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Highlights 68 

● We provide 8 standardized cognitive scores relative to an age-matched UK population 69 

● We provide general intelligence (g) scores relative to the UK population 70 

● We estimate the quality of the g factor for individuals with missing data 71 

● We ran a g factor GWAS on UK Biobank individuals without brain data (N = 187,288)  72 

● We created g polygenic scores for subjects with brain data: 7.7% explained variance  73 
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Abstract  74 

Our aim was to create a standardized measure of general intelligence (g) relative to the 75 

UK population for UK Biobank participants and derive a g factor polygenic score for UK 76 

Biobank participants with neuroimaging data. 77 

We first created standardized cognitive test scores that were relative to the UK 78 

population based on the participants’ age, sex, and occupation. Using confirmatory factor 79 

analysis, we extracted a g factor score from eight cognitive tests for all individuals who 80 

completed at least one test (N= 501,650), explaining 29% of the variance in g. We estimated 81 

the quality of the g factor for individuals with missing data. 82 

Our g factor was highly correlated (r > 0.85) with alternative measures of intelligence 83 

calculated in the UK Biobank and correlations between measures of intelligence and life and 84 

health outcomes were similar.  85 

We conducted a Genome-Wide Association Study (GWAS) on UK Biobank 86 

participants with a g factor of good quality (N= 223,731) and identified 36 genetic loci that 87 

were not previously linked to intelligence or cognitive performance. We ran a another GWAS 88 

on UK Biobank participants with a g-factor of good quality but without neuroimaging data (N= 89 

187,288). We used the results from the second GWAS to create a polygenic score for 90 

individuals with neuroimaging data and their siblings (N= 40,871), explaining 7.7% of the 91 

variance in g. 92 

The present study provides cognitive and genetic scores for use by future UK Biobank 93 

studies as control variables or to examine the genetic, brain, and environmental factors 94 

underlying intelligence. 95 

 96 

 97 

  98 
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Introduction  99 

Intelligence – our ability to learn, reason and solve problems (Arvey et al., 1994) – has 100 

been of great interest to researchers in epidemiology, neuroscience, and genetics as it predicts 101 

a wide array of educational, health, and social outcomes (e.g., Calvin et al., 2017; Deary et al., 102 

2007; Strenze, 2007). Given the numerous genetic, neural, and environmental factors that may 103 

contribute to intelligence, large-scale studies are needed to identify the respective contribution 104 

of these factors and their potential interactions on intelligence (for review see Deary et al., 105 

2019, 2021).  106 

The UK Biobank is an ideal database to study the causes and consequences of 107 

intelligence, with its cognitive, brain imaging, genetic, health, and environmental data on more 108 

than 500,000 British middle-aged and older adults. Yet, numerous factors make the use of 109 

cognitive tests in the UK Biobank difficult. First, not all participants completed the same 110 

number of tests, and more recent tests have fewer participants (e.g., word production). Second, 111 

those who completed the same number of tests did not necessarily complete the same 112 

combination of tests. Across 501,650 participants with data on at least one of the eight cognitive 113 

tests, we counted 80 different combinations of tests, with only 30,471 participants having 114 

usable data on all eight tests. Third, the age at which a test was completed varies by test and 115 

participant, with some participants completing a test as early as 38 years old and as late as 82 116 

years old. Fourth, some participants completed certain tests several times. Finally, some tests 117 

or similar tests with slight variations (e.g., 14 instead of 13 questions for Fluid Intelligence) 118 

were completed at different locations: the assessment center on a touchscreen or autonomously 119 

online, with one’s device. 120 

To maximize the number of participants included in their studies on intelligence in the 121 

UK Biobank, some researchers estimated intelligence with a single test, either a Verbal 122 

Numerical Reasoning (aka Fluid Intelligence) score or a reaction time score (Davies et al., 123 

2016; Kievit et al., 2018; Lee et al., 2018; Savage et al., 2018; Sniekers et al., 2017). Others 124 

created a general intelligence (g) factor from 3 to 5 cognitive variables using Principal 125 

Component Analysis (PCA) or Confirmatory Factor Analysis (CFA; (Cox et al., 2019a; 126 

Hepsomali & Groeger, 2021; Lyall et al., 2016; Navrady et al., 2017). Thus, while the UK 127 

Biobank test battery includes a diverse array of cognitive tests, these have been relatively 128 

under-exploited up to now. Furthermore, most studies used test scores that were neither 129 

adjusted for age nor standardized relative to a representative sample of the general population, 130 

despite the acknowledged lack of representativeness of the UK Biobank sample (Fry et al., 131 
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2017). As the UK Biobank continues to accrue data and attract new researchers, access to a 132 

standardized general factor of intelligence for most UK Biobank participants will benefit future 133 

studies that consider intelligence as a variable of interest or as a confounder.  134 

Our study’s aim was therefore to create a standardized general (g) factor for all UK 135 

Biobank participants with at least one cognitive test that is relative to the UK population given 136 

the participant’s age, sex, and occupation. We first created standardized cognitive tests scores 137 

relative to the UK population and then extracted a g factor score from these 8 cognitive tests 138 

with CFA for individuals with data on at least one cognitive test. We estimated the quality of 139 

the g factors for participants with missing data. We assessed the external validity of our g factor 140 

by examining the correlation between our g factor and life outcomes.  141 

Finally, we conducted genetic analyses to create a general intelligence polygenic score 142 

(PGS) in the UK Biobank: We conducted a genome-wide association study (GWAS) of the g 143 

factor score on the UK Biobank participants with a g factor of good quality and without 144 

neuroimaging data (N = 187,288), and we assessed its predictive validity in the participants 145 

with neuroimaging data (N = 39,131). We additionally conducted a GWAS of the g factor score 146 

on the entire UK Biobank sample with a g factor of good quality to identify SNPs and genomic 147 

loci that were not previously associated with intelligence or cognitive abilities. 148 

 By creating cognitive and polygenic scores in the UK Biobank, we offer more robust 149 

measures of intelligence that foster homogeneity in intelligence research within the UK 150 

Biobank, and deliver summary statistics and PGS for future studies interested in examining the 151 

genetic associations of intelligence with neuroimaging, behavioral, and environmental 152 

measures.    153 

  154 
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1. Methods 155 

All analyses were performed in R (R Core Team, 2022). Supplemental Information, 156 

supplemental data, and code are anonymously available on the Open Science Framework 157 

(OSF):  https://osf.io/49scv/?view_only=29e0ee6a1420461d81d234d94d549751 . 158 

The standardization of cognitive test and g factor scores relative to the UK population 159 

are summarized in Figure 1. 160 

 161 

 162 

 163 

Figure 1. G factor Creation Pipeline. Cylinders represent datasets; inputs are UK Biobank and 164 

UK census data; blue cylinders are subsets of data (standardization samples). Boxes represent 165 

produced norms and models. Arrows represent computations. 166 

https://osf.io/49scv/?view_only=29e0ee6a1420461d81d234d94d549751
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 167 

2.1. UK Biobank dataset and participants  168 

The UK Biobank is an open-access large prospective study with phenotypic, genotypic, 169 

and neuroimaging data from more than 500,000 participants. Participants were recruited 170 

between 2006 and 2010, from the vicinity of 22 assessment centers in England, Wales, and 171 

Scotland, with an age range for inclusion of 40–69 years (Sudlow et al., 2015). Data collection 172 

continues up to date.  173 

All participants provided informed consent (“Resources tab” at 174 

https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200). The UK Biobank received ethical 175 

approval from the Research Ethics Committee (reference 11/NW/0382) and the present study 176 

was conducted based on application 46007.  177 

Participants performed a variety of cognitive tests, either when visiting a UK Biobank 178 

assessment center, or online during the online follow-up. Participants who did not complete 179 

any of the cognitive tests retained for this study were excluded, yielding 501,650 participants 180 

(excluded 843 participants).  181 

The UK Biobank participants differ from the general UK population: they tend to be 182 

healthier and to have a higher socioeconomic status (e.g., more likely to own property; Fry et 183 

al., 2017; Keyes & Westreich, 2019), women are overrepresented and the distribution across 184 

ages differs from the general population (ages 50-59 in 2001 overrepresented, while 30-39 are 185 

underrepresented). To obtain an IQ score standardized with respect to the general population, 186 

one needs to compensate for the difference between UK Biobank participants and the general 187 

UK population.  188 

 189 

2.2. Census data 190 

UK 2001 census data (Office for National Statistics, 2011) was obtained from Casweb 191 

(casweb.mimas.ac.uk). We selected tables ST033 and ST034, which provide occupation 192 

categories for people currently in employment (ST033) and unemployed or economically 193 

inactive (ST034), between 16 and 74 (ST033) or 64 (ST034) years of age, by sex.  194 

Occupation was retained as a stratification variable because of its correlation with 195 

intelligence (Schmidt & Hunter, 2004) and because it is available with a similar coding in the 196 

UK Biobank and in the 2001 census (Standard Occupational Classification 2000 - SOC2000; 197 

Office for National Statistics, 2000). We did not use the 2011 census because occupation was 198 

coded using SOC2010, which differs notably from SOC2000, with no easy correspondence.  199 

https://www.zotero.org/google-docs/?BIeYS0
https://www.zotero.org/google-docs/?u4ESue
http://casweb.mimas.ac.uk/
https://www.zotero.org/google-docs/?YRQ4yX
https://www.zotero.org/google-docs/?YRQ4yX
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We matched participants to census characteristics using their age, country, and 200 

occupation on the day the census was conducted (April 29, 2001; Supplemental Section 1.1).  201 

 202 

2.3. Cognitive Tests  203 

2.3.1. Test Selection 204 

UK Biobank participants could complete several cognitive tests every time they visited the UK 205 

Biobank assessment centers (category 100026) and during the online follow-up (category 116). 206 

We used 8 cognitive tests to create the g factor (bolded tests in Table 1). Some participants 207 

completed some tests several times. We only considered the first occurrence of each test to best 208 

reflect the stable part of general intelligence, before aging and cognitive decline. 209 

 210 

Table 1. UK Biobank Cognitive Tests Considered for this Study.  211 

Test 

(Included 

tests in bold) 

UKB 

links 

(C: 

center, 

O: 

Online) 

Description Number 

of 

participan

ts 

Included 

or 

Excluded 

FI - Fluid 

intelligence 

C 100027 

O 118 

Under a time limit of 2 minutes, 

answer a set of 13 (center) or 14 

(online) numerical and verbal 

reasoning questions. 

C=205,333 

O=123,613 

Included 

MAT - 

Matrix 

pattern 

completion 

C 501 Select the element that best 

completes matrix pattern blocks. 15 

puzzles. 

C=33,657 Included 

TWR - 

Tower 

rearranging 

C 503 Looking at an illustration of three 

pegs (towers), on which three 

differently-colored hoops have been 

placed, find how many moves it 

would take to rearrange the hoops 

into another specific position.18 

puzzles. 

C=33,381 Included 

MEMN - 

Numeric 

memory 

C 100029 

O 120 

memorize 2 digits displayed on the 

screen. After they disappear for 3 

seconds, enter them. Every time a 

sequence is correctly remembered, 

the next sequence is made one digit 

longer, up to a maximum of 12 

digits. 

C=82,865 

O=111,062 

Included 

https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100026
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=116
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100027
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=118
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=501
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=503
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100029
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=120
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MEMS - 

Pairs 

matching 

C 100030 

O 117 

memorize the position of matching 

pairs of cards. Once the cards are 

turned face down, find as many 

pairs as possible in the fewest tries. 

Up to 3 rounds, with an increasing 

number of pairs (3, 6, 8). 

C=498,730 

O=118,528 

Included 

MEMW - 

Paired 

associate 

learning 

C 506 memorize 12 pairs of words shown 

for 30 seconds in total. After an 

interval (different test), see the first 

word of 10 of these pairs and select 

the matching second word from 4 

alternatives. 

C=34,045 Excluded: 

ceiling 

effect 

MEMP - 

Prospective 

memory 

C 100031 Early in the test session, the 

participant is shown "At the end of 

the games we will show you four 

colored shapes and ask you to touch 

the Blue Square. However, to test 

your memory, we want you to touch 

the Orange Circle instead." 

C=211,952 Excluded: 

only 1 

question 

MEML - 

Lights pattern 

memory 

C 100028 See pictures of houses which have 

some windows lit. After a 10-second 

delay, indicate which windows were 

lit. 

C=3,714 

(pilot only) 

Excluded: 

too few 

participan

ts 

RT - 

Reaction 

time 

C 100032 Watch two cards on the screen. If 

they are the same, press a button-

box as quickly as possible. 

C=496,829 Included 

SDS - 

Symbol digit 

substitution 

C 502 

O 122 

Identify the digits attached to each 

symbol in a grid, by using another 

grid linking symbols to digits as a 

key. 

C=33,679 

O=118,466 

Included 

TMT - Trail 

making 

C 505 

O 121 

Click sequentially on a set of digits 

in circles scattered around the 

screen (numeric path), then on a set 

of digits/letters (alphanumeric path). 

C=34,045 

O=104,028 

Included 

VOC - 

Picture 

vocabulary 

C 504 Indicate which of 4 images is most 

closely related to a displayed word. 

Difficulty varies according to the 

correctness of the previous answers. 

C=33,606 

 

Excluded: 

data not 

available 

in 

February 

2022 

https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100030
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=117
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=506
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100031
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100028
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100032
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=502
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=122
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=505
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=121
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=504
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WRD - Word 

production 

C 100077 State as many words beginning with 

the letter 'S' as possible within one 

minute. 

C=3,744 

(pilot only) 

Excluded: 

too few 

participan

ts 

Note. The numbers of participants are taken from UK Biobank’s showcase, across all instances, 212 

and include uncompleted tests.  213 

 214 

2.3.3. Obtaining Raw Scores 215 

To obtain a raw score for each test, we had to select between variables when several 216 

measures were provided for a test and/or transform these measures. We excluded participants 217 

with abnormal results (e.g., too many errors in the Symbol digit substitution test, indicating 218 

non-compliance with the test instructions) or who did not finish the test. Retained measures, 219 

transformations, and exclusion criteria are described in Table 2. 220 

 221 

Table 2. Raw scores Transformations for the Included Cognitive Tests 222 

Test Measures used Raw score computation 

FI - Fluid 

intelligence 

Number of correct answers [0-14] 

Fields 20016 (center) & 20191 

(online) 

Measure unchanged 

MAT - 

Matrix 

pattern 

completion 

Number of correct answers [0-15] 

Field 6373 (center only) 

Measure unchanged 

TWR - Tower 

rearranging 

Number of correct answers [0-18] 

Field 21004 (center only) 

Measure unchanged 

MEMN - 

Numeric 

memory 

Maximum number of digits 

remembered correctly [0-12] 

Fields 4282 (center) & 20240 

(online) 

Measure unchanged 

MEMS - 

Pairs 

matching 

Numbers of correct and incorrect 

matches in each round. The test has 

up to 3 rounds, with increasing 

difficulty (more pairs to remember). 

Access to a round is subject to a 

high score in the previous round. 

Fields 10136/398 (center) & 20131 

(online) 

Fields 10137/399 (center) & 20132 

(online)  

Score computed as follows: 

- Each correct pair earns 2 points in 

rounds 1 and 2, 1 point in round 3 

- Each incorrect pair loses 1 point 

- Within each round, negative 

scores are brought back to zero 

https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100077
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SDS - 

Symbol digit 

substitution 

Number of correct matches and 

number of attempts 

Fields 23324 (center) & 20159 

(online) Fields 23323 (center) & 

20195 (online) 

Score = the number of correct 

matches  

Exclusion criteria: scores with more 

than 35 attempts and less than 65% 

correct matches (participants likely 

did not follow test instructions, for 

example by repeatedly entering the 

same digit). These outlier limits 

were computed as ±3sd from the 

mean. 

 

RT - Reaction 

time 

Mean time to correctly identify 

matches 

Field 20023 (center only) 

Score = -log(mean time to correctly 

identify matches) 

Higher scores represent better 

performance 

No exclusion criteria because 

response times out of the 50ms to 

2000ms range were already 

excluded. 

TMT - Trail 

making 

Duration to complete alphanumeric 

path trail 

Fields 6350 (center) & 20157 

(online) 

Score = -log(duration to complete 

alphanumeric path trail) 

Higher scores represent better 

performance 

This measure had higher 

correlations with other tests than a 

measure based on a combination of 

the numeric and alphanumeric 

trails. 

 223 

2.3.4. Standardization of test scores 224 

Standardization served two purposes: (1) to adjust for age effects (since intellectual 225 

performance varies with age), and (2) to provide a test score relative to the UK population 226 

(Figure 1). We created a common norming model for males and females. We simultaneously 227 

performed two adjustments: 228 

1. An age adjustment by using the semiparametric continuous norming method proposed 229 

by Lenhard eand colleagues (2016). With this method, raw scores are modeled as a 230 

function of both standard scores and an explanatory variable, age when taking the test 231 

in this case.  232 

2. A socio-demographic adjustment: by using standardization samples and computing 233 

weights to apply to participants, to compensate for the socio-demographic differences 234 

between the UK Biobank population and the complete UK population. 235 
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 236 

To do so, we first created standardization samples for each test and location 237 

(online/center), with about 32,000 to 497,000 participants. Details regarding the 238 

standardization sample creation and the number of participants in each sample are available in 239 

Supplemental Section 1.2.  240 

We then used cell weighting to adjust measures from the standardization samples to 241 

reflect the UK population characteristics: For each standardization sample, we computed the 242 

proportion of participants for each possible combination of country, sex, age range at census, 243 

occupation status, and occupation SOC group. We compared the proportion of UK Biobank 244 

participants in each cell to the 2001 census and created weights for each cell by dividing the 245 

census proportion by the UK Biobank proportion. See Supplemental section 1.3. for details and 246 

an example.  247 

We used the cNorm package (Lenhard et al., 2018) to compute norming models on the 248 

standardization samples with census weights, using the semiparametric continuous norming 249 

method. We modeled raw scores as a function of standard scores (percentiles) and age at test 250 

completion. Age at test completion is provided in field 21003 for tests taken at the assessment 251 

center and in fields 20134 to 20138 for tests taken online. This age differs from the age used to 252 

compute census weighting factors, which is the participant’s age on the day of the 2001 census.  253 

We applied the norming models to the whole dataset and obtained standardized test 254 

scores for all participants on the tests they took (Figure 1).  255 

2.4. G factor  256 

We created a g factor score for all participants who completed at least one of the eight cognitive 257 

tests using confirmatory factor analysis (CFA). The g factor was standardized relative to the 258 

UK population. We also evaluated the impact of missing test scores on the quality of the g 259 

factor. 260 

2.4.1. CFA Parameters  261 

We performed a CFA with one-factor loading on the eight cognitive tests, using all 262 

pairwise complete cases (i.e., data from all participants who performed at least two tests). First, 263 

we checked whether the data was suitable for factor analysis by looking at the Kaiser, Meyer, 264 

Olkin measure of sampling adequacy and Bartlett's test of sphericity. We then estimated the 265 

CFA model with the lavaan R package (Rosseel, 2012). We used the full information 266 

maximum likelihood (FIML) estimator to make use of all data points even for cases with 267 

missing values, estimated the mean structure, and set the variance of the latent variable to 1 to 268 

https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21003
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20134
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20138
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estimate each observed variable loading. Model fit was assessed using commonly used model 269 

fit indices: the Tucker Lewis Index (TLI), the Comparative Fit Index (CFI), Standardized Root 270 

Mean Square Residual (SRMR), and the Root Mean Square Error of Approximation (RMSEA). 271 

Good fit was established with a CFI and TLI > 0.95, a RMSEA < 0.06 and a SRMR < 0.08 (Hu 272 

& Bentler, 1999). See Supplemental Section 1.4. for a discussion on the choice of factor 273 

analysis.  274 

2.4.2. G Factor Score Standardization 275 

We created a standardization sample with 496,990 participants who had data for the 276 

census variables: sex, age on census day, and occupation on census day (countries were 277 

merged, see Supplement Section 1.3), to compute census weighting factors for these 278 

participants (Figure 1). 279 

We computed factor scores using the regression estimation method, which maximizes 280 

validity (DiStefano et al., 2019). We then computed the weighted mean and weighted standard 281 

deviation of these scores, using the census weighting factors. We subtracted the weighted 282 

sample mean from the raw factor scores and divided the result by the weighted sample standard 283 

deviation, to obtain factor scores with a general population mean of 0 and a standard deviation 284 

of 1.  285 

2.4.3. Evaluation of the g Factor Score Quality in the Presence of Missing Data 286 

We examined how well a g factor score computed using a subset of tests (called partial 287 

factor score) correlates with the factor score that would have been obtained from the full set of 288 

eight tests (called full factor score) by looking at the correlation between the full and the partial 289 

factor scores for each the 80 subsets of tests present in the data, in the 30,471 participants who 290 

completed all the tests.  291 

 292 

  293 

https://www.zotero.org/google-docs/?TxVuUa
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2.5. Analyses   294 

In the following analyses, we included participants whose combination of cognitive 295 

tests allowed for a correlation with the complete g factor of 0.70 or higher (N=261,701). This 296 

threshold was chosen to maximize the robustness of the factor as well as the number of 297 

participants for which we would generate a g factor.  298 

2.5.1. Correlations with Alternative estimates of g and Life outcomes 299 

We examined the external validity of our g measure by examining correlations in 300 

complete cases between our g factor and FI, life and health outcomes expected to correlate with 301 

intelligence (e.g., educational attainment, income, deprivation indices, etc., life and health 302 

outcomes described in Supplemental Data S8). In brief, we selected well-being, household 303 

income before taxes, highest qualification as well as the Townsend deprivation score – a 304 

deprivation score of an individual’s postal code from the census data - and the index of multiple 305 

deprivations that regroups several deprivation indices which vary by country. The latter include 306 

subindices such as health, income, education, employment, and housing. The index of multiple 307 

deprivations and its subindices come from a UK government qualitative study of deprived areas 308 

in British local councils and are calculated separately for England, Wales, and Scotland. 309 

Common multiple deprivation scores across countries were combined into a single variable for 310 

the correlation matrix (Supplemental Data S8). We adjusted each measure for sex and age at 311 

which the measure was reported.  312 

2.5.1. Genetic Analyses 313 

We conducted genetic analyses to (i) examine whether our measure of intelligence leads 314 

to the identification of novel SNPs and genomic loci that were not previously associated with 315 

cognitive performance (Lee et al., 2018) or intelligence (Savage et al., 2018) and to (ii) create 316 

polygenic scores (PGS) for individuals with neuroimaging data for future UK Biobank studies. 317 

A detailed overview of the genetic analyses is available in Supplemental Section 1.6.  318 

2.5.1.1. Main Analyses 319 

In brief, we conducted the first g factor GWAS on all 223,731 UK Biobank participants 320 

with good g factor quality (Full GWAS) to identify novel SNPs and a second g factor GWAS 321 

on 187,288 individuals without neuroanatomical data or twins/siblings with neuroanatomical 322 

data (No Neuroimaging GWAS) for the creation of PGSs. We removed participants with 323 

neuroanatomical data and their siblings to maintain the independence of predictions and 324 

prevent overfitting. GWASs were conducted with fastGWA (Jiang et al., 2021) on individuals 325 

of British ancestry and we controlled for relatedness, sex, center, genotyping chip, birth year, 326 
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and the first 40 PCs of the PCA on the genetic variation of a population to adjust for population 327 

stratification. 328 

We conducted functional mapping and annotation analyses on the GWAS summary 329 

statistics with FUMA to (i) report the genes associated with our g factor measure in the Full 330 

GWAS and No Neuroimaging GWAS (Supplemental Data S1-4 on OSF) and (ii) identify the 331 

genes associated with novel SNPs and genetic loci (Supplemental Data S6-7 on OSF). We 332 

report the SNP2GENE analysis on the summary statistics from the Full and No Neuroanatomy 333 

GWAS in the main text, the GENE2FUNC analysis of these summary statistics in 334 

Supplemental Data S3-4, and the GENE2FUNC analyses of the novel SNPs and genomic loci 335 

in text.  336 

Using sBayesR (Lloyd-Jones et al., 2019), we created PGSs from the summary statistics of 337 

the No Neuroanatomy GWAS for  individuals with either neuroimaging data or siblings with 338 

neuroimaging data to (i) assess the predictive power of genetic variance from the no 339 

neuroanatomy GWAS on the g factor and to (ii) be returned to the UK Biobank for use by 340 

future studies.  341 

2.5.1.2. Additional Analyses 342 

We conducted additional analyses to answer the following questions.  343 

1. Does the g factor PGS explain more variance in g than the FI PGS? We ran a GWAS 344 

of the verbal-numerical reasoning test score (also known as Fluid Intelligence) on 345 

180,722 individuals without neuroanatomical data or twins/siblings with 346 

neuroanatomical data (FI GWAS) and calculated FI PGS for individuals with 347 

neuroimaging data with the GWAS and PGS parameters described above. We then 348 

adjusted the FI PGS for sex, birth year, and the first 40 PCs and examined the 349 

percentage of variance explained in g and FI, separately.  350 

2. Once you control for environmental factors, what proportion of variance in g does 351 

the g PGS predict? To quantify to what extent the polygenic signal captures genetic 352 

effects that pass through the environment (indirect genetic effects or genetic nurture; 353 

Howe et al., 2021), we conducted family fixed-effects analyses. To do so, we first ran 354 

a g factor GWAS on the sample from the No Neuroimaging GWAS without siblings 355 

(No Family, No Neuroimaging GWAS). We used the summary statistics from this 356 

GWAS to create polygenic scores for individuals with siblings and then adjusted the 357 

PGS for sex, birth year, and the first 40 PCs. Finally, we ran the family fixed effects 358 
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model with and without controlling for genetic relatedness and reported the change in 359 

explained variance of the PGS on the g factor when adjusting or not for sibling pairs.  360 

3. Do our g factor and FI measures have similar genetic correlations and heritabilities 361 

as the g factor and Educational Attainment (EA) measures from Lee and colleagues 362 

(2018)? We examined whether the genetic influences underlying our g factor and FI 363 

measure were similar to the genetic influences underlying the EA and the g factor (also 364 

known as Cognitive Performance) reported by Lee and colleagues (2018). To do so, we 365 

calculated the genetic correlations between our g-factor GWAS summary statistics, our 366 

FI GWAS summary statistics, and the publicly available Educational Attainment (EA) 367 

and g factor summary statistics. We additionally calculated the heritability estimates of 368 

each summary statistics file to examine whether our g factor was more heritable than 369 

our FI measure, previous g factor measures, and EA. These analyses were conducted 370 

with linkage disequilibrium score regression using the ldsc function from the GSEM 371 

package (Grotzinger et al., 2019). 372 

4. If had included participants with a poor g factor measure (r < .7), would the genetic 373 

correlation and heritabilities be the same?  We conducted a GWAS on 307,009 374 

individuals with a g factor measure and without neuroanatomical data or twins/siblings 375 

with neuroanatomical data (Low Quality No Neuroimaging g factor GWAS). If the 376 

genetic correlation and heritabilities were similar or better for this Low g Quality 377 

GWAS compared to the No Neuroimaging GWAS, we should be able to use this larger 378 

sample size to obtain more lead SNPs and better polygenic predictions.  379 

 380 

2.5.3. Correlations with Alternative estimates of g, Life outcomes, Neuroimaging, and 381 

Genetic Measures 382 

We conducted additional correlational analyses on a subset of participants that had 383 

neuroimaging data and PGSs. We examined correlations on complete cases between our g 384 

factor and alternative measures of intelligence for the UK Biobank (FI alone, g factor with 4 385 

tests…), life and health outcomes expected to correlate with intelligence (e.g., educational 386 

attainment, income, deprivation indices, etc., life and health outcomes in Supplemental Data 387 

S8 on OSF), Total Brain Volume (TBV; Williams et al., 2021), and the FI and g factor PGS in 388 

individuals with neuroimaging data.  389 

We compared our g factor score to alternate measures of intelligence by transforming 390 

the cognitive variables and extracting the g factor as done by Cox and colleagues (2019b) and 391 
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de Nooij and colleagues (2020), which used a different combination of cognitive tests and 392 

factoring methods with a similar sample to the one we used to calculate PGSs. The authors 393 

used cognitive tests completed at the center during the neuroimaging visit (Instance 2) and 394 

included tests that were not initially available at the first center visit. Cox and colleagues (2019) 395 

created a latent factor using CFA from the MAT, the SDS, the FI, and the TMT-B cognitive 396 

tests, and de Nooij and colleagues (2020) extracted the first principal component of the 397 

numerical memory, the FI, the SDS, the TMTB, the MAT, and the TWR cognitive tests. 398 

Since our g factor is adjusted for age, we created alternative g factors that are adjusted 399 

for age in the CFA or after extracting the first PC. We additionally similarly controlled for sex 400 

to examine whether differences between our g factor and the g alternatives could be explained 401 

by sex differences.   402 
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2. Results 403 

3.1. Cognitive Tests  404 

We compared the distribution of the standard test scores before and after adjusting for 405 

the difference between the UK Biobank population and the general UK population (Figure 2). 406 

After adjusting for age and census weights, the distribution of the scores shifted to the right, 407 

indicating a relatively higher score in the UK Biobank relative to the UK norm (Supplemental 408 

Section 2.1.1). In some cases, the distribution was not normal because of its categorical nature 409 

(e.g., MEMN) or because of threshold effects (e.g., MEMS). Correlations between standard 410 

scores ranged from 0.07 (MEMN and RT) to 0.50 (TMT and SDS). TMT and FI had the highest 411 

correlation coefficients with other cognitive tests (Supplemental Section 2.1.2). 412 
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 413 

Figure 2. The Distribution of Cognitive Tests Before (blue) and After (orange) correcting for 414 

Sociodemographic Differences between the UK Biobank Population and the UK Population 415 

(2001 Census). FI: Fluid Intelligence. RT: Reaction Time. MAT: Matrix Pattern Completion. 416 

TWR: Tower Rearranging. MEMN: Numeric Memory. MEMS: Pair Matching. SDS: Symbol 417 

Digit Substitution. TMT: Trail Making.  418 

 419 

 420 
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3.2. CFA results 421 

3.2.1. Model Fit 422 

The CFA model fit on 501,650 participants (30,307 with complete data; N Women = 423 

272,955; N Men = 228,695) was good (CFI = 0.955, TLI = 0.938, RMSEA = 0.024, SRMR = 424 

0.028). The g factor accounted for 29% of the variance across cognitive tests and the loadings 425 

ranged from 0.77 (TMT) to 0.277 (RT) (Figure 3; Supplemental Section 2.1.3). Sex differences 426 

in cognitive and g factor scores are available in Supplemental Section 2.1.4. 427 

 428 

Figure 3. Confirmatory Factor Analysis of UK Biobank Cognitive Tests. Analyses were 429 

conducted with full information maximum likelihood with the lavaan package (Rosseel et al., 430 

2021). Explained variance: 29%. FI: Fluid Intelligence. MAT: Matrix Pattern Completion. 431 

TWR: Tower Rearranging. MEMN: Numeric Memory. MEMS: Pair Matching. SDS: Symbol 432 

Digit Substitution. TMT: Trail Making. Loadings from completely standardized solutions (i.e., 433 

standardized observed and latent variables).  434 

 435 

3.2.2. Distribution of the g factor before and after census correction 436 

We compared the distribution of the g factor scores before (M = -0.004, sd = 0.993) 437 

and after (M = 0.086, sd = 1.001) adjusting for the difference between the UK Biobank 438 

population and the general UK population (d = 0.09). After adjusting, the factor score 439 

distribution shifted to the right, indicating a relatively higher score in the UK Biobank relative 440 

to the UK norm (Figure 4; g distribution by job category in Supplemental Section 2.1.5). 441 

 442 
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 443 

Figure 4. The Distribution of the g Factor Scores Before and After Census Correction for All 444 

Participants (left) and a Subset of Participants (right). The subset of participants had a g factor 445 

score from a combination of subtests that allowed for a minimum correlation of 0.70 between 446 

the partial g factor score and the full g factor score. 447 

 448 

3.2.4. G Factor Quality  449 

The quality of the g factor and the number of individuals for each possible combination 450 

of completed tests are available in Supplemental Section 2.1.6. For example, if we select 451 

participants with any of the first 73 cognitive test combinations observed in the UK Biobank, 452 

the worst factor scores of these participants would have a correlation of 0.70 with the ideal, 8-453 

tests factor scores, and the number of available participants will be over 261,701. 454 

  455 
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3.3. Analysis of Individuals with a g Factor Quality over 0.70 456 

3.3.1. Correlations: Alternative g factors and Life outcomes 457 

We examined the external validity of our g measure by examining the association in 458 

complete cases between our g factor measure, FI (which is often used as a proxy of g in most 459 

studies), and life outcomes collected at the first center visit or online to estimate correlation 460 

coefficients on a larger number of participants (Figure 5). We removed well-being to include 461 

more participants because it was poorly correlated to our g factor (Figure S9).  462 

 463 

Figure 5. Correlation between age and sex-adjusted g factor Scores and Health and Life 464 

Outcomes. Pearson correlation coefficients were estimated on 181,327 individuals without 465 

missing data. All measures are adjusted for age at which the measure was taken and sex. G 466 

corresponds to the g factor of individuals with a combination of cognitive tests that allowed for 467 

a correlation of 0.70 or higher between their actual g factor and what their g factor would have 468 

been if they had completed all tests. FI: Fluid Intelligence.  469 
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 470 

3.3.2. Genetic Analyses  471 

3.3.2.1. Main Results 472 

We identified 150 approximately independent SNPs attaining genome-wide 473 

significance in the full sample GWAS and 100 in the No Neuroanatomy Sample GWAS (Table 474 

3). There were 127 genomic risk loci associated with the g factor in the Full GWAS and 84 475 

genomic risk loci with the g factor in the No Neuroanatomy GWAS (P < 5×10–8; Supplemental 476 

Data S1-S2 on OSF). See Figure S3 for the Manhattan and QQ-plots.  477 

We found 37 novel SNPs and 36 novel genetic loci (rs10182628 and rs7595241 mapped 478 

to the same loci; Supplemental Data S5 on OSF) that were not within +-250kb of the genome-479 

wide significant SNPs associated with Lee’s g factor  (Cognitive Performance in Lee et al., 480 

2018) and Savage’s g factor (Intelligence in Savage et al., 2018) and SNPs previously 481 

associated with cognitive ability or educational attainment based on the GWAS catalog.   482 

 483 

Table 3. No Neuroimaging and Full Sample GWAS Results.  484 

GWAS 

Sample N 
Mean  

χ2 

LD Score 

Intercept  

Ratio  # Lead  

#  

Loci 

h2 

(SE) SNPs (SE) 

Full  223,731 1.93 

1.046 

(0.017) 

0.049 

(0.018) 150 127  0.201 (0.008) 

No 

Neuroanatom

y  187,288 1.76 

1.032 

(0.015) 

0.0412 

(0.0191) 100 84  0.197 (0.009) 

N.B. N, GWAS sample size; mean χ2, mean GWAS χ2 statistics across HapMap3 SNPs with 485 

MAF greater than 0.01; LD score intercept, the estimate of the intercept from an LD score 486 

regression using HapMap3 SNPs with MAF greater than 0.01; no. lead SNPs, number of 487 

approximately independent (pairwise r2 < 0.1) FUMA lead SNPs; no. loci, number of 488 

associated loci. H2, heritability estimated from the ldsc function in the Genomic SEM package. 489 

 490 

The positional annotation of candidate SNPs indicated that the majority of independent lead 491 

SNPs were located in the intronic, mRNA intronic, and intergenic regions in the Full and No 492 

Neuroanatomy GWAS (Supplemental Data S1-S2 on OSF).  493 
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From the 37 novel lead SNPs, we pinpointed 90 genes (44 protein-coding genes) by 494 

positional, eQTL, and chromatin interaction mapping in the g factor Full GWAS. MAGMA 495 

Tissue expression in the SNP2GENE analyses revealed that associated genes were highly 496 

expressed in several brain regions (Figure S4). The heatmap of gene expression showed that 497 

RIMS4, SEZ6, and SLC24A2 were highly expressed in the brain, whereas PLEKHB1 was 498 

highly expressed in the brain amongst other tissues (Figure S5). Several of these genes were 499 

previously associated with the cognitive dimension dimensional psychopathology among other 500 

traits (Figure S6). 501 

We created PGS for 40,871 individuals with either neuroimaging data or siblings with 502 

neuroimaging data and g factor quality greater than r >= 0.70. Of the 39,131 individuals with 503 

neuroimaging data, 24,229 had a g factor quality of r = 1 (Table S5).  504 

We adjusted the g and FI values for sex, year of birth, and the first 40 genetic PCs. The 505 

g factor PGS created from the No Neuroanatomy GWAS explained 7.7% of the variance in the 506 

g factor, whereas the FI created from the No Neuroanatomy GWAS explained 6.6% of the 507 

variance in FI.  508 

3.3.2.2. Additional Analyses  509 

1. Does the g factor PGS explain more variance in g than the FI PGS? The g factor PGS 510 

created from the No Neuroanatomy GWAS explained 1.7% more variance in g than the 511 

FI PGS created from the No Neuroanatomy GWAS, which explained 6.0% of the 512 

variance in the g factor. The g factor PGS created from the No Neuroanatomy GWAS 513 

explained 5.8% of the variance in FI.  514 

2. Once you control for environmental factors, what proportion of variance in g does 515 

the g PGS predict? The family fixed-effect analysis on the PGS from the No Family, 516 

No Neuroimaging GWAS summary statistics when adjusting for sex, year of birth, and 517 

the first 40 genetic principal components, showed a decrease in explained variance from 518 

6.6% to 3.2% and a reduction of 17% in the beta. See Supplemental Section 2.2.4. for 519 

additional PGS analyses. 520 

3. Do our g factor and FI measures have similar genetic correlations and heritabilities 521 

as the g factor and Educational Attainment (EA) measures from Lee and colleagues 522 

(2018)? The SNP heritability of the present g factor was similar to the heritability of 523 

Lee's g factor (h2 = 0.199, SE = 0.008) and greater than Lee’s EA (h2 = 0.151, SE = 524 

0.004; Table 3 and S10). Lee’s g factor was highly correlated to our various estimates 525 
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of the g factor 0.92-0.93, suggesting that they capture common genetic influences  526 

(Figure S8).  527 

4. Do participants with a low-quality g factor estimate ( r < .7) impact the results? We 528 

found that the heritability of the Low-Quality No Neuroimaging GWAS (h2 = 0.127, 529 

SE = 0.005) was much lower than the heritability of the No Neuroimaging GWAS (h2 530 

= 0.197, SE = 0.008; Table S10) and that the genetic correlation between the Low-531 

Quality No Neuroimaging GWAS and the No Neuroimaging GWAS was of 0.98 532 

(Figure S8), suggesting that although both GWASs are measuring overlapping genetic 533 

effects, the Low-Quality No Neuroimaging GWAS has more measurement error. The 534 

genetic correlations of the Low-Quality No Neuroimaging GWAS were lower with 535 

Lee's g factor (0.87 vs. 0.93) and EA (0.5 vs. 0.55), suggesting that doubling the sample 536 

size by including g factor estimates of lower quality is counterproductive for the 537 

GWAS. 538 

 539 

3.3.3. Correlations: Alternative g factors, Life outcomes, Neuroimaging, and Genetic 540 

Measures 541 

We conducted separate correlation analyses on our g factor with the alternative g 542 

factors, neuroimaging, and PGSs because these data were only available for participants who 543 

visited the center for the neuroimaging visit.  544 

The alternative g factors were created from cognitive tests scores from their 545 

neuroimaging visit and cognitive tests that were only available at the second visit. The 546 

correlation between our study’s g factor (adjusted for age, not sex) and the cognitive tests 547 

ranged from 0.25 (RT) to 0.84 (TMT), whereas the age-adjusted g factors from previous studies 548 

ranged from about 0.16 (RT) to 0.71 (MAT; Figure S11). 549 

Correlation coefficients between our study’s g factor and alternative g factors were high 550 

(0.85 to 0.89; Figure S12). The alternative g factor measures were more correlated to the 551 

highest qualification achieved (r = 0.26-0.29 vs. r = 0.24) and income (r = 0.18-0.19 vs. r = 552 

0.16) than the present g factor because the cognitive tests included in the alternative g factors 553 

were the cognitive tests with the highest correlations with highest qualification and income 554 

(Figure S13). 555 

The g factor from the present study and the g factors calculated as done by previous 556 

studies were highly correlated after adjusting for the age of test completion and sex. The g 557 

factors positively correlated with the PGS, highest qualifications, income before tax, overall 558 
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health, and total brain volume, and negatively with the deprivation indices (Figure 6). We also 559 

looked at the correlation coefficients of the g factors with well-being and additional deprivation 560 

indices, which reflect the degree of housing, employment, education, etc. deprivation in an 561 

area. However, these correlations were small and therefore reported in Figure S14.   562 
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 563 

 564 

Figure 6. Correlation between age and sex-adjusted G Factor Scores, selected Life and Health 565 

Outcomes, Total Brain Volume (TBV), and sex and year of birth adjusted Polygenic Scores 566 

(PGS). Pearson correlation coefficients were estimated on 18,976 individuals without missing 567 

data. We included all life and health variables with an r > or = 0.1 with g except for the 568 

Townsend Deprivation Index. CFA: Confirmatory Factor Analysis. PC1: 1st Principal 569 

Component. G: General Factor for intelligence. G corresponds to the g factor of individuals 570 

with a combination of cognitive tests that allowed for a correlation of 0.70 or higher between 571 

their actual g factor and what their g factor would have been if they had completed all tests. FI: 572 

Fluid Intelligence. Income: Income before tax. PGS were adjusted for sex and birth year (yr 573 

birth).   574 
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Discussion 575 

We aimed to create a robust measure of general intelligence for all UK Biobank 576 

participants. We created an age-standardized g factor measure relative to the UK population 577 

for about 500,000 UK Biobank participants, with an estimation of the g factor’s quality for 578 

each participant, allowing researchers to select their sample based on their quality 579 

requirements. We examined correlations between the present study’s g factor, alternative 580 

measures of intelligence, and life outcomes. Our g factor was highly correlated with alternative 581 

g factor measures of intelligence in the UK Biobank and their correlations with life and health 582 

outcomes were similar. The GWASs and functional analyses on our new measure of general 583 

intelligence revealed novel SNPs that were either associated with genes related to the cognitive 584 

dimension of psychopathology or genes that were not previously associated with intelligence, 585 

cognitive ability, or educational attainment. Finally, our study provides a PGS for about 38,000 586 

UK Biobank individuals with neuroimaging data that explained 7.7% of the variance in the 587 

intelligence score. 588 

There was a high correlation between our g factor and the alternative g factor measures 589 

derived using methods from previous UK Biobank studies. Although g factors differed in terms 590 

of the included cognitive tests, and in some cases, in terms of the captured variance, they were 591 

highly similar (r = 0.85-0.94). This is consistent with the high level of common measurement 592 

reported across different cognitive tests, providing further support for a common underlying 593 

component of intelligence (Johnson et al., 2004; Kaufman, 2012).  594 

The g factor from the present study and alternative g factor measures were similarly 595 

correlated to life outcomes, such as household income before tax or highest qualification (i.e., 596 

level of education) when adjusting for age and sex. The slightly higher correlations between 597 

the alternative g factor measures and the highest qualification achieved compared to our g 598 

factor could be explained by the tests used to create the alternative g factors, which correlated 599 

the most with the highest qualification. Therefore, some outcomes, such as the highest 600 

qualification, may not be as highly correlated to general intelligence as previously thought and 601 

may be more correlated with specific cognitive tests. However, the main advantage of our g 602 

factor is that it was calculated on all of the 500 000 UK Biobank participants with a measure 603 

of its quality.  604 

Consistent with a previous meta-analysis (Veenhoven & Choi, 2012), we did not find 605 

a correlation between our g measure and well-being. Although the studies in this meta-analysis 606 

have been criticized for their limited measure of well-being, as they solely focused on life 607 
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satisfaction, another study with a larger range of well-being measures found that the positive 608 

association between IQ and well-being disappeared after controlling for socioeconomic status 609 

(SES; Altaras Dimitrijević et al., 2018). 610 

We report a negative correlation between our g factor and the Townsend Index, an SES 611 

measure that reflects a person’s material deprivation based on unemployment rates, non–car 612 

ownership, non–homeownership, and household overcrowding in their postal code. This 613 

negative correlation coincides with the negative correlation between neighborhood deprivation 614 

and educational attainment (Garner & Raudenbush, 1991), as well as previous findings that 615 

childhood IQ remains stable across old age (Deary et al., 2000), predicts later SES outcomes 616 

(Deary et al., 2005). We additionally found a negative correlation between our g factor and the 617 

index of multiple deprivation of the area where a person resides, which was largely explained 618 

by the negative correlation between the g factor and the education deprivation index of the area 619 

where a person resides. The education deprivation index was measured by a score reflecting 620 

child and adolescent school performance (e.g., English, math, and science exams Stage 3 621 

exams) and adult skills (e.g., the proportion of adults with no or low qualifications) in a given 622 

geographical area.  623 

The GWASs led to the identification of novel SNPs that were not previously associated 624 

with cognitive performance or intelligence. These SNPs were not associated with genes related 625 

to educational attainment, or cognitive ability, although some were associated with genes 626 

involved in the cognitive domain of psychopathology (McCoy et al., 2018). For instance, the 627 

PLEKHB1 (Pleckstrin Homology Domain Containing B1) protein-coding gene was prioritized 628 

by eQTL and positional mapping. This gene is associated with neurological diseases and the 629 

cognitive dimension of psychopathology (McCoy et al., 2018). 630 

The g PGS created from the No Neuro GWAS summary statistics explained 7.7% of 631 

the variance in the g factor of individuals with neuroimaging data and siblings with 632 

neuroimaging data. Lee and colleagues (2018) similarly found that their CP PGS created from 633 

their GWAS summary statistics explained 7% of the variance in CP for individuals in the 634 

Wisconsin Longitudinal Study, a study that used cognitive tests with similar properties to their 635 

discovery GWAS. However, they found that the CP PGS from the summary statistics of their 636 

multi-trait analysis GWAS (MTAG) of CP, which yielded more significant SNPs, explained 637 

9.7% of the variance in CP for individuals in the Wisconsin Longitudinal Study.  638 

 639 

 640 
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The FI PGS explained 1.7% less variance in g than the PGS of the g factor, suggesting 641 

that the g PGS is a better genetic predictor of g. The genetic correlations between FI and the g 642 

factor were high, suggesting that FI and g have very similar genetic influences. The g factor 643 

and FI PGSs also similarly correlated with total brain volume, the most correlated brain 644 

measure to intelligence (Deary et al., 2021). Taken together, our findings suggest that a 645 

common genetic component to FI and the g factor may explain the genetic association between 646 

intelligence and TBV. Although the FI PGS may be sufficient when investigating global brain 647 

size associations with intelligence, the g factor PGS still explains a larger range of variance in 648 

general intelligence than FI and its use should be favored when controlling for the genetic 649 

components of intelligence.     650 

The present study has several limitations. First, the selection of cognitive tests currently 651 

available in the UK Biobank severely underrepresents verbal ability. Indeed, of the 8 tests that 652 

could be considered in the present study, only 2 were verbal: the FI test (verbal-numerical 653 

reasoning) and the numeric memory test (digit span). These imbalances are currently being 654 

corrected by the addition of new tests (picture vocabulary and word production), which will 655 

become available later, and which would justify a new calculation of the g factor once they are 656 

taken by a sufficient number of participants. 657 

The underrepresentation of verbal skills may partly explain why men were found to 658 

have a slightly higher g factor than women (d= -0.13). Another non-exclusive explanation may 659 

be that male and female UK populations are unequally sampled in the UK Biobank, with 660 

women representing 54.4% of the entire sample. Thus women with lower general intelligence 661 

may have been oversampled compared to men with lower intelligence. Finally, participants 662 

were born between 1934 and 1971 (median: 1950), a period when UK women may still have 663 

had inferior higher education opportunities, and therefore fewer opportunities to fully develop 664 

their intellectual potential. These three considerations suggest that the UK Biobank is not a 665 

suitable database to reliably estimate sex differences in cognitive abilities, and potentially in 666 

other phenotypes associated with cognitive ability. 667 

We were limited when correcting for the socio-demographic imbalance in the UK 668 

Biobank. Due to occupation coding constraints, we had to use the 2001 census data, instead of 669 

the 2011 census data, and we only determine the occupation on census day of 71.5% of 670 

participants. Moreover, we were limited by the number of variables on which we adjusted the 671 

UK Biobank sample. Adjusting additional variables, such as years of education would have 672 

improved the adjustment.  673 
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Finally, the g factor score was calculated from different subsets of tests and although 675 

we took the first instance of a test,  some tests were taken at different ages. Therefore, although 676 

we attempted to provide a g factor measure of  pre-aging adult intelligence, some test scores 677 

may already be influenced by cognitive decline. One study reported that most UK Biobank 678 

cognitive tests show reasonable stability over time except for the visual memory task (pairs-679 

matching; Lyall et al., 2016), while another study found declines in cognitive abilities before 680 

65 years of age were small (Cornelis et al., 2019). Considering that the majority of participants 681 

were 64 years or younger and that the median age was 60, our g factor measure likely reflects 682 

pre-cognitive-decline intelligence scores.   683 

The present study provides cognitive tests scores and a g factor score for UK Biobank 684 

participants that are adjusted for age and relative to the UK population, as well as a g PGS for 685 

UK Biobank individuals with neuroimaging data that explained 7.7% of the variance in the g 686 

factor. The behavioral and genetic scores from this study will enable the simultaneous 687 

investigation of the associations between the brain, genes, and intelligence, which are currently 688 

rare in the present literature (Deary et al., 2021). Taken together, the present study offers robust 689 

measures of intelligence that will foster homogeneity in intelligence research within the UK 690 

Biobank and provides summary statistics and PGSs for future studies interested in examining 691 

the genetic associations of intelligence with neuroimaging, behavioral, and environmental 692 

measures.     693 
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