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Introduction

In a static graph, both ShortestWalk and ShortestPath ask for the same computation, that is, a path joining two given vertices with the least number of edges. There is no need to make a distinction between walks and paths because a shortest walk never visits a vertex twice, hence, is also a path. Moreover, shortest paths fulfill a very convenient local optimisation property called prefix preservation: any prefix of a shortest path is itself a shortest path. Exploiting prefix preservation, popular greedy algorithms such as Dijkstra or Bellman-Ford algorithms can be used to compute shortest path in polynomial time [START_REF] Cormen | Introduction to Algorithms[END_REF].

Generalising to the temporal case, given a temporal graph whose edges are weighted with cost function c and two vertices s and t, a journey from s to t is a sequence of dated edges (d 1 , s = v 1 , v 2 ), (d 2 , v 2 , v 3 ), . . . , (d p , v p , v p+1 = t) satisfying some condition of realizability over the dates d i 's. Furthermore, when a journey never visits a vertex twice, it is called a temporal path. A fundamental realizability constraint we will impose on all journeys appearing in this paper is being timely increasing, that is, d i + c(d i , v i , v i+1 ) ≤ d i+1 for every 1 < i ≤ p. Finding the earliest arrival date at destination d p + c(d p , v p , v p+1 = t) of a journey, resp. temporal path, satisfying the timely increasing property, or outputting a negative answer when such a date does not exist, is called the ForemostJour-neyArrival, resp. ForemostTemporalPathArrival, problem. This helps modelling both ground traffic [START_REF] Dibbelt | Connection scan algorithm[END_REF] and TCP/IP transmission [START_REF] Saramäki | Weighted temporal event graphs[END_REF], where a vehicle or a TCP/IP package need to be at successive checkpoints in increasing arrival dates. Like in the static case, there is no need here to make a distinction between journeys and temporal paths because removing from any foremost journey a cycle around an intermediary vertex does not modify the arrival date at its final destination. Furthermore, prefix preservation can also be retrieved for such journeys after a topological sort over the vertices [START_REF] Bui-Xuan | Computing shortest, fastest, and foremost journeys in dynamic networks[END_REF]. From that point, the Dijkstra or Bellman-Ford approach can be extended to compute a foremost journey in polynomial time. Prefix preservation also plays a crucial role in obtaining algorithmic solutions for other path problems in temporal graphs [START_REF] Casteigts | Shortest, fastest, and foremost broadcast in dynamic networks[END_REF][START_REF] Rymar | Towards classifying the polynomial-time solvability of temporal betweenness centrality[END_REF].

In addition to the timely increasing property, a stronger realizability condition is to also have non-stop transit, that is, we also have the inequality the other way around d i+1 ≤ d i + c(d i , v i , v i+1 ) for every 1 < i ≤ p. Here, c(d i , v i , v i+1 ) represents exactly the time it takes for sailing from one vertex to another, where the journey must continue without delays. This helps dealing with physical constraints when the traversal is performed by an aircraft or a boat [START_REF] Dupuy | Optimal paths on the ocean[END_REF]: while a TCP/IP package can be retained at a vertex for an unlimited delay, an aircraft can not perform a stationary flight at a vertex waiting for a better wind condition. In the present paper, we address the slightly more general condition of (α, β)-transit which allows for d i+1 to depart within a time window, that is,

d i + c(d i , v i , v i+1 ) + α(v i+1 ) ≤ d i+1 ≤ d i + c(d i , v i , v i+1 ) + β(v i+1 )
for every 1 < i ≤ p. This helps modeling disease spreading where an infection is supposed not to stay on any infected individual v i+1 for more than β(v i+1 ) = 7 days. With α being constantly equal to 0 and β constantly equal to 7 days, solving the corresponding ForemostJourneyArrival under (α, β)-transit would let us know if the destination vertex would be at risk of contamination whenever the source vertex is infected.

On the theoretical side, not only ForemostJourneyArrival and Fore-mostTemporalPathArrival strictly differ under (α, β)-transit, but it is also unclear how to retrieve the prefix preservation property, as the topological sort approach does not seem to give satisfying results. It is even more unfortunate that ForemostTemporalPathArrival under (α, β)-transit is N P -hard [START_REF] Casteigts | Finding temporal paths under waiting time constraints[END_REF]. The situation is better for ForemostJourneyArrival, where to the best of our knowledge, it can be solved in O(n+m log m) time under (α, β)-transit, with n being the number of vertices and m the number of dated edges in the input temporal graph following a recent result in Ref. [START_REF] Himmel | Efficient computation of optimal temporal walks under waiting-time constraints[END_REF]. Therein, the main idea is to slice the input temporal graph into graphs G d containing arcs of the input temporal graph dated with d, plus some well selected arcs with arrival date equal to d. Then, by sliding the value of d over the time dimension, one can decompose the original problem into a computation of journeys ending before d and what will be remaining. Using a Dijkstra approach to solve the former part, one can achieve a global O(n + m log m) time solution for ForemostJourneyArrival under (α, β)-transit, along with a larger class of path-like problems [START_REF] Himmel | Efficient computation of optimal temporal walks under waiting-time constraints[END_REF].

We present a linear time solution for ForemostJourneyArrival under (α, β)-transit. Unlike the previous decomposition approach, we focus in reducing a set of relevant arcs into one arc which achieves the desired foremost journey arrival date. It is divided into four stages which will be called sequentially. In a nutshell, we first compute a representation for the arc set of a large gadget digraph (first two stages), then traverse it (third stage) before a last scan to filter the output (fourth stage). Considering implementation matters, we devise the first two stages and the fourth stage using the filter-map-reduce programming paradigm. Additionally, these stages can easily be batch-performed in a distributed setting. Our third stage computation is a graph traversal and it is very unclear whether this stage can be parallelized. Nevertheless, we leave open the question whether the third stage can also be implemented using functional programming, which would be interesting among other things for reuse matters.

In order to achieve linear time complexity, we cope with the gadget digraph using an implicit representation. Originally, each vertex of the gadget graph is a pair (d, u) denoting that it is possible in the input temporal graph to leave u at d (to any destination). There is an arc from (d, u) to (d , v) if it is possible to leave u at d to arrive to v, and leave again v at d while fulfilling the (α, β)-transit condition at v. We show that the gadget graph allows for encoding every information we need to solve ForemostJourneyArrival. However, its size is very large. For every fixed v, we then exploit the total order of the time dimension, and regroup only relevant values of d into disjoint-sets using a restricted version of disjoint-set data structure [START_REF] Gabow | A linear-time algorithm for a special case of disjoint set union[END_REF]. Finally, we show a constant upper bound for the out-going degree of the leftover implicit representation of the gadget graph, and use it to prove the global linear time complexity.

Our paper is organised as follows. We formalise in Section 2 problem Fore-mostJourneyArrival under (α, β)-transit. In Section 3 we present the main structures to be computed before solving this problem. We show in Section 4 how to compute all these structures in linear time. In Section 5 we close the paper with concluding remarks and open perspectives for further research.

Journey in a temporal (di)graph

In this paper, digraphs are simple loopless directed graphs. This encompasses the case of simple loopless undirected graphs, whose formalism is equivalent to that of symmetric digraphs. We denote

V ⊗ V = V × V \ {(v, v) : v ∈ V } for any finite set V . A temporal digraph is a tuple G = (τ, V, A, c) where: -τ ∈ N is an integer called the timespan of G. We define interval T = 0, τ -1 as the set of time instants used in G. -V is a finite set called the vertex set of G. -A ⊆ T × V ⊗ V is called the arc set of G.
c : A → N represents the traversal time of every arc, it is called the cost function for G.

For every arc a = (d, s, t) ∈ A, we denote s(a) = s the source vertex of the arc, t(a) = t its target vertex, and d(a) = d its departure time. The traversal of arc a departs from s towards t at departure time d and arrives to t at arrival time d + c(a).

Remark 1. With this formalism, if a = (d, s, t) belongs to A and c(a) > 1, it is still not necessarily the case that a = (d + 1, s, t) belongs to A. If both a and a belong to A, the formalism allows for c(a) and c(a ) to differ arbitrarily. This helps modeling the routing condition from s to t according to the moment the arc is traversed. We define journeys with waiting time constraints following the formalism given in [START_REF] Himmel | Efficient computation of optimal temporal walks under waiting-time constraints[END_REF]. Let s, t ∈ V be two distinct vertices of G. Let α, β : V → N be two functions representing the minimum and maximum waiting time at every vertex. An (α, β)-journey from s to t is a sequence of arcs J = (a 1 , a 2 , . . . , a p ) ∈ A p , where s(a 1 ) = s, t(a p ) = t, and for every 1 ≤ i < p we have both t(a i ) = s(a i+1 ) and d(a i ) + c(a i ) + α(t(a i )) ≤ d(a i+1 ) ≤ d(a i ) + c(a i ) + β(t(a i )). For 1 ≤ i < p, the traversal of arc a i begins from source vertex s(a i ) at departure time d(a i ), it takes c(a i ) time steps to arrive at target vertex t(a i ), where the journey has to be delayed for at least α(t(a i )) and at most β(t(a i )) time steps before pursuing with the traversal of arc a i+1 . The arrival date of J is defined as d(a p ) + c(a p ). A journey is called foremost when its arrival date is minimum.

On input a temporal graph G = (τ, V, A, c) with transit functions (α, β) and two vertices s, t in G, the problem of computing the minimum value of arrival date d(a p ) + c(a p ) taken over every (α, β)-journey J = (a 1 , a 2 , . . . , a p ) from s to t is called the ForemostJourneyArrival under (α, β)-transit problem. When both α and β are constantly equal to 0, such a (0, 0)-journey J is called a non-stop journey. Figure 1 exemplifies such journeys. 

From journey to time set

In this section we prepare the way for solving ForemostJourneyArrival under (α, β)-transit. Lemma 1 below is crucial because it helps us reduce a path-like problem down to a set problem. Then, Lemmas 2 and 4 introduce the structures that will be used in next Section 4 to solve ForemostJourneyArrival under (α, β)-transit. For the sake of clarity, the time complexity which will be given in both Lemmas 2 and 4 is inefficient. In the next section, we depict optimised replacements for these steps, reducing the time complexity down to linear.

Let G = (τ, V, A, c) be a temporal digraph. Let α, β : V → N be two functions representing the minimum and maximum waiting time constraints. For any source vertex s ∈ V , we define the set of (α, β)-reachable arcs from s as R(s) = {a p ∈ A : ∃ (α, β)-journey J = (a 1 , a 2 , . . . , a p ) ∈ A p ∧ s(a 1 ) = s}. We show below how to compute, from the supposed knowledge of set R(s), the minimum arrival date of an (α, β)-journey from s to any target vertex t.

Lemma 1 (Reachable arcs). On input a temporal digraph G, a pair of source and target vertices s, t in G, two constraint functions α, β : V → N, and the above defined (α, β)-reachable arc set R(s), it is possible to output in linear time the minimum arrival date of an (α, β)-journey from s to t. More precisely, the minimum arrival date is equal to min{d(a) + c(a) : a ∈ R(s) ∧ t(a) = t}, which can be reduced from R(s) in linear time. Moreover, the reduction can be done using a functional programming approach as showed in Remark 2 below.

Proof. We first address the case when there exists an (α, β)-journey from s to t. Let mad be the minimum arrival date of such a journey. Let m = min{d(a) + c(a) : a ∈ R(s) ∧ t(a) = t}. We claim that m = mad.

Indeed, let J = (a 1 , a 2 , . . . , a p ) ∈ A p be an (α, β)-journey from s to t minimising the arrival date. By definition, we firstly have that mad is the arrival date of J, that is, mad = d(a p ) + c(a p ). Besides, it also follows from definition of J that t(a p ) = t. Moreover, J is also such that s(a 1 ) = s, therefore, we have from definition of R(s) that a p ∈ R(s). Now, we have both a p ∈ R(s) ∧ t(a p ) = t, therefore, by definition of m we have that m ≤ d(a p ) + c(a p ). Combining with earlier proven mad = d(a p ) + c(a p ) we obtain m ≤ mad.

Conversely, let a ∈ R(s) such that t(a) = t. We claim that mad ≤ d(a)+c(a). By definition of a ∈ R(s), there exists an (α, β)-journey J = (a 1 , a 2 , . . . , a p ) ∈ A p such that s(a 1 ) = s and a p = a. Combining with t(a) = t we have that J is exactly an (α, β)-journey from s to t. Since the arrival date of J is d(a) + c(a), we have that mad ≤ d(a) + c(a) because mad is the minimal arrival date taken over all (α, β)-journeys from s to t. We have proven that mad

≤ d(a) + c(a) for every a ∈ R(s) ∧ t(a) = t. Hence, mad ≤ m.
All in all we have just proved that m = mad. Therefore it is sufficient to compute m in order to output the value of mad. Finally, computing m from the input of R(s), vertex t, and cost function c can be done in linear time by any standard streaming process.

When there is no (α, β)-journey from s to t then mad = ∞. In this case R(s) contains no arc a such that t(a) = t and therefore m would have the value ∞ after performing the map-reduce (as no arc satisfies both properties needed to be considered a suitable value for m). Therefore the result still holds for this particular case.

Remark 2. Lemma 1 is proper to temporal digraphs in the sense that we can from input G = (τ, V, A, c) filter the set A to a smaller subset R(s) ⊆ A, then filter further to the set of arcs whose target vertex is t, and finally reduce the stream to find the minimum value d(a) + c(a). As a comparison no shortest path algorithm on static (di)graphs allows for using filter-map-reduce programming in such a straightforward manner.

We now introduce an intermediary step to compute the arc set R(s). We define the set of valid transit departures in an (α, β)-journey from s as

D(s) = {(d, v) ∈ T × V : ∃ (α, β)-journey J = (a 1 , a 2 , . . . , a p ) ∈ A p , such that s(a 1 ) = s ∧ s(a p ) = v ∧ d(a p ) = d}.
Lemma 2 (Valid transit departures). On input a temporal digraph G, a pair of source and target vertices s, t in G, two constraint functions α, β : V → N, and the above defined set D(s) of valid transit departures in an (α, β)-journey from s, it is possible to output in polynomial time the set R(s) of (α, β)-reachable arcs from s.

Proof. A naive way to output R(s) from D(s) is as follows. We initialize a boolean table R indexed by the elements of A. For any a ∈ A with a = (d, u, v), we scan D(s) and check if (d, u) ∈ D(s). If this is the case we set R[a] to true. At the end of the process, we scan R and output every index a where R[a] has value true.

In the sequel we show how to compute in polynomial time the set D(s) from the input of G. We first define a static digraph associated to temporal digraph G, then we perform a graph search on the thus defined static graph.

The (α, β)-transit departure digraph of G, that we call

G D = (V D , A D ), is defined as follows. First, V D = {(d, v) : ∃a ∈ A, s(a) = v ∧ d(a) =
d} is the set of all possible transit departures, including those not necessarily valid w.r.t. any (α, β)-journey from s. In other words, D(s) ⊆ V D , however, V D could be much larger than D(s). Then, for any pair of vertices x = (d, u) and y = (d , v) of V D , we define (x, y) ∈ A D if and only if we have both that a = (d, u, v) belongs to A and that d + c(a 

) + α(v) ≤ d ≤ d + c(a) + β(v).
G D = (V D , A D ) the (α, β)-transit departure digraph of G. Let γ = max{β(v) - α(v) + 1 : v ∈ V }. Then, |V D | ≤ |A| and |A D | ≤ γ × |A|.
Proof. Note that two naive upper bounds for G D exist:

|V D | ≤ τ × |V | and |A D | = O(|V D | 2 )
. Furthermore, we can also note by definition

V D = {(d, v) : ∃a ∈ A, s(a) = v ∧ d(a) = d} that |V D | ≤ |A|
because there will be at most one vertex in V D for every arc in A. As a side note, it could be the case that Let (d, v) ∈ D(s). We would like to prove that (d, v) ∈ R D (s). By definition of D(s), there exists an (α, β)-journey J = (a 1 , a 2 , . . . , a p ) ∈ A p such that s(a 1 ) = s, s(a p ) = v, and d(a p ) = d. Let us consider J q = (a 1 , a 2 , . . . , a q ), for any 1 ≤ q ≤ p. For convenience, we denote d q = d(a q ), v q = s(a q ), and x q = (d q , v q ). Since a q ∈ A we have from definition of V D that x q ∈ V D , for any 1 ≤ q ≤ p. We claim that (x 1 , x 2 , . . . , x p ) is a directed walk in the static digraph G D , with

x 1 ∈ V D ∩ {(d, s) : 0 ≤ d < τ } and x p = (d, v).
Indeed, by definition of D(s) we have for any 1 ≤ q ≤ p that (d q , v q ) ∈ D(s). When q = 1, this implies v 1 = s, and therefore

x 1 = (d 1 , v 1 ) = (d 1 , s) belongs to V D ∩ {(d, s) : 0 ≤ d < τ }.
Since the original J is an (α, β)-journey, it must satisfy the waiting time constraints, that is, we have d q + c(a q ) + α(t(a q )) ≤ d q+1 ≤ d q + c(a q ) + β(t(a q )), for every 1 ≤ q < p. Besides, since t(a q ) = s(a q+1 ) = v q+1 , we have both (d q , v q , v q+1 ) = a q ∈ A and

d q + c(a q ) + α(v q+1 ) ≤ d q+1 ≤ d q + c(a q ) + β(v q+1
). This implies (x q , x q+1 ) belongs to A D for every 1 ≤ q < p. In other words, (x 1 , x 2 , . . . , x p ) is a directed walk in G D . Since d p = d(a p ) = d and s p = s(a p ) = v, we also have x p = (d, v). We have shown a directed walk in G D beginning from vertex x 1 ∈ V D ∩ {(d, s) : 0 ≤ d < τ }, and ending at vertex x p = (d, v). This also implies there exists a directed path in All in all, we presented in Lemmas 1, 2 and 4 polynomial procedures for computing the minimum arrival date of an (α, β)-journey from s to t. Whereas the procedure presented in Lemma 1 requires linear time, the other two might take more time to terminate. The total time complexity is significantly worse than the recently known O(|V | + |A| log |A|) algorithm presented in [START_REF] Himmel | Efficient computation of optimal temporal walks under waiting-time constraints[END_REF]. In the next section we present an improvement in the way we construct the graph G D and traverse it in linear time in |A|.

G D from x 1 to x p = (d, v). Hence, (d, v) ∈ R D (s). We have proved for every (d, v) ∈ D(s) that (d, v) ∈ R D (s). In other words, D(s) ⊆ R D (s).

Foremost non-stop journey arrival in linear time

In this section we show how to solve in linear time ForemostJourneyArrival under (α, β)-transit from a source vertex s to a target vertex t in a temporal digraph G = (τ, V, A, c). This encompass the case of foremost non-stop journeys when both α and β are constantly equal to 0. We do this by an implicit traversal of the (α, β)-transit departure digraph G D = (V D , A D ) as defined in the previous section. We suppose the three functions c, α, β are given as tables, so that the cost for accessing c(a) for every a ∈ A, and the cost for accessing α(v) and β(v) for every v ∈ V are constant.

Our algorithm is composed of four main stages, each one terminates in O(τ + |V | + |A|) time: first we construct V D ; then we construct a subset of A D of representative arcs whose number is bounded by 2 × |A|; in a third stage we use the previously constructed structures to compute an implicit representation of the set D(s) defined in the previous section; finally, we use this information and construct the set R(s) defined in Lemma 1, and result as a byproduct in the earliest arrival date of an (α, β)-journey from s to t.

For use in Algorithm 1, we perform two linear bucket sorting processes (a.k.a. radix sorting) as follows. We first initialize two arrays containing τ buckets each. Each bucket is to contain a list of arcs initially empty. Then, we stream through A, where for every arc a ∈ A we: first append a to the list present in the bucket numbered d(a) in the first array of buckets; second append a to the list present in the bucket numbered d(a) + c(a) in the second array of buckets. For later use, we also keep a variable counting the number of elements in every bucket. After the streaming process, we have filled two arrays of τ buckets each, where every bucket contains a list of arcs, as well as the number of arcs in the bucket. We now iterate over the buckets by increasing order and concatenate all the two times τ lists consecutively, resulting in a list of arcs sorted in increasing departure time from source vertex, and a list of arcs sorted in increasing arrival time to target vertex. Since the number of elements in each list is known, each concatenation can be done in constant time. The whole procedure is hence in O(τ + |A|).

From now on we suppose A is given twice: sorted by increasing departure time from source vertex, and sorted by increasing arrival time to target vertex.

Algorithm 1 Construction of V D , the vertex set of G D .

1: procedure GenerateVertices(G = (τ, V, A, c), α, β) 2:

Departures← ∅ Set containing all the new vertices in GD 3:

Initialize In order to implement this idea, we define DPmin and DPmax to be two tables, indexed by the elements of A. In order to avoid computing DPmin and DPmax in quadratic time in |A|, our main trick is to break down the total transit time cost into two parts: the traversal time represented by function c : A → N, and the delay time represented by functions α, β : V → N. For this, we build auxiliary tables FirstTransit and LastTransit with the help of Algorithm 1 table VArr. We capture the pseudo-code for first computing the auxiliary tables, then DPmin and DPmax in Algorithm 2, and result in the following lemma. for each arc (d, u, v) = a ∈ A do Take c into account:

darr = d + c(a) 25: DPmin[(d, u, v)]← FirstTransit[v][d + c(a)] 26: DPmax[(d, u, v)]← LastTransit[v][d + c(a)] 27:
Output VDep, DPmin and DPmax as implicit representation of GD. For complexity issues, the main point lies in the chasing while loops which happens twice, once at lines 9-13, and the other time at lines 17-21. Here, vertex v ∈ V is already fixed. In the first case, lines 9-13, variables ((d,u),(d ,v)) for each of them. By definition of DPmin and DPmax, we have We refer to VD as the concatenation of all entries in VDep 4:

A D = {((d, u), (d , v)) : (d, u, v) ∈ A ∧ (d , v) ∈ V D ∧ DPmin[(d, u, v)] ≤ d ≤ DPmax[(d, u, v)]}.
Q ← a queue initially with all vertices in VDep[s] 5:

T raversed ← a list that stores all vertices that are visited during the traversal 6:

for each vertex u ∈ V do 7:

Make disjoint-set Du With .join(d, d ) for union and .comp(d) for find 8:

for each vertex (d, u) ∈ VD do 9:

Bu[d] = -1
Values in Bu will represent the date when vertex 10:

(d, u) ∈ VD was visited before, -1 represents false 11:

while Q is not empty do 12: To achieve linear runtime, we use two main ideas. First, we use disjoint-set data structure to dynamically join the possible values of d whenever we do the test whether (d , v) belongs to D(s), for every v ∈ V . Generally, the use of disjoint-set data structure leads to a quasi-linear time complexity. In our case, note that the possible values of d for every v ∈ V are in reality values in VArr[v], Furthermore, already after calling Algorithm 1 the original values present in VArr[v] are both known and totally ordered. Therefore, a faster case of disjointset data structure [START_REF] Gabow | A linear-time algorithm for a special case of disjoint set union[END_REF] can be used, with O(1) amortised cost per operation. Hence, there is only a total contribution in time

(d, u) ← Q.pop() 13: for each a = (d, u, v) ∈ A and d = DPmin[(a)]
O( v∈V |VArr[v]|) = O(|A|)
for disjoint-set operations. The second idea is captured in the proof of Lemma 9. Roughly, we show with Lemma 9 that after joining dynamically the values of d while testing whether (d , v) belongs to D(s), we can control the out-degree of what is leftover in our implicit representation of G D .

We formalize Stage 3 of our computation in Algorithm 3. Roughly, we initialize a visiting queue with all vertices in V D associated to s, that is, of the form (d, s) for any d. At each iteration we remove the top element (d, u) of the queue, which is considered as a vertex of G D . In this iteration, we would like to follow all arcs that the vertex (d, u) might have in G D . For this purpose we make an implicit iteration: by iterating over every arc a = (d, u, v) ∈ A and every possible value of d s. More precisely, for each unvisited vertex visited in this process the algorithm marks it as visited, adds it to the queue, joins the components for it and the previous vertex (itself in case it is the first one) in the disjoint-set D v , sets as d max the reference to the largest visited vertex for its component and continue to the next vertex in increasing order of time in VArr [v]. When the algorithm reaches a vertex previously visited it goes to D v and gets the identifier of the component it belongs to, jumps to the vertex with the maximum time that belongs to the component and continues to the next vertex. In total, the algorithm will visit the number of unvisited arcs in between d and d max plus at most 3 previously visited vertices. The previous value 3 comes from the fact that when the algorithm gets for the first time to a visited vertex it will follow the link to the visited vertex with the largest time value in that component, then it continues iterating vertices until it arrives once more to a visited vertex and follows the link again. The link of the second visited vertex necessarily has to lead to a vertex with a time component at least as large as d max , and then the visiting process for this particular arc has finished. This is proven in Lemma 9. From the previous analysis it follows that over the whole traversal the algorithm will make at most 3|A| + |A| steps, where the first term comes from the bound obtained earlier and the second term is the maximum number of vertices in the graph. As we move from left to right we can see the progression of the components as they are visited. On the leftmost column of the picture we can see the component derived from a path arriving to b whose minimum departure time is 3 and whose maximum departure time is 6 (denoted by the top and bottom arrows pointing to these nodes). As there were no previous components on the disjointset data structure at this iteration we create a component that contains all nodes within those times. On the second column we see the resulting components after a path with minimum departure time 8 and maximum departure time 9. As this times do not intersect with those of the previous components we get two disjoint components. The same process can be seen in the third column, where the red component is expanded to include the node (7, b). On the last column we get the result of processing a path that has minimum departure time from b equal to 5 and maximum departure time from b equal to 8. The nodes comprised between these times contain elements from both sets in the disjoint-set data structure. Therefore they are merged, resulting in a single set of all vertices of the form Proof. The only place where components are joined in the disjoint-set in Algorithm 3 is in line 21. As can be seen in this line of the algorithm, only components that are next to each other in the order given by VArr[v] can be merged. Lets suppose that d 1 and d 3 are part of the same component. As at the beginning all vertices belong to distinct components there should have been a moment when the components of d 1 and d 3 were merged. This implies that the components were next to each other and therefore there cannot be a value d 2 in between these two components because otherwise the merge operation would not have been possible. This leads to the fact that all members of the same component are sequential in the order given by VArr[v] and proves the lemma. Lemma 8. All vertices that are cousins with respect to a vertex (d, u) will be in the same component after (d, u) has been popped from the queue and its arcs traversed in Algorithm 3.

(d , b) in V D .
∈ V D if arc (d, u, v) ∈ A exists, d + c((d, u, v)) + α(v) ≤ d 1 ≤ d + c((d, u, v)) + β(v) and d + c((d, u, v)) + α(v) ≤ d 2 ≤ d + c((d, u, v)) + β(v).
Proof. Let C denote the component of all vertices that are cousins with respect to vertex (d, u). From the definition of the cousin relationship it is known that all vertices in C are sequential. After (d, u) has been popped from Q and the processing of all vertices begins through the while loop located in line 18 the algorithm starts processing the vertex with the smallest time d and continues all the way until the vertex with the largest time d Therefore all merged vertices will be sequential and because the process visits all components between d and d max all previously existing components in that range will become one after the end of the process. ). What follows will analyze how many vertices will be visited in the traversal process, as this will be the number of steps that Algorithm 3 will perform. This can be seen in lines 18-31 of Algorithm 3 where for each iteration of the while loop there is a vertex that is processed. Therefore it is of interest to count the number of these aforementioned loops. If the vertex has been visited previously then in line 24 we get the reference to the largest visited vertex of the component and move to the successor vertex. In what follows the argument that this can happen at most two times is presented. This is the same as showing that at most two previously visited components will be visited. By the definition of disjoint-set it is deduced that vertices in the first and second components of visited vertices cannot intersect because otherwise they would be part of the same set. By Lemma 7 it is also known that the vertex of the second component with the minimum time (let it be denoted by d ) should have a time bigger than that of d because even if d is the last vertex from the first visited set, vertex (d , v) is at least the successor of the last vertex from the first visited set. Now following the link to the latest vertex of this component would lead to at least time DPmax [(d , u, v)] given that from Lemma 8 it follows that if this is the first vertex in the component it will have at least enough vertices to lead to the said time, which because d > d should be at least as big as DPmax [(d , u, v)] and as such we have at least reached time d max and we finish the loop.

Stage 4: Computing R(s) and a foremost (α, β)-journey from s to t. Now that we have described the 3 main stages of the algorithm, we present them together in the form of the full procedure in Algorithm 4 and show that it is linear in Theorem 1.

Theorem 1. On input a temporal digraph G, a pair of source and target vertices s, t in G, and two constraint functions α, β : V → N, Algorithm 4 computes the arrival date of a foremost (α, β)-journey from s to t in linear time.

Algorithm 4 Foremost (α, β)-journey arrival date in linear time 1: procedure Foremost(G, α, β, s, t) 2:

GenerateVertices(G, α, β) Algorithm 1 3:

GenerateTables(G, α, β) Algorithm 2 4:

Traverse(G, α, β, s) Algorithm 3 5:

ArrivalDate = ∞ 6:

for each arc (d, u, v) in A do 7:

if v = t and (d, u) in traversed then 8:

ArrivalDate = min(ArrivalDate, d + c((d, u, v))) 9:

return ArrivalDate the time of the foremost journey from s to t Proof. From Lemmas 5 and 6 it is known that Algorithms 1 and 2 have linear complexity. All that is left to do is show that Algorithm 3 is linear. From Lemma 9 it is known that for each unvisited vertex the value of e (d,u,v) is increased by one, and because there are at most 2|A| vertices in V then a∈A e a ≤ 2|A|. Because each arc in A produces at most one iteration of the for loop in line 13 of Algorithm 3 then from Lemma 9 it is deduced that the number of visited vertices over all Algorithm 3 is smaller than |A| + 4|A| and therefore the number of visited vertices is linear in the size of |A| for Algorithm 3. Now that the complexity of Algorithms 1, 2 and 3 are linear it follows that Algorithm 4's complexity is linear as it is a combination of the three aforementioned algorithms plus an iteration over all arcs in A.

Conclusion and perspectives

We addressed the problem of computing in a temporal graph the arrival date of a foremost journey under non-stop transit constraints. It is a polynomial time problem, contrary to the computation of a temporal path under the same constraints which is N P -hard. We then depict a linear time solution for finding the minimum arrival date of a foremost non-stop journey.

As for perspectives, it turns out that most our algorithmic steps follow the filter-map-reduce programming paradigm. In particular, we make intensive use of bucket sorting (a.k.a. radix sort) which can very naturally be implemented by lambdas. We believe that bucket sorting is important for processing historic data in general, and temporal graphs in particular. In this sense, we raise the open question whether our algorithm can be rewritten using a fully functional programming approach.

Fig. 1 . 1 → B 3 → 1 → B 2 → C 3 → D 4 →

 1131234 Fig. 1. A temporal digraph, the labels on the arcs denote the time instants where the arcs are active. If the cost function is uniformly unitary, then the following journey from A to E is foremost: A 1 → B 3 → E, while the journey A 1 → B 2 → C 3 → D 4 → E is the foremost (0, 0)-journey, also known as non-stop.

Figure 2

 2 exemplifies the construction of a transit departure digraph. We capture in the following property our main computational purposes of defining G D . It gives a reasonable upper bound for both |V D | and |A D |. Property 1. LetG = (τ, V, A, c) be a temporal digraph, α, β : V → N two functions representing the minimum and maximum waiting time constraints, and

Fig. 2 .

 2 Fig. 2. The corresponding static representation GD of the temporal graph in Figure 1 taking 0 as minimum waiting time, 2 as the maximum waiting time and a traversal time of 1 for all arcs.

Lemma 4 .

 4 On input a temporal digraph G, a source vertex s in G, two constraint functions α, β : V → N, it is possible to output in polynomial time the set D(s) of valid transit departures in an (α, β)-journey from s. Proof. Let G = (τ, V, A, c), and G D = (V D , A D ) its (α, β)-transit departure digraph. By Lemma 3, D(s) can be computed by a graph search on G D , that is, in O(|V D | + |A D |) time from the knowledge of G D . From Property 1, the size of V D and A D is polynomial in |A|, α, and β. Hence, it is straightforward to construct V D in O(τ × |V | × |A|), then A D in O(|V D | 2 × |A|).

Lemma 5 .Stage 2 :

 52 On input a temporal digraph G = (τ, V, A, c) and two constraint functions α, β : V → N, Algorithm 1 correctly generates in time O(|V | + |A|) all the vertices of G D , the (α, β)-transit departure graph of G. Proof. The algorithm's correctness follows from definition. Lines 3,5,6-8 take O(|V |) times while lines 9-14 take O(|A|) time. Implicit representation of A D in O(|A|) space. If β(v) -α(v) = 1 for every v ∈ V , then a similar argument as in the proof of Property 1 implies |A D | ≤ 2 × |A|. Indeed, every arc (d, u, v) = a ∈ A gives rise to at most two arcs in G D : one from (d, u) to (d , v) with d = d + c(a) + α(v) if the latter vertex (d , v) belongs to V D ; one from (d, u) to (d , v) with d = d + c(a) + β(v) if the latter vertex (d , v) belongs to V D . Now if β(v) -α(v) is an arbitrary integer, we remark the following organisation of A D . Consider set D = {d : ((d, u), (d , v)) ∈ A D }, then if both d 1 ≤ d 3 belong to D and d 2 is such that we have both d 1 ≤ d 2 ≤ d 3 and (d 2 , v) ∈ V D , then d 2 belong to D . Moreover, in the (ordered) list VDep[v], the elements of D appear consecutively. Therefore, in order to represent all arcs of A D of the form ((d, u), (d , v)), for every given (d, u, v) = a ∈ A, we only need to store the arc from (d, u) to (d min , v) and the arc from (d, u) to (d max , v), where d min = min D and d max = max D . All the other arcs of the form ((d, u), (d , v)) can be obtained by enumerating from VDep[v] all d such that d min ≤ d ≤ d max .

  For every (d, u, v) = a ∈ A, we define DPmin[(d, u, v)]= min{d : ((d, u), (d , v)) ∈ A D } and DPmax[(d, u, v)]= max{d : ((d, u), (d , v)) ∈ A D }. Then, we will use in Stage 3 and Stage 4 the input of VDep, DPmin, and DPmax as an implicit representation of G D = (V D , A D ).

Algorithm 2

 2 Implicit representation of G D = (V D , A D ) by VDep, DPmin, and DPmax.

Lemma 6 .

 6 On input a temporal digraph G = (τ, V, A, c) and two constraint functions α, β : V → N, Algorithm 2 outputs in time O(|V | + |A|) three tables called VDep, DPmin, and DPmax. From these tables one can generate G D , the (α, β)-transit departure graph of G, in linear time (in the size of the input G and the output G D ). Proof. It is a standard exercise to prove that Algorithm 2 correctly computes DPmin[(d, u, v)]= min{d : ((d, u), (d , v)) ∈ A D } and DPmax[(d, u, v)]= max{d : ((d, u), (d , v)) ∈ A D }, e.g. by induction on the total size of VArr.

Fig. 3 .

 3 Fig. 3. Data structure used in Algorithm 2 for each vertex v ∈ V , where we suppose α(v) = 0 and β(v) = 2. In this case it is done for the node c in the temporal graph of Figure 1. List VArr[v] is represented by the "Arrivals" row on top, it contains all times at which a path arrives to node c. List VDep[v] is represented by the "Departures" row on the bottom, it contains all times at which a path departs from node c. For every element darr in VArr[v], its associated value FirstTransit[v][darr] in VDep[v] is pointed to by the min arrow departing from darr, while its associated value LastTransit[v][darr] in VDep[v] is pointed to by the max arrow.

  d arr and d f irst can only move forward in lists VArr[v] and VDep[v], respectively. Accordingly, at the end of the process lines 9-13, every entry in VArr[v] and VDep[v] are visited exactly once. The case with lines 17-21 is similar, where variables d arr and d last can only move backward. Figure 3 exemplifies for every entry of table VArr[v][d arr ] the position of FirstTransit[v][d arr ] and LastTransit[v][d arr ] in VDep[v]. Summing up over every vertex v ∈ V , at the end of the process lines 5-21, every elements in VArr and VDep are visited exactly twice. Since the total size of VArr is at most |A|, and so is the total size of VDep, cf. Property 1, Lemma 5 and Algorithm 1, we deduce that the total contribution of lines 9-13 and 17-21 to the for loop lines 5-21 is O(|A|). The contribution of lines 7 and 15 is O(|A|), and that of lines 6,8,14,16 is O(|V |). To complete the complexity analysis for Algorithm 2, we note that line 2 takes O(|V | + |A|) time (Lemma 5), lines 3-4 take O(|V |) time, and lines 23-26 take O(|A|) times. In order to generate V D , we scan over all elements of VDep. The enumeration of A D can proceed as follows. For every arc (d, u, v) = a ∈ A, we scan from the element DPmin[(d, u, v)] of VDep[v] to its element equal to DPmax[(d, u, v)] and enumerate all d in between, generating an arc

Stage 3 :Algorithm 3

 33 Marking all vertices in V D whether it belongs to D(s). After the first two stages, every vertex of G D = (V D , A D ) is constructed, as well as an implicit representation of the arcs of G D . We now need to visit the vertices of G D and mark them according to Lemma 3. Because the representation does not include all arcs of G D , solving this step using standard graph searches such as Breadth-First Search seems difficult. More precisely, our implicit representation only stores in entries DPmin[(a)] and DPmax[(a)] the earliest and the latest departure dates for a valid transit at vertex v = t(a) w.r.t. the (α, β)-transit condition. Let us assume (d, u) ∈ D(s) for d = d(a) and u = s(a), and let us consider v = t(a): if we do test whether (d , v) belongs to D(s) by naively scanning all potential values of d s.t. DPmin[(a)] ≤ d ≤ DPmax[(a)], then the overall complexity will have a factor depending on max v∈V |VArr[v]|, which is a sharp upper bound for DPmax[(a)] -DPmin[(a)]. This could lead to a non-linear complexity in the worst case. Traverse the graph G D 1: procedure Traverse(G, α, β, s) 2: Call Algorithm 2 GenerateTables(G, α, β) and obtain VDep, DPmin and DPmax 3:

  t. DPmin[(a)] ≤ d ≤ DPmax[(a)], as explained in Algorithm 2 and Lemma 6. However, to control the global runtime, we only start with d now ← d = DPmin[(a)], and our plan is to check whether (d now , v) belongs to D(s) while dynamically joining all previously visited D v .comp(d now ), for every possible value of d now between d = DPmin[(a)] and d max = DPmax[(a)]. These values are read from VArr[v].

Figure 4 exemplifies

 4 Figure 4 exemplifies Algorithm 3. Therein, the upper and lower arrows indicate the links towards d and d max at each time. Eventually, all vertices in between become part of the same component, which is represented by the same color, with the vertex in darker shade indicates the component with the largest

Fig. 4 .Definition 1 .

 41 Fig. 4. The process of visiting all vertices in VD associated with a single vertex b in V .

Lemma 7 .

 7 There does not exist a vertex (d 2 , v) ∈ V D such that there exist two vertices (d 1 , v) and (d 3 , v) ∈ V D both associated to the same vertex v ∈ V and D v .comp(d 1 ) = D v .comp(d 3 ) = D v .comp(d 2 ) and d 1 < d 2 < d 3 .

  max each time going to the next vertex after the current component. The following will analyze each case the algorithm might encounter -Reaches a previously unvisited vertex: The algorithm merges it with the previous component, by Lemma 7 all vertices in this new component are sequential. -Reaches a previously visited vertex: The algorithm merges this component with the previous one and moves to the last visited vertex of this component. By Lemma 7 both merged components are sequential and therefore their merge produces a component with no gap.

Lemma 9 .

 9 For each arc (d, u, v) ∈ A Algorithm 3 will visit e (d,u,v) + 4 vertices where a∈A e a = O(|A|). Proof. From Algorithm 2, each arc in (d, u, v) ∈ A leads to two explicit arcs ((d, u), (d , v)) and ((d, u), (d max , v)) of G D , along with several implicit arcs of G D , where d = DPmin[(d, u, v)] and d max = DPmax[(d, u, v)]. After following one explicit arc it is possible to visit several other vertices by moving through the ordered list of vertices VArr created in Algorithm 1. From the inner while loop in line 18 of the algorithm it can be seen that the number of steps that Algorithm 3 takes is bounded by the number of vertices visited by each explicit arc in G D (by the for in line 13

table VDep

 VDep Departures list. Simi-larly, we stream through every element a ∈ A in increasing arrival time and append (d(a) + c(a), t(a)) to an Arrivals list. By definition, the vertex set V D contains exactly the elements present in the Departures list. Furthermore, we will organise V D in the following manner, for later use in Stage 2. Let V = {v 1 , v 2 , . . . , V |V | }. We create |V | buckets numbered by these v i 's, each bucket is to contain a list of departure times initially empty. When streaming through every element a ∈ A, we also append d(a) to the list present in the bucket numbered s(a). After the streaming process, we keep the |V | lists in a table named VDep, indexed by the v i 's. Thus, for every vertex v ∈ V , reading VDep[v] gives a quick access to all the departure times d associated to that vertex, i.e. where (d, v) ∈ V D . Since A is sorted by increasing departure time, it is also the case with list Departures, as well as with list VDep[v], for every v ∈ V . For later use in Stage 2, we also organise Arrivals into a table named VArr, in a similar way. In reality, we do not use Departures and Arrivals in the rest of the manuscript. However, we keep them in the discussion for more clarity. We capture the pseudo-code in Algorithm 1, and result in the following lemma.

		with |V | entries	Same set, fast track for later use
	4:	Arrivals← ∅
	5:	Initialize table VArr with |V | entries
	6:	for each vertex v ∈ V do
	7:	VDep[v]← ∅
	8:	VArr[v]← ∅
	9:	for each arc a ∈ A in increasing departure time do
	10:	Append (d(a), s(a)) to Departures if not already present
	11:	Append d(a) to VDep[s(a)] if not already present
	12:	for each arc a ∈ A in increasing arrival time do
	13:	Append (d(a) + c(a), t(a)) to Arrivals if not already present
	14:	Append d(a) + c(a) to VArr[t(a)] if not already present
	15:	Either output VDep or Departures as the vertex set VD
	16:	For later use in Algorithm 2, also output VArr.

Stage 1: Construction of V D . We stream through every element a ∈ A in increasing departure time and append (d(a), s(a)) to a

  The algorithm will loop until the value of d now is greater than that of d max . In lines 15-17 d now receives as initial value the minimum time d such that the path that contains (d, u, v) can continue through an outgoing arc from v at time d , while d max receives as value the maximum at which the journey could continue through an outgoing arc from v. Both values where calculated in Algorithm 2. When the algorithm visits a vertex (d now , v) there are 2 possibilities, depending on whether (d now , v) has been visited before or not. What follows will analyze both cases. If the vertex has not been previously visited then it is marked as visited (line 22), its component is joined with that of the previous visited vertex (line 21) and the algorithm moves to the successor vertex. In this case the value of e (d,u,v) is increased by one. In this case vertex (d now , v) becomes the largest visited vertex of the component containing all vertices associated with v with times between d and d now as can be deduced from the analysis of Lemma 8.
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