransit with the help of Algorithm 1 table VArr. We capture the
pseudo-code for first computing the auxiliary tables, then DPmin and DPmax in
Algorithm 2, and result in the following lemma.

Algorithm 2 Implicit representation of GD = (VD, AD) by VDep, DPmin, and
DPmax.
1: procedure GenerateTables(G = (τ, V,A, c), α, β)
2: Call Algorithm 1 GenerateVertices(G,α, β) and obtain VDep and VArr
3: Initialize table FirstTransit with |V | entries
4: Initialize table LastTransit with |V | entries
5: for each vertex v ∈ V do . Find for each arrival to v the first/last departure
6: darr ← first element of VArr[v]
7: Initialize table FirstTransit[v] with |VArr[v]| entries
8: d′first ← first element of VDep[v]
9: while darr is still an element of VArr[v] do
10: while ¬(darr + α(v) ≤ d′first) do
11: d′first ← next element after d′first in VDep[v]

12: FirstTransit[v][darr]← d′first
13: darr ← next element after darr in VArr[v]
14: darr ← last element of VArr[v]
15: Initialize table LastTransit[v] with |VArr[v]| entries
16: d′last ← last element of VDep[v]
17: while darr is still an element of VArr[v] do
18: while ¬(d′last ≤ darr + β(v)) do
19: d′last ← previous element before d′last in VDep[v]
20: LastTransit[v][darr]← d′last
21: darr ← previous element before darr in VArr[v]
22: Initialize table DPmin with |A| entries
23: Initialize table DPmax with |A| entries
24: for each arc (d, u, v) = a ∈ A do . Take c into account: darr = d+ c(a)
25: DPmin[(d, u, v)]← FirstTransit[v][d+ c(a)]
26: DPmax[(d, u, v)]← LastTransit[v][d+ c(a)]
27: Output VDep, DPmin and DPmax as implicit representation of GD.

Lemma 6. On input a temporal digraph G = (τ, V,A, c) and two constraint
functions α, β : V → N, Algorithm 2 outputs in time O(|V | + |A|) three tables
called VDep, DPmin, and DPmax. From these tables one can generate GD, the
(α, β)-transit departure graph of G, in linear time (in the size of the input G
and the output GD).

Proof. It is a standard exercise to prove that Algorithm 2 correctly computes
DPmin[(d, u, v)]= min{d′ : ((d, u), (d′, v)) ∈ AD} and DPmax[(d, u, v)]= max{d′ :
((d, u), (d′, v)) ∈ AD}, e.g. by induction on the total size of VArr.

12 J. Villacis-Llobet et al.

Fig. 3. Data structure used in Algorithm 2 for each vertex v ∈ V , where we suppose
α(v) = 0 and β(v) = 2. In this case it is done for the node c in the temporal graph
of Figure 1. List VArr[v] is represented by the “Arrivals” row on top, it contains all
times at which a path arrives to node c. List VDep[v] is represented by the “Depar-
tures” row on the bottom, it contains all times at which a path departs from node
c. For every element darr in VArr[v], its associated value FirstTransit[v][darr] in
VDep[v] is pointed to by the min arrow departing from darr, while its associated value
LastTransit[v][darr] in VDep[v] is pointed to by the max arrow.

For complexity issues, the main point lies in the chasing while loops which
happens twice, once at lines 9-13, and the other time at lines 17-21. Here, vertex
v ∈ V is already fixed. In the first case, lines 9-13, variables darr and d′first can
only move forward in lists VArr[v] and VDep[v], respectively. Accordingly, at the
end of the process lines 9-13, every entry in VArr[v] and VDep[v] are visited ex-
actly once. The case with lines 17-21 is similar, where variables darr and d′last can
only move backward. Figure 3 exemplifies for every entry of table VArr[v][darr]
the position of FirstTransit[v][darr] and LastTransit[v][darr] in VDep[v].

Summing up over every vertex v ∈ V , at the end of the process lines 5-21,
every elements in VArr and VDep are visited exactly twice. Since the total size
of VArr is at most |A|, and so is the total size of VDep, cf. Property 1, Lemma 5
and Algorithm 1, we deduce that the total contribution of lines 9-13 and 17-21
to the for loop lines 5-21 is O(|A|). The contribution of lines 7 and 15 is O(|A|),
and that of lines 6,8,14,16 is O(|V |). To complete the complexity analysis for
Algorithm 2, we note that line 2 takes O(|V | + |A|) time (Lemma 5), lines 3-4
take O(|V |) time, and lines 23-26 take O(|A|) times.

In order to generate VD, we scan over all elements of VDep. The enumeration
of AD can proceed as follows. For every arc (d, u, v) = a ∈ A, we scan from the
element DPmin[(d, u, v)] of VDep[v] to its element equal to DPmax[(d, u, v)] and
enumerate all d′ in between, generating an arc ((d, u), (d′, v)) for each of them.
By definition of DPmin and DPmax, we have AD = {((d, u), (d′, v)) : (d, u, v) ∈
A ∧ (d′, v) ∈ VD ∧ DPmin[(d, u, v)] ≤ d′ ≤ DPmax[(d, u, v)]}. ut

Stage 3: Marking all vertices in VD whether it belongs to D(s). After the first
two stages, every vertex of GD = (VD, AD) is constructed, as well as an im-
plicit representation of the arcs of GD. We now need to visit the vertices of
GD and mark them according to Lemma 3. Because the representation does not
include all arcs of GD, solving this step using standard graph searches such as

Foremost non-stop journey arrival in linear time 13

Breadth-First Search seems difficult. More precisely, our implicit representation
only stores in entries DPmin[(a)] and DPmax[(a)] the earliest and the latest
departure dates for a valid transit at vertex v = t(a) w.r.t. the (α, β)-transit
condition. Let us assume (d, u) ∈ D(s) for d = d(a) and u = s(a), and let
us consider v = t(a): if we do test whether (d′, v) belongs to D(s) by naively
scanning all potential values of d′ s.t. DPmin[(a)] ≤ d′ ≤ DPmax[(a)], then the
overall complexity will have a factor depending on maxv∈V |VArr[v]|, which is a
sharp upper bound for DPmax[(a)]−DPmin[(a)]. This could lead to a non-linear
complexity in the worst case.

Algorithm 3 Traverse the graph GD

1: procedure Traverse(G,α, β, s)
2: Call Algorithm 2 GenerateTables(G,α, β) and obtain VDep, DPmin and DPmax
3: . We refer to VD as the concatenation of all entries in VDep
4: Q← a queue initially with all vertices in VDep[s]
5: Traversed← a list that stores all vertices that are visited during the traversal
6: for each vertex u ∈ V do
7: Make disjoint-set Du . With .join(d, d′) for union and .comp(d) for find
8: for each vertex (d, u) ∈ VD do
9: Bu[d] = −1 . Values in Bu will represent the date when vertex
10: . (d, u) ∈ VD was visited before, −1 represents false
11: while Q is not empty do
12: (d, u)← Q.pop()
13: for each a = (d, u, v) ∈ A and d′ = DPmin[(a)] do . Implicit iteration
14: . over ((d, u), (d′, v)) ∈ AD

15: d′max ← DPmax[(d, u, v)]
16: d′now ← d′

17: d′prev ← d′

18: while d′now ≤ d′max do
19: visited = Bv[Dv.comp(d

′
now)]

20: temp← max(Bv[Dv.comp(d
′
prev)], Bv[Dv.comp(d

′
now)])

21: Dv.join(d
′
now, d

′
prev)

22: Bv[Dv.comp(d
′
now)]← temp

23: if visited 6= −1 then . Value in Bv states if the vertex was visited
24: d′now ← Bv[Dv.comp(d

′
now)] . Jump to the vertex with the

25: . largest time in that component
26: else
27: Q.push((d′now, v))
28: Traversed.append((d′now, v))

29: Bv[Dv.comp(d
′
now)] = max(d′now, Bv[Dv.comp(d

′
now)])

30: d′prev ← d′now

31: (d′now, v)← next vertex after (d′now, v) in VArr[v]

To achieve linear runtime, we use two main ideas. First, we use disjoint-set
data structure to dynamically join the possible values of d′ whenever we do
the test whether (d′, v) belongs to D(s), for every v ∈ V . Generally, the use of

14 J. Villacis-Llobet et al.

disjoint-set data structure leads to a quasi-linear time complexity. In our case,
note that the possible values of d′ for every v ∈ V are in reality values in VArr[v],
Furthermore, already after calling Algorithm 1 the original values present in
VArr[v] are both known and totally ordered. Therefore, a faster case of disjoint-
set data structure [7] can be used, with O(1) amortised cost per operation.
Hence, there is only a total contribution in time O(

∑
v∈V |VArr[v]|) = O(|A|)

for disjoint-set operations. The second idea is captured in the proof of Lemma 9.
Roughly, we show with Lemma 9 that after joining dynamically the values of d′
while testing whether (d′, v) belongs to D(s), we can control the out-degree of
what is leftover in our implicit representation of GD.

We formalize Stage 3 of our computation in Algorithm 3. Roughly, we ini-
tialize a visiting queue with all vertices in VD associated to s, that is, of the
form (d, s) for any d. At each iteration we remove the top element (d, u) of the
queue, which is considered as a vertex of GD. In this iteration, we would like
to follow all arcs that the vertex (d, u) might have in GD. For this purpose we
make an implicit iteration: by iterating over every arc a = (d, u, v) ∈ A and every
possible value of d′ s.t. DPmin[(a)] ≤ d′ ≤ DPmax[(a)], as explained in Algo-
rithm 2 and Lemma 6. However, to control the global runtime, we only start with
d′now ← d′ = DPmin[(a)], and our plan is to check whether (d′now, v) belongs to
D(s) while dynamically joining all previously visited Dv.comp(d

′
now), for every

possible value of d′now between d′ = DPmin[(a)] and d′max = DPmax[(a)]. These
values are read from VArr[v].

More precisely, for each unvisited vertex visited in this process the algorithm
marks it as visited, adds it to the queue, joins the components for it and the
previous vertex (itself in case it is the first one) in the disjoint-setDv, sets as d′max

the reference to the largest visited vertex for its component and continue to the
next vertex in increasing order of time in VArr[v]. When the algorithm reaches
a vertex previously visited it goes to Dv and gets the identifier of the component
it belongs to, jumps to the vertex with the maximum time that belongs to the
component and continues to the next vertex. In total, the algorithm will visit the
number of unvisited arcs in between d′ and d′max plus at most 3 previously visited
vertices. The previous value 3 comes from the fact that when the algorithm gets
for the first time to a visited vertex it will follow the link to the visited vertex with
the largest time value in that component, then it continues iterating vertices until
it arrives once more to a visited vertex and follows the link again. The link of the
second visited vertex necessarily has to lead to a vertex with a time component
at least as large as d′max, and then the visiting process for this particular arc has
finished. This is proven in Lemma 9. From the previous analysis it follows that
over the whole traversal the algorithm will make at most 3|A|+ |A| steps, where
the first term comes from the bound obtained earlier and the second term is the
maximum number of vertices in the graph.

Figure 4 exemplifies Algorithm 3. Therein, the upper and lower arrows in-
dicate the links towards d′ and d′max at each time. Eventually, all vertices in
between become part of the same component, which is represented by the same
color, with the vertex in darker shade indicates the component with the largest

Foremost non-stop journey arrival in linear time 15

time. As we move from left to right we can see the progression of the components
as they are visited. On the leftmost column of the picture we can see the compo-
nent derived from a path arriving to b whose minimum departure time is 3 and
whose maximum departure time is 6 (denoted by the top and bottom arrows
pointing to these nodes). As there were no previous components on the disjoint-
set data structure at this iteration we create a component that contains all nodes
within those times. On the second column we see the resulting components after
a path with minimum departure time 8 and maximum departure time 9. As this
times do not intersect with those of the previous components we get two disjoint
components. The same process can be seen in the third column, where the red
component is expanded to include the node (7, b). On the last column we get the
result of processing a path that has minimum departure time from b equal to 5
and maximum departure time from b equal to 8. The nodes comprised between
these times contain elements from both sets in the disjoint-set data structure.
Therefore they are merged, resulting in a single set of all vertices of the form
(d′, b) in VD.

Fig. 4. The process of visiting all vertices in VD associated with a single vertex b in V .

We recall that for each arc a = (d, u, v) ∈ A a vertex (d, u) ∈ VD will have
arcs towards all vertices in GD associated to vertex v between time d′ and d′max.
However, our representation of GD does not include all these arcs: only (d′, v)
and (d′max, v) are explicit. We will call all of these vertices associated to the same
vertex v ∈ V to which (d, u) has an arc in GD cousins with respect to (d, u).
This is defined formally in the following definition.

Definition 1. Two vertices (d′1, v) and (d′2, v) ∈ VD associated to the same
vertex v ∈ V are cousins with respect to a vertex (d, u) ∈ VD if arc (d, u, v) ∈ A
exists, d+ c((d, u, v)) + α(v) ≤ d′1 ≤ d+ c((d, u, v)) + β(v) and d+ c((d, u, v)) +
α(v) ≤ d′2 ≤ d+ c((d, u, v)) + β(v).

16 J. Villacis-Llobet et al.

Lemma 7. There does not exist a vertex (d′2, v) ∈ VD such that there exist two
vertices (d′1, v) and (d′3, v) ∈ VD both associated to the same vertex v ∈ V and
Dv.comp(d

′
1) = Dv.comp(d

′
3) 6= Dv.comp(d

′
2) and d′1 < d′2 < d′3.

Proof. The only place where components are joined in the disjoint-set in Algo-
rithm 3 is in line 21. As can be seen in this line of the algorithm, only components
that are next to each other in the order given by VArr[v] can be merged. Lets
suppose that d′1 and d′3 are part of the same component. As at the beginning all
vertices belong to distinct components there should have been a moment when
the components of d′1 and d′3 were merged. This implies that the components
were next to each other and therefore there cannot be a value d′2 in between
these two components because otherwise the merge operation would not have
been possible. This leads to the fact that all members of the same component
are sequential in the order given by VArr[v] and proves the lemma. ut

Lemma 8. All vertices that are cousins with respect to a vertex (d, u) will be
in the same component after (d, u) has been popped from the queue and its arcs
traversed in Algorithm 3.

Proof. Let C denote the component of all vertices that are cousins with respect
to vertex (d, u). From the definition of the cousin relationship it is known that
all vertices in C are sequential. After (d, u) has been popped from Q and the
processing of all vertices begins through the while loop located in line 18 the
algorithm starts processing the vertex with the smallest time d′ and continues
all the way until the vertex with the largest time d′max each time going to the
next vertex after the current component. The following will analyze each case
the algorithm might encounter

– Reaches a previously unvisited vertex: The algorithm merges it with the
previous component, by Lemma 7 all vertices in this new component are
sequential.

– Reaches a previously visited vertex: The algorithm merges this component
with the previous one and moves to the last visited vertex of this component.
By Lemma 7 both merged components are sequential and therefore their
merge produces a component with no gap.

Therefore all merged vertices will be sequential and because the process visits
all components between d′ and d′max all previously existing components in that
range will become one after the end of the process. ut

Lemma 9. For each arc (d, u, v) ∈ A Algorithm 3 will visit e(d,u,v) + 4 vertices
where

∑
a∈A ea = O(|A|).

Proof. From Algorithm 2, each arc in (d, u, v) ∈ A leads to two explicit arcs
((d, u), (d′, v)) and ((d, u), (d′max, v)) of GD, along with several implicit arcs of
GD, where d′ = DPmin[(d, u, v)] and d′max = DPmax[(d, u, v)]. After following
one explicit arc it is possible to visit several other vertices by moving through
the ordered list of vertices VArr created in Algorithm 1. From the inner while

Foremost non-stop journey arrival in linear time 17

loop in line 18 of the algorithm it can be seen that the number of steps that
Algorithm 3 takes is bounded by the number of vertices visited by each explicit
arc in GD (by the for in line 13). What follows will analyze how many vertices
will be visited in the traversal process, as this will be the number of steps that
Algorithm 3 will perform. This can be seen in lines 18-31 of Algorithm 3 where
for each iteration of the while loop there is a vertex that is processed. Therefore it
is of interest to count the number of these aforementioned loops. The algorithm
will loop until the value of d′now is greater than that of d′max. In lines 15-17 d′now
receives as initial value the minimum time d′ such that the path that contains
(d, u, v) can continue through an outgoing arc from v at time d′, while d′max

receives as value the maximum at which the journey could continue through an
outgoing arc from v. Both values where calculated in Algorithm 2. When the
algorithm visits a vertex (d′now, v) there are 2 possibilities, depending on whether
(d′now, v) has been visited before or not. What follows will analyze both cases. If
the vertex has not been previously visited then it is marked as visited (line 22),
its component is joined with that of the previous visited vertex (line 21) and
the algorithm moves to the successor vertex. In this case the value of e(d,u,v) is
increased by one. In this case vertex (d′now, v) becomes the largest visited vertex
of the component containing all vertices associated with v with times between
d′ and d′now as can be deduced from the analysis of Lemma 8.

If the vertex has been visited previously then in line 24 we get the reference to
the largest visited vertex of the component and move to the successor vertex. In
what follows the argument that this can happen at most two times is presented.
This is the same as showing that at most two previously visited components will
be visited. By the definition of disjoint-set it is deduced that vertices in the first
and second components of visited vertices cannot intersect because otherwise
they would be part of the same set. By Lemma 7 it is also known that the vertex
of the second component with the minimum time (let it be denoted by d′′) should
have a time bigger than that of d′ because even if d′ is the last vertex from the
first visited set, vertex (d′′, v) is at least the successor of the last vertex from the
first visited set. Now following the link to the latest vertex of this component
would lead to at least time DPmax[(d′′, u, v)] given that from Lemma 8 it follows
that if this is the first vertex in the component it will have at least enough
vertices to lead to the said time, which because d′′ > d′ should be at least as
big as DPmax[(d′, u, v)] and as such we have at least reached time d′max and we
finish the loop. ut

Stage 4: Computing R(s) and a foremost (α, β)-journey from s to t. Now that
we have described the 3 main stages of the algorithm, we present them together
in the form of the full procedure in Algorithm 4 and show that it is linear in
Theorem 1.

Theorem 1. On input a temporal digraph G, a pair of source and target vertices
s, t in G, and two constraint functions α, β : V → N, Algorithm 4 computes the
arrival date of a foremost (α, β)-journey from s to t in linear time.

18 J. Villacis-Llobet et al.

Algorithm 4 Foremost (α, β)-journey arrival date in linear time
1: procedure Foremost(G,α, β, s, t)
2: GenerateVertices(G,α, β) . Algorithm 1
3: GenerateTables(G,α, β) . Algorithm 2
4: Traverse(G,α, β, s) . Algorithm 3
5: ArrivalDate =∞
6: for each arc (d, u, v) in A do
7: if v = t and (d, u) in traversed then
8: ArrivalDate = min(ArrivalDate, d+ c((d, u, v)))

9: return ArrivalDate . the time of the foremost journey from s to t

Proof. From Lemmas 5 and 6 it is known that Algorithms 1 and 2 have lin-
ear complexity. All that is left to do is show that Algorithm 3 is linear. From
Lemma 9 it is known that for each unvisited vertex the value of e(d,u,v) is in-
creased by one, and because there are at most 2|A| vertices in V then

∑
a∈A ea ≤

2|A|. Because each arc in A produces at most one iteration of the for loop in
line 13 of Algorithm 3 then from Lemma 9 it is deduced that the number of
visited vertices over all Algorithm 3 is smaller than |A|+4|A| and therefore the
number of visited vertices is linear in the size of |A| for Algorithm 3. Now that
the complexity of Algorithms 1, 2 and 3 are linear it follows that Algorithm 4’s
complexity is linear as it is a combination of the three aforementioned algorithms
plus an iteration over all arcs in A. ut

5 Conclusion and perspectives

We addressed the problem of computing in a temporal graph the arrival date
of a foremost journey under non-stop transit constraints. It is a polynomial
time problem, contrary to the computation of a temporal path under the same
constraints which is NP -hard. We then depict a linear time solution for finding
the minimum arrival date of a foremost non-stop journey.

As for perspectives, it turns out that most our algorithmic steps follow the
filter-map-reduce programming paradigm. In particular, we make intensive use
of bucket sorting (a.k.a. radix sort) which can very naturally be implemented
by lambdas. We believe that bucket sorting is important for processing historic
data in general, and temporal graphs in particular. In this sense, we raise the
open question whether our algorithm can be rewritten using a fully functional
programming approach.

Acknowledgements We are grateful to the anonymous reviewers for their
helpful comments which greatly improved the paper.

Foremost non-stop journey arrival in linear time 19

References

1. Bui-Xuan, B.M., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. International Journal of Foundations of Computer
Science 14(2), 267–285 (2003)

2. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Shortest, fastest, and foremost
broadcast in dynamic networks. International Journal of Foundations of Computer
Science 26(4), 499–522 (2015)

3. Casteigts, A., Himmel, A.S., Molter, H., Zschoche, P.: Finding temporal paths
under waiting time constraints. Algorithmica 83, 2754–2802 (2021)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press (1989)

5. Dibbelt, J., Pajor, T., Strasser, B., Wagner, D.: Connection scan algorithm. ACM
Journal of Experimental Algorithmics 23 (2018)

6. Dupuy, M., d’Ambrosio, C., Liberti, L.: Optimal paths on the ocean (2021), https:
//hal.archives-ouvertes.fr/hal-03404586

7. Gabow, H., Tarjan, R.: A linear-time algorithm for a special case of disjoint set
union. Journal of Computer and System Sciences 30, 209–221 (1985)

8. Himmel, A.S., Bentert, M., Nichterlein, A., Niedermeier, R.: Efficient computation
of optimal temporal walks under waiting-time constraints. In: 8th International
Conference on Complex Networks and Their Applications. SCI, vol. 882, pp. 494–
506 (2019)

9. Rymar, M., Molter, H., Nichterlein, A., Niedermeier, R.: Towards classifying the
polynomial-time solvability of temporal betweenness centrality. In: 47th Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science. LNCS, vol.
12911, pp. 219–231 (2021)

10. Saramäki, J., Kivelä, M., Karsai, M.: Weighted temporal event graphs. Temporal
Network Theory pp. 107–128 (2019)

https://hal.archives-ouvertes.fr/hal-03404586
https://hal.archives-ouvertes.fr/hal-03404586

	Foremost non-stop journey arrival in linear time

