N

N
N

HAL

open science

Towards Dynamic Resource Management with MPI
Sessions and PMIx

Dominik Huber, Maximilian Streubel, Isaias Comprés, Martin Schulz, Martin

Schreiber, Howard Pritchard

» To cite this version:

Dominik Huber, Maximilian Streubel, Isafas Comprés, Martin Schulz, Martin Schreiber, et al..
Towards Dynamic Resource Management with MPI Sessions and PMIx.
29th European MPI Users’ Group Meeting, Sep 2022, Chattanooga, United States.

10.1145/3555819.3555856 . hal-03856697

HAL Id: hal-03856697
https://hal.science/hal-03856697

Submitted on 16 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

EuroMPI/USA’22 -
pp.57-67,

https://hal.science/hal-03856697
https://hal.archives-ouvertes.fr

This is a preprint version of our paper.
Please find the official one at
https://doi.org/10.1145/3555819.3555856

Towards Dynamic Resource Management
with MPI Sessions and PMIx

Dominik Huber Martin Schreiber Howard Pritchard

Maximilian Streubel martin.schreiber@Quniv-grenoble- howardp@lanl.gov
Isafas Comprés alpes.fr Los Alamos National Laboratory
Universit Grenoble Alpes & USA

Martin Schulz
domi.huber@tum.de
maximilian.streubel@tum.de
isaias.compres@tum.de

Laboratoire Jean Kuntzmann
Saint Martin d’Hres, France
Technical University of Munich
Garching, Germany

schulzm@in.tum.de
Technical University of Munich
Garching, Germany

Abstract

Job management software on peta- and exascale super-
computers continues to provide static resource allocations,
from a program’s start until its end. Dynamic resource al-
location and management is a research direction that has
the potential to improve the efficiency of HPC systems and
applications by dynamically adapting the resources of an
application during its runtime. Resources can be adapted
based on past, current or even future system conditions and
matching optimization targets. However, the implementation
of dynamic resource management is challenging as it requires
support across many layers of the software stack, including
the programming model.

In this paper, we focus on the latter and present our
approach to extend MPI Sessions to support dynamic re-
source allocations within MPI applications. While some forms
of dynamicity already exist in MPI, it is currently limited
by requiring global synchronization, being application or
application-domain specific, or by suffering from limited sup-
port in current HPC system software stacks.

We overcome these limitations with a simple, yet pow-
erful abstraction: resources as process sets, and changes of
resources as set operations leading to a graph-based perspec-
tive on resource changes. As the main contribution of this
work, we provide an implementation of this approach based
on MPI Sessions and PMIx. In addition, an illustration of
its usage is provided, as well as a discussion about the re-
quired extensions of the PMIx standard. We report results
based on a prototype implementation with Open MPI using
a synthetic application, as well as a PDE solver benchmark
on up to four nodes and a total of 112 cores. Overall, our
results show the feasibility of our approach, which has only

very moderate overheads. We see this first proof-of-concept
as an important step towards resource adaptivity based on
MPI Sessions.

Keywords

MPI Sessions, dynamic resources, malleability, PMIx

ACM Reference Format:

Dominik Huber, Maximilian Streubel, Isaias Comprés, Martin
Schulz, Martin Schreiber, and Howard Pritchard. 2022. Towards
Dynamic Resource Management with MPI Sessions and PMIx.
In EuroMPI/USA’22: 29th European MPI Users’ Group Meeting
(EuroMPI/USA’22), September 26-28, 2022, Chattanooga, TN,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3555819.3555856

1 Introduction

In the last decade the performance of HPC systems has
increased significantly, with first systems (officially) reach-
ing exascale in 2022. This is driven by heterogeneous and
accelerated architectures, which require a careful resource
management and resource allocation to application types
and kernels. However, traditionally, resources are assigned
statically at the start of a job and are then fixed for the du-
ration of the job, which is often a limitation for the efficiency
of resource usage on HPC systems due to variations in the
scalability of applications, algorithmic kernels, intermediate
idle times, or different suitability to accelerators, to name
just a few issues.

As a consequence, resource management must become
more dynamic and adaptive in order to be able to counteract
these challenges. We will refer to this in the remainder of
this paper as dynamicity, which has been shown to improve
overall system efficiency with respect to various optimization
goals, such as throughput, energy or job queue latency [13, 19,
20, 23]. Dynamicity can also be advantageous for individual
applications: Avoiding a-priori resource fixation and using the
global scheduler perspective can improve individual resource
efficiency and support urgent computing [6, 15, 16, 20].

However, achieving dynamicity is challenging, since it not
only increases the complexity of the system scheduler and

EuroMPI/USA’22, September 26-28, 2022, Chattanooga, TN, USA

Dynamic Resources

Node 1 Node 2 --. -+ Node N
Resource Manager
PMIx MPI MPI MPI
Processes Processes Processes
Server
xe||x¢e|[xe x¢el|x€e||xe xcl|x€e||xe
Scheduler S I=L=L S I=LI=L + =o=9=2
aol|eol|=0 agl|eol(>=0 O]} CA®] | CX®]
PMIx []
Server
Login Node L > PMIx PMIx PMIx
PMIx Server Server Server
Tool MPI Runtime Environment >
Interconnect 1

Figure 1: Illustration of resource dynamicity of MPI jobs on an PMIx-based HPC system. The HPC system
consists of PMIx based components: a login node, scheduler, resource manager (left) and compute nodes
executing the (dynamic) MPI job. All components are connected via a high-speed interconnect. To provide
dynamicity, it is necessary to add/remove MPI processes (or, in most cases, full nodes with multiple MPI
processes) to/from the MPI job (red box). As the figure shows, this requires not only an interface for writing
resource dynamic MPI applications, but also a dynamic MPI runtime environment.

resource manager, but also requires support from the pro-
gramming models used on the platforms, so that applications
can request and react to resource changes accordingly. In
this paper we focus on MPI [17], as the currently dominat-
ing programming model in HPC, and introduce support for
resource-adapting MPI jobs, i.e., MPI jobs with a dynamically
varying number of MPI processes.

Fig. 1 illustrates a dynamic MPI job running on a typical
HPC system. To give a concrete example, consider an MPI
application (e.g., a parallel CFD solver on a structured regular
grid) running on n nodes (job!). Now consider the situation
where another job (job2) is waiting in the job queue because
it requires m < n more nodes than currently available. With
dynamic resource management, a scheduler could initiate
a resource change to remove m nodes from job! and to
assign them to job2, which would allow job2 to start its
execution immediately. However, this requires the RTE of
jobl to interact with that job, to ensure that MPI processes
running on the m nodes to be terminated and removed,
and that the application can continue its execution correctly
without these processes after the resource change.

Many different approaches to introduce dynamicity to MPI
have been proposed in the literature using techniques such as
checkpointing and process migration [7, 24, 25], process virtu-
alization [10, 11], MPI-2 Dynamic Process Management [22]
or dynamic MPI_COMM_WORLD communicators [5].

The approach we present in this paper is a continuation
of previous work [8], which emulated dynamicity with MPI
Sessions for a single application on-top of an MPI version
lacking support for MPI Sessions. In this previous work,
we introduced our approach to describing dynamicity with
resource sets and set operations for the first time and we
extend these concepts in this work.

So far, MPI Sessions is mainly a new model for MPI ini-
tialization that avoids the necessity of a global communicator
(MPI_COMM_WORLD). Instead, communication can be derived
from sets of processes, which are organized as a dictionary
of URIs. Our first contribution is to use these MPI Sessions
as a foundation to our dynamicity approach, which will be
presented in Sec. 2.

Further, we describe the implementation of a resource
dynamic MPI runtime environment based on PMIx. The
Process Management Interface - Exascale (PMIx) [4] defines
a standardized interface for portable and scalable interaction
between components of the Software Management Stack
(SMS). It is frequently used by MPI implementations for an
MPI runtime environment (RTE) as well as in other system
components, such as resource managers and schedulers (see
Fig. 1). Thus, a dynamic MPI implementation based on PMIx
can facilitate the integration and interactions of dynamic
MPI on HPC systems. We use and extend PMIx to realize
a dynamic MPI RTE allowing for generic integration with
different SMSs, as shown in Sec. 3.

Finally, we provide a performance evaluation in Sec. 4
and an assessment of our approach in Sec. 5 followed by a
summary in Sec. 6.

2 MPI application perspective on
dynamic resources

In this section we propose a new approach for resource
dynamicity for MPI applications. We start by describing our
design goals in Sec. 2.1. Subsequently, we describe the set
and graph-based abstraction we use to approach these design
goals. Finally, we present possible MPI interfaces that realize
this approach using the MPI Sessions model.

Towards Dynamic Resource Management

with MPI Sessions and PMIx

1 MPI_Session_init (&session) // Create a session handle

2 MPI_Session_dyn_recv_res_change(// Check if process was added dynamically (included in delta pset)
3 session, // IN: Session handle

4 ’’mpi://self’’, // IN: The name of the associated PSet, for which resource change info is queried

5 &rc_type, // OUT: The type of the resource change

6 delta_pset, // OUT: Name of delta PSet, describing the changing resources

7 &incl // OUT: Flag indicating if this process is included in the delta PSet

8)

9

10 if incl: // Dynamically added resource? -> Receive name of new PSet for communication with original procs
11 MPI_Session_dyn_integrate_res_change (

12 NULL, // IN: mpi_info (optional)

13 delta_pset, // IN: Name of the delta PSet of the resource change

14 false, // IN: Flag indicating if this process provides the name of the new PSet

15 main_pset, // Name of the new PSet related to the resource change

16 &terminate // OUT: Flag indicating that this process needs to terminate

17)

18

19 MPI_Group_from_session_pset(session, main_pset, &main_group) // PSet to group

20 MPI_Comm_create_from_group (main_group, "tag", NULL, NULL, &main_comm) // group to communicator
21

22 while work_to_do: // MAIN LOOP

23 // Application dependent work, potentially including data migration to new resources

24

25 // Rest of while loop copes with resource change requests

26 if my_rank == root_rank:

27 MPI_Session_dyn_recv_res_change(session, main_pset, &rc_type, delta_pset, &incl)

28 resources_changing = rc_type != MPI_RC_NONE

29

30 if resources_changing: // For each resource change, root process ezecutes the set operation
31 if rc_type == MPI_RC_ADD:

32 MPI_Session_pset_create_op(

33 MPI_PSETOP_UNION, // IN: Requested set operation

34 main_pset, // IN: First argument to the set operation (PSet name)

35 delta_pset, // IN: Second argument to the set operation (PSet name)

36 new_main_pset // OUT: Result of the set operation (PSet name)

37)

38 else if rc_type == MPI_RC_SUB:

39 MPI_Session_pset_create_op(session, MPI_PSETOP_DIFF, main_pset, delta_pset, new_main_pset)
40
41 // Provide information whether there %is a Tesource change
42 MPI_Bcast(&resources_changing, ..., root_rank, main_comm)
43
44 if resources_changing: // resource change operations ezecuted by all existing processes
45 MPI_Bcast(delta_pset, ..., root_rank, main_comm) // Provide the mname of the delta PSet
46 MPI_Session_dyn_integrate_res_change(session, NULL, delta_pset, new_main_pset, my_rank==root_rank, &

terminate)

47
48 MPI_Comm_disconnect (&main_comm) // Destroy old communicator
49 if terminate:

50 break // This process is not part of the new pset => terminate

51

52 main_pset = new_main_pset // mew main pset

53 MPI_Group_from_session_pset(session, main_pset, &main_group) // PSet to group

54 MPI_Comm_create_from_group (main_group, NULL, NULL, &main_comm) // group to communicator

55

56 MPI_Session_finalize(session);

Listing 1: Illustrative example of the proposed interface for a resource dynamic MPI application in pseudo
code. In this example resource changes target the whole application. Arguments followed by IN/OUT are
read/written, respectively. Although this code shows blocking API calls, all of them can be realized as
non-blocking API calls.

EuroMPI/USA’22, September 26-28, 2022, Chattanooga, TN, USA

2.1 Design Goals

Our approach follows three core design goals:

e Generality: MPI applications are diverse, from linear
algebra solvers and graph workloads to adaptive meshes
and large scale machine learning. It is not possible to foresee

all different application requirements. Our primary goal,
therefore, is the creation of a general approach for dynamic
resources, which then provides a maximum of flexibility
for MPI application developers.

EuroMPI/USA’22, September 26-28, 2022, Chattanooga, TN, USA

e Separation-of-concerns: The focus of this work is to
target the MPI aspects of resource dynamicity, with the
goal of providing a separation-of-concerns. By separating
the MPI part from other parts, such as resource scheduling
(or optimization) and application data reorganization, we
enable clean differentiation and composability of solutions.

e Performance: Our goal is to provide a low-overhead mech-
anism to adapt to changing resources. To this end a) unnec-
essary, global synchronization between processes should be
avoided and b) non-blocking interfaces should be provided,
e.g., to avoid blocking during MPI process creation such
as when using the MPI_Spawn API.

2.2 Underlying Abstractions
To achieve our goal of generality, we build our approach on

top of a set of abstractions which are again based on concepts

of MPI Sessions for extending them.

e Sets: We use sets to denote an unordered grouping of
resources. Such sets can be potentially overlapping. For
this definition, we refer to resources in an abstract sense
describing a logical or physical component to be used as
part of an HPC system. In the context of this paper we focus
on the specific case of sets including (MPI) processes, with
one of these sets referred to as process set (aka. PSet). This
concept of PSets is already defined in the MPI standard [17]
and is an important building block of the MPI Sessions
model.

e Set operations: Set operations (union, difference, split,
join, ...) can be executed on sets to create one or more
new sets. A set operation thus can be used to express
subsets or changes of sets, which can be used to indicate
the scope of resources (re-)assignments.

e Graphs: A graph-based perspective on resources and
resource changes can be taken by associating vertices with
PSets and directed hyperedges with set operations. Hav-
ing such a graph-theoretical description of resources and
resource changes as an abstract building block, will enable
us (and others) to layer dynamicity approaches on top of
it, like, e.g., scheduling heuristics.

2.3 Dynamic MPI Interfaces and an

Example

In this section we describe a first design of an interface for
a dynamic MPI Sessions model, following the abstractions
and design goals explained in the last sections. While the
underlying model applies to all kinds of resources, for now,
we only consider MPI processes as resources. This design
introduces three additional MPI procedures, all related to the
MPI Sessions model:
MPI_Session_dyn_recv_res_change,
MPI_Session_pset_create_op and
MPI_Session_dyn_integrate_res_change.
We also implemented asynchronous variants of these proce-
dures which is trivial as these procedures can be executed in
the background and MPI processes can use the MPI_Request,
MPI_Test and MPI_Wait procedures accordingly. Thus, we
omit the details of the asynchronous variants.

In the following we describe the interfaces in the course
of which we also refer to the provided pseudo code example
for a loop-based MPI Sessions application in Lst. 1. A brief
description of the new function signatures is included in
this code example in lines 2, 11 and 32 respectively. We use
the terminology “root process” to denote the one particular
process that takes the role of being in charge for processing
resource changes. Note that this interface will very likely
undergo further changes in the future to approach an even
higher level of generality and performance.

MPI_Session_dyn_recv_res_change: This procedure al-
lows an MPI process to query the RTE for resource change
information.

Following the graph-like description from Sec. 2.2, resource
change information is always associated with an existing
set of resources (a vertex), thus allowing for fine-grained,
independent resource management of different application
parts. This information includes the type of resource change
and the set including resources to be changed, i.e., the delta
between the resources before and after the resource change
(which we call “delta set”).

In this work we only deal with MPI processes as resources.
Accordingly, MPI_Session_dyn_recv_res_change queries the
RTE for resource change information associated with the PSet
name specified by the application (parameter 2). From hereon,
we refer to this PSet as the associated PSet. Here, the PSet
name mpi://self can be specified as a special means to query
information about the most recent resource change where
the calling MPI process is included in the delta set.

The procedure returns the type of the resource change
(parameter 3) where we currently support
e MPI_RC_TYPE_NONE: No resource change information avail-

able,

e MPI_RC_ADD: Resources (MPI processes) are added,

e MPI_RC_SUB: Resources (MPI processes) are removed
with more operations such as replacement of MPI processes
possibly defined in future versions.

Moreover, in case of available resource change information,
it returns the name of a PSet representing the delta between
the MPI processes before and after the resource change, i.e.,
the MPI processes to be added or removed. Hence, from
hereon we refer to this PSet as the delta PSet. Additionally,
the function returns a flag to indicate if the calling MPI
process is included in the delta PSet.

The interface deals with PSets (resource sets including
MPI processes), however, similar interfaces could be used to
support other types of resource sets. Also, this interface does
not enforce or interfere with how the application adapts to
the resource change, as it only provides the name of the delta
PSet. Thus, it provides the application with the flexibility to
use this delta PSet in set operations according to the specific
needs of the application.

In the example, this interface is used at two different places:
First, by all processes at program start to allow MPI processes
to determine their dynamic nature (line 2). Second, by the
root, process after each iteration of the main loop to check if
a new resource change needs to be processed (line 27).

Towards Dynamic Resource Management
with MPI Sessions and PMIx

MPI_Session_dyn_pset_create_op: This procedure al-
lows applications to request the creation of new PSets based
on a specified set operation.

Using our abstraction, a resource change is represented
as a delta set. However, the delta set provided by the query
operation is not the only option; the set can be further ma-
nipulated based on application specific needs. This procedure
enables such further manipulations of PSets, resulting in
new PSets. Contrary to local set operations performed on
MPI Groups, set operations on PSets result in new PSets
visible beyond the local MPI process in all MPI processes
that could be affected by the process change. Thus, other
processes can query these Sets and then create groups from
the discovered PSets without having to have the knowledge
about the operations that created them.

In particular, this function enables applications to create
a new PSet pset_result from a set operation of two existing
PSets psetl and pset2, i.e., pset_result = psetl o pset2.
Currently possible PSet operations specified by the pset_op
o parameter are
e MPI_PSETOP_UNION (pset-result = psetl U pset2),

e MPI_PSETOP_DIFF (pset_result = psetl \ pset2),

e MPI_PSETOP_INTERSECT (pset_result = psetl N pset2)

and further operations could be defined to broaden the gen-
erality of our approach.

In Lst. 1 the root MPI process uses set operations to create
anew_main_pset based on the old main_pset and the queried
delta_pset to reflect the addition or removal of resources
to/from the application respectively (lines 32 and 39).

MPI_Session_dyn_integrate_res_change: This proce-
dure is specific to MPI processes as it targets issues related
to communication channels and synchronization. On one
hand, when adding processes the concrete usage of dynam-
ically added processes might not be known a-priori. Thus,
these processes lack knowledge of the PSet name to be used
for creating an initial communicator. On the other hand,
when removing processes it might be necessary to have a syn-
chronization barrier before processes terminate. Due to the
flexibility provided to applications by the procedures defined
above, it is not guaranteed that communication channels
(MPI communicators) between processes in the delta PSet
and/or the associated PSet exist or are desired.

To this end, the MPI_Session_dyn_integrate_res_change
procedure provides an out-of-band mechanism for processes
to synchronize and exchange a PSet name, without creation
of a common communicator. The procedure is collective over
the union of the MPI processes in the delta PSet and the
associated PSet.

All processes participating in the collective need to specify
the same delta PSet name (parameter 2). A synchronization
barrier is performed across the participating processes.

Moreover, one process from the associated PSet (referred
to as the provider from hereon) can indicate its intention to
act as provider via an input flag (parameter 3). Usually, this
would be the root process. The PSet name provided by the
provider (parameter 4) is published to a range accessible to
all MPI processes involved in the collective.

EuroMPI/USA’22, September 26-28, 2022, Chattanooga, TN, USA

The behavior of the procedure is undefined in the case
that multiple MPI processes set the provider flag.

All other MPI processes can lookup the provided name,
which will be stored in the buffer (parameter 4). Here, a
NULL pointer as buffer is valid and results in no lookup by
this process. If no MPI process acts as provider, all MPI
processes involved in the collective are required to specify a
NULL pointer as buffer.

An additional output flag indicates if the calling process is
included in the delta PSet and that the delta PSet is related
to a resource change of type MPI_RC_SUB. Thus this flag
indicates if processes are required to finalize and terminate
their execution.

An optional info object can be used to influence the be-
havior of the function, e.g., to indicate if the function should
wait until the processes are synchronized before returning.

In our example, the original MPI processes call this proce-
dure (line 46), with the root process providing the name of
the new_main_pset. The dynamically added MPI processes
call this procedure (line 11) to receive the name of the new
main PSet. Subsequently both, original and dynamically cre-
ated processes, create a common communicator from this
PSet.

3 Implementation using Open MPI and
PMIx

Next, we illustrate a possible implementation of the MPI
procedures described in the previous section. We build on top
of the MPI Sessions prototype in Open MPI [9] as well as its
already existing usage of the PMIx interface [4]. The latter
provides mechanisms for runtime environments to interact
with resource managers and is used by a range of common
software components, including Open MPI, as well as by
other system software such as SLURM [26], for bootstraping
MPI processes and to realize MPI runtime functionalities.
As PMIx provides standardized APIs for portable access to
typical system software services, it naturally simplifies the
handling of resource dynamicity. Moreover, PMIx already
supports the concept of PSets, which is a central component of
our approach. Thus, in Sec. 3.1 we discuss the usage of PMIx
to implement the new, dynamic MPI interface. Based on this,
Sec. 3.2 describes our prototype implementation based on
Open MPI, OpenPMIx [4] and the PMIx Reference RunTime
Environment (PRRTE). Our particular contribution is to
provide insight into the additional work and challenges one
has in realizing these particular dynamicity interfaces also
on the runtime levels.

3.1 PMIx

Even though PMIx already includes some support for
dynamicity, we need a few more extensions to support the
new MPI functionalities. PMIx acts as a messenger between
SMS components and is based on the storage and transfer of
key-value pairs, with some keys being predefined. Another
important concept of PMIx is the PMIx server abstraction
which gives well defined access to PMIx services via function

EuroMPI/USA’22, September 26-28, 2022, Chattanooga, TN, USA

pmix_status PMIx_Pset_Op_request(
psetop_directive, // IN pmix_psetop.directive_t specifying the requested PSet operation

info, // IN Array of pmix_info_t structures (array of handles)
ninfo, // IN Number of elements in the info array (integer)
results, // OUT Array of pmix_info_t structures (array of handles)

nresults // OUT Number of elements in the results array (integer)

typedef pmix_status (*pmix_server_pset_operation_fn_t) (

proc, // IN pmix_proc_t structure identifying the process requesting the PSet operation (handle)
psetop_directive, // IN pmix_psetop_directive_t specifying the requested PSet operation

info, // IN Array of pmix_info_t structures (array of handles)

ninfo, // IN Number of elements in the info array (integer)

cbfunc, // IN Callback function pmix_op._cbfunc_t (function reference)

cbdata // IN Data to be passed to the callback function (memory reference)

)

typedef void pmix_psetop_cbfunc_t(

status, // IN pmix_status_t describing the status of the request

psetop_directive, // IN pmix_psetop_directive_t specifying the requested PSet operation

info, // IN Array of pmix_info_t returned by the operation(pointer)

ninfo, // IN Number of elements in the info array (size.-t)

cbdata, // IN Callback data passed to original API call (memory reference)
release_fn, // IN Function to be called when done with the info data (function pointer)
release_cbdata // IN Callback data to be passed to release_fn (memory reference)

)
Attributes required to be included in the passed info array:
- PMIX_PSETOP_PRESULT "pmix.psetop.pl" (charx*)
- PMIX_PSET_MEMBERS "pmix.pset.mems" (pmix_data_array_t*)

// Name of the resulting PSet
// The members of the resulting PSet

Listing 2: Proposed PMIx functions related to PSet operations. PMIx _Pset_Op_request requests the execution of
the specified process set operation. PMIx passes on this request to the host environment, for which the latter
provides a pointer to its implementation of the pmix_server_pset_operation_fn t function at initialization of the
PMIx server. The host environment provides the results of the operation back to the PMIx server using the

provided pmix_psetop_cbfunc_t callback.

pointers provided by the host environment. Here, we use the
term host environment according to the PMIx definition “to
refer to the process hosting the PMIx server library” [18,
p. 7], which is the MPI RTE (daemon) in the context of
this paper. For the sake of brevity we refer the interested
reader to the PMIx 4.0 standard document [18] for further
information.

MPI_Session_dyn_recv_res_change: This procedure in-
teracts with the RTE to receive information about resource
changes. PMIx supports queries for runtime/system informa-
tion via the PMIx_Query_info function, allowing the user to
provide query keys and qualifiers to specify a query request.

Therefore, for the delta PSet, resource change type and
associated PSet parameters of the MPI procedure, we de-
fine the corresponding PMIX_RC_PSET, PMIX_RC_TYPE and
PMIX_RC_ASSOC_PSET query/qualifier keys respectively.

The PMIx_Query_info function returns key-value pairs,
with the values for each query key provided by the host
environment. To facilitate the provision of a value for the
type of the resource change we define the new enum data
type pmix_rc_type_t. So far, this type is one of the three
new PMIx constants: PMIX_RC_NONE/ADD/SUB.

MPI_Session_pset_create_op: In order to support the
needed PSet operations introduced by this proposed MPI
procedure, we require three new functions in PMIx. We show
their signatures in Lst. 2.

e PMIx_Pset_Op_request: This function allows to request a

PSet operation from the host environment. The operation

can be specified as one of the three new PMIx constants

PMIX_PSETOP_UNION/DIFF/INTERSECT. The psetl/pset?2 ar-

guments of the set operation are provided in the info pa-

rameter using the new PMIX_PSETOP_P1/P2 keys. The name
of the resulting PSet is returned in the result parameter
with the new PMIX_PSETOP_PRESULT key.

e pmix_server_pset_operation_fn_t: This function defini-
tion allows to pass on the request from the PMIx server
to the host environment. The host environment provides a
pointer to a valid implementation of this function definition
during the initialization of the PMIx server. The imple-
mentation is expected a) to perform the specified PSet
operation; b) to make the information about the resulting
PSet available in the given scope; and c) to call back into
the local PMIx server via a callback function.

e pmix_psetop_cbfunc_t: This callback function specifica-
tion allows the host environment to pass the operation
results to the PMIx server.

MPI _Session_dyn_integrate_res_change:

The implementation of this MPI procedure does not require
any extensions to the PMIx standard.

For the out-of-band transmission of the PSet name, the
existing PMIx_Publish/Lookup interface can be used. This
interface provides access to a global key-value datastore,
where data can be retrieved solely by referral to its key.
Thus, in the MPI procedure the provider publishes the PSet
name as key-value pair with PMIx_Publish. The used key
is required to be well-defined and unique for each resource

Towards Dynamic Resource Management
with MPI Sessions and PMIx

EuroMPI/USA’22, September 26-28, 2022, Chattanooga, TN, USA

[MPI Job |

-
) recv_res_cEange recv_res_cﬁange
g— % pset_create_op pset_create_op
-l q
I integrate_res_change integrate_res_change

MPI Interface I—

-|-| PMIx-Client Interface I—

-------- | PMix-Server Upcalls I

1
&
1
1
1
1
"]
©
3
<
[
I
m
c
3
[s}
=3
o
3
°
-
5
w
—
1

o
S ®©
(]
o -
o —(rmmmmd] -
X
z5
o OmaOmel)mOm =l ~Om=L >
] of [2 sl [z s
E o - e 2 o [} .
S | 8 R BE R H
E T F == OO = ===
© q 5
§, PRRTE-Daemons
n E -
pset-oj
z 3 IPRRTE-Master | Lf:;,ﬁf‘;;‘,’,ﬁ'::ﬁl— module
X © Data
a - / Server
Node 1 Node 2

I PRRTE_RES_CHANGE_DEFINE EVENT

Figure 2: Overview of the prototype implementation of our approach with Open MPI. This example shows
two nodes running a (dynamic) MPI job. We differentiate between four layers (see labels on the left), which
are each accessible from the layer above via the interfaces indicated on the right side. The interior of the
nodes delineate the required interactions of our dynamicity extensions to MPI with PRRTE using PMIx.

change, e.g. by deriving it from the corresponding delta
PSet name. This way, the published PSet name can be re-
trieved by a corresponding PMIx_Lookup by other processes
in the MPI_Session_dyn_integrate_res_change procedure.
The PMIx_WAIT attribute has to be provided in PMIx_Lookup
to request that the PMIx server should wait until the value
is found, e.g., in case it was not yet published.

Subsequently, the PMIx_Fence function is entered, which
performs a PMIx barrier across all the processes specified in
the pmix_proc_t array, i.e. the processes in the union of the
delta PSet and the associated PSet).

After the barrier, the provider uses PMIx_Unpublish to
unpublish the corresponding PSet name, which avoids an
unnecessary accumulation of key-value pairs in long-running
PMIx environments and hence prevents memory leaks.

3.2 Implementation with Open MPI,
OpenPMIx and PRRTE

In this section, we illustrate how the extended interfaces of
MPI and PMIx achieve resource dynamicity with Open MPI.
Fig. 2 provides an high-level overview of our prototype. We
differentiate between the application layer, the MPI (Open
MPI) layer, the PMIx layer (OpenPMIx) and the runtime
layer (PRRTE). In the following we describe the necessary
actions and interactions of these layers to implement the
proposed MPI extensions.

PRRTE master layer: To launch the MPI runtime, an
initial process starts PRRTE daemon on each node of the

allocation, excepting the one on which it is executing. Here,
we call this process PRRTE master, as it is responsible for the
orchestration of the runtime services and the control of the
resource change procedure. To this end, the PRRTE master
provides an entry point for triggering resource changes via
PMIz event notifications. The PMIx event handler performs
the following actions required for the initiation of a resource
change: a) it defines the corresponding delta PSet b) it sends
all necessary meta and query data to the daemons and c) it
sends the launch command for the corresponding processes
in case of a resource addition. In our design, also the (central-
ized) PSet operation module for executing PSet operations,
as well as the PMIx data-server for the global dictionary
(publish/lookup) are also hosted by the PRRTE master.

PRRTE daemon layer: On each node of the allocation
a PRRTE daemon is running, providing runtime services
for the MPI job. The PRRTE master also acts as PRRTE
daemon on the node on which it is executing. Each daemon
operates a local PMIx server, thus providing function pointers
for the PMIx services during the initialization of the server.
Particularly relevant for resource changes are the function
pointers for five PMIx services: queries, PSet operations,
publish /lookup requests and fence operations. We indicate
these services in Fig. 2 at the interface between the OpenPMIx
and PRRTE layers.

MPI and OpenPMIx layers: In Fig. 2, we denote the
three new MPI procedures for resource changes (Sec. 2)

EuroMPI/USA’22, September 26-28, 2022, Chattanooga, TN, USA

at the MPI API level. The implementation of these pro-
cedures makes use of the five PMIx services that we list at
the PMIx server / PRRTE daemon interface. The lines be-
tween the MPI interface and the PRRTE layer illustrate
how these services are used by the MPI procedures via
PMIx as discussed in Sec. 3.1. To give one example, the
implementation of the MPI_Session_pset_create_op proce-
dure uses the PMIx client interface (PMIx_Pset_Op_request)
to send the request to the local PMIx server. The PMIx
server passes on the request to the local PRRTE daemon
(pmix_server_psetop_request_fn_t), which further trans-
mits the request to the PRRTE master. Here, the PSet opera-
tion is executed in the PSet operation module and the result
is broadcasted to all daemons. The daemon from which the
request originated uses the pmix_pset_op_cbfunc_t callback
function to call back into its local PMIx server to provide
the results to the MPI process.

4 Performance Evaluation

Next, we provide performance results for a synthetic bench-
mark as well as for a use case of a Partial Differential Equation
(PDE) solver, which has been enhanced to exploit resource
dynamicity. For sake of reproducibility we provide the code
used for the benchmarks [12].

4.1 System Setup

We use the CoolMuc2 Linux cluster at the Leibniz Super-
computing Centre [14] for all experiments , which features 28
cores (56 hardware threads) per node (2 sockets per node each
containing Intel Xeon E5-2697V3 processors with 14 cores
and 28 hardware threads) and a 64 GB DDR4 memory per
node. The interconnect between the nodes is based on FDR14
Infiniband (bandwidth to interconnect per node up to 13.64
GB/s). The cluster runs an instance of the SLURM workload
manager for resource scheduling and management. We cre-
ate an interactive SLURM shell with the salloc command,
allocating four nodes and a total of 112 cores. Following
that, we launch a daemon job (runtime layer) spanning these
four nodes using the prterun command. Our benchmarks
(user jobs) run on top of this runtime layer with their size
being grown and shrunk dynamically. Thus, the presented
performance results do not include any resource allocation
and management of the resource management system, but
rather provide insight into the overheads of the adaption
process of dynamic MPI jobs using our approach.

4.2 Benchmarks

We implement a synthetic application similar to the ex-
ample in Lst. 1 to evaluate the performance characteristics of
the suggested interface. As workload we use a problem size of
10'° elements and ~ 10 FLOPs per element. The elements are
equally distributed over the available processes, however, no
communication is required for redistributing elements after a
resource change. Resource changes are triggered by the appli-
cation every 10-th iteration. We report performance results
for adding/removing ngecita € {28, 56,84} MPI processes.

We further use the proposed interface to provide dynamic
resources to a PDE solver with fixed workload and load-
balancing to evaluate the impact on application performance
in a realistic setting. For this we build on top of prior work
[21], which combined an emulation layer for dynamic MPI
Sessions [8] with a Shallow-Water-Equation solver [1] and the
P4est library [3]. We replace the emulation layer with our
prototype implementation for dynamic MPI Sessions. We use
a uniform grid of size S = 4'°, a simulation time of t = 10
seconds which is split in ¢ = 10 phases, and the application
triggering resource changes each phase. We report the results
for a simulation run starting with nstq,-: = 28 processes and
adding ngeita = 28 processes per resource change up to a
maximum of ne,q = 112 processes.

4.3 Performance Results

Synthetic Benchmark: We first discuss the performance
results of the synthetic benchmark, which we list in Tab. 1.

For resource addition, we measure a total time of up to
1.69 seconds on the RTE level, which is dominated by the
MPI initialization (MPI_Session_init) of the added pro-
cesses (up to 1.42 seconds). The sole overhead introduced
on the RTE level for initiating the resource change was
11.56 — 18.49 ms. We use an asynchronous implementation
of MPI_Session_dyn_integrate_res_change, which allows
the application to resume its work (i.e., perform further it-
erations) until the dynamically added processes have been
initialized. Based on this, the overhead of resource changes
on the application level, including the creation of the new
MPI communicator, is 109.39 — 181.1 ms. Both overheads
slightly increase with increasing ngeitq-

For resource subtraction no new processes need to be ini-
tialized, which naturally leads to a lower total time required
for the resource change (88.27 - 125.86 ms). However, also
the overheads are slightly smaller with 7.29 — 14.85 ms on
the RTE level and 71.4 — 112.78 ms on the application level.
Again, increasing ngeitq leads to slightly larger overheads.

In Fig. 3 we show the implications of resource subtraction
on the performance of the synthetic loop-based benchmark.
This synthetic benchmark represents a near optimal appli-
cation, which has almost no load-balancing overhead and
shows a straight-forward relationship between the number of
processes and the application performance. This simplifies
the assessment of the performance impact of our approach.
As expected, the time required for the workload (black bars)
increases after resources are removed in iterations 11, 22 and
33 respectively. In these iterations, overheads of around 100
ms related to processing the resource change are incurred
(blue bars). These overheads are moderate relative to the
overall time required for one iteration and the interval in
which resource changes occur.

PDE solver: Fig. 4 shows the performance results of the
resource-adaptive PDE solver run. Similar to the synthetic
benchmark the application overhead for resource changes
including the creation of the new communicator (blue bars)
is between 100 and 125 ms. Additional overheads arise from
the adaption of the grid with pdest (red and grey bars).

Towards Dynamic Resource Management
with MPI Sessions and PMIx

EuroMPI/USA’22, September 26-28, 2022, Chattanooga, TN, USA

Type of resource change Addition Subtraction
Tdelta 28 56 84 28 56 84
Total time of res. change (RTE) 1670 ms 1692 ms | 1690 ms || 88.27 ms | 108.80 ms | 125.86 ms
Initiation of resource change (RTE) 11.56 ms 16.89 ms | 18.49 ms || 7.29 ms 11.13 ms 14.85 ms
Application overhead 109.39 ms | 141.75 ms | 181.1 ms 71.4 ms 108.7 ms | 112.78 ms
max. MPI_Session_init (dyn. procs) 1209 ms 1417 ms | 1375 ms -

Table 1: Performance results of the synthetic benchmark for resource addition and subtraction. We denote as
Total time of resource change the time measured on the RTE level from receiving the notification of a resource
change, until the application has adapted to the resource change. The initiation of the resource change is the
time required by the RTE to process the resource change and prepare the data for the interaction with the
application. The application overhead is the time the application spends with processing the resource change
using the proposed MPI interface and creating a corresponding new communicator. For resource addition we
also provide the maximum time the dynamic processes required for the MPI initialization (MPI_Session_init).

1200 7
j 1 mmm Work phase
1 Il Resource change
7
1000 4 Y
n =56 n =28
7
» 800+ j
k<] 7
c 7
g Y
Q
(%]
= 600 i
£
; 4
e /
i~ 4004
200

0 10 20 30 40 50 60 70
Iteration

Figure 3: Performance implications of dynamic re-
source subtraction in the synthetic benchmark. The
bars indicate the timings for each of the 70 iterations.
The colored areas in the background are labeled with
the current number of processes n. The black bars
denote the time required for the synthetic workload
in each iteration. The hatched areas mark the itera-
tions where the resource change is processed by the
application. The blue bars indicate the application
overhead related to processing resource changes.

However, due to additional resources, the time required for
one phase after the resource changes decreases significantly
by Gre1 = 50.37%, Grez = 25.33% and Gres = 10.68%
respectively. Thus, the total overhead of the resource change,
can be amortized due to the improved performance with
additional resources. In our benchmark, the total overhead
of the resource change including repartitioning with p4est,
would be amortized after nyc1 > 0.37, Npe2 > 1.13 and
nres > 3.11 subsequent phases with additional resources,
pointing towards the practicability of our approach.

5 Discussion of Proposed Interfaces

The interface we provide in this work is the result of one
of the first attempts to use the set and graph-based approach

3000 n =56 n=284 n=112
EEE Interval
mmm Resource change

M Communicator update

mmm Repartition

2500 1

2000

1500 A

Time (milliseconds)

1000 -

500 -

Phase

Figure 4: Performance implications of dynamic re-
source addition in a PDE solver for a hyperbolic
problem. The total simulation time frame is split into
ten phases, in which a certain time interval is simu-
lated with fixed resources (black bars). The colored
areas in the background are labeled with the current
number of processes n. The blue bars indicate the
application overhead related to processing resource
changes. As we use a non-blocking implementation
of the dynamic MPI interface, overheads related to
resource changes are distributed over multiple iter-
ations. The red and gray bars denote the overhead
related to the grid adaptions with p4est.

and is intended to help drive and support the discussions in
the MPI Forum. As part of this discussion, in the following
we focus on how our proposal is in alignment with our stated
design goals, which we describe in Sec. 2.1 and infer possible
changes and extensions.

Data redistribution: Changing resources of an appli-
cation might require corresponding redistribution/reorga-
nization of application data. Our approach does not pro-
vide implicit data redistribution, which follows the goal of
separation-of-concerns. Instead it gives application program-
mers full control over the data reorganization in response to

EuroMPI/USA’22, September 26-28, 2022, Chattanooga, TN, USA

changing resources to maintain generality. However, our ap-
proach provides applications with the necessary information
about resource changes and mechanisms to create appropri-
ate communicators, which can be used for standard MPI
communication to redistribute any application data.

Resource Optimization: Again following the design goal
of separation-of-concerns, our proposed interface is indepen-
dent from the resource optimization process. In particular,
our approach does not make any assumptions about the entity
initiating the resource changes. Instead, it defines a general
mechanism for MPI applications and RTEs to adapt to re-
source changes. Such a resource change could be triggered
by any SMS component, e.g., by the scheduler to improve
overall system utilization or by an evolving application to
adapt to dynamic workloads.

Moreover, to achieve the goal of high performance, a so-
phisticated, potentially cooperative scheduling mechanism
needs to be added on top of our graph-based approach. As our
approach uses PMIx, resource changes and PSets could be
made transparent to entities in the SMS (such as schedulers
and tools) if they attach to the corresponding PMIx server.
Exploring this potential could be valuable future work.

Application-driven set operations: In our current de-
sign, the application drives the set operations related to re-
source changes based on the information received via the
MPI_Session_dyn_recv_res_change, such as the name of
the delta process set. This gives applications the flexibility to
control the resource usage in response to a resource change.
For performance reasons, it might be preferable to perform
set operations representing resource changes on a higher level
of the SMS, e.g., the system scheduler, which would require
minor changes of MPI_Session_dyn_recv_res_change.

Granularity of interfaces & fault tolerance: The cur-
rent state of the suggested interface requires only three ad-
ditional MPI procedures (and three asynchronous variants),
which eases the complexity for application programmers
to adopt the approach. However, we plan to achieve fur-
ther generality by dividing the interface into smaller, but
more general functions. To give one example, in our current
design, MPI_Session_dyn_integrate_res_change performs
the transmission of a PSet name as well as synchronization.
More flexibility could be achieved by implementing these func-
tionalities in separate procedures. Such a more fine-granular
interface could also facilitate support for fault tolerance.

Root process: So far, our approach uses a root process,
which performs the query for resource change information and
the potentially required set operations. A consensus-based
approach involving all processes of one PSets could be an
alternative in particular due to fault tolerant aspects. We
do not see both approaches excluding each other, but rather
complementary to further improve generality.

6 Summary and Future Work

Dynamic resource management is an active research area
which can improve the efficiency of HPC systems, as well as
HPC applications. In this context, we proposed and evaluated

a new approach towards dynamic resource management of
MPI jobs based on MPI Sessions and PMIx.

In our design, resources are represented by (potentially
overlapping) sets, which can be modified using set oper-
ations. This allows for a graph-based perspective on re-
source changes where sets of resources are represented by
vertices and set operations by directed hyperedges. Our ex-
pectations are that this will cover various requirements of
different HPC applications.

We showed how our concept can be implemented on top
of the standardized PMIx interface, and what extensions are
necessary to support dynamicity. The latter are minimal,
as PMIx already provides many of the needed features to
support dynamicity and, hence, forms an excellent basis for
our work. It is used by most MPI implementations as well
as many software components for resource management on
HPC systems, and it provides portable access to common
system services. Thus, our approach can easily be integrated
into such PMIx-based software management stacks.

We developed a prototype of our approach extending Open
MPI, OpenPMIx and PRRTE and demonstrated its func-
tionality to dynamically add/remove resources to/from MPI
jobs on a modern HPC system on up to 4 nodes and a total
of 112 cores. The application overheads were modest, with
109—181 ms for resource addition and 71—113 ms for resource
subtraction.

Overall, this work is a proof of concept, providing a first
demonstration of a novel set- and graph-based approach
towards resource management based on MPI Sessions and
PMIx.

In future work, we plan to continue working on the pro-
posed interfaces to further improve on its generality and
performance. To this end, we will also need to extend our
performance evaluations in terms of scale, resource types
and application use cases. Moreover, integration of our ap-
proach for resource dynamic MPI Sessions with HPC resource
management systems is a natural next step to assess its appli-
cability on modern HPC systems. Here, we will particularly
focus on usage and extensions of PMIx to facilitate coopera-
tion between HPC applications and other system components
for improved resource optimization.

Acknowledgments

We like to gratefully acknowledge in particular Dan Holmes
for his valuable feedback and discussions as part of the meet-
ings of the MPI Session workgroup. We like to thank the
anonymous reviewers and in particular Jeffrey M. Squyres
for the valuable feedback. This project has received funding
from the Federal Ministry of Education and Research and the
European HPC Joint Undertaking (JU) under grant agree-
ment No 955701, Time-X and No 955606, DEEP-SEA. The
JU receives support from the European Unions Horizon 2020
research and innovation programme and Belgium, France,
Germany, Switzerland.

Towards Dynamic Resource Management
with MPI Sessions and PMIx

References

(1]

=

=

)

&)

(10]

(11]

(12]

(13]

(14]

(18]

(16]

(17]

(18]

2020. Shallow Water Equations Teaching Code.
com/TUM-I5/SWE

OpenMP Architecture Review Board. 2020. OpenMP Application
Programming Interface (Version 5.1. https://www.openmp.org/
wp-content /uploads/OpenMP-API-Specification-5-1.pdf
Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. 2011.
p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement
on Forests of Octrees. SIAM Journal on Scientific Computing
33, 3 (2011), 1103-1133. https://doi.org/10.1137/100791634
Ralph Castain, Joshua Hursey, Aurelien Bouteiller, and David Solt.
2018. PMIx: Process Management for Exascale Environments.
Parallel Comput. 79 (08 2018). https://doi.org/10.1016/j.parco.
2018.08.002

Isafas Comprés, Ao Mo-Hellenbrand, Michael Gerndt, and Hans-
Joachim Bungartz. 2016. Infrastructure and API Extensions for
Elastic Execution of MPI Applications. In Proceedings of the 23rd
European MPI Users’ Group Meeting (Edinburgh, United King-
dom) (EuroMPI 2016). Association for Computing Machinery,
New York, NY, USA, 8297. https://doi.org/10.1145/2966884.
2966917

Kaoutar El Maghraoui, Travis J. Desell, Boleslaw K. Szymanski,
and Carlos A. Varela. 2007. Dynamic Malleability in Iterative
MPI Applications. In Seventh IEEE International Symposium
on Cluster Computing and the Grid (CCGrid ’07). 591-598.
https://doi.org/10.1109/CCGRID.2007.45

Kaoutar El Maghraoui, Boleslaw K. Szymanski, and Carlos Varela.
2006. An Architecture for Reconfigurable Iterative MPI Applica-
tions in Dynamic Environments. In Parallel Processing and Ap-
plied Mathematics, Roman Wyrzykowski, Jack Dongarra, Norbert
Meyer, and Jerzy Wasniewski (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 258-271.

Jan. Fecht, Martin. Schreiber, Martin Schulz, Howard Pritchard,
and Daniel J. Holmes. 2022. An Emulation Layer for Dynamic
Resources with MPI Sessions. In HPCMALL 2022 Workshop.
Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun,
Jack J. Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan
Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castain,
David J. Daniel, Richard L. Graham, and Timothy S. Woodall.
2004. Open MPI: Goals, Concept, and Design of a Next Gen-
eration MPI Implementation. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface, Dieter Kran-
zlmiiller, Péter Kacsuk, and Jack Dongarra (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 97-104.

Abhishek Gupta, Bilge Acun, Osman Sarood, and Laxmikant V.
Kal. 2014. Towards realizing the potential of malleable jobs.
In 2014 21st International Conference on High Performance
Computing (HiPC). 1-10. https://doi.org/10.1109/HiPC.2014.
7116905

Chao Huang, Orion Lawlor, and L. V. Kalé. 2004. Adaptive MPI.
In Languages and Compilers for Parallel Computing, Lawrence
Rauchwerger (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
306-322.

Dominik Huber. 2021. DynMPI Prototype (version used for
benchmarks). https://github.com/DynMPISessions/dynmpi.
prototype

Jan Hungershfer, Achim Streit, and Jens-Michael Wierum. 2002.
Efficient resource management for malleable applications. Pader-
born Center for Parallel Computing.

Leibniz-Rechenzentrum. 2022. LRZ Linuz Cluster. https://doku.
Irz.de/display /PUBLIC/Linux+Cluster

Loris Marchal, Bertrand Simon, Oliver Sinnen, and Frédéric
Vivien. 2018. Malleable task-graph scheduling with a prac-
tical speed-up model. IEEE Transactions on Parallel and
Distributed Systems 29, 6 (June 2018), 1357-1370. https:
//doi.org/10.1109/TPDS.2018.2793886

Gonzalo Martn, David E. Singh, Maria-Cristina Marinescu, and
Jess Carretero. 2015. Enhancing the performance of malleable MPI
applications by using performance-aware dynamic reconfiguration.
Parallel Comput. 46 (2015), 60-77. https://doi.org/10.1016/j.
parco.2015.04.003

Message Passing Interface Forum. 2021. MPI: A Message-Passing
Interface Standard Version 4.0. https://www.mpi-forum.org/
docs/mpi-4.0/mpi40-report.pdf

PMIx Administrative Steering Committee (ASC). 2020. Process
Management Interface for Exascale (PMIz) Standard Version
4.0. https://pmix.github.io/uploads/2020/12/pmix-standard-

https://github.

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

EuroMPI/USA’22, September 26-28, 2022, Chattanooga, TN, USA

v4.0.pdf

Suraj Prabhakaran, Marcel Neumann, Sebastian Rinke, Felix Wolf,
Abhishek Gupta, and Laxmikant Kal. 2015. A Batch System with
Efficient Adaptive Scheduling for Malleable and Evolving Applica-
tions. In 2015 IEEE International Parallel and Distributed Pro-
cessing Symposium. 429-438. https://doi.org/10.1109/IPDPS.
2015.34

Martin Schreiber. 2014. Cluster-Based Parallelization of Simu-
lations on Dynamically Adaptive Grids and Dynamic Resource
Management. mediaTUM. 198 pages. https://mediatum.ub.tum.
de/node?id=1189784

Maximilian Streubel. 2021. Dynamic Resource Management Using
MPI Sessions on p4est.

Rajesh Sudarsan and Calvin J. Ribbens. 2007. ReSHAPE: A
Framework for Dynamic Resizing and Scheduling of Homogeneous
Applications in a Parallel Environment. In 2007 International
Conference on Parallel Processing (ICPP 2007). https://doi.
org/10.1109/ICPP.2007.73

Rajesh Sudarsan and Calvin J. Ribbens. 2009. Scheduling resizable
parallel applications. In 2009 IEEE International Symposium on
Parallel Distributed Processing. 1-10. https://doi.org/10.1109/
IPDPS.2009.5161077

Gladys Utrera, Julita Corbalan, and Jess Labarta. 2004. Imple-
menting malleability on MPI jobs. In Parallel Architectures and
Compilation Techniques - Conference Proceedings, PACT. 215—
224. https://doi.org/10.1109/PACT.2004.1342555

Sathish Vadhiyar and Jack Dongarra. 2003. SRS - A Framework
for Developing Malleable and Migratable Parallel Applications for
Distributed Systems. Parallel Processing Letters 13 (04 2003).
https://doi.org/10.1142/S0129626403001288

Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. SLURM:
Simple Linux Utility for Resource Management. In Job Sched-
uling Strategies for Parallel Processing, Dror Feitelson, Larry
Rudolph, and Uwe Schwiegelshohn (Eds.). Springer Berlin Heidel-
berg, Berlin, Heidelberg, 44-60.

	Abstract
	1 Introduction
	2 MPI application perspective on dynamic resources
	2.1 Design Goals
	2.2 Underlying Abstractions
	2.3 Dynamic MPI Interfaces and an Example

	3 Implementation using Open MPI and PMIx
	3.1 PMIx
	3.2 Implementation with Open MPI, OpenPMIx and PRRTE

	4 Performance Evaluation
	4.1 System Setup
	4.2 Benchmarks
	4.3 Performance Results

	5 Discussion of Proposed Interfaces
	6 Summary and Future Work
	7 Acknowledgements
	References

