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A B S T R A C T

We postulate a deformation energy for describing the mechanical behavior of so called pantographic blocks,
that is bodies constituted by stacking of 𝑁 layers of pantographic sheets. We remark that the pantographic
effect is limited in the plane of pantographic sheets and therefore only the second derivatives of transverse
displacements along the pantographic fibers appear in the chosen deformation energy. We use this novel
energy to predict the behavior of pantographic blocks when subjected to : (i) compression and traction test,
(ii) torsion, (iii) shear and (iv) bending. A linearization of the energy shows one floppy mode in addition to
the rigid body motions, assuming perfect pivots, similar to pantographic sheets.
1. Introduction

Pantographic sheets are a class of 2D continua which call for models
based on more generalized theories of continuum mechanics for a
predictive description of their deformation [1–6]. Theories involving
the second gradient of displacement in the energy [7–10] have been
shown to successfully fulfill these needs by comparing experiments
and simulations [11–14]. In reality, the 3D printed objects are not
homogeneous in their surface normal direction as often assumed in
plate theory, but rather they are chiral with an offset between the
two layers of fibers. The offset has been addressed in some studies
specifically [15–17]. Some experiments, like the three-point-bending
test, are challenging to perform on a thin sheet as buckling phenomena
complicate the process. For this purpose a pantographic block has
been designed as layers of pantographic sheets [18]. So far only the
in-plane behavior was modeled which matches the one of the sheet.
For future research we find it important to include the influence of
the pivots with some basic kinematic assumptions in their elongation,
shear and twist. We utilize the continuum model for pantographic
sheets in three-dimensional space from Giorgio et al. [19] and embed
it in a three-dimensional continuum with the coupling in the third
direction by the aforementioned pivot kinematics. The resulting con-
tinuum model retains the second gradient specifics for the planes of

∗ Corresponding author.
E-mail address: maximilian.stilz@inatech.uni-freiburg.de (M. Stilz).

pantographic sheets and adds only first gradient components in the
additional dimension.

In future research, the validation of our model in experiments
will rely on novel techniques in 3D imaging such as Digital Volume
Correlation [20]. Dynamic [21] and damage phenomena [14,17,22,23]
which have been studied for other pantographic structures are also a
topic for future research and will be not covered in this work.

In the following we employ covariant (subscript) and contravariant
(superscript) index notation with summation over repeated indices.

2. Geometry

A pantographic sheet as depicted in Fig. 1(top) consists of two
families of fibers each in a parallel plane with usually a 90◦-angle
between the fibers in the reference configuration. A pivot along the
normal of the planes connects fibers from each plane with the lengths
of the pivot being at least the offset length ℎ𝑝 between these planes.
We can now imagine adding additional parallel planes with the same
offset and alternating fiber orientation so that they can be connected
along the further extended pivots. The resulting structure consists of
2𝑁 layers of the fiber planes (or 𝑁 layers of pantographic sheets) with
𝑁 ∈ 1

2N interconnected by pivots with total length (2𝑁 −1)ℎ𝑝 depicted
in Fig. 1(bottom).
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Fig. 1. (Top): The fiber lattice basis of the pantographic sheet with enhanced detail
of a junction. (Bottom): A CAD image of a pantographic block with 5.5 layers of
pantographic sheets or 11 layers of pantographic planes.

3. Deformation energy

It is necessary to postulate a class of deformation energies in order
to design appropriately the experimental tests that we have to perform
in order to understand the exotic behavior of pantographic blocks.
The postulation was inspired by the following concept: in the plane
of pantographic sheets the energy stored in deformation phenomena is
exactly that postulated for pantographic sheets in 3D motion [19], but
calculating its volume density considering the number of pantographic
sheets interconnected per unit line. For the remaining (nonlinear)
deformation measures needed to complete a 3D description, we assume
that the corresponding deformation energy is simply quadratic.

For better understanding, we recapitulate the energy of panto-
graphic sheets [19].

3.1. Lattice plate kinematics

The reference configuration 𝜅 could be represented as a plane area
𝛺 ⊂ R2 with a position vector 𝐗 and with two families of lines which
model the embedded fibers of a pantographic sheet. We define the unit
tangent vectors of each family to be 𝑫(𝛼), 𝛼 ∈ {1, 2}. Additionally, we
define 𝑵 = 𝑫(1) × 𝑫(2) as the fibers’ normal and 𝑴 (𝛼) = 𝑫(𝛼) × 𝑵 as
the completion of the fibers’ triad. Here × is the cross product. Further
we call 𝝌 ∶ 𝜅 ↦ 𝜒 an invertible mapping from the reference 𝜅 into the
current 𝜒 placement, so 𝒙 = 𝝌(𝑿), where 𝒙 = 𝑥𝑖�̂�𝑖 is a position vector
in 𝜒 with Cartesian basis �̂�𝑖 and 𝑿 = 𝑋𝐴�̂�𝐴 in 𝜅 with Cartesian basis
�̂�𝐴 (see Fig. 2 left).

The tangent vectors 𝒅(𝛼) of the embedded fibers then become the
directional derivative of 𝒙 on the surface in direction 𝑫(𝛼) and therefore
are calculated through

𝒅(𝛼) = 𝐷𝝌(𝑿)[𝑫(𝛼)] =
𝜕𝝌(𝑿)
𝜕𝑿

𝑫(𝛼) (1)

= 𝑭𝑫(𝛼) = 𝐹 𝑖
𝐴
(

𝐷(𝛼))𝐴 �̂�𝑖 , (2)

and we define the unit tangent vector as

𝒆(𝛼) = 𝒅(𝛼)
= 𝒅(𝛼)

, (3)
2

‖𝒅(𝛼)
‖

𝜌

where 𝑭 denotes the deformation gradient of the mapping 𝝌 and 𝜌(𝛼) =
‖𝒅(𝛼)

‖ the stretch of the fiber. In each point we find the unit normal of
the (smooth) surface with the two tangent vectors

𝒏 = 𝒆(1) × 𝒆(2)

‖𝒆(1) × 𝒆(2)‖
, (4)

and apply the kinematic constraint, that this is also the normal of the
fibers serving as an orientation for their cross-section. To complete the
beam triad we add their bitangent vector

𝒎(𝛼) = 𝒏 × 𝒆(𝛼) (5)

(see Fig. 2 right).

3.2. Fiber and surface deformation measures

Based on these definitions we can propose deformation measures of
the fibers based on properties of the surface deformation. The change
in lengths is measured with

𝜀(𝛼) = ‖𝒅(𝛼)
‖ − 1 . (6)

With the derivative in the corresponding fiber direction 𝒆(𝛼),𝛼 = 𝜕
[

𝑒(𝛼)
]𝑖

𝜕𝑋𝐴
[

𝐷(𝛼)]𝐴 �̂�𝑖 =
[

𝑒(𝛼)
]𝑖
,𝐴
[

𝐷(𝛼)]𝐴 �̂�𝑖 we define, based on the deformation
of a curve, the curvature measures separated in in-plane or normal
curvature, out-of-plane curvature and torsion

𝜅(𝛼)
𝑛 = −𝒎(𝛼) ⋅ 𝒆(𝛼),𝛼 , (7)

𝜅(𝛼)
𝑔 = 𝒏 ⋅ 𝒆(𝛼),𝛼 , (8)

𝜏(𝛼) = 𝒆(𝛼) ⋅𝒎(𝛼)
,𝛼 . (9)

Additionally we define the shearing deformation measure 𝛾 (12) between
the fiber families

sin 𝛾 (12) = 𝒆(1) ⋅ 𝒆(2) . (10)

3.3. Lattice block kinematics

In the reference placement a lattice block of thickness 𝐻 takes a
volume 𝛱 ⊂ R3, 𝛱 = 𝛺×[0,𝐻] Just as the fibers were embedded in 𝛺,
they are embedded in 𝛱 . To describe the kinematics in the additional
dimension we introduce pivot fibers with their tangent vector in the
reference configuration 𝑫(3) = 𝑫(1) × 𝑫(2) = 𝑵 and 𝒅(3) = 𝑭𝑫(3) =
‖𝒅(3)

‖𝒆(3).

3.4. Pivot deformation measures

Just as for the fibers we define the pivot’s stretch as

𝜀(3) = 𝜌(3) − 1 = ‖𝒅(3)
‖ − 1 . (11)

The shear of the pivot in each fiber direction is measured with the
angles 𝛾 (31) and 𝛾 (32)

sin 𝛾 (31) = 𝒆(3) ⋅ 𝒆(1), sin 𝛾 (32) = 𝒆(3) ⋅ 𝒆(2) . (12)

We can approximate the twist of the pivot by Eq. (10).

3.5. Energy density

With these deformation measures we postulate the energy density to
be quadratic in these measures. Firstly, the fiber contribution becomes

𝑤𝑓 =
∑

𝛼

1
2
𝐾𝑒

(

𝜀(𝛼)
)2 + 1

2
𝐾𝑛

(

𝜅(𝛼)
𝑛

)2 + 1
2
𝐾𝑔

(

𝜅(𝛼)
𝑔

)2

+ 1
2
𝐾𝑡

(

𝜏(𝛼)
)2 + 1

2
𝐾 (12)

𝑠
(

𝛾 (12)
)2 (13)

and the pivot contributions are

𝑤 = 1𝐾 (3) (𝜀(3)
)2 + 1𝐾 (31) (𝛾 (31)

)2 + 1𝐾 (32) (𝛾 (32)
)2
𝑝 2 𝑒 2 𝑠 2 𝑠
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Fig. 2. Embedded lattice structure in the reference configuration and a detail of the actual configuration with kinematic descriptors.
Fig. 3. Compression and traction test by displacement boundary conditions. The colors indicate the amount of deformation energy density by curvature of the embedded fibers.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Torsion test by displacement boundary conditions. The colors indicate the
displacement in 𝑥 direction. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

+ 𝐾𝑐
[

𝜀(3)
(

𝜀(1) + 𝜀(2)
)]

. (14)

The last term is introduced as a correction term to account for a Poisson
effect by coupling the elongation of the fibers with the pivot’s. 𝐾𝑒, 𝐾𝑛,
𝐾𝑔 , 𝐾𝑡, 𝐾

(12)
𝑠 , 𝐾 (3)

𝑒 , 𝐾 (31)
𝑠 , 𝐾 (32)

𝑠 and 𝐾𝑐 are stiffness coefficients based
on material and geometry parameters of the fibers and pivots, also
3

accounting for the density of beams and pivots in the corresponding
discrete structure.

4. Reference configuration

For the following analysis we choose the reference configuration
with

𝑫(1) = 1
√

2

(

�̂�1 + �̂�2
)

= 1
√

2
(1, 1, 0)⊤ , (15)

𝑫(2) = 1
√

2

(

�̂�2 − �̂�1
)

= 1
√

2
(−1, 1, 0)⊤ , (16)

𝑫(3) = �̂�3 = (0, 0, 1)⊤ (17)

5. Linearization and floppy modes

To determine the system’s floppy modes, meaning deformation
modes with zero energy, we conduct a linearization of the model using
the approach from [24,25] with the expansion for small deformations

𝜒(𝑿) = 𝑿 + 𝜂𝒖(𝑿) (18)

𝑯 ∶= ∇𝒖 (19)

𝑭 = I + 𝜂𝑯 (20)

∇𝑭 = 𝐹 𝑖
𝐴,𝐵 = 𝜂∇𝑯 = 𝜂𝐻 𝑖

𝐴,𝐵 (21)

This leads for the deformation measures in first order of 𝜂 to

𝜀(𝛼) ≈ 𝜂𝑯𝑫(𝛼) ⋅𝑫(𝛼) = 𝜂𝐻 𝑖 [𝐷(𝛼)]𝐴 𝐷(𝛼) (22)
𝐴 𝑖
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Fig. 5. The shear test on the left is imposed by displacement boundary conditions with colors indicating the amount of deformation energy density by curvature of the embedded
fibers. The bending test on the right was conducted with a surface force dead load in 𝑧 direction. The colors indicate the displacement in 𝑦 direction, showing the in-plane
deformation of the pantographic sheets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
𝜅(𝛼)
𝑔 ≈ 𝜂𝑵∇𝑯 ∶ 𝑫(𝛼) ⊗𝑫(𝛼) = 𝜂𝑁𝑖𝐻

𝑖
𝐴,𝐵

[

𝐷(𝛼)]𝐴 [

𝐷(𝛼)]𝐵 (23)

𝜅(𝛼)
𝑛 ≈ −𝜂𝑴 (𝛼)∇𝑯 ∶ 𝑫(𝛼) ⊗𝑫(𝛼) = −𝜂𝑀𝑖𝐻

𝑖
𝐴,𝐵

[

𝐷(𝛼)]𝐴 [

𝐷(𝛼)]𝐵 (24)

𝜏(1) ≈ −𝜂𝑵∇𝑯 ∶ 𝑫(2) ⊗𝑫(1) = −𝜂𝑁𝑖𝐻
𝑖
𝐴,𝐵

[

𝐷(2)]𝐴 [

𝐷(1)]𝐵 (25)

𝜏(2) ≈ −𝜂𝑵∇𝑯 ∶ 𝑫(1) ⊗𝑫(2) = −𝜂𝑁𝑖𝐻
𝑖
𝐴,𝐵

[

𝐷(1)]𝐴 [

𝐷(2)]𝐵 (26)

𝛾 (12) ≈ 𝜂𝑫(1) ⋅𝑯𝑫(2) + 𝜂𝑯𝑫(1) ⋅𝑫(2)

= 𝜂𝐷(1)
𝑖 𝐻 𝑖

𝐴
[

𝐷(2)]𝐴 + 𝜂𝐻 𝑖
𝐴
[

𝐷(1)]𝐴 𝐷(2)
𝑖 (27)

𝛾 (31) ≈ 𝜂𝑫(3) ⋅𝑯𝑫(1) + 𝜂𝑯𝑫(1) ⋅𝑫(3)

= 𝜂𝐷(3)
𝑖 𝐻 𝑖

𝐴
[

𝐷(1)]𝐴 + 𝜂𝐻 𝑖
𝐴
[

𝐷(1)]𝐴 𝐷(3)
𝑖 (28)

𝛾 (32) ≈ 𝜂𝑫(3) ⋅𝑯𝑫(2) + 𝜂𝑯𝑫(3) ⋅𝑫(2)

= 𝜂𝐷(3)
𝑖 𝐻 𝑖

𝐴
[

𝐷(2)]𝐴 + 𝜂𝐻 𝑖
𝐴
[

𝐷(3)]𝐴 𝐷(2)
𝑖 (29)

Consequentially the second order Taylor expansion of the energy den-
sity contributions become

𝑤𝑒 =
1
4
𝐾𝑒

[

(

𝑢1,2 + 𝑢2,1
)2

+
(

𝑢1,1 + 𝑢2,2
)2

]

(30)

𝑤𝑔 = 1
4
𝐾𝑔

[

4
(

𝑢3,21
)2

+
(

𝑢3,11 + 𝑢3,22
)2

]

(31)

𝑤𝑛 =
1
8
𝐾𝑛

[

(

𝑢1,11 + 𝑢1,22 − 2𝑢2,12
)2

+
(

𝑢2,11 + 𝑢2,22 − 2𝑢1,12
)2

]

(32)

𝑤𝑡 =
1
4
𝐾𝑡

[

(

𝑢3,11 − 𝑢3,22
)2

]

(33)

𝑤𝑝𝑒 =
1
2
𝐾 (3)

𝑒

[

(

𝑢3,3
)2

]

(34)

𝑤𝑠 =
1
2
𝐾 (12)

𝑠

[

(

𝑢1,1 − 𝑢2,2
)2

]

(35)

+ 1
2
𝐾 (31)

𝑠

[

(

𝑢1,3 + 𝑢2,3 + 𝑢3,1 + 𝑢3,2
)2

]

(36)

+ 1
2
𝐾 (32)

𝑠

[

(

𝑢1,3 − 𝑢2,3 + 𝑢3,1 − 𝑢3,2
)2

]

(37)

𝑤𝑐 =
1
2
𝐾𝑐

[

𝑢3,3
(

𝑢1,1 + 𝑢2,2
)]

(38)

The sum of these contributions results in the complete internal energy
density.

For positive stiffness factors this energy has only infinitesimal rigid
body motions as zero-energy modes(floppy modes) given by

𝒖𝑟 = 𝒙 × 𝝎 + 𝒃 (39)

with constant rotation vector 𝝎 and translation vector 𝒃.
4

Assuming perfect pivots, which correlates with 𝐾 (12)
𝑠 = 0, we find

an additional floppy mode, with some scalar 𝑎, as

𝒖𝑓 = 𝑎
(

𝑋1�̂�1 −𝑋2�̂�2
)

. (40)

These floppy modes are similar to discussed ones in [24,25].
Let us note that the form of floppy modes is essential for further

studies of well-posedness of the static problem under consideration,
see e.g. [24,25]. In particular, for a free pantographic block they result
in some constraints for external loadings. More precisely, infinitesimal
rigid body motions correspond to the classic self-equilibrium conditions

∫𝛱
𝒇 𝑑𝛱 + ∫𝜕𝛱

𝒕 𝑑𝑆 = 𝟎,

∫𝛱
𝑿 × 𝒇 𝑑𝛱 + ∫𝜕𝛱

𝑿 × 𝒕 𝑑𝑆 = 𝟎,

where 𝒇 and 𝒕 are volume forces and surface traction, respectively. An
additional floppy mode (40) gives additional scalar condition

∫𝛱

(

𝑋1𝒇 ⋅ �̂�1 −𝑋2𝒇 ⋅ �̂�2
)

𝑑𝛱

+ ∫𝜕𝛱

(

𝑋1𝒕 ⋅ �̂�1 −𝑋2𝒕 ⋅ �̂�2
)

𝑑𝑆 = 0.

6. Incompleteness

All second derivatives of the displacement only appear due to the
curvature terms of the fibers. This means, that there is no coupling in
second order between the fiber plane and the third direction along the
pivots. Therefore, the energy density is incomplete as not all second
order derivatives appear. This can be clearly seen in the linearized
model as we get no dependency of 𝑤𝑖𝑛𝑡 on 𝐻 𝑖

𝐴,𝐵 for {𝐴 = 3 ∨ 𝐵 = 3}.

7. Simulations

All our simulations use the reference configuration 𝛱 as a closed
cuboid with [0, 73] mm × [0, 24] mm × [0, 16] mm and the fiber
orientation from Section 4. We choose stiffness coefficients based on
fibers with a rectangular cross-section with Area 𝐴𝑓 = 𝑎𝑏 and pivots
with a round cross-section of Area 𝐴𝑝 = 𝜋𝑟2. We call 𝑙 the distance
between pivots in the fiber plane, and ℎ the distance in pivot direction
between fiber layers so that 2𝑁 = 𝐻

ℎ . With 𝐸 and 𝐽 referring to the
respective Young’s modulus and second moment of area.

𝐾𝑒 =
𝐸𝑓𝐴𝑓

𝑙ℎ
, 𝐾𝑛 =

𝐸𝑓𝐽𝑛
𝑙ℎ

, 𝐾𝑔 =
𝐸𝑓𝐽𝑔
𝑙ℎ

, 𝐾𝑠 = 0, (41)

𝐾 (3)
𝑒 =

𝐸𝑝𝐴𝑝

𝑙2
, 𝐾 (3)

𝑠 = (2𝑁 − 1)
12𝐸𝑝𝐴𝑝𝑟2

2𝑙2ℎ2
, 𝐾𝑐 = 𝜈𝐾 (3)

𝑒 . (42)
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Setting 𝐾𝑠 = 0 is the assumption of a hinge between the beams
hich is often referred to as perfect pivots. We performed a series of

imple showcase simulations including (i) compression and traction test
Fig. 3), (ii) torsion (Fig. 4), (iii) shear (Fig. 5) and (iv) bending (Fig. 5).

. Conclusion

With this simple energy we can efficiently compute deformation
atterns for otherwise complex and computationally expensive beam
imulations. As will be shown in following publications, the deformed
onfigurations of experiments are well reflected by our model.
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