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Abstract: We consider the standard first passage percolation model in the rescaled graph Zd/n
for d ≥ 2, and a domain Ω of boundary Γ in Rd. Let Γ1 and Γ2 be two disjoint open subsets of Γ,
representing the parts of Γ through which some water can enter and escape from Ω. We investigate
the asymptotic behaviour of the flow φn through a discrete version Ωn of Ω between the correspond-
ing discrete sets Γ1

n and Γ2
n. We prove that under some conditions on the regularity of the domain

and on the law of the capacity of the edges, the lower large deviations of φn/nd−1 below a certain
constant are of surface order.
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1 First definitions and main result

We use many notations introduced in [8] and [9]. Let d ≥ 2. We consider the graph (Zd
n,Ed

n) having
for vertices Zd

n = Zd/n and for edges Ed
n, the set of pairs of nearest neighbours for the standard L1

norm. With each edge e in Ed
n we associate a random variable t(e) with values in R+. We suppose

that the family (t(e), e ∈ Ed
n) is independent and identically distributed, with a common law Λ: this

is the standard model of first passage percolation on the graph (Zd
n,Ed

n). We interpret t(e) as the
capacity of the edge e; it means that t(e) is the maximal amount of fluid that can go through the
edge e per unit of time.

We consider an open bounded connected subset Ω of Rd such that the boundary Γ = ∂Ω of Ω
is piecewise of class C1 (in particular Γ has finite area: Hd−1(Γ) < ∞). It means that Γ is included
in the union of a finite number of hypersurfaces of class C1, i.e., in the union of a finite number of
C1 submanifolds of Rd of codimension 1. Let Γ1, Γ2 be two disjoint subsets of Γ that are open in



1 FIRST DEFINITIONS AND MAIN RESULT

Γ. We want to define the maximal flow from Γ1 to Γ2 through Ω for the capacities (t(e), e ∈ Ed
n).

We consider a discrete version (Ωn, Γn, Γ1
n, Γ2

n) of (Ω, Γ, Γ1, Γ2) defined by:




Ωn = {x ∈ Zd
n | d∞(x,Ω) < 1/n} ,

Γn = {x ∈ Ωn | ∃y /∈ Ωn , 〈x, y〉 ∈ Ed
n} ,

Γi
n = {x ∈ Γn | d∞(x,Γi) < 1/n , d∞(x,Γ3−i) ≥ 1/n} for i = 1, 2 ,

where d∞ is the L∞-distance, the notation 〈x, y〉 corresponds to the edge of endpoints x and y (see
figure 1).

Γ2
Γ1

Γ1
n

Γ2
n

Γ Γn

Figure 1: Domain Ω.

We shall study the maximal flow from Γ1
n to Γ2

n in Ωn. Let us define properly the maximal
flow φ(F1 → F2 in C) from F1 to F2 in C, for C ⊂ Rd (or by commodity the corresponding graph
C ∩ Zd/n). We will say that an edge e = 〈x, y〉 belongs to a subset A of Rd, which we denote by
e ∈ A, if the interior of the segment joining x to y is included in A. We define Ẽd

n as the set of all the
oriented edges, i.e., an element ẽ in Ẽd

n is an ordered pair of vertices which are nearest neighbours.
We denote an element ẽ ∈ Ẽd

n by 〈〈x, y〉〉, where x, y ∈ Zd
n are the endpoints of ẽ and the edge is

oriented from x towards y. We consider the set S of all pairs of functions (g, o), with g : Ed
n → R+

and o : Ed
n → Ẽd

n such that o(〈x, y〉) ∈ {〈〈x, y〉〉, 〈〈y, x〉〉}, satisfying:
• for each edge e in C we have

0 ≤ g(e) ≤ t(e) ,

• for each vertex v in C r (F1 ∪ F2) we have
∑

e∈C : o(e)=〈〈v,·〉〉
g(e) =

∑

e∈C : o(e)=〈〈·,v〉〉
g(e) ,

where the notation o(e) = 〈〈v, .〉〉 (respectively o(e) = 〈〈., v〉〉) means that there exists y ∈ Zd
n such

that e = 〈v, y〉 and o(e) = 〈〈v, y〉〉 (respectively o(e) = 〈〈y, v〉〉). A couple (g, o) ∈ S is a possible
stream in C from F1 to F2: g(e) is the amount of fluid that goes through the edge e, and o(e) gives
the direction in which the fluid goes through e. The two conditions on (g, o) express only the fact
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1 FIRST DEFINITIONS AND MAIN RESULT

that the amount of fluid that can go through an edge is bounded by its capacity, and that there is
no loss of fluid in the graph. With each possible stream we associate the corresponding flow

flow(g, o) =
∑

u∈F2 , v /∈C : 〈u,v〉∈Ed
n

g(〈u, v〉)1o(〈u,v〉)=〈〈u,v〉〉 − g(〈u, v〉)1o(〈u,v〉)=〈〈v,u〉〉 .

This is the amount of fluid that crosses C from F1 to F2 if the fluid respects the stream (g, o). The
maximal flow through C from F1 to F2 is the supremum of this quantity over all possible choices of
streams

φ(F1 → F2 in C) = sup{flow(g, o) | (g, o) ∈ S} .

We recall that we consider an open bounded connected subset Ω of Rd whose boundary Γ is
piecewise of class C1, and two disjoint open subsets Γ1 and Γ2 of Γ. We denote by

φn = φ(Γ1
n → Γ2

n in Ωn)

the maximal flow from Γ1
n to Γ2

n in Ωn. We will investigate the asymptotic behaviour of φn/nd−1

when n goes to infinity. More precisely, we will show that the lower large deviations of φn/nd−1

below a constant φΩ are of surface order. The description of φΩ will be given in section 2, and pc(d)
is the critical parameter for the bond percolation on Zd. Here we state the precise theorem:

Theorem 1. If the law Λ of the capacity of an edge admits an exponential moment:

∃θ > 0
∫

R+
eθxdΛ(x) < +∞ ,

and if Λ(0) < 1− pc(d), then there exists a finite constant φΩ such that for all λ < φΩ,

lim sup
n→∞

1
nd−1

logP[φn ≤ λnd−1] < 0 .

Remark 1. The constant φΩ is defined in equation 1. In the two companion papers [4] and [5],
we prove in fact that φΩ is the almost sure limit of φn/nd−1 when n goes to infinity, and that the
upper large deviations of φn/nd−1 above φΩ are of volume order. Thus the constant φΩ is the best
constant we can obtain in this theorem.

Remark 2. The lower large deviations we obtain are of the relevant order. Indeed, if all the edges
in a flat layer that separates Γ1

n from Γ2
n in Ωn have abnormally small capacity, then φn will be

abnormally small. Since the cardinality of such a set of edges is D′nd−1 for a constant D′, the
probability of this event is of order exp−Dnd−1 for a constant D.

Remark 3. The condition Λ(0) < 1 − pc(d) is optimal. Indeed, Zhang proved in [11] that in the
particular case where d = 3 and Ω is a straight cube of bottom Γ1 and top Γ2, if Λ admits an
exponential moment and Λ(0) = 1 − pc(d), then limn→∞ φn/nd−1 = 0 a.s. The heuristic is the
following: if Λ(0) ≥ 1 − pc(d), then the edges of capacity strictly positive do not percolate, and
therefore they cannot convey a strictly positive amount of fluid through Ω when n goes to infinity.
Kesten obtained the first results about maximal flows in this model in [9] under a stronger hypothesis
on Λ(0). Zhang succeeded in relaxing the constraint on Λ in his remarkable article [12].
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2 COMPUTATION OF φΩ

2 Computation of φΩ

2.1 Geometric notations

We start with some geometric definitions. For a subset X of Rd, we denote by Hs(X) the s-
dimensional Hausdorff measure of X (we will use s = d − 1 and s = d − 2). The r-neighbourhood
Vi(X, r) of X for the distance di, that can be the Euclidean distance if i = 2 or the L∞-distance if
i = ∞, is defined by

Vi(X, r) = {y ∈ Rd | di(y, X) < r} .

If X is a subset of Rd included in an hyperplane of Rd and of codimension 1 (for example a non
degenerate hyperrectangle), we denote by hyp(X) the hyperplane spanned by X, and we denote by
cyl(X,h) the cylinder of basis X and of height 2h defined by

cyl(X, h) = {x + tv |x ∈ X , t ∈ [−h, h]} ,

where v is one of the two unit vectors orthogonal to hyp(X) (see figure 2).

h

h

v

x X

Figure 2: Cylinder cyl(X,h).

For x ∈ Rd, r ≥ 0 and a unit vector v, we denote by B(x, r) the closed ball centered at x
of radius r, by disc(x, r, v) the closed disc centered at x of radius r and normal vector v, and by
B+(x, r, v) (respectively B−(x, r, v)) the upper (respectively lower) half part of B(x, r) where the
direction is determined by v (see figure 3), i.e.,

B+(x, r, v) = {y ∈ B(x, r) | (y − x) · v ≥ 0} ,

B−(x, r, v) = {y ∈ B(x, r) | (y − x) · v ≤ 0} .

We denote by αd the volume of a unit ball in Rd, and αd−1 the Hd−1 measure of a unit disc.

2.2 Flow in a cylinder

Here are some particular definitions of flows through a box. It is important to know them, because
all our work consists in comparing the maximal flow φn in Ωn with the maximal flows in small
cylinders. Let A be a non degenerate hyperrectangle, i.e., a box of dimension d − 1 in Rd. All
hyperrectangles will be supposed to be closed in Rd. We denote by v one of the two unit vectors
orthogonal to hyp(A). For h a positive real number, we consider the cylinder cyl(A, h). The
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2 COMPUTATION OF φΩ 2.3 Max-flow min-cut theorem

v

B+(x, r, v)

disc(x, r, v)

r
x

B−(x, r, v)

Figure 3: Ball B(x, r).

set cyl(A, h) r hyp(A) has two connected components, which we denote by C1(A, h) and C2(A, h).
For i = 1, 2, let Ah

i be the set of the points in Ci(A, h) ∩ Zd
n which have a nearest neighbour in

Zd
n r cyl(A, h):

Ah
i = {x ∈ Ci(A, h) ∩ Zd

n | ∃y ∈ Zd
n r cyl(A, h) , 〈x, y〉 ∈ Ed

n} .

Let T (A, h) (respectively B(A, h)) be the top (respectively the bottom) of cyl(A, h), i.e.,

T (A, h) = {x ∈ cyl(A, h) | ∃y /∈ cyl(A, h) , 〈x, y〉 ∈ Ed
n and 〈x, y〉 intersects A + hv}

and

B(A, h) = {x ∈ cyl(A, h) | ∃y /∈ cyl(A, h) , 〈x, y〉 ∈ Ed
n and 〈x, y〉 intersects A− hv} .

For a given realisation (t(e), e ∈ Ed
n) we define the variable τ(A, h) = τ(cyl(A, h), v) by

τ(A, h) = τ(cyl(A, h), v) = φ(Ah
1 → Ah

2 in cyl(A, h)) ,

and the variable φ(A, h) = φ(cyl(A, h), v) by

φ(A, h) = φ(cyl(A, h), v) = φ(B(A, h) → T (A, h) in cyl(A, h)) ,

where φ(F1 → F2 in C) is the maximal flow from F1 to F2 in C, for C ⊂ Rd (or by commodity the
corresponding graph C ∩Zd/n) defined previously. The dependence in n is implicit here, in fact we
can also write τn(A, h) and φn(A, h) if we want to emphasize this dependence on the mesh of the
graph.

2.3 Max-flow min-cut theorem

The maximal flow φ(F1 → F2 in C) can be expressed differently thanks to the max-flow min-cut
theorem (see [2]). We need some definitions to state this result. A path on the graph Zd

n from v0

to vm is a sequence (v0, e1, v1, ..., em, vm) of vertices v0, ..., vm alternating with edges e1, ..., em such
that vi−1 and vi are neighbours in the graph, joined by the edge ei, for i in {1, ..., m}. A set E of
edges in C is said to cut F1 from F2 in C if there is no path from F1 to F2 in C rE. We call E an
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2.4 Definition of ν 2 COMPUTATION OF φΩ

(F1, F2)-cut if E cuts F1 from F2 in C and if no proper subset of E does. With each set E of edges
we associate its capacity which is the variable

V (E) =
∑

e∈E

t(e) .

The max-flow min-cut theorem states that

φ(F1 → F2 in C) = min{V (E) |E is a (F1, F2)-cut } .

2.4 Definition of ν

The asymptotic behaviour of the rescaled expectation of τn(A, h) for large n is well known, thanks
to the almost subadditivity of this variable. We recall the following result:

Theorem 2. We suppose that ∫

[0,+∞[
x dΛ(x) < ∞ .

Then for each unit vector v there exists a constant ν(d,Λ, v) = ν(v) (the dependence on d and Λ is
implicit) such that for every non degenerate hyperrectangle A orthogonal to v and for every strictly
positive constant h, we have

lim
n→∞

E[τn(A, h)]
nd−1Hd−1(A)

= ν(v) .

For a proof of this proposition, see [10]. We emphasize the fact that the limit depends on the
direction of v, but not on h nor on the hyperrectangle A itself.

In fact, Rossignol and Théret proved in [10] that under some moment conditions and/or some
condition on A, ν(v) is the limit of the rescaled variable τn(A, h)/(nd−1Hd−1(A)) almost surely and
in L1. We also know, thanks to the works of Kesten [9], Zhang [12] and Rossignol and Théret [10]
that the variable φn(A, h)/(nd−1Hd−1(A)) satisfies the same law of large numbers in the particular
case where A is a straight hyperrectangle, i.e., a hyperrectangle of the form

∏d−1
i=1 [0, ki] × {0} for

some ki > 0. In his article [12], Zhang obtains a control on the number of edges in a minimal cutset.
We will present and use this result in section 4.

We recall some geometric properties of the map ν : v ∈ Sd−1 7→ ν(v), under the only condition
on Λ that E(t(e)) < ∞. They have been stated in section 4.4 of [10]. There exists a unit vector
v0 such that ν(v0) = 0 if and only if for all unit vector v, ν(v) = 0, and it happens if and only if
Λ(0) ≥ 1− pc(d). This property has been proved by Zhang in [11]. Moreover, ν satisfies the weak
triangle inequality, i.e., if (ABC) is a non degenerate triangle in Rd and vA, vB and vC are the
exterior normal unit vectors to the sides [BC], [AC], [AB] in the plane spanned by A, B, C, then

H1([AB])ν(vC) ≤ H1([AC])ν(vB) +H1([BC])ν(vA) .

This implies that the homogeneous extension ν0 of ν to Rd, defined by ν0(0) = 0 and for all w in
Rd,

ν0(w) = |w|2ν(w/|w|2) ,

is a convex function; in particular, since ν0 is finite, it is continuous on Rd. We denote by νmin

(respectively νmax) the infimum (respectively supremum) of ν on Sd−1.
The last result we recall is Theorem 3.9 in [10] concerning the lower large deviations of the

variable τn(A, h) below ν(v):
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2 COMPUTATION OF φΩ 2.5 Definition of φΩ

Theorem 3 (Rossignol and Théret). We suppose that
∫
[0,+∞[ x dΛ(x) < ∞ and that Λ(0) < 1 −

pc(d). Then for every ε there exists a positive constant K(d, Λ, ε) such that for every unit vector
v and every non degenerate hyperrectangle A orthogonal to v, there exists a constant K ′(d, Λ, A, ε)
such that for every strictly positive constant h we have

P
ñ

τn(A, h)
nd−1Hd−1(A)

≤ ν(v)− ε

ô
≤ K ′(d,Λ, A, ε) exp

Ä
−K(d, Λ, ε)nd−1Hd−1(A)

ä
.

We shall rely on this result for proving Theorem 1. Moreover, Theorem 1 is a generalisation of
Theorem 3, where we work in the domain Ω instead of a parallelepiped.

2.5 Definition of φΩ

We give here a definition of φΩ in terms of the map ν. For a subset F of Rd, we define the perimeter
of F in Ω by

P(F, Ω) = sup
ß∫

F
div f(x)dLd(x), f ∈ C∞c (Ω, B(0, 1))

™
,

where C∞c (Ω, B(0, 1)) is the set of the functions of class C∞ from Rd to B(0, 1), the ball centered at
0 and of radius 1 in Rd, having a compact support included in Ω, and div is the usual divergence
operator. The perimeter P(F ) of F is defined as P(F,Rd). We denote by ∂F the boundary of F .
The reduced boundary of a set of finite perimeter F , denoted by ∂∗F , consists of the points x of
∂F such that

• ||∇χF ||(B(x, r)) > 0 for any r > 0,

• if wr(x) = −∇χF (B(x, r))/||∇χF ||(B(x, r)) then, as r goes to 0, wr(x) converges towards a
unit vector vF (x),

where χF is the characteristic function of F , ∇χF is the distributional derivative of χF (then it is a
vector Radon measure), and ||∇χF || is the total variation measure of ∇χF . At any point x of ∂∗F ,
the vector vF (x) is also the measure theoretic exterior to F at x, i.e.,

lim
r→0

r−dLd(B−(x, r, vF (x))r F ) = 0 and lim
r→0

r−dLd(B+(x, r, vF (x)) ∩ F ) = 0 .

(For a presentation of sets of finite perimeter, see for example [6], section 13). For all F ⊂ Rd of
finite perimeter in Ω, we define

IΩ(F ) =
∫

∂∗F∩Ω
ν(vF (x))dHd−1(x) +

∫

Γ2∩∂∗(F∩Ω)
ν(v(F∩Ω)(x))dHd−1(x)

+
∫

Γ1∩∂∗(ΩrF )
ν(vΩ(x))dHd−1(x) .

If P(F, Ω) = +∞, we define IΩ(F ) = +∞. Finally, we define

φΩ = inf{IΩ(F ) |F ⊂ Rd} = inf{IΩ(F ) |F ⊂ Ω} . (1)

In the case where ∂F is C1, IΩ(F ) has the simpler following expression:

IΩ(F ) =
∫

∂F∩Ω
ν(vF (x))dHd−1(x) +

∫

Γ2∩∂(F∩Ω)
ν(v(F∩Ω)(x))dHd−1(x)

+
∫

Γ1∩∂(ΩrF )
ν(vΩ(x))dHd−1(x) .

7



4 NUMBER OF EDGES IN A MINIMAL CUTSET AND COMPACTNESS

The localization of the set along which the previous integrals are done is illustrated in figure 4.
Since ν(v) is the average amount of fluid that can cross a hypersurface of area one in the direction

Γ2Γ1

Ω

vF (x)

x

F

vΩ(z)

z

v(F∩Ω)(y)

y

(∂F ∩ Ω) ∪ (Γ2 ∩ ∂(F ∩ Ω)) ∪ (Γ1 ∩ ∂(Ωr F ))

Figure 4: The set (∂F ∩ Ω) ∪ (Γ2 ∩ ∂(F ∩ Ω)) ∪ (Γ1 ∩ ∂(Ωr F )).

v per unit of time, it can be interpreted as the capacity of a unitary hypersurface orthogonal to v.
Thus IΩ(F ) can be interpreted as the capacity of (∂F ∩ Ω) ∪ (Γ2 ∩ ∂(F ∩ Ω)) ∪ (Γ1 ∩ ∂(Ωr F )).

3 Sketch of the proof

We are studying the lower large deviations of φn/nd−1: they are controlled by what happens around
a minimal cutset. First, we will use the estimate of the number of edges in a minimal cutset made
by Zhang in [12] to restrict the problem to cutsets having a number of edges at most cnd−1 for a
constant c; we can then conclude that the minimal cutset is "near" the boundary of a subset F of
Ω belonging to a compact space. By making an adequate covering of this space, we need only to
deal with a finite number of sets and their neighbourhoods. We will then cover the boundary of
such a set F by balls of very small radius, such that ∂F is "almost flat" in each ball; we will also
show that if φn is smaller than φΩ(1− ε)nd−1 for some positive ε, then some local event happens in
each ball of the covering of ∂F (this event will be denoted by G(B, vF (x)) for the ball B centered
at x ∈ ∂F ). After that, we will construct a link between this local event in a ball and the fact
that the maximal flow through a cylinder (included in the ball) is abnormally small. The lower
large deviations for the maximal flow through a cylinder are already known (see [10]). Finally, we
calibrate the constants to get Theorem 1.

This proof is largely inspired by the methods used to study the Wulff crystal in Ising model in
dimension d ≥ 3 (see for example [6]).

4 Number of edges in a minimal cutset and compactness

We consider a (Γ1
n, Γ2

n)-cut En in Ωn of minimal capacity, i.e., φn = V (En), and of minimal number
of edges (if there are more than one such cutset, we select one of them by a deterministic algorithm).
According to Theorem 1 in [12], adapted to our case as said in Remark 2 in [12], we know that:

8



4 NUMBER OF EDGES IN A MINIMAL CUTSET AND COMPACTNESS

Theorem 4 (Zhang). If the law of the capacity of the edges admits an exponential moment, and
if Λ(0) < 1 − pc(d), then there exist constants β0 = β0(Λ, d), Ci = Ci(Λ, d) for i = 1, 2 and
N = N(Λ, d, Ω,Γ, Γ1, Γ2) such that for all β ≥ β0, for all n ≥ N , we have

P[card(En) ≥ βnd−1] ≤ C1 exp(−C2βnd−1) .

Remark 4. The adaptation of Zhang’s result in our setting involves one difficulty: the cutsets we
have to consider may not be connected. However, we can get round this problem by considering the
union of a cutset with the edges that lie along Γ: it is always connected, and the number of edges
we have added is bounded by cnd−1 for a constant c depending only on the domain Ω, since Γ is
piecewise of class C1. Then the adaptation of Zhang’s proof is straightforward.

We will always consider such large n ≥ N . Thus with high probability the (Γ1
n, Γ2

n)-cut En has
not "too much" edges. We want now to change a little bit our point of view in order to work with
a subset of Rd rather than the cutset En. We define the set ‹En ⊂ Zd

n by

‹En = {x ∈ Ωn | there exists a path from x to Γ1
n made of edges that are not in En}.

Then the edge boundary ∂e‹En of ‹En, defined by

∂e‹En = {e = 〈x, y〉 ∈ Zd
n ∩ Ωn |x ∈ ‹En and y /∈ ‹En} ,

is exactly equal to En. We consider now the "non discrete version" En of ‹En defined by

En = {x ∈ Ω | d∞(x, ‹En) ≤ 1/(2n)} =
Ä‹En + [−1/(2n), 1/(2n)]d

ä
∩ Ω .

For all F ⊂ Rd, we recall that the perimeter of F in Ω is defined by

P(F, Ω) = sup
ß∫

F
div f(x)dLd(x), f ∈ C∞c (Ω, B(0, 1))

™
.

We know that if card(En) ≤ βnd−1, then P(En, Ω) ≤ β.
We define

Cβ = {F ⊂ Ω | P(F, Ω) ≤ β} ,

endowed with the topology L1 associated to the distance d(F, F ′) = Ld(F4F ′), where F4F ′ is the
symmetric difference between these two sets. For this topology the set Cβ is compact. With every F
in Cβ we associate a positive εF , that we will choose later. The collection of sets V(F, εF ), F ∈ Cβ ,
where V(F, εF ) is the neighbourhood of F of size εF for the distance defined previously, covers Cβ

so we can extract a finite covering: Cβ ⊂ ∪i=1...NV(Fi, εFi). We then obtain that for a fixed β ≥ β0,
for all λ we have

P[φn ≤ λnd−1] ≤ e−βnd−1
+ P[V (En) ≤ λnd−1 and P(En,Ω) ≤ β]

≤ e−βnd−1
+

N∑

i=1

P[V (En) ≤ λnd−1 and Ld(En4Fi) ≤ εi] .

It remains to study
P[V (En) ≤ λnd−1 and Ld(En4F ) ≤ εF ]

for a generic F in Cβ and the corresponding εF .
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5 COVERING OF ∂F BY BALLS

5 Covering of ∂F by balls

5.1 Geometric tools

We recall an important result about the Minkowski content of a subset of Rd (see for example
Appendix A in [3]). Whenever E is a closed (d − 1)-rectifiable subset of Rd (i.e., there exists a
Lipschitz function mapping some bounded subset of Rd−1 onto E), the Minkowski content of E,
defined by

lim
r→0

1
2r
Ld(V2(E, r)) ,

exists and is equal to Hd−1(E).
We will also use the Vitali covering theorem for Hd−1. A collection of sets U is called a Vitali

class for a Borel set E of Rd if for each x ∈ E and δ > 0, there exists a set U ∈ U containing x such
that 0 < diamU < δ, where diamU is the diameter of the set U . We denote by αd−1 the Hd−1

measure of a unit disc. We now recall the Vitali covering theorem for Hd−1 (see for instance [7],
Theorem 1.10):

Theorem 5. Let E be a Hd−1 measurable subset of Rd and U be a Vitali class of closed sets for E.
Then we may select a (countable) disjoint sequence (Ui)i∈I from U such that

either
∑

i∈I

(diamUi)d−1 = +∞ or Hd−1(E r ∪i∈IUi) = 0 .

If Hd−1(E) < ∞, then given ε > 0, we may also require that

Hd−1(E) ≤ αd−1

2d−1

∑

i∈I

(diamUi)d−1 .

We recall next the Besicovitch differentiation theorem in Rd (see for example [1]):

Theorem 6. Let M be a finite positive Radon measure on Rd. For any Borel function f ∈ L1(M),
the quotient

1
M(B(x, r))

∫

B(x,r)
f(y)dM(y)

converges M-almost surely towards f(x) as r goes to 0.

We denote by αd the volume of a unit ball in Rd. We state a result of covering that we will use
in our study of the lower deviations of φn:

Lemma 1. Let F be a subset of Ω of finite perimeter. For every positive constants δ and η, there
exists a finite family of closed disjoint balls (Bi)i∈I∪J∪K = (B(xi, ri), vi)i∈I∪J∪K such that (the
vector vi defines B−

i )

∀i ∈ I , xi ∈ ∂∗F ∩ Ω , ri ∈]0, 1[ , Bi ⊂ Ω , Ld((F ∩Bi)4B−
i ) ≤ δαdr

d
i ,

∀i ∈ J , xi ∈ Γ1 ∩ ∂∗(Ωr F ) , ri ∈]0, 1[ , ∂Ω ∩Bi ⊂ Γ1 , Ld((Bi ∩ Ω)4B−
i ) ≤ δαdr

d
i ,

∀i ∈ K , xi ∈ Γ2 ∩ ∂∗F , ri ∈]0, 1[ , ∂Ω ∩Bi ⊂ Γ2 , Ld((F ∩Bi)4B−
i ) ≤ δαdr

d
i ,

and finally ∣∣∣∣∣∣
IΩ(F )−

∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi))−

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

∣∣∣∣∣∣
≤ η .
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5 COVERING OF ∂F BY BALLS 5.1 Geometric tools

We will prove Lemma 1 with the help of Theorems 5 and 6, following the proof of Lemma 14.6
in [6]. First notice that for F ⊂ Ω, we have

IΩ(F ) =
∫

∂∗F∩Ω
ν(vF (x))dHd−1(x) +

∫

Γ2∩∂∗F
ν(vF (x))dHd−1(x)

+
∫

Γ1∩∂∗(ΩrF )
ν(vΩ(x))dHd−1(x) .

For E a set of finite perimeter, we denote by ||∇χE || the measure defined by

∀A Borel set in Rd ||∇χE ||(A) = Hd−1(A ∩ ∂∗E) ,

it is equivalent to the definition of ||∇χE || given previously. We consider a subset F of Ω of finite
perimeter. We recall that the function ν : Sd−1 → R+ is continuous. The map x ∈ ∂∗F ∩Ω 7→ vF (x)
is ||∇χF ||-measurable, so we can apply the Besicovitch differentiation theorem in Rd to the maps
x ∈ ∂∗F ∩ Ω 7→ ν(vF (x)) and x ∈ ∂∗F ∩ Ω 7→ 1 to obtain that for Hd−1-almost all x ∈ ∂∗F ∩ Ω

lim
r→0

1
αd−1rd−1

Hd−1(B(x, r) ∩ ∂∗F ∩ Ω) = 1 ,

lim
r→0

1
αd−1rd−1

∫

B(x,r)∩∂∗F∩Ω
ν(vF (y))dHd−1(y) = ν(vF (x)) .

We denote by R1 the set of the points of ∂∗F ∩Ω where the two preceding identities hold simulta-
neously, thus Hd−1((∂∗F ∩ Ω)rR1) = 0. Similarly, let R2 be the set of the points x belonging to
Γ2 ∩ ∂∗F such that

lim
r→0

1
αd−1rd−1

Hd−1(B(x, r) ∩ Γ2 ∩ ∂∗F ) = 1 ,

lim
r→0

1
αd−1rd−1

∫

B(x,r)∩Γ2∩∂∗F
ν(vF (y))dHd−1(y) = ν(vF (x)) .

We also know that Hd−1((Γ2 ∩ ∂∗F ) r R2) = 0. Since the map x ∈ Γ1 ∩ ∂∗(Ω r F ) 7→ vΩ(x) is
||∇χΩ ||-measurable, the same arguments imply that the set R3 of the points x of Γ1 ∩ ∂∗(Ω r F )
such that

lim
r→0

1
αd−1rd−1

Hd−1(B(x, r) ∩ Γ1 ∩ ∂∗(Ωr F )) = 1 ,

lim
r→0

1
αd−1rd−1

∫

B(x,r)∩Γ1∩∂∗(ΩrF )
ν(vΩ(y))dHd−1(y) = ν(vΩ(x)) ,

satisfies Hd−1(Γ1 ∩ ∂∗(ΩrF )rR3) = 0. Moreover, from the theory of sets of finite perimeter (see
for example section 13 in [6]), we know that

® ∀x ∈ ∂∗F , limr→0 r−dLd(F4B−(x, r, vF (x))) = 0 ,
∀x ∈ ∂∗(Ωr F ) , limr→0 r−dLd(Ω4B−(x, r, vΩ(x))) = 0 .

We fix two parameters η > 0 and δ > 0. For all x ∈ R1, there exists a positive r(x, η, δ) such that
for all r < r(x, η, δ) we have

|Hd−1(B(x, r) ∩ ∂∗F ∩ Ω)− αd−1r
d−1| ≤ ηαd−1r

d−1 ,

11



5.1 Geometric tools 5 COVERING OF ∂F BY BALLS

∣∣∣∣∣
1

αd−1rd−1

∫

B(x,r)∩∂∗F∩Ω
ν(vF (y))dHd−1(y)− ν(vF (x))

∣∣∣∣∣ ≤ η ,

Ld((F ∩B(x, r))4B−(x, r, vF (x))) ≤ δαdr
d and B(x, r) ⊂ Ω .

For all x in R2, there exists a positive r(x, η, δ) such that for all r < r(x, η, δ) we have

|Hd−1(B(x, r) ∩ Γ2 ∩ ∂∗F )− αd−1r
d−1| ≤ ηαd−1r

d−1 ,

∣∣∣∣∣
1

αd−1rd−1

∫

B(x,r)∩Γ2∩∂∗F
ν(vF (y))dHd−1(y)− ν(vF (x))

∣∣∣∣∣ ≤ η ,

Ld((F ∩B(x, r))4B−(x, r, vF (x))) ≤ δαdr
d and B(x, r) ∩ Γ ⊂ Γ2 .

For all x in R3, there exists a positive r(x, η, δ) such that for all r < r(x, η, δ) we have

|Hd−1(B(x, r) ∩ Γ1 ∩ ∂∗(Ωr F ))− αd−1r
d−1| ≤ ηαd−1r

d−1 ,

∣∣∣∣∣
1

αd−1rd−1

∫

B(x,r)∩Γ1∩∂∗(ΩrF )
ν(vΩ(y))dHd−1(y)− ν(vΩ(x))

∣∣∣∣∣ ≤ η ,

Ld((Ω ∩B(x, r))4B−(x, r, vF (x))) ≤ δαdr
d and B(x, r) ∩ Γ ⊂ Γ1 .

The family of balls
(B(x, r), x ∈ R1 ∪R2 ∪R3, r < r(x, η, δ))

is a Vitali relation for R1 ∪R2 ∪R3. By the Vitali covering theorem for Hd−1, we may select from
this collection of balls a finite or countable collection of disjoint balls B(xi, ri), i ∈ I1 such that
either

Hd−1

Ñ
(R1 ∪R2 ∪R3)r

⋃

i∈I1

B(xi, ri)

é
= 0

or ∑

i∈I1

rd−1
i = ∞ .

We know that Ω and F have finite perimeter, and that

(∂∗F ∩ Ω) ∪ (Γ2 ∩ ∂∗F ) ∪ (Γ1 ∩ ∂∗(Ωr F )) ⊂ Γ ∪ ∂∗F ,

so

(1− η)
∑

i∈I1

αd−1r
d−1
i ≤ Hd−1

Ä
(∂∗F ∩ Ω) ∪ (Γ2 ∩ ∂∗F ) ∪ (Γ1 ∩ ∂∗(Ωr F ))

ä

≤ Hd−1(Γ ∪ ∂∗F ) < ∞ ,

thus the first case occurs in the Vitali covering theorem, so we may select a finite subset I2 of I1

such that

Hd−1

Ñ
(R1 ∪R2 ∪R3)r

⋃

i∈I2

B(xi, ri)

é
≤ ηHd−1(R1 ∪R2 ∪R3) .
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5 COVERING OF ∂F BY BALLS 5.1 Geometric tools

We claim that the collection of balls (B(xi, ri), i ∈ I2) enjoys the desired properties. We define the
sets

I = {i ∈ I2 |xi ∈ ∂∗F ∩ Ω} ,

J = {i ∈ I2 |xi ∈ Γ1 ∩ ∂∗(Ωr F )} ,

K = {i ∈ I2 |xi ∈ Γ2 ∩ ∂∗F} ,

and vi = vF (xi) for i ∈ I ∪K and vi = vΩ(xi) for i ∈ J . Finally, we only have to check that
∣∣∣∣∣∣
IΩ(F )−

∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi))−

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

∣∣∣∣∣∣
≤ η .

We recall that νmax is the supremum of ν over Sd−1; we have
∣∣∣∣∣∣
IΩ(F )−

∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi))−

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

∫

R1

ν(vF (y))dHd−1(y)−
∑

i∈I

αd−1r
d−1
i ν(vF (xi))

∣∣∣∣∣∣

+

∣∣∣∣∣∣

∫

R2

ν(vF (y))dHd−1(y)−
∑

i∈K

αd−1r
d−1
i ν(vF (xi))

∣∣∣∣∣∣

+

∣∣∣∣∣∣

∫

R3

ν(vΩ(y))dHd−1(y)−
∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

∣∣∣∣∣∣

≤
∫

R1r∪i∈IB(xi,ri)
ν(vF (y))dHd−1(y)

+
∑

i∈I

∣∣∣∣∣
∫

R1∩B(xi,ri)
ν(vF (y))dHd−1(y)− αd−1r

d−1
i ν(vF (x))

∣∣∣∣∣

+
∫

R2r∪i∈KB(xi,ri)
ν(vF (y))dHd−1(y)

+
∑

i∈K

∣∣∣∣∣
∫

R2∩B(xi,ri)
ν(vF (y))dHd−1(y)− αd−1r

d−1
i ν(vF (x))

∣∣∣∣∣

+
∫

R3r∪i∈JB(xi,ri)
ν(vΩ(y))dHd−1(y)

+
∑

i∈J

∣∣∣∣∣
∫

R3∩B(xi,ri)
ν(vΩ(y))dHd−1(y)− αd−1r

d−1
i ν(vΩ(x))

∣∣∣∣∣

≤ ηHd−1(R1 ∪R2 ∪R3)νmax + η
∑

i∈I∪J∪K

αd−1r
d−1
i

≤ ηHd−1(R1 ∪R2 ∪R3)νmax + 2ηHd−1(R1 ∪R2 ∪R3)
≤ η(νmax + 2)(P(F, Ω) + P(Ω)) .

Since (νmax + 2)(P(F, Ω) + P(Ω)) does not depend on η, we have the required estimate.
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5.2 Definition of a local event

We consider a set F in Cβ , and a positive εF that we have to choose adequately. Thanks to Lemma
1, we know that for every positive fixed δ and η, there exists a finite family of closed disjoint balls
(Bi)i∈I∪J∪K = (B(xi, ri), vi)i∈I∪J∪K such that (the vector vi defines B−

i )

∀i ∈ I , xi ∈ ∂∗F ∩ Ω , ri ∈]0, 1[ , Bi ⊂ Ω , Ld((F ∩Bi)4B−
i ) ≤ δαdr

d
i ,

∀i ∈ J , xi ∈ Γ1 ∩ ∂∗(Ωr F ) , ri ∈]0, 1[ , ∂Ω ∩Bi ⊂ Γ1 , Ld((Bi ∩ Ω)4B−
i ) ≤ δαdr

d
i ,

∀i ∈ K , xi ∈ Γ2 ∩ ∂∗F , ri ∈]0, 1[ , ∂Ω ∩Bi ⊂ Γ2 , Ld((F ∩Bi)4B−
i ) ≤ δαdr

d
i ,

and finally ∣∣∣∣∣∣
IΩ(F )−

∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi))−

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

∣∣∣∣∣∣
≤ η ,

where we denote by αd the volume of a unit ball in Rd, and by αd−1 the Hd−1 measure of a unit
disc. It is obvious that φΩ < ∞ because

φΩ ≤ IΩ(Ω) =
∫

Γ2∩∂∗Ω
ν(vΩ(x))dHd−1(x) ≤ νmaxHd−1(Γ2) < ∞ .

We suppose for the rest of the article that φΩ > 0 otherwise we do not have to study any lower
large deviations. We consider λ < φΩ. There exists a positive s (we can choose it smaller than 1)
such that λ ≤ φΩ(1− 2s) ≤ IΩ(F )(1− 2s). We choose

η =
sIΩ(F )

4
,

and then we obtain that
∣∣∣∣∣IΩ(F )−

∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi))−

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

∣∣∣∣∣

≤
( ∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi)) +

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

)
s

2
,

and that

λ ≤
( ∑

i∈I∪K

αd−1r
d−1
i ν(vF (xi)) +

∑

i∈J

αd−1r
d−1
i ν(vΩ(xi))

)
(1− s) .

Since the (Bi)i∈I∪J∪K are disjoint, we also know that

φn ≥
∑

i∈I∪J∪K

V (En ∩Bi) .

Then

P[V (En) ≤ λnd−1 and Ld(En4F ) ≤ εF ]

≤ P




∑
i∈I∪J∪K V (En ∩Bi) ≤ (1− s) nd−1

Ä∑
i∈I∪K αd−1r

d−1
i ν(vF (xi))

+
∑

i∈J αd−1r
d−1
i ν(vΩ(xi))

ä

and Ld(En4F ) ≤ εF


 .
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5 COVERING OF ∂F BY BALLS 5.2 Definition of a local event

From now on we choose εF to be
εF = min

i∈I∪J∪K
αdr

d
i δ ,

for a fixed δ that we will choose later. For all i ∈ I, we then have

Ld((En ∩Bi)4B−
i ) ≤ Ld((F ∩Bi)4B−

i ) + Ld(En4F ) ≤ 2δαdr
d
i .

We want to evaluate card(((En ∩Bi)4B−
i ) ∩ Zd

n). It is equivalent to evaluate

ndLd(((En ∩Bi)4B−
i ) ∩ Zd

n + [−1/2n, 1/2n]d) .

By definition, for all x ∈ En ∩ Zd
n = ‹En, x + [−1/2n, 1/2n]d ⊂ En, so

((En ∩Bi)4B−
i ) ∩ Zd

n + [−1/2n, 1/2n]d

⊂ ((En ∩Bi)4B−
i ) ∪ (V∞(Bi, 1/n)rBi) ∪ (V∞(B−

i , 1/n)rB−
i )

⊂ ((En ∩Bi)4B−
i ) ∪ (V2(Bi, 2d/n)rBi) ∪ (V2(B−

i , 2d/n)rB−
i ) .

Since ∂Bi and ∂B−
i are very regular, the result about the Minkowski content implies that

lim
n→∞

n

2d
Ld(V2(Bi, 2d/n)rBi) = Hd−1(∂Bi)

and
lim

n→∞
n

2d
Ld(V2(B−

i , 2d/n)rB−
i ) = Hd−1(∂B−

i ) .

For n large enough, we then obtain that

Ld(((En ∩Bi)4B−
i ) ∩ Zd

n + [−1/2n, 1/2n]d) ≤ 2δαdr
d
i +

4d(Hd−1(∂Bi) +Hd−1(∂B−
i ))

n
,

and then for all n large enough

card(((En ∩Bi)4B−
i ) ∩ Zd

n) ≤ 2δαdr
d
i n

d + 4d(Hd−1(∂Bi) +Hd−1(∂B−
i ))nd−1

≤ 4δαdr
d
i n

d .

For i ∈ K, exactly the same arguments imply that

card(((En ∩Bi)4B−
i ) ∩ Zd

n) ≤ 4δαdr
d
i n

d

for n large enough.
We study now what happens in the balls Bi for i ∈ J . We recall that ‹En = En ∩Zd

n. We define
‹E′

n = ‹En ∪Ωc
n (where Ωc

n = Zd
nrΩn) and E′

n = ‹E′
n + [−1/(2n), 1/(2n)]d−1. Then E′

n ∩Ω = En. In
a ball Bi, we have ∂e‹E′

n ∩Bi = En ∩Bi. Indeed, we know that Γ∩Bi ⊂ Γ1. The sets Γ1 and Γ2 are
open in Γ and disjoint, so Γ1∩Γ2 = ∅, where Γ2 is the adherence of Γ2, and then Bi∩Γ2 = ∅. Since
Bi is closed, we obtain that d(Bi, Γ2) > 0, and thus for n large enough, Γn ∩ Bi ⊂ Γ1

n. Moreover,
we know that Γ1

n ⊂ ‹En ⊂ ‹E′
n. We obtain that ∂e‹E′

n ∩Ωc
n ∩Bi = ∅, i.e., all the edges of ∂e‹E′

n in Bi

have both endpoints in Ωn (see figure 5). Now we have
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Bi

xi

edges of
En ∩Bi

Γ ∩Bi ⊂ Γ1

Γn ∩ Bi ⊂ Γ1
n ⊂ Ẽn

Ẽn + [−1/(2n), 1/(2n)]d

vi

Ωc
n + [−1/(2n), 1/(2n)]d

Figure 5: A ball Bi for i ∈ J .

Ld((E′
n ∩Bi)4B+

i ) ≤ Ld((E′
n ∩Bi)4(Ωc ∩Bi)) + Ld((Ωc ∩Bi)4B+

i )

≤ Ld(E′
n ∩Bi ∩ Ω) + Ld((Ωc r E′

n) ∩Bi) + Ld((Ω ∩Bi)4B−
i )

≤ Ld(En4F ) + Ld(V∞(Γ, 1/n) ∩Bi) + δαdr
d
i

≤ εF + Ld(V∞(Γ, 1/n) ∩Bi) + δαdr
d
i

≤ 3δαdr
d
i ,

for n large enough, where the last inequality is a consequence of the properties of the Minkowski
content. As previously, we obtain that for n large enough,

card(((E′
n ∩Bi)4B+

i ) ∩ Zd
n) ≤ 4δαdr

d
i n

d .
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We conclude that for n large enough,

P[V (En) ≤ λnd−1 and Ld(En4F ) ≤ εF ]

≤
∑

i∈I

P
ñ

V (∂e‹En ∩Bi) ≤ (1− s)αd−1r
d−1
i ν(vF (xi)) and

card((‹En ∩Bi)4(B−
i ∩ Zd

n)) ≤ 4δαdr
d
i n

d

ô

+
∑

i∈J

P
ñ

V (∂e‹E′
n ∩Bi) ≤ (1− s)αd−1r

d−1
i ν(vF (xi)) and

card((‹E′
n ∩Bi)4(B+

i ∩ Zd
n)) ≤ 4δαdr

d
i n

d

ô

+
∑

i∈K

P
ñ

V (∂e‹En ∩Bi) ≤ (1− s)αd−1r
d−1
i ν(vF (xi)) and

card((‹En ∩Bi)4(B−
i ∩ Zd

n)) ≤ 4δαdr
d
i n

d

ô

≤
∑

i∈I∪J∪K

P[G(xi, ri, vi)] ,

where G(x, r, v) is the event that there exists a set U ⊂ B ∩ Zd
n such that:

®
card(U4B−) ≤ 4δαdr

dnd ,
V (∂eU ∩B) ≤ (αd−1r

d−1ν(v(x)))(1− s)nd−1 .

Notice that this event depends only on the edges in B = B(x, r). This event seems to be complicated,
but indeed when G(x, r, v) happens, it means in a sense that the flow between the lower half part
of B(x, r) (for the direction v) and the upper half part of B is abnormally small. We will examine
the consequence of the event G(x, r, v) over the maximal flow in B(x, r) in the next section.

6 Surgery in a ball to define an almost flat cutset

We consider a fixed ball B = B(x, r) and a unit vector v (corresponding to one generic ball of the
previous covering). We want to interpret the event G(x, r, v) in term of the maximal flow through a
cylinder whose basis is a disc, included in the ball B, and oriented along the direction v. We define

γmax = ρr ,

where ρ is a constant depending on δ and B which we can imagine very small, it will be chosen
later. The constant γmax is in fact the height of the cylinder we are constructing, namely

C = cyl(disc(x, r′, v), γmax) .

We want C to be included in B, so we choose

r′ = r cos(arcsin ρ) .

We would like to analyse the implication of the event G(x, r, v) on the flow φC between the top
and the bottom of C for the direction v (we will define it properly soon). As we said previously,
the event G(x, r, v) means that the maximal flow between a set U that "looks like" B− (for the
direction given by v) and the set U c that "looks like" B+ is a bit too small. Here "looks like" means
that B− and U are closed in volume, but the set U might have some thin strands (of small volume,

17



6 SURGERY IN A BALL TO DEFINE AN ALMOST FLAT CUTSET

B

U

Uc

x

v

Figure 6: Event G(x, r, v).

but that can be long) that go deeply into B+ and symmetrically the set U c might have some thin
strands that go deeply into B− (see figure 6). What we have to do to control φC is to cut these
strands: by adding edges to ∂eU at a fixed height in C to close the strands, we obtain a cutset in
C. The point is that we have to control the capacity of these edges we have added to ∂eU . This is
the reason why we choose the height at which we add edges to be sure we add not too many edges,
and then we control their capacity thanks to a property of independence.

We suppose that the event G(x, r, v) happens, and we denote by U a fixed set satisfying the
properties described in the definition of G(x, r, v). For each γ in {1/n, ..., (bnγmaxc − 1)/n}, we
define 




D(γ) = cyl(disc(x, r′, v), γ) ,
∂+D(γ) = {y ∈ D(γ) | ∃z ∈ Zd

n , (z − x) · v > γ and |z − y| = 1} ,
∂−D(γ) = {y ∈ D(γ) | ∃z ∈ Zd

n , (z − x) · v < −γ and |z − y| = 1} .

These sets are represented in figure 7. The sets ∂+D(γ)∪ ∂−D(γ) are pairwise disjoint for different
γ, and we know that

∑

γ=1/n,...,(bnγmaxc−1)/n

card((∂+D(γ) ∩ U) ∪ (∂−D(γ) ∩ U c)) ≤ 4δαdr
dnd ,

so there exists a γ0 in {1/n, ..., (bnγmaxc − 1)/n} such that

card((∂+D(γ0) ∩ U) ∪ (∂−D(γ0) ∩ U c)) ≤ 4δαdr
dnd

bnγmaxc − 1
≤ 5δαdr

dnd−1

γmax

for n sufficiently large. We define the event G∗(x, r, v, γ) (depending only on the edges in D(γ))) to
be the existence of a set X ⊂ D(γ) ∩ Zd

n with the following properties:
®

card((∂+D(γ) ∩X) ∪ (∂−D(γ) ∩Xc)) ≤ 5δαdr
dnd−1γ−1

max = 5δαdρ
−1rd−1nd−1 ,

V (∂eX ∩D(γ)) ≤ αd−1r
d−1ν(v)(1− s)nd−1 .

We have proved that if G(x, r, v) occurs, there exists a γ in {1/n, ..., (bnγmaxc − 1)/n} such that
G∗(x, r, v, γ) happens. On G∗(x, r, v, γ), we select a set of edges X that satisfies the properties
described in the definition of G∗(B, v(x), γ) with a deterministic procedure, and we define

®
X+ = {〈x, y〉 |x ∈ ∂+D(γ) ∩X , y /∈ D(γ)} ,
X− = {〈x, y〉 |x ∈ ∂−D(γ)rX , y /∈ D(γ)} .

18



6 SURGERY IN A BALL TO DEFINE AN ALMOST FLAT CUTSET

γ

B+(x, r, v)

v

x

r

B−(x, r, v)

r′

: ∂+D(γ)

: ∂−D(γ)

Figure 7: Representation of D(γ).

We claim that the set of edges (∂eX ∩D(γ))∪X+ ∪X− cuts the top ∂+D(γmax) from the bottom
∂−D(γmax) of C = D(γmax). Indeed, consider a path r from ∂+D(γmax) to ∂−D(γmax) in D(γmax),
we prove now that it intersects (∂eX ∩ D(γ)) ∪ X+ ∪ X−. We consider the intersection of this
path with D(γ). This intersection has at least one connected component that goes from ∂+D(γ) to
∂−D(γ), we denote this reduced path by r′. If the starting point of r′ belongs to X, then the edge
of rr r′ adjacent to this starting point belongs to X+. If the endpoint of r′ belongs to Xc, then the
edge of r r r′ adjacent to this endpoint belongs to X−. Finally, if the starting point of r′ belongs
to Xc and its endpoint belongs to X, then r′ must contain at least one edge of ∂eX ∩ D(γ), and
so does r. We conclude that (∂eX ∩D(γ)) ∪X+ ∪X− cuts the top ∂+D(γmax) from the bottom
∂−D(γmax) of C = D(γmax). If we define

φC = φ(∂+D(γmax) → ∂−D(γmax) in C) ,

on G∗(x, r, v, γ), we have
φC ≤ V (∂eX ∩D(γ)) + V (X+ ∪X−) .

(Recall that ∂eX ∩D(γ) is the set of the edges of ∂eX which are included in D(γ)). Moreover

card(X+ ∪X−) ≤ 2d card((∂+D(γ) ∩X) ∪ (∂−D(γ)rX))

≤ 2d
5δαdr

dnd−1

γmax
= Crd−1δρ−1nd−1 ,
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6 SURGERY IN A BALL TO DEFINE AN ALMOST FLAT CUTSET

where C = 10dαd is a constant depending on the dimension. We obtain that

P[G(x, r, v)] ≤
∑

γ=1/n,...,(bnγmaxc−1)/n

P[G∗(x, r, v, γ)]

≤
∑
γ

P[G∗(x, r, v, γ) ∩ {V (X+ ∪X−) ≤ αd−1r
d−1ν(v)nd−1s/4}]

+ P[G∗(x, r, v, γ) ∩ {V (X+ ∪X−) ≥ αd−1r
d−1ν(v)nd−1s/4}] .

On one hand, we have proved that

P[G∗(x, r, v, γ) ∩ {V (X+ ∪X−) ≤ αd−1r
d−1ν(v)nd−1s/4}]

≤ P[φC ≤ αd−1r
d−1ν(v)(1− 3s/4)nd−1] .

On the other hand, we have

P[G∗(x, r, v, γ) ∩ {V (X+ ∪X−) ≥ αd−1r
d−1ν(v)nd−1s/4}]

= E
Ä
P(G∗(x, r, v, γ) ∩ {V (X+ ∪X−) ≥ αd−1r

d−1ν(v)nd−1s/4} | (t(e))e∈D(γ))
ä

= E
Ç
P(G∗(x, r, v, γ) ∩

⋃

F⊂Ed
n

({X+ ∪X− = F}

∩ {V (F ) ≥ αd−1r
d−1ν(v)nd−1s/4}) | (t(e))e∈D(γ))

å

≤ E
Ç
1G∗(x,r,v,γ)

∑

F⊂Ed
n

1{X+∪X−=F}P(V (F ) ≥ αd−1r
d−1ν(v)nd−1s/4)

å

≤ P




Crd−1δρ−1nd−1∑

i=1

ti ≥ αd−1r
d−1ν(v)nd−1s/4


 ,

where (ti, i ∈ N) is a family of i.i.d. random variables of common distribution function Λ, and
the last inequality comes from the fact that for all F such that P[X+ ∪X− = F ] > 0, card(F ) ≤
Crd−1δρ−1nd−1. Here we have used the following essential property of X+ ∪ X−: the position
of the edges of X+ ∪ X− is σ(t(e), e ∈ D(γ))-measurable, but their capacities are independent of
(t(e))e∈D(γ). Finally, we obtain that

P[G∗(x, r, v, γ)] ≤ γmaxnP[φC ≤ (αd−1r
d−1ν(v))(1− 3s/4)nd−1]

+ γmaxnP




Crd−1δρ−1nd−1∑

i=1

ti ≥ (αd−1r
d−1ν(v))nd−1s/4


 ,

where (ti, i ∈ N) is a family of i.i.d. random variables of common distribution function Λ. We want
to consider cylinders whose basis are hyperrectangles instead of discs, and the variable τ instead of
φ in these cylinders, because we only know the lower large deviations of the flow in this case (see
[10]). There exists a constant c = c(d) such that, for any positive κ, there exists a finite family
(Ai)i∈I of disjoint closed hyperrectangles included in disc(x, r′, v) such that

® ∑
i∈I Hd−1(Ai) ≥ αd−1r

′d−1 − κ ,∑
i∈I Hd−2(∂Ai) ≤ cr′d−2 ,
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6 SURGERY IN A BALL TO DEFINE AN ALMOST FLAT CUTSET

Ai

x

r′

disc(x, r′, v)

Figure 8: disc(x, r′, v).

(see figure 8). Let EC be a set of edges in C that cuts the top from the bottom of C and such that
φC = V (EC). We know that such a cutset exists thanks to the max-flow min-cut Theorem. Then for
all i, EC ∩ cyl(Ai, γmax) cuts the top from the bottom of cyl(Ai, γmax). We add to EC ∩ cyl(Ai, γmax)
some edges along the sides of cyl(Ai, γmax) orthogonal to Ai: we define the set Pi(n) ⊂ Rd by

Pi(n) = cyl(V(∂Ai, ζ/n) ∩ hyp(Ai), γmax) ,

where ζ is a fixed constant bigger than 2d, and we denote by Pi(n) the set of the edges included
in Pi(n). Then for each i, [EC ∩ cyl(Ai, γmax)] ∪ Pi(n) cuts the lower half part from the upper half
part of the boundary of the cylinder cyl(Ai, γmax) along the direction given by v. Thanks to the
max-flow min-cut Theorem again, we obtain that

∑

i∈I

τ(cyl(Ai, γmax), v) ≤ φC + V (∪i∈IPi(n)) .

We can evaluate the number of edges in ∪i∈IPi(n) as follows:

card(∪i∈IPi(n)) ≤ c′r′d−2γmaxn
d−1 ≤ c′ρrd−1nd−1 ,

where c′ is a constant depending on ζ and d. Therefore, if from now on we denote by (ti, i ∈ N) a
family of i.i.d. random variables of common distribution function Λ,

P[φC ≤ αd−1r
d−1ν(v)(1− 3s/4)nd−1]

≤ P
[∑

i∈I

τ(cyl(Ai, γmax), v) ≤ αd−1r
d−1ν(v)(1− s/2)nd−1

]

+ P




c′ρrd−1nd−1∑

i=1

ti ≥ αd−1r
d−1ν(v)

s

4
nd−1




≤ P
[∑

i∈I

τ(cyl(Ai, γmax), v) ≤ (1− s/4)nd−1
∑

i∈I

Hd−1(Ai)ν(v)

]

+ P




c′ρrd−1nd−1∑

i=1

ti ≥ αd−1r
d−1ν(v)

s

4
nd−1


 ,

21



7 CALIBRATION OF THE CONSTANTS

as soon as the constants satisfy the condition

(κ + αd−1(rd−1 − r′d−1))(1− s/2) ≤
∑

i∈I

Hd−1(Ai)νmins/4 . (2)

Then

P[G∗(x, r, v, γ)] ≤ ρrn
∑

i∈I

P[τ(cyl(Ai, γmax), v) ≤ Hd−1(Ai)ν(v)(1− s/4)nd−1]

+ ρrnP




Crd−1δρ−1nd−1∑

i=1

ti ≥ αd−1r
d−1ν(v)nd−1s/4




+ ρrnP




c′ρrd−1nd−1∑

i=1

ti ≥ αd−1r
d−1ν(v)nd−1s/4


 .

≤ ρrn
∑

i∈I

P[τ(cyl(Ai, γmax), v) ≤ Hd−1(Ai)ν(v)(1− s/4)nd−1]

+ 2ρrnP




C′(δρ−1+ρ)rd−1nd−1∑

i=1

ti ≥ αd−1r
d−1ν(v)nd−1s/2


 ,

where C ′ is a constant depending on ζ and d.

7 Calibration of the constants

From now on we suppose that the law Λ of the capacity of the edges admits an exponential moment.
Then as soon as the constants satisfy the condition

C ′(ρ + δρ−1)rd−1E(t(e)) < (αd−1r
d−1νmin)

s

2
, (3)

the Cramér Theorem in R allows us to affirm that there exist positive constantsD and D′ (depending
on Λ, δ, ρ, ζ, s and d) such that

P




C′(δρ−1+ρ)rd−1nd−1∑

i=1

ti ≥ (αd−1r
d−1ν(v)nd−1s/2


 ≤ D′e−Dnd−1

.

If we also suppose that Λ(0) < 1− pc(d), we know from Theorem 3 (Theorem 3.9 in [10]) that there
exist a positive constant K(d, Λ, s) and a constant K ′(d,Λ, Ai, s) such that

P[τ(cyl(Ai, γmax), v) ≤ Hd−1(Ai)ν(v)(1− s/4)nd−1] ≤ K ′e−Knd−1Hd−1(Ai) .

We have thus proved that if we can choose, for a fixed F , the constants δ, ρ and κ such that for
every ball B in the collection of balls (Bi)i∈I∪J∪K the conditions (2) and (3) are satisfied, then there
exists positive constants ‹D and D̂ (depending on d, Λ, Ω, Γ1, Γ2 and λ) such that

P[φn ≤ λnd−1] ≤ D̂e−D̃nd−1
,

and this yields Theorem 1.
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We just have to calibrate the constants. In condition (3) appears the factor (ρ+ δρ−1): to make
it small, we choose ρ =

√
δ. Then the condition (3) is equivalent to

√
δ <

αd−1νmins

2C ′E(t(e))
,

for a constant C ′ that depends on ζ and d, and thus it is satisfied if we choose δ small enough
(clearly since Λ(0) < 1− pc(d) we know that E(t(e)) > 0 and νmin > 0). To see that the condition
(2) can also be satisfied, we just choose κ ≤ αd−1(rd−1−r′d−1)/2 (so κ depends on δ) and we remark
that

1− (cos arcsin
√

δ)d−1 = (d− 1)δ/2 + o(δ) ,

so for δ small enough, condition (2) is satisfied as soon as

δ ≤ 2νmin

12(d− 1)(1− s/2)
,

which can obviously be satisfied (remember that s < 1 and νmin > 0). This ends the proof of
Theorem 1.

Acknowledgement: We thank an anonymous referee for his work.
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