
HAL Id: hal-03856702
https://hal.science/hal-03856702

Submitted on 16 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Emulation Layer for Dynamic Resources with MPI
Sessions

Jan Fecht, Martin Schreiber, Martin Schulz, Howard Pritchard, Daniel J
Holmes

To cite this version:
Jan Fecht, Martin Schreiber, Martin Schulz, Howard Pritchard, Daniel J Holmes. An Emulation Layer
for Dynamic Resources with MPI Sessions. HPCMALL 2022 - Malleability Techniques Applications
in High-Performance Computing, Jun 2022, Hambourg, Germany. �hal-03856702�

https://hal.science/hal-03856702
https://hal.archives-ouvertes.fr

An Emulation Layer for Dynamic Resources
with MPI Sessions

Jan Fecht1[0000−0001−9775−2222], Martin Schreiber1,2[0000−0002−2390−6716],
Martin Schulz1[0000−0001−9013−435X], Howard Pritchard3, and Daniel J.

Holmes4[0000−0002−2776−2609]

1 Technical University of Munich, Garching bei München, Germany
2 Université Grenoble Alpes, Saint-Martin-d’Hères, France

3 Los Alamos National Lab, Los Alamos, NM, USA
4 Collis Holmes Innovations Ltd, Scotland, UK

Abstract. The current static job scheduling on supercomputers for MPI-
based applications is well known to be a limiting factor for the exploita-
tion of a system’s top performance in terms of application throughput.
Hence, allowing fully flexible and dynamically varying job sizes would
provide multiple advantages compared to the current approach, e.g., by
prioritizing jobs dynamically and optimizing resource usage by transfer-
ring resources economically.
A critical step in achieving dynamic resource management with MPI on
supercomputers is the development of sound and robust interfaces be-
tween MPI applications and the runtime system. Our approach extends
the concept of MPI Sessions, a new concept introduced with MPI 4.0,
by adding new features to support varying computing resources via the
MPI process set abstraction. We then show how these features can be
used, as a proof of concept, to request (active) and cope with (passive)
varying resources from an application’s perspective. To validate of our
approach, we develop libmpidynres, a C library providing an emulated
MPI Sessions environment on top of existing MPI implementations with-
out MPI Sessions support, which we then use to integrate our proposed
extensions to the interface specification. Using this proof-of-concept en-
vironment, we show how an MPI Sessions enabled application can use
process sets to handle dynamically varying resources.

Keywords: MPI · MPI Sessions · Dynamic resources · Resource management

1 Introduction

1.1 Motivation

Job scheduling systems for MPI-based applications allocate a fixed amount of
resources (cores, nodes, GPUs, FPGAs, . . .) for the job’s runtime. This is a
strong constraint on resource usage, leading to various inefficiencies, e.g., idling
cores, lack of taking runtime-changing resource requirements into account, to
name just a few.

martin
Typewriter
Preprint of Paper accepted at HPCMALL 2022

To solve this issue, dynamic resources, meaning that the number of available
resources can change during an application’s execution, need to be introduced
to and supported by applications as well as the runtime. For example, with dy-
namic resources, the job scheduler can withdraw resources from an application
and transfer them to another application. This could potentially lead to a higher
throughput of application on the entire system, hence an overall better parallel
efficiency. Furthermore, this approach allows the job scheduler to prioritize cer-
tain jobs dynamically by having more flexibility and scheduling abilities than in
the static resource allocation case.

To use dynamic resources in high-performance scenarios, the following com-
ponents need to be carefully designed and realized:

1. API: a flexible, robust interface for dynamic resources that can be used by
MPI applications.

2. Runtime: dynamic resource support in the runtime (MPI library, job sched-
uler, . . .).

3. Applications: MPI-based software using this interface to handle dynamic
resource changes including all required changes in the software.

Having all three components working together in the right way is a very long
lasting process and this work is on the first component.

Our contributions are a proposal of an API for robust and flexible dynamic
resource changes based on the new MPI Sessions concept introduced with MPI
4 [16]. In addition to this, we evaluate our proposal based on a library called
libmpidynres which emulates a dynamic resource environment on top of an ex-
isting MPI communicator.

1.2 Related Work

MPI 2’s Dynamic Process Model: The MPI Forum already addressed the
need for a more dynamic process management approach with the introduction
of the MPI dynamic process model in the MPI 2 standard [17]. However, the
number of running MPI processes is still limited to MPI UNIVERSE SIZE, which
is typically equal to the number of resources reserved by the job scheduler.

Task-based parallelization models: Another set of applications are task-
based parallel programs. E.g. DucTeip is a framework for creating task-based
MPI programs [19]. That could be exploited rather in a straight-forward manner
by, e.g., executing different applications using the same MPI context in parallel.
In such a scenario, having a separate MPI context with dynamic resources could
be used not only to avoid idling MPI processes, but also to avoid applications
influencing each other, e.g., due to a bug.

Invasive Computing (IC): The IC paradigm suggests varying resource
utilization for embedded systems [15] with certain progress to adopt this also
in HPC. As a first step, the OpenMP and Threading Building Blocks paral-
lelization models have been modified to allow for varying resources, see e.g. [13].
Here, the underlying idea has been to allow a resource manager to improve the
system-wide efficiency for concurrently running applications and to start appli-
cations at arbitrary points in time where the present work also borrows this

2

idea of a resource manager. Based on the aforementioned work, an extension
for distributed-memory systems with MPI was developed [3]. However, this led
to several drawbacks of this approach, such as that resource changes are solely
based on MPI COMM WORLD (which is obviously a serious problem for, e.g., coupled
simulations) and that only specialized cases have been taken into account.

MPI fault tolerance: Work on MPI fault tolerance approaches, including
MPI global restart [9] and the Fenix project [5], share some of the features of
libmpidynres. Both provide mechanisms for an application to recover from an
initial loss of compute resources and utilize replacing resources when available,
but their functionality is limited in scope to resilience. Our proposed approach,
on the other hand, covers a much wider field, but can be used to implement the
recovery models supported by these approaches to fault tolerance.

Malleability in MPI: Dynamic resource management in MPI has been
studied intensively over the last years, usually under the umbrella term of “mal-
leability”. Since then, multiple frameworks have been created to support mal-
leability in MPI applications [4, 14, 11, 6, 8]. These frameworks used different
techniques and APIs to achieve malleability. For example, some authors propose
process splitting and merging for expansion and shrinking of the application [4,
8]. Other authors start new processes while keeping the old, existing processes
running [14]. Another approach is to use checkpointing systems and restart the
actual MPI application for resizing it [10, 12].

Although there has been much research around malleability, there is still a
lack of a highly flexible, efficient and future proof API. The work presented in
this paper takes the attempt to propose such an API and further differs from
previous approaches by its use of MPI Sessions for malleability.

2 MPI Sessions

We start with a brief introduction to MPI Sessions since this is at the core of
our proposal.

Process 1 Process 2 Process 3 Process 4 Process 5

mpi://SELF

hwloc://numa/0 hwloc://numa/1

app://atmos/task/0 app://atmos/task/1 app://atmos/task/2

mpi://WORLD

mpi://SELF mpi://SELF mpi://SELF mpi://SELF

Fig. 1. The process sets of an application example. Process sets are represented as
curly brackets. MPI Process 1’s view on its process sets is highlighted in green.

3

The concept of MPI Sessions was first introduced in 2016 [7] and was later in-
cluded into the MPI standard with the release of MPI 4.0 in June 2021 [7, 16]. It
defines a new object, the MPI Session, which is a lightweight handle to the MPI
runtime. Using a session, MPI can be initialized without the MPI COMM WORLD

communicator. Further, an application and its libraries can allocate multiple
independent sessions allowing for better isolation and a higher degree of com-
posability compared to traditional global MPI intitialization. MPI Sessions also
offer a tighter runtime integration by allowing the runtime to expose available
resources via process sets. A process set groups together multiple potential MPI
processes and is identified by a name in a URI-like format (e.g., “mpi://world”,
“mpi://self”). Using process sets, an application can create local MPI groups,
which can be further used to create communicators that connect MPI processes
contained in the respective process sets.

Process sets allow the runtime to expose available resources to the applica-
tion. Fig. 1 shows an example view of an application’s process sets. A process set
can represent something of a static nature (e.g., a NUMA node, “mpi://numa/0”
in Fig. 1), but it can also represent more dynamic groups of resources (e.g., a
specific task in an application: “app://atmos/task/1” in Fig. 1). There is still
ongoing discussion about the exact nature of process sets, their lifetime, scope
and dynamic behavior. Our approach takes a look at process sets from a more
dynamic perspective, which leads to the following assumptions for the remainder
of the paper:

Immutability: A process set identified by a unique name will always repre-
sent the same resources, even if resources are not actually available to an MPI
application, e.g., because the job scheduler removed the resource during a re-
source change. This property avoids race conditions in cases where an MPI group
is created from the process sets by different MPI processes.

Change of process sets: We expect the available process sets to change
frequently during an application run. At the same time, the number of available
process sets at any point in time is expected to remain small as process sets that
become invalid (due to an MPI process exiting a process set) are removed in our
model (compare with Sec. 4.2).

3 Dynamic Resources with MPI Sessions

3.1 MPI Sessions Advantages Compared to MPI COMM WORLD

Dynamic resources are non-trivial to implement in the traditional global MPI
architecture with MPI COMM WORLD. This is because MPI COMM WORLD needs to be
mutated or invalidated when resources are added or removed. As a consequence,
communicators that originate from MPI COMM WORLD would need to adapt or get
invalidated together with associated rank and size information, which is hard to
do in a consistent fashion that is transparent to an application.

MPI Sessions provide one way to tackle the aforementioned problem by al-
lowing MPI COMM WORLD to be avoided entirely. Besides various other benefits, we
briefly discuss the main advantages in the context of varying resources.

4

In our work, process sets are used to globally express resource changes. Once
an MPI object is invalidated, new MPI objects from process sets can be created
without the need for complex application coordination. Also, there is no need to
change the mechanism and semantics of MPI groups and communicators like we
would may need to do in the mutable MPI COMM WORLD case. Another advantage of
MPI Sessions is given by the current interfaces that already permit the dynamic
modification of an applications point of view on available MPI processes by
changing the process sets that are exposed to the application.

3.2 Resource Changes with Process Sets

Next, we discuss our strategy to realize dynamic resource changes. We would
like to point out, though, that our approach focuses on loop-based applications
similar to the application shown in Sec. 6.

Resource changes happen when the runtime removes or adds new resources
from/to an application. For our dynamic resource model we assume that the
runtime does not implicitly add new resources in the form of a new process
set, but an explicit function call needs to be made by the application. From
the application point of view, implicit adding of resources is problematic due
to assumptions on a particular number of resources in a communicator, e.g.
the number of ranks. This explicit approach is also useful as the application
might need to do load balancing/process coordination work after each resource
change. Once a resource change arrives, the application has a time window to do
cleanup/load balancing and then accepts the resource change. This is especially
important when MPI processes are being removed because the data from these
MPI processes needs to be transmitted to avoid data loss.

A resource change consists of a resource change type and a resource change
process set :

The resource change type indicates how the application’s resources are mod-
ified. In the present work, we only investigate two resource change types: addi-
tion and removal of processes. To migrate resources, both operations have to be
applied sequentially. Obviously, a replace resource change type could be also im-
plemented that both removes and adds processes, as well as a split/join change
that (de-)partitions existing process sets. However, these type of changes are not
the focus of this work.

The resource change process set, on the other hand, describes the difference
between the current set of processes and the set of processes after the resource
change. In the case of MPI process addition, the resource change process set will
contain all to-be-started MPI processes and in the case of MPI process removal
all to-be-removed MPI processes.

4 Interface Design

4.1 MPI Sessions Interface

libmipdynres’s MPI Sessions interface was developed along the lines of the Ses-
sions interface in the MPI 4.0 draft from November 2020 [18]. The draft’s inter-

5

face description matches the one that was finally published with the official MPI
4.0 standard in June 2021 [16].

The MPI 4.0 standard document defines multiple C signatures of MPI Ses-
sions functions and explains the semantics of these functions. However, the doc-
ument does not fully define all concepts of MPI Sessions. Many questions remain
open in regard to process sets. Because of that, we have modified and extended
the MPI Sessions interface to fit the way process sets are viewed in this work (see
Sec. 2). The MPI Sessions interface that is included in our library, libmpidynres,
contains the following functions:
– MPI Session init - initialize an MPI Session
– MPI Session finalize - finalize an MPI Session
– MPI Session get info - query information about an MPI Session
– MPI Session get psets - query for available process sets
– MPI Session get pset info - query information about a process set
– MPI Group from session pset - create an MPI group from a process set
– MPI Comm create from group - create an MPI communicator from an MPI group

without a parent communicator

These functions match the functionality and semantics described in MPI
4.0 [16], except for MPI Session get psets, which we discuss in the next section.

4.2 MPI Session get psets

The signature of MPI Session get psets is shown in Fig. 2.
The function replaces two functions in MPI 4.0: MPI Session get num psets

and MPI Session get nth pset. These two functions assume a more static be-
havior of process sets, as they use a virtual array model for querying process
sets. With the MPI Session get num psets function one can query the length
of the virtual array and with the MPI Session get nth pset one can query a
process set at a specific index. The runtime can only append new process sets
to the array, an index can become invalid if the process set does not exist any-
more. This approach has multiple disadvantages with our assumed process set
properties (see Sec. 2):
1. The frequent change of process sets leads to an ever-growing array that will

lead to increasing memory usage and increasing access times.
2. The frequent change will also lead to most indices being invalidated at some

point in time. This in return increases the chance of invalid requests and
creates an additional management overhead on the application side.
To adapt the API to our model, we replace the two function calls with one.

Instead of querying each process set on its own, the application queries the names
and sizes of available process sets at once. The result is returned in the psets

argument of MPI Session get psets. It consists of an MPI Info object with
process set names as the keys and the respective process set size as the value,
basically representing a snapshot of the current process set state. While this
leads to more data being transferred, we expect the number of active process
sets at any point in time to remain low. However, to make the API more future-
proof and allow for more complex process set situations, an MPI Info object can
be passed to the function. This object could be used to filter the results and only
return a subset of available process sets.

6

int MPI Ses s i on ge t pse t s (MPI Session s e s s i on , MPI Info in fo ,
MPI Info ∗ pse t s) ;

IN info Info object containing runtime hints
OUT psets Info object containing process set names as keys

and process set sizes as decimal values

Fig. 2. libmpidynres API for querying available process sets.
int MPIDYNRES pset create op (

MPI Session s e s s i on , MPI Info hints , const char pset1 [] ,
const char pset2 [] , MPIDYNRES pset op op , char p s e t r e s u l t []) ;

IN hints Hints passed to runtime
IN pset1 Name of first process set argument
IN pset2 Name of second process set argument
IN op Operation type to apply
OUT pset result Name or resulting process set

Fig. 3. Proposed API for creating process sets by applying a set operation on existing
process sets.

4.3 Process Set Management Interface

When dealing with resource changes, an application must be able to establish
communication with new resources. In our work, new resources are expressed
via process sets. To establish communication, an application can create an MPI
Group from the new process set and use MPI group operations to create a group
that both contains the new processes and old application processes. However,
this approach has to be made by each process in the new group. This can become
quite complex with increasingly more resource changes and is hard to coordinate.
This is especially a problem for the newly created processes as they need to
know which process sets they need to use to create MPI groups containing old
application processes. To avoid these problems, we allow the application to create
new process sets.

In our design, only one MPI process, which we will refer to as “main process”,
is responsible for operations on process sets. Note that these operations could be
executed by all involved MPI processes, but leave this to future work and here
strictly follow the “main process” approach.

To create new process sets, the application must call the
MPIDYNRES pset create op function, whose signature is shown in Fig. 3. The
names of two existing process sets need to be given in the pset1 and pset2

arguments. Additionally, a set operation to be applied needs to be passed in
the op argument. Calling the function has the effect that, if the arguments are
valid, the runtime will create a new process set containing the result of the set
operation on the process sets. Currently, three set operations are supported, see
also Fig. 4:
– Union: The result contains all processes from both psets. This can be used

to add new processes from a resource change set to the application’s main
process set.

– Difference: The result contains all processes from pset1 that are not in
pset2. This is useful to remove a resource change set (if the resource change
takes away resources) from the application’s main process set.

7

– Intersection: The result contains all processes that are both in pset1 and
pset2.

A B A BA B

A = {P1,P2,P3}
B = {P3,P5,P6}

Union: {P1,P2,P3,P5,P6} Intersection: {P3} Difference: {P1,P2}

Fig. 4. Venn diagrams of the process set operations. Process set A contains the pro-
cesses P1,P2,P3 and P4; Process set B contains the processes P3,P4,P5 and P6. The
operation’s result is written underneath each Venn diagram.

Allowing these fundamental set operations has multiple advantages which we
like to summarize as follows:
– Process set changes do not rely on collective operations involving, e.g., pro-

cesses which have not yet been started. Therefore, process sets including
processes not yet available to the application (see Fig. 8) can be created.

– Since resource changes can be abstractly described as a directed acyclic
graph as transitions on resource sets, designing an interface supporting such
resource changes should also cover the typical requirements of such resource
changes without taking application-specifics into account.

– A “main process” driven change of resources makes the process coordination
easier since all management can happen in a single process. The only infor-
mation that needs to be shared with other processes are process set names
which are available globally. An extension to a consensus-based management
should still be possible.

– Process set operations fit nicely into applications that rely on a single com-
municator during their runtime. There, the operations can be used to derive
a new “main process set” from the previous “main process set” and the
resource change process set (see Fig. 5).
Our main goal is the creation of rather generic interfaces to cover various

requirements on resource change patterns. As usual, there are always optimiza-
tions possible by providing specialized interfaces or more feature-rich interfaces,
however this is left for future work.

4.4 Resource Change Management Interface

To implement the mechanisms described in Sec. 3.2, the resource change API
has to provide a way to a) query for pending resource changes and b) accept
and apply these resource changes.

For a), libmpidynres offers the MPIDYNRES RC get function. Its signature is
shown in Fig. 6. If there is a resource change, the type of resource change and
the resource change process set are returned in the rc type and delta pset

respectively. Furthermore, a handle to the resource change is returned in the
tag argument.

8

P1

P2

P3

P4

P5

P6

P7
main process set

is started:
{P2,P3,P4,P5}

resource change:
type: removal

set: {P2}

set operation: difference
{P2,P3,P4,P5}, {P2}

-> New main set:
{P3,P4,P5}

change accepted:
{P2} is removed

resource change:
type: addition

set: {P2,P6,P7}

set operation: union
{P3,P4,P5}, {P2,P6,P7}

-> New main set:
{P2,P3,P4,P5,P6,P7}

change accepted:
{P2,P6,P7} are

started

Application is
done, processes

shut down

inactive running running, marked for removal inactive, marked for start

Fig. 5. Diagram showing how to use process set operations for resource changes.

int MPIDYNRES RC get(MPI Session s e s s i on ,
MPIDYNRES RC type ∗ rc type , char d e l t a p s e t [] ,
MPIDYNRES RC tag ∗ tag , MPI Info ∗ i n f o) ;

OUT rc type Type of resource change
OUT delta pset Name of the new resource change process set
OUT tag Identifier for the resource change
OUT info Optional additional information about the resource change

int MPIDYNRES RC accept(MPI Session s e s s i on ,
MPIDYNRES RC tag tag , MPI Info i n f o) ;

IN tag Identifier of the resource change to accept
IN info Runtime hints and hints for newly created processes

Fig. 6. Proposed API for managing resource changes.

For b), libmpidynres offers the MPIDYNRES RC accept function. Using this
function, the application can tell the runtime to apply the resource change refer-
enced by the tag argument. The info argument can be used to pass information
new processes. Once this function is called with valid arguments, the runtime
will start new processes in the case of resource addition. If the resource change
removes resources, the application has to shutdown the relevant processes itself.
If possible, the runtime can try to enforce the shutdown by forcefully shutting
down running processes after a specific amount of time. In the case of libmpi-
dynres, due to its architecture, the shutdown cannot be enforced.

An example application execution with both resource changes and process set
operations in shown in Fig. 5. The application shown constructs a new “main
pset” after each resource change. Note that the “main process” main thread
is not highlighted, as it is application dependent to choose a main rank. One
possible way to choose a “main process” is to use rank 0 of the communicator
based on the “main pset”.

5 libmpidynres

In order to evaluate our proposal, we implement the runtime component in
the form of a C library, called libmpidynres, that emulates a dynamic resource
environment on top of an existing MPI communicator.

9

mpidynres
Application Wrapper

Application

MPI Runtime

mpidynres_sim.h

mpidynres.h

MPI_Initialized
MPI_COMM_WORLD,

MPI_Send,
...

MPI_Send,
MPI_Barrier,

...

Fig. 7. The different components of an application using libmpidynres. Both the appli-
cation and libmpidynres access the same MPI library. However, the application should
derive most of its MPI objects from libmpidynres.

The library uses a communicator of fixed size to emulate an MPI Sessions
environment with dynamic resources by using subsets of the fixed-size communi-
cator. This is achieved by hiding and exposing the processes of the communicator
to the application. Using this emulated environment, applications can use the
MPI Sessions and dynamic resource management API described in Sec. 4, hence
already explore and test these features even if the underlying MPI implemen-
tation and job scheduler do not support MPI Sessions and dynamic resource
management. For sake of reproducibility and open science, the source code of
libmpidynres is available on GitHub.5.

5.1 libmpidynres as an Emulation Layer on top of MPI

libmpidynres is implemented as a C library that is used on top of an existing
MPI library. This means that libmpidynres uses MPI calls internally for commu-
nication and management. From the application’s point of view, it extends the
available MPI API with additional functions.

Before the MPI Sessions environment becomes active, the application has to
configure libmpidynres and initialize MPI. This part of the user application is
called the application wrapper. The application wrapper then passes an entry
point and a communicator for the emulated application to libmpidynres.

From there, libmpidynres manages the communicator’s processes and runs the
emulated application from the given entrypoint. The emulated application should
only use MPI communicators and groups that are returned by libmpidynres or
were derived from these. This ensures that libmpidynres has full control over the
available processes. This architecture is illustrated in Fig. 7.

5.2 Emulated Process States

libmpidynres emulates dynamic resources on a communicator of fixed size (typ-
ically MPI COMM WORLD). This is achieved by selectively exposing a subset of the

5 https://github.com/boi4/libmpidynres

10

uninitialized
emulation layer

is started

resource change

with process

(resource addition)
resource change

is accepted

app.

start app.

end

proposed

shutdown

accepted

shutdown

resource change

with process

(resource removal)

resource change

is accepted

process shuts down
idle

activereserved

Fig. 8. The different states that an emulated process can be in, from libmpidynres’
point of view. States where the application has control over the (OS-)process are high-
lighted in green.

communicator’s processes to the application as its world process set. Conse-
quently, the maximum number of processes that can be scheduled is limited by
the size of the communicator used for emulation. Inactive processes are idling (in
an MPI Recv operation) and are waiting to be requested and then made available
to the MPI application. However, unlike a full implementation inside a runtime,
such processes cannot be made available to other, separate applications. There-
fore, it is again important to stress that libmpidynres is only a proof-of-concept
library for testing the interface and real support for dynamic resources has to
be included in the various software components of the MPI stack.

The process of starting and stopping resources is quite complex and involves
multiple temporary states a process can be in. These states are illustrated in
Fig. 8. Note that these are the states from the library’s point of view.

5.3 Resource Manager

libmpidynres uses a server-client model for managing process sets and resource
change states. For that, the MPI process with rank zero of the libmpidynres MPI
communicator acts as a dedicated resource manager.

This server-client approach avoids race conditions and assures a consistent
state across all MPI ranks. However, the additional communication overhead
leads to decreased performance especially with redundant requests from multiple
ranks and to increased latency when doing API calls. However, the proof-of-
concept, emulating nature of libmpidynres justifies this trade-off.

6 Case Study

To evaluate the proposed interface and libmpidynres, we implement an ap-
plication example that is based on a loop where work is distributed among all
processes in each iteration. In the following, we describe this example applica-
tion.

Let us first look at the initialization part of the application given in lines 1-10
in Fig. 9. When an MPI process is started, it needs to set up and gain information
about its environment. For that, the application initializes an MPI Session using

11

1 s e s s i o n = MPI Se s s i on in i t ()
2 p s e t s = MPI Ses s i on ge t p s e t s (s e s s i o n)
3 i f ”mpi : // world” in p s e t s :
4 main pset = ”mpi : // world” ; c u r i t e r = 0
5 else :
6 i n f o = MPI Se s s i on ge t in f o (s e s s i o n)
7 main pset = i n f o . get (”main pset ”)
8 c u r i t e r = i n f o . get (” c u r i t e r ”)
9 group = MPI Group from sess ions pset (main pset)

10 comm = MPI Comm create from group (group)
11 for (; c u r i t e r < N; c u r i t e r ++): /∗ MAIN LOOP ∗/
12 rc type , r c s e t = MPIDYNRES RC get ()
13 i f (r c type != NONE) :
14 i f (r c type == ADDITION) :
15 main pset = p s e t c r e a t e op (UNION, main pset , r c s e t)
16 i f (r c type == REMOVAL) :
17 main pset = p s e t c r e a t e op (DIFF , main pset , r c s e t)
18 p s e t s = MPI Ses s i on ge t p s e t s (s e s s i o n)
19 i f main pset not in p s e t s : break
20 MPIDYNRES RC accept({ ” c u r i t e r ” : c u r i t e r ,
21 ”main pset ” : main pset })
22 group = MPI Group from sess ions pset (main pset)
23 comm = MPI Comm create from group (group)
24 . . .
25 do work ()

Fig. 9. Pseudo code showing using the proposed interface to successfully query and
adapt to dynamic resources changes.

MPI Session init. Furthermore, the application queries its process sets using
MPI Session get psets. If the process is part of the “mpi://world” process set,
the process was started together with the start of the application. If it is not
part of the process set, the process was started because of a resource change
and has to query some information to successfully join the application. In this
example, it queries the current loop iteration and the process set that should be
used for communication from its MPI session (the information was passed with
an Info object when the resource change was accepted).

Once a communicator is created from the main pset, the main loop is started.
This is shown in lines 11-25 of Fig. 9. The application queries for resource changes
at the beginning of each loop iteration. When dealing with resource changes,
the application follows the strategy from Fig. 5. This means that the application
tries to have all of its available resources grouped together in one process set, the
“main process set”. If a resource change adds new resources, the union process
set operation is used to create a new “main process set”. If a resource change
removes existing resources, the difference process set operation is used instead.
When the application accepts a resource change using MPIDYNRES RC accept,
some information (the main process set name and the current loop iteration) are
passed to newly started processes.

12

Using this system, the application is able to handle and adapt to resource
changes while constantly having a valid MPI communicator. A concrete C imple-
mentation of this application was tested and evaluated using different scheduling
algorithms and different communicator sizes. The application could successfully
finish all of its loop iterations without any crashes or race conditions in the appli-
cation or libmpidynres. More libmpidynres examples can be found on GitHub.6.

7 Conclusion

In this work, we presented an interface that uses new MPI Sessions concepts to
handle dynamically varying resources. The interface uses process sets to express
resource differences that will be applied to the application. We implemented an
emulation layer that allows applications to use the new interface. This makes
prototyping of malleable applications with the proposed interface possible, even
without MPI providing support for this, yet. Furthermore, using an example
application built on top of this emulation layer, we have validated that using
this interface, applications are capable of dealing with resource changes.

Regarding future work, one of the next steps is an extension of the proto-
type with the implementation of different parallel programming patterns (beside
the loop pattern) and combine them with the interface proposed in this work.
While the current interface is quite general and therefore may be useful for other
programming patterns, it still provides some global changes that may affect all
processes of the application. For more distributed programming patterns, a less
global approach is needed where the application can group its own processes and
tell the runtime that only certain groups should be affected by resource changes.

Another interesting area to apply this new interface to are existing tools for
dynamic computing. For example, tools like p4est and PETSc can help with
automating parts of the load balancing process in dynamic mesh refinement
applications [2, 1]. Integrating dynamic resources into these tools is currently
work-in-progress and could abstract the dynamic resources away from the library
user and ease the creation of scalable parallel applications.

Besides many other future research aspects, we like to finally point out the
problem of scheduling, which will require disruptive algorithms to cope with
runtime-varying resources.

Acknowledgments: This project has received funding from the Federal Min-
istry of Education and Research and the European HPC Joint Undertaking (JU)
under grant agreement No 955701, Time-X and No 955606, DEEP-SEA. The JU
receives support from the European Union’s Horizon 2020 research and innova-
tion programme and Belgium, France, Germany, Switzerland.

References

1. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., et. al: PETSc Web
page. https://www.mcs.anl.gov/petsc (2019), https://www.mcs.anl.gov/petsc

6 https://github.com/boi4/libmpidynres/tree/master/examples

13

2. Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: Scalable Alg. for Parallel Adaptive
Mesh Ref. on Forests of Octrees. SIAM J. Sci. Comput. 33(3), 1103–1133 (2011)

3. Comprés, I., Mo-Hellenbrand, A., Gerndt, M., Bungartz, H.J.: Infrastructure and
API Ext. for Elastic Execution of MPI Applications. Proc. 23rd EuroMPI (2016)

4. El Maghraoui, K., Desell, T.J., Szymanski, B.K., Varela, C.A.: Dynamic Malleabil-
ity in Iterative MPI Applications. In: Seventh IEEE International Symposium on
Cluster Computing and the Grid (CCGrid ’07). pp. 591–598 (2007)

5. Gamell, M., Katz, D.S., Kolla, H., Chen, J., Klasky, S., Parashar, M.: Exploring
Automatic, Online Failure Recovery for Scient. Appl. at Extreme Scales. In: SC
’14: Proc. of the Int. Conf. for HPC, Netw., St. and Anal. pp. 895–906 (2014)

6. Gupta, A., Acun, B., Sarood, O., Kalé, L.V.: Towards realizing the potential of
malleable jobs. In: 2014 21st Int. Conf. on HPC (HiPC). pp. 1–10 (2014)

7. Holmes, D., Mohror, K., Grant, R.E., Skjellum, A., Schulz, M., Bland, W., Squyres,
J.M.: MPI Sessions: Leveraging runtime infrastructure to increase scalability of
appl. at exascale. ACM Int. Conf. Proceeding Ser. 25-28-Sept, 121–129 (2016)

8. Iserte, S., Mayo, R., Quintana-Ort́ı, E.S., Peña, A.J.: DMRlib: Easy-Coding and
Eff. Res. Mgm for Job Malleab. IEEE Transact. on Comp. 70(9), 1443–1457 (2021)

9. Laguna, I., Richards, D., Gamblin, T., Schulz, M., De Supinski, B., Mohror, K.,
Pritchard, H.: Evaluating and Extending User-Level Fault Tolerance in MPI Ap-
plications. Int. J. of HPC Applications 30(3), 305–319 (2016)

10. Lemarinier, P., Hasanov, K., Venugopal, S., Katrinis, K.: Architecting Malleable
MPI Applications for Priority-Driven Adaptive Scheduling. In: Proceedings of the
23rd European MPI Users’ Group Meeting. p. 74–81. EuroMPI 2016, Association
for Computing Machinery, New York, NY, USA (2016)

11. Mart́ın, G., Marinescu, M.C., Singh, D.E., Carretero, J.: FLEX-MPI: An MPI Ex-
tension for Supporting Dynamic Load Balancing on Heterogeneous Non-dedicated
Systems. In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013 Parallel Process-
ing. pp. 138–149. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

12. Prabhakaran, S., Neumann, M., Rinke, S., Wolf, F., Gupta, A., Kale, L.V.: A
Batch System with Efficient Adaptive Scheduling for Malleable and Evolving Ap-
plications. In: 2015 IEEE Int. Par. and Dist. Proc. Symposium. pp. 429–438 (2015)

13. Schreiber, M., Riesinger, C., Neckel, T., Bungartz, H.J., Breuer, A.: Invasive Comp.
Balancing for Appl. with Shared and Hybrid Par. Int. J. Parallel Program. (2015)

14. Sudarsan, R., Ribbens, C.J.: ReSHAPE: A Framework for Dynamic Resizing and
Scheduling of Homogeneous Applications in a Parallel Environment. In: 2007 In-
ternational Conference on Parallel Processing (ICPP 2007). pp. 44–44 (2007)

15. Teich, J., Henkel, J., Herkersdorf, A., Schmitt-Landsiedel, D., Schröder-Preikschat,
W., Snelting, G.: Invasive Computing: An Overview, pp. 241–268. Springer New
York, New York, NY (2011)

16. The MPI Forum: MPI: A Message-Passing Interface Standard Version 4.0
17. The MPI Forum: MPI: A Message-Passing Interface Standard Ver. 2.2 (09 2009)
18. The MPI Forum: MPI: A Message-Passing Interface Std. Ver. 4.0 (Draft) (11 2020)
19. Zafari, A.: Advances in task-based parallel programming for distributed memory

architectures (PhD dissertation) (2018)

14

