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Abstract: In this work, we consider the problem of regret minimization in adaptive minimum
variance and linear quadratic control problems. Regret minimization has been extensively
studied in the literature for both types of adaptive control problems. Most of these works
give results of the optimal rate of the regret in the asymptotic regime. In the minimum variance
case, the optimal asymptotic rate for the regret is log(T ) which can be reached without any
additional external excitation. On the contrary, for most adaptive linear quadratic problems, it
is necessary to add an external excitation in order to get the optimal asymptotic rate of

√
T .

In this paper, we will actually show from an a theoretical study, as well as, in simulations that
when the control horizon is pre-specified a lower regret can be obtained with either no external
excitation or a new exploration type termed immediate.

Keywords: Regret minimization, adaptive control, linear quadratic regulator, minimum
variance controller, linear systems

1. INTRODUCTION

Minimum variance (MV) controllers [Åström 1970] and
linear quadratic regulators (LQR) [Anderson and Moore
2007] are two examples of control policies for linear time
invariant (LTI) systems for which exact knowledge of
the dynamics is necessary to guarantee optimal control
performances.
However, perfect knowledge of the dynamics (transfer

function or state-space representation for LTI systems) is
never possible to get due to the presence of unmeasured
disturbances. A remedy to this problem is to implement
an adaptive control law where the controller is updated
online in order to compensate for performance losses.
One approach to adaptive control is known as optimism

in face of uncertainty (OFU) or bet on the best approach
where early work can be found in [Lai and Robbins 1985]
and then later in, e.g., [Abbasi-Yadkori and Szepesvári
2011, Campi 1997, Lale et al. 2022]. However, such meth-
ods often lead to non-convex optimization problems. More
recently, Thompson sampling has received significant at-
tention for its empirical performances with low computa-
tional requirement. Such a method was recently applied to
the adaptive LQR problem in [Abeille and Lazaric 2017,
Ouyang et al. 2017].
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Another class of adaptive controller strategies is based
on the certainty equivalence principle [Åström and Wit-
tenmark 2013, Lai 1986, Rantzer 2018, Faradonbeh et al.
2020, Simchowitz and Foster 2020, Cassel et al. 2020,
Jedra and Proutiere 2022]. In this case, the dynamics
are recursively estimated by using all the data available
since the beginning of the experiment and the controller
is updated online pretending these estimates are exact.
In many adaptive control problems, it is vital to add

an external excitation in order to guarantee sufficient
richness of the data and/or an appropriate decrease in
the uncertainties of the identified models. However, this
external excitation disturbs both the system output and
the control effort which subsequently decreases the control
performances. In both reinforcement learning and adaptive
controller communities, significant effort has been spent
in developing a framework in order to find an optimal
trade-off between the performance degradation due to
the uncertainties (exploitation cost) and the performance
degradation due to the external excitation (exploration
cost). It is called regret minimization, where the regret is a
function of both the exploration and exploitation costs and
the external excitation is designed in such a way that it
minimizes the regret over an infinite or finite time horizon.
Early work on regret minimization can be found in [Lai

1986, Lai and Wei 1987] for MV controllers applied to
single inpout single output (SISO) ARX systems. The
regret is at best growing as O(log(T )) asymptotically. Such
a rate can be obtained without external excitation.
More recent works on regret minimization focus on the

adaptive LQR problem. The study of regret minimiza-
tion in LQR problems was re-encouraged by the work



in [Abbasi-Yadkori and Szepesvári 2011] where an OFU
algorithm was developed providing a rate of O(

√
T ) for

the regret. The robust controller design algorithm in [Dean
et al. 2018] gives a regret asymptotically growing as
O(T 2/3). This rate was also guaranteed with a Thompson
sampling approach in [Abeille and Lazaric 2017]. This was
later improved in [Ouyang et al. 2017] providing a rate
of O(

√
T ). Further works established the same rate of

O(
√
T ) for LQR problems with the certainty equivalence

principle [Faradonbeh et al. 2019, Mania et al. 2019]. The
rate of O(

√
T ) is actually the optimal one for LQR prob-

lem and this was proven in [Simchowitz and Foster 2020]
when both state matrices are unknown. Such rate can be
achieved by exciting the system with a white Gaussian
noise excitation whose variance decays as O(1/

√
T ) [Wang

and Janson 2021]. In [Jedra and Proutiere 2022], it is
proven that regret can be upper-bounded as O(

√
T ) for

any time-horizon when both state matrices are unknown.
From the rich literature on regret minimization, it seems

that this subject has been well explored for the MV and
LQR cases. However, in this paper we argue that for finite
horizon problems immediate exploration may be better.
This strategy entails to explore the system dynamics as
early as possible after which only exploitation takes place.
As grounds for this we provide analysis of an approxima-
tive model of the regret, inspired from application oriented
experiment design [Bombois et al. 2006, Jansson 2004,
Hjalmarsson 2009]. Simulation results supporting the con-
clusions from this analysis are also provided. The used
regret model decouples the exploration and exploitation
costs with both terms depending on the Fisher information
matrix. From this model, we show that the optimal explo-
ration strategy minimizing the regret in finite time is an
immediate exploration for many MV and LQR problems.
Some simulations are presented in order to support this
new result.
Notation. The set of real-valued matrices of dimension

n×m will be denoted Rn×m. When A is positive definite
(resp. positive semi-definite), we will write A ≻ 0 (resp.
A ⪰ 0). The expectation operator will be denoted by E.
The identity matrix of dimension n × n will be denoted
by In and A⊤ denotes the transpose of any matrix A.
The notation X ∼ N(a, b) refers to the random variable
X which is normally distributed with mean a and variance
b. The discrete-time forward operator is denoted by z and
ω denotes the angular rate.

2. SYSTEM AND CONTROL OBJECTIVES

2.1 Considered system

Consider a SISO discrete-time LTI system S given by
y(t) = G(z)u(t) +H(z)e(t) (1)

where y and u are the output and input respectively
(resp.), e is a zero-mean white Gaussian noise of variance
σ2
e , G(z) is a stable transfer function with an unit time-

delay and H(z) a stable, inversely stable transfer function
which is also monic (i.e., H0(z = ∞) = 1).

2.2 Control Scenario 1: minimum variance

In a first scenario, we wish to put the system under
minimum variance control which ideally guarantees that

y(t) = e(t) ∀t. From [Åström 1970], the ideal control policy
is given by u(t) = −Kmv(z)y(t) with

Kmv(z) = −G−1(z)(1−H(z)) (2)
for the case that the system S is minimum-phase

2.3 Control Scenario 2: linear quadratic control

For the second control scenario, we will consider a state
representation of the system S

x(t) = Ax(t− 1) +Bu(t− 1) + vx(t) (3)
y(t) = Cx(t) + vy(t) (4)

where x ∈ Rn is the state-vector of dimension n, A ∈
Rn×n, B ∈ Rn×1 and C ∈ R1×n. The noises vx and
vy are zero-mean white Gaussian noises depending on
e(t). We will assume that we measure the state vector
x. We can implement a state feedback linear quadratic
control u(t) = −Klqrx(t) which minimizes the infinite time
horizon cost J∞(u) = lim

T→+∞
JT (u, x)/T with

JT (u) =

T∑
t=1

x(t)⊤Qx(t) + u(t)⊤Ru(t) (5)

where Q ≻ 0 and R ⪰ 0. It is well known that Klqr = (R+
B⊤PB⊤)−1B⊤PA where P is the unique positive definite
solution to the following discrete-time algebraic Riccati
equation (DARE)

P = A⊤PA+Q−A⊤PB(R+B⊤PB)−1B⊤PA (6)

3. ADAPTIVE CONTROL

In both aforementioned control scenarios, the controller
depends on the true dynamics of S which are unfortunately
unknown to us. As a remedy, we put S under a certainty
equivalence adaptive feedback policy in both situations.

3.1 Minimum variance adaptive controller (MVAC)

For Control Scenario 1, the policy is given by

u(t) = −K̂mv(t, z)y(t) + w(t) (7)

where K̂mv(t, z) is the certainty equivalence controller
transfer function and wmv an external excitation used to
gather more information about S. The adapted controller
K̂mv(t, z) is given by K̂mv(t, z) = −Ĝ−1(t, z)(1− Ĥ(t, z))

where Ĝ(t, z) and Ĥ(t, z) are respectively the identified
transfer function of G(z) and H(z) obtained at time
instant t using, e.g., prediction error identification with
input-output data {u(k), y(k)}tk=1 up to time instant t.

3.2 Linear quadratic adaptive controller (LQAC)

In Control Scenario 2, the policy is given by

u(t) = −K̂lqr(t)x(t) + w(t) (8)

where K̂lqr(t) = (R + B̂(t)⊤P̂(t)B̂(t)⊤)−1B̂(t)⊤P̂(t)Â(t)

is the certainty equivalence controller, Â(t) and B̂(t) are
respectively the identified state matrices of A and B
obtained at time instant t using least-squares identification
with input-state data 1 {u(k), x(k)}tk=1 up to time instant
t. The matrix P̂(t) is the positive definite of the DARE
in (6) for which A and B are respectively replaced by
Â(t) and B̂(t).
1 Recall that we assume that we measure the state vector x.



4. REGRET AND PREVIOUS RESULTS

4.1 Regret minimization

In the recent adaptive control literature, much of the
work focuses on designing the external excitation w in
order to reach an optimal trade-off between exploration
(actions applied on the system for gathering information,
in our case it is the signal w) and exploitation (actions
applied on the system for control cost minimization, i.e.,
the controllers K̂mv(t, z) and K̂lqr(t)). The literature often
tackles the problem of trade-off by defining a function
called cumulative regret R(T ). The optimal trade-off is
then obtained by designing the sequence {w(t)}Tt=1 such
that R(T ) is minimized or such that the growth rate of
the regret is minimized.
4.2 Regret for MVAC

Early work of regret minimization can be found in [Lai
and Wei 1987] where the MVAC of SISO ARX systems is
treated. In this work, the regret is defined as

Rmv(T ) =

T∑
t=1

E[(y(t)− e(t))2] (9)

where y is the output of S put under MVAC. We have the
following result from the literature:
Theorem 1. ([Lai and Wei 1987]). Consider the frame-
work of the MVAC of Control Scenario 1 defined above.
The optimal asymptotic rate for the regret Rmv(T ) is
log(T ). Such optimal rate can be reached without external
excitation, i.e., w = 0.
We will refer to the type of exploration w = 0 as lazy.
4.3 Regret for LQAC

Most of the recent work has focused on the regret for
LQAC. In [Wang and Janson 2021], the regret minimized
is the following one

Rlqr(T ) = E[JT (u)]− E[JT (u∗)] (10)
where u∗ is the input when the optimal linear quadratic
controller Klqr is applied to S. We have the following result
from the literature [Wang and Janson 2021]:
Theorem 2. Consider the framework of the LQAC of
Control Scenario 2. When both state matrices A and B
are unknown, the optimal asymptotic rate for the regret
Rlqr(T ) is

√
T . Such optimal rate can be reached with a

white Gaussian noise external excitation of the form

w(t) ∼ N
(
0, α/

√
t
)

α ≥ 0 (11)

We will refer to this type of exploration as 1/
√
t-decaying.

We will refer to the type of exploration (11) as 1/
√
t-

decaying. Another way to achieve this optimal rate of
Theorem 1 is to consider Thompson sampling [Ouyang
et al. 2017, Abeille and Lazaric 2017]. Since it is not based
on the certainty equivalence principle, we will not consider
Thompson sampling in this paper.
The results available in the literature give the optimal

rate in the asymptotic regime and an upper bound of
O(

√
T ) in [Jedra and Proutiere 2022] when both state

matrices A and B are unknown. In the following section
we will examine the finite horizon case, i.e., when the cu-
mulative regret over a fixed finite horizon T is considered.
We will assume T is large so that asymptotic arguments
can still be used.

5. ABSTRACT THEORETICAL STUDY

5.1 A novel regret model

Denote by θ the vector of model parameters of dimension
nθ and θ0 the true parameter vector. Regret minimiza-
tion can be seen as an experiment design problem since
we look for the optimal sequence {w(t)}Tt=1 such that a
given criterion (here R(T )) is minimized. In the classical
literature of application-oriented experiment design of LTI
systems [Bombois et al. 2006, Jansson 2004, Hjalmarsson
2009], we design an optimal finite-time identification ex-
periment such that the expected value of the performance
degradation DT (θ̂T , θ0) due to the parameter uncertainties
of θ̂T is minimized under some constraints on the input
power. By using a Taylor expansion up to the second
degree, we have E[DT (θ̂T , θ0)] ≈ E[(θ̂T − θ0)

⊤W(θ0)(θ̂T −
θ0)] = tr(W(θ0)E[(θ̂T − θ0)(θ̂T − θ0)

⊤]) where 2W(θ0) is
the Hessian of DT (θ̂T , θ0) evaluated at θ̂T = θ0. Assuming
an efficient estimator, we have E[(θ̂T−θ0)(θ̂T−θ0)

⊤] = I−1
T

where It is the Fisher information matrix. When the noise
is Gaussian, it is given by

It = It−1+Lt with Lt =
1

σ2
e

E
[
∇θ ϵ̂(t, θ) (∇θ ϵ̂(t, θ))

⊤] |θ=θ0 (12)

where ∇θ is the gradient operator w.r.t. θ and where ϵ(t, θ)
is the prediction error. We will write ∇θϵ(t, θ) as follows
∇θϵ(t, θ) = Fe(z, θ)e(t) + Fw(z, θ)w(t) with Fe(z, θ) and
Fw(z, θ) depending on the model structure and the closed-
loop transfer functions. In the regret minimization case,
we have two types of performance degradation costs: the
cumulative performance degradation cost due to the uncer-
tainties and the cumulative performance degradation cost
due to the external excitation. The former can be modeled
by the sum of all terms E[DT (θ̂t, θ0)] ≈ tr(W(θ0)I−1

t )
from t = 1 till t = T . We will model the latter with the
sum of the power Pw,t of the signal w at time t. Finally,
by assuming that these costs are additive, we get

R(T ) ≈
T∑

t=1

(
tr(W(θ0)I−1

t ) + Pw,t

)
(13)

With the independence assumption between e and w, Lt
in (12) can be split into two terms Lt = Le,t + Lw,t

where Le,t = 1/σ2
eE[(Fe(z, θ0)e(t))(Fe(t, θ0)e(t))

⊤] and
Lw,t = 1/σ2

eE[(Fw(z, θ0)w(t))(Fw(z, θ0)w(t))
⊤] Assume

that w(t) = σw(t)w0(t) with w0(t) a zero-mean filtered
white noise with unit variance and σw(t) deterministic and
varying slower than the time constant of Fw(z, θ0). Then,
Lw,t ≈ σ2

w(t)/σ
2
eE[(Fw(z, θ0)w0(t))(Fw(z, θ0)w0(t))

⊤]. The
power Pw,t of w(t) is σ2

w(t) which leads to Lw,t =
Pw,t/σ

2
eE[(Fw(z, θ0)w0(t))(Fw(z, θ0)w0(t))

⊤]. By introduc-
ing Z = nθ/σ

2
eE[(Fw(z, θ0)w(t))(Fw(z, θ0)w(t))

⊤] and as-
suming it is invertible, we have Z−1Lw,t = Pw,t/nθInθ

.
Taking the trace of the latter, we get Pw,t = tr(Z−1Lw,t).
Injecting that into (13), we get the following model

R(T ) ≈
T∑

t=1

(
tr(WI−1

t ) + tr(Z−1Lw,t)
)

(14)

It = It−1 + Le,t + Lw,t (15)

Remark 1. Even though the model in (14)-(15) comes
from several approximations, a similar expression has
actually been proven for the LQR problem in Chapter
6 of [Ferizbegovic 2022]. Since the minimum variance
problem is a particular case of the LQR problem, this
decoupling also holds in that case.



The instantaneous information matrices Le,t and Lw,t

are structured and depend on the true parameter vector
θ0 [Ljung 1999]. This means that minimizing the regret, as
given by (14), subject to the evolution (15) of the Fisher
matrix, with respect to (w.r.t.) the external excitation
{w(t)} is a hard task. However, by relaxing the problem
so that Lw,t is simply a positive semi-definite matrix we
obtain a lower bound on the achievable regret. In this case,
we can see Lw,t as the decision variables, i.e. they represent
the actions taken for exploring the system dynamics. To
simplify matters we will consider the case where Le,t = Le

is time-invariant. Therefore, from now on, we will focus on
studying the closed-form solutions of the following problem
Problem 1.

min
Lw,t⪰0

T∑
t=1

(
tr(WI−1

t ) + tr(Z−1Lw,t)
)

with It = tLe +

t∑
k=1

Lw,k

5.2 Solution for Problem 1 and interpretation

The following theorem gives the main result of the paper.
Theorem 3. Consider Problem 1. Decompose Z−1 as fol-
lows Z−1 = VV where V is the unique positive definite
matrix square root. Define cT as follows

cT =

(
λmax

(
ZL−1

e WL−1
e

) T∑
t=1

1

t2

)−1

(16)

where λmax(S) denotes the maximal eigenvalue of any
matrix S. There are two possible solutions for Problem 1:

• Solution 1: Lw,t = 0 ∀t ≥ 1.
• Solution 2: Lw,1 ̸= 0 and Lw,t = 0 ∀t ≥ 2.

The type of solution depends on the full-rankness of the
matrix Le and the validity of the following inequality

cT ≥ 1 (17)

We have the three cases
• Case 1: if Le ≻ 0 and (17) is valid, then Solution 1

is optimal and the regret is given by

R(T ) = tr(L−1
e W)

T∑
t=1

1

t

• Case 2: if Le ≻ 0 but (17) is not valid, then Solution 2
is optimal and the regret is bounded as follows

(2− cT )cT tr(L−1
e W)

T∑
t=1

1

t
≤ R(T ) ≤ tr(L−1

e W)

T∑
t=1

1

t

• Case 3: if Le is singular, then Solution 2 is optimal
and the regret is bounded as follows

δ
√
T ≤ R(T ) ≤ χ

√
T + νT

where δ, χ and νT = o(
√
T ) are positive scalars whose

expressions are available in the appendix enclosed
with this paper.

Proof. See the appendix enclosed with this paper.
Solution 1 corresponds to w(t) = 0 ∀t ≥ 1 which is lazy
exploration. Solution 2 means that we only excite at the
first time instant (i.e., w(1) ̸= 0 and w(t) = 0 ∀t ≥ 2)
and we will call this type of excitation immediate. Notice
that cT in (16) will grow as the time horizon T shrinks or
as the quantity L−1

e WL−1
e decreases. This means that the

results of Theorem 3 are intuitively appealing: it does not
pay off to explore if the time horizon is too short and/or if
the benefits from the noise excitation is sufficiently large
in comparison to the regret incurred by the model error.

Several interesting connections can be made between the
results in Theorem 3 and existing ones in the literature.
First of all, we get the optimal rate of log(T ) when
T → +∞ with lazy exploration (Case 1 of Theorem 3
with Solution 1) as was the case for MVAC in Theorem 1.
Secondly, when T → +∞, we get the rate of

√
T in Case 3

which is shown to be optimal for LQAC in Theorem 2. This
suggests that, although approximate in nature, Problem 1
may have bearings on actual adaptive control problems.
To further examine this connection notice that, in the
MVAC case, Theorem 3 suggests that there may be cases
for which an immediate exploration would be better than
a lazy exploration (depending if (17) is valid or not). Also,
the optimal exploration we get in Case 3 for a rate of

√
T is

immediate and not an excitation with a variance decaying
as 1/

√
t as proposed in the literature for the LQAC case

(see Theorem 2). In the next section, we examine in a
numerical example if these results for Problem 1 carry over
to adaptive control problems.

6. NUMERICAL EXAMPLE

6.1 System

We will consider the following first order ARX system
(1 + a0z

−1)y(t) = b0z
−1u(t) + e(t) (18)

We choose a0 = −0.45 and b0 = 0.67. We would like to
investigate if there are cases for which immediate explo-
ration is better than lazy exploration for MVAC and 1/

√
t-

decaying exploration for LQAC. For the model structure,
we consider the same order as the true system. In both
cases, the identification is a linear least squares problem
so we can use recursive linear least-squares identification
(see, e.g., Chapter 11 of [Ljung 1999]).

6.2 Initial phases and immediate exploration

For lazy exploration, as proposed in [Lai and Wei 1987],
we start from an initial covariance matrix Pinit and initial
parameters ainit and binit for a0 and b0 respectively. The
initial controller is built from ainit and binit. We choose
Pinit = 103I2, ainit = −0.3 and binit = 0.8. For 1/

√
t-

decaying exploration, w is equal to (11) and we consider
an open-loop initial phase of duration Ni = 3. We then
compute the model estimate at t = Ni and for t ≥ Ni

we use the adaptive controller with certainty equivalence
principle. For immediate exploration, the theory suggests
that we only use the first time instant in order to compute
an initial model and covariance matrix. However, the
covariance matrix will never be positive definite in that
case which is an issue for the recursive least-squares
identification. Therefore, for immediate exploration, the
initial phase is identical as for 1/

√
t-decaying exploration

except that w is equal to a constant β at t = 1 then it
is taken equal to 0 afterwards. The certainty equivalence
controller is designed based on the model at t = Ni and
then it stays constant for the rest of the experiment.

6.3 MVAC: lazy or immediate?

Consider Control Scenario 1 in Section 2.2 with the sys-
tem described by (18) and controlled by the MVAC given
in Section 3.1. We know that log(T ) is the optimal asymp-
totic rate for the regret Rmv(T ) in (9). In our theory, this
rate is achieved in Cases 1 and 2 of Theorem 3 where the
only difference is the validity of the inequality (17). In this



case, the performance degradation is
∑T

t=1 E[(y(t)−e(t))2]
which increases with the noise variance σ2

e . Therefore, the
Hessian 2W increases when σ2

e increases. Hence, from our
theory, by changing σ2

e , we can change the validity of the
inequality (17) which in turn changes the type of optimal
exploration of Problem 1 (immediate or lazy exploration).
We will now examine if this holds also for MVAC in

a simulation study by considering a gridding of σ2
e with

100 log-regularly spaced values between 10−5 and 100.
We choose T = 105 for the time horizon. We store
1000 different realizations of a zero-mean white noise ē(t)
with unit variance. Denote by ēi(t) the i-th stored noise
realization of ē(t) for the i-th simulation. For each value
of σ2

e , we simulate the MVAC with a lazy exploration 1000
times, one time per stored noise realization ēi(t), by setting
the noise e(t) equal to e(t) = σeēi(t). For the immediate
exploration, we do similarly but we need to determine the
optimal immediate exploration gain β for each value of
σ2
e . For this purpose, we do a gridding of β with 100 log-

regularly spaced values between 10−5 and 100. For each
value of σ2

e , we repeat the following procedure: we select
one value of β in the gridding and we simulate the MVAC
1000 times, one per stored noise realization of ēi(t), by
setting the noise e(t) equal to e(t) = σeēi(t) for the i-
th simulation. Then, we approximate the regret with the
average over the 1000 obtained values. We repeat the latter
for every value of β and after that, we select the β giving
the minimal regret among the 100 different cases and use
the corresponding regret for the immediate exploration
case. We switch to the next value of σ2

e in the considered
gridding and repeat this procedure.
In Figure 1.(a), we depict the cumulative regret Rmv(T )

at time instant T = 105 obtained with lazy exploration
(blue dashed line) and the optimal immediate exploration
(orange solid line) for each value of σ2

e considered in the
gridding. We clearly see two different cases for which
a switch is observed at around σ∗

e =
√
2× 10−3. For

σe < σ∗
e (resp. σe > σ∗

e), lazy exploration (resp. immediate
exploration) is optimal. This observation supports the
results from our abstract theoretical study, provided in
Theorem 3. Note that for σe > σ∗

e , the results of lazy ex-
ploration are not smooth anymore despite the 1000 Monte
Carlo simulations considered in the study. In Figure 1.(b),
we depict 6 Monte Carlo simulations of the evolution of∑T

t=1(y(t)−e(t))2 with respect to σ2
e . We observe that they

are smooth but some peaks can happen which explains
the behavior of the regret for σe > σ∗

e . We would need
many more Monte Carlo simulations to get a smoother
curve which takes a very long time. This also shows that
it may be risky to use lazy exploration for one experiment.
Further study of this phenomenon seems warranted.

6.4 LQAC: 1/
√
t-decaying or immediate?

Consider Control Scenario 2 in Section 2.3 with the
system described by (18) and controlled by the LQAC
given in Section 3.2. We know that

√
T is the optimal

asymptotic rate for the regret Rlqr(T ) in (10) and that it
can be reached with a white Gaussian noise excitation with
a variance decaying as 1/

√
t (see Theorem 2). Theorem 3

implies that we may get lower regret with an immediate
exploration. We do the same gridding for σ2

e . We store 100
new noise realizations of the zero-mean white noise ē(t)
with unit variance and denote by ēi(t) the i-th realization

(i = 1, · · · , 100). For the immediate exploration case, we
do the simulations as explained in Section 6.3 with the
same gridding for β. For the white noise 1/

√
t-decaying

exploration, we store 100 realizations of a zero-mean white
noise w̄(t) with unit variance and denote by w̄i(t) the i-th
realization (i = 1, · · · , 100). For each value of σ2

e , we need
to determine the optimal constant α. As for β, we do a
gridding of α with 100 log-regularly spaced values between
10−5 and 100. Then, we do the following procedure for each
value of σ2

e : we select one value of α in the gridding and
we simulate the LQAC 100 times, by setting e(t) = σeēi(t)
and w(t) = (α/

√
t)1/2w̄i(t) for the i-th realization. Then,

we approximate the regret with the average over the 100
obtained values. We repeat the latter for every value of
α and after that, we select the minimal regret among the
100 computed values. We switch to the next value of σ2

e
in the considered gridding and repeat this procedure. In
Figure 1.(c), we depict the regret at time instant T = 105

obtained with the optimal 1/
√
t-decaying exploration and

the optimal immediate exploration for each value of σ2
e

considered in the gridding. We observe that immediate
exploration always performs better than 1/

√
t-decaying

exploration which is consistent with the conclusions drawn
in Theorem 3 for Problem 1.

7. DISCUSSION AND CONCLUSIONS
We have observed new results on regret minimization: for

a finite horizon T we have shown in simulations that im-
mediate excitation reduces the cumulative regret over the
previously considered optimal policies of lazy exploration
(MVAC) and 1/

√
t-decaying exploration (LQAC). These

results were predicted from the behaviour of the approx-
imate regret minimization problem stated as Problem 1.
as given in Theorem 3. These observations tie in with the
simulation results in [Forgione et al. 2015] on experiment
design for adaptive H2 controllers which also show that the
exploration effort should be distributed at the beginning of
the experiment. The difference with our framework is that
the controller is kept constant during a sufficient number of
time instants before being updated so that the stationary
assumption holds.
Our simulation results suggest that, in the case of an

a priori known horizon T for both LQAC and MVAC,
using adaptive controllers may be useless since a constant
controller obtained with immediate exploration reduces
better the regret. However, the solution to the immediate
exploration problem requires knowledge of model param-
eters and noise variances. Moreover, the magnitude of the
pulse of immediate exploration may be too large w.r.t. the
system limitations. So in practice 1/

√
t-decaying or lazy

exploration may still be the preferred choice. Nevertheless,
the observations made in this paper may serve as basis for
reducing the regret in data driven control problems. In
future works we will study ramifications of Problem 1.
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Appendix of the paper

8. CHANGE OF NOTATIONS

When A is positive definite (resp. positive semi-definite), we will write A ≻ 0 (resp. A ⪰ 0). The identity matrix will
be denoted by I and A⊤ denotes the transpose of any matrix A. The trace operator is denoted by tr{}. We consider
the following change in notations with respect to the paper: R(T ) → RT , It → X̄t, Lw,t → Xt, Le → S and W → W .

9. CHANGE OF VARIABLES

The problem considered in the paper is the following one

min
Xt⪰0

T∑
t=1

(
tr
{
WX̄−1

t

}
+ tr

{
Z−1Xt

})
︸ ︷︷ ︸

RT

with X̄t = tS +

t∑
k=1

Xk (19)

Let us decompose Z−1 as follows Z−1 = VV where V is the unique positive definite matrix square root. Then, we can
simplify (19) by introducing XV,t = VXtV and X̄V,t = VX̄tV so that

X̄V,t = VX̄0V +

t∑
k=1

XV,k + tVSV = X̄V,0 +

t∑
k=1

XV,k + tSV (20)

RT =

T∑
t=1

tr
{
W (V−1X̄V,tV

−1)−1
}
+

T∑
t=1

tr
{
Z−1V−1XV,tV

−1
}

(21)

=

T∑
t=1

tr
{
WVX̄−1

V,t

}
+

T∑
t=1

tr {XV,t} (22)

where SV := VSV and WV := VWV. Thus, in the sequel, we will study the original problem (19) with Z−1 = I. The
solution of the original problem for any Z−1 = VV is obtained by doing the following change of variables: X̄t → VX̄tV,
Xt → VXtV, S → VSV and W → VWV.

10. THEOREM

Theorem 4. Let Xt (t = 1, . . . , T ) be square matrices of the same dimensions and let W ≻ 0, with eigen-decomposition
W =

∑n
k=1 λkeke

⊤
k , and S ⪰ 0 have the same dimensions as Xt. Let

JT ({Xt}Tt=1) :=

T∑
t=1

tr
{
WX̄−1

t

}
+

T∑
t=1

tr {Xt} (23)

where X̄t =
∑T

k=1 Xk + tS.
The problem

inf
Xt,t=1,...,T

JT ({Xt}Tt=1)

s.t. X1 + S ≻ 0

Xt ⪰ 0, t = 1, . . . , T

(24)

is convex with solution {X∗
t }Tt=1 satisfying:

i. X∗
t = 0, t = 2, . . . , T .

ii. X∗
1 = 0 if and only if S ≻ 0 and

cT :=
1

βT λmax {S−1WS−1}
≥ 1 (25)

where βT :=
∑T

t=1
1
t2 and λmax {X} refers to the maximal eigenvalue of any matrix X, in which case

JT ({X∗
t }Tt=1) = αT J∗

T (26)

where αT :=
∑T

t=1
1
t and J∗

T := tr
{
WS−1

}
.

Provided

I − π2

6
S−1WS−1 ≻ 0 (27)

it holds that

lim
T→∞

JT ({X∗
t }Tt=1)

log T
= J∗

T (28)

iii. When S ≻ 0 but (25) does not hold

(2− cT )cT ≤ JT ({X∗
t }Tt=1)

αTJ∗
T

< 1 (29)



iv. When S is singular,

2
√
T

m∑
k=1

n⊤
k W̃nk ≤ JT ({X∗

t }Tt=1) (30)

≤
√
T

(
m∑

k=1

n⊤
k Wnk

n⊤
k W̃nk

+

m∑
k=1

n⊤
k W̃nk

)
+ γT

∑
k

e⊤k Wek
λk

(31)

where γT =
∑T

t=1 1/t, {nk}mk=1 is any orthonormal basis to the null space of S, where W̃ is the non-negative matrix
square root of W and where

S =
∑
k

λkeke
⊤
k (32)

is the eigen-decomposition of S.
In particular when S = 0,

X∗
1 =

√
TW̃ (33)

JT ({X∗
t }Tt=1) = 2

√
TJ∗

T (34)

Remark 2. Before dealing with the proof, we want to comment on the inequality (25) which is similar to the one of
Theorem 3 of the paper but with Z−1 = I. To consider any Z−1 = VV, we first do the change of variables S → VSV
and W → VWV (see Section 9). Therefore, λmax

{
S−1WS−1

}
is changed to

λmax

{
V−1S−1V−1VWVV−1S−1V−1

}
= λmax

{
V−1S−1WS−1V−1

}
(35)

Now, by observing that V−1S−1WS−1V−1 and V−1V−1S−1WS−1 are similar matrices (they have the same
eigenvalues), we have λmax

{
V−1S−1WS−1V−1

}
= λmax

{
V−1V−1S−1WS−1

}
. By recalling that Z−1 = VV, we

obtain λmax

{
ZV−1S−1WS−1

}
which is the expression in Theorem 3 of the paper.

11. PROOF OF THEOREM 1 IN SECTION 10

Introduce symmetric matrices Zt, t = 1, . . . , T . Then the problem (24) can be written as

inf
Zt,Xt,t=1,...,T

T∑
t=1

tr {Zt}+
T∑

t=1

tr {Xt} (36)

s.t. W̃ X̄−1
t W̃ < Zt, t = 1, . . . , T (37)

X1 + S ≻ 0 (38)
Xt ⪰ 0, t = 1, . . . , T (39)

Since X1 + S ≻ 0, X̄t ≻ 0 for t = 1, . . . , T and therefore Schur complement (see, e.g., Appendix A.5.5 in Boyd and
Vandenberghe [2003]) gives that problem (24) is equivalent to

inf
Zt,Xt,t=1,...,T

T∑
t=1

tr {Zt}+
T∑

t=1

tr {Xt} (40)

s.t.

Zt W̃

W̃

t∑
k=1

Xk + tS

 ⪰ 0, t = 1, . . . , T (41)

X1 + S ≻ 0 (42)
Xt ⪰ 0, t = 1, . . . , T (43)

which is a semi-definite program (SDP) and therefore convex.
We start with relaxing the strict constraint X1 + S ≻ 0 to a non-strict inequality, in which case we can remove the

constraint since S ⪰ 0 by assumption and X1 ⪰ 0 is included in the constraints in (40). With

Qt :=

[
Qt,11 Qt,12

Q⊤
t,12 Qt,22

]
⪰ 0, t = 1, . . . , T (44)

with each block Qt,ij having the same dimension as Xt, and Yt ⪰ 0, for t = 1, . . . , T , all having the same dimensions as
Xt, and Q = {Qt}Tt=1 and Y = {Yt}Tt=1, the Lagrange dual function of this problem is given by



L(Q,Y ) = inf
Zt,Xt,t=1...,T

T∑
t=1

tr {Zt}+
T∑

t=1

tr {Xt} (45)

−
T∑

t=1

tr


[
Qt,11 Qt,12

Q⊤
t,12 Qt,22

]Zt W̃

W̃

t∑
k=1

Xk + tS


−

T∑
t=1

tr {YtXt} (46)

= inf
Zt,Xt,t=1...,T

T∑
t=1

tr {Zt}+
T∑

t=1

tr {Xt} (47)

−
T∑

t=1

tr

{
Qt,11Zt + 2Qt,12W̃ +Qt,22

(
t∑

k=1

Xk + tS

)}
−

T∑
t=1

tr {YtXt} (48)

= inf
Zt,Xt,t=1...,T

T∑
t=1

tr {(I −Qt,11)Zt}+
T∑

t=1

tr

{(
I −

T∑
k=t

Qk,22 − Yt

)
Xt

}
(49)

− 2

T∑
t=1

tr
{
Qt,12W̃

}
−

T∑
t=1

t tr {Qt,22S} (50)

For this function to be finite valued, and not −∞,

Qt,11 = I (51)

I −
T∑

k=t

Qk,22 = Yt ⪰ 0, t = 1, . . . , T (52)

are required, in which case

L(Q,Y ) =− 2

T∑
t=1

tr
{
Qt,12W̃

}
−

T∑
t=1

t tr {Qt,22S} (53)

=− 2

T∑
t=1

tr
{
Qt,12W̃

}
−

T∑
t=1

t tr {Qt,22S} (54)

Now according to duality theory (see, e.g., Section 5.1.3 in [Boyd and Vandenberghe 2003]), L(Q,Y ) is a lower bound
to objective function for the solution of the primal problem for any feasible Q, and Y . In fact as the original problem
is strictly feasible, Slater’s condition gives that maximum of L(Q,Y ) equals JT ({X∗

t }Tt=1). In view of (51), Schur
complement gives that

Qt ⪰ 0 ⇔ Qt,22 ⪰ Q⊤
t,12Qt,12 (55)

Further, we note from that Qt,22 ⪰ 0, that it is sufficient to require (52) for t = 1. We will thus study the problem

inf
Q,Y

− L(Q,Y ) (56)

s.t Qt,22 ⪰ Q⊤
t,12Qt,12 (57)

I ⪰
T∑

t=1

Qt,22 (58)

In view of that the objective function is monotone increasing in Qt,22 it follows that the optimum will satisfy
Qt,22 = Q⊤

t,12Qt,12. We can thus re-write the problem as

inf
Q,Y

2

T∑
t=1

tr
{
Qt,12W̃

}
+

T∑
t=1

t tr
{
Qt,12SQ

⊤
t,12

}
(59)

s.t I ⪰
T∑

k=1

Q⊤
t,12Qt,12 (60)

This is a quadratically constrained quadratic program. We now consider the case where S ≻ 0 where we can express
the (negative) dual function (59) as

T∑
t=1

tr
{(

Qt,12 + W̃ (tS)−1
)
(tS)

(
Qt,12 + W̃ (tS)−1

)}
− tr

{
W̃ (tS)−1W̃

}
(61)

whose unconstrained minimizer is given by Qt,12 = − 1
t W̃S−1, giving the objective function



−
T∑

t=1

1

t
tr
{
W̃S−1W̃

}
= −αTJ

∗
T (62)

This is thus the optimum provided that the constraint in (59) is met, i.e.

I ≻
T∑
t=

1

t2
S−1WS−1 (63)

which is equivalent to the constraint in (25). Summarizing, the maximum of the dual L(Q,Y ) in the feasible set is
given by αTJ

∗
T when (25) holds. Now, Xt = 0, t = 1, . . . , T is a feasible point for (24) which has objective function

JT ({Xt}Tt=1) = αTJ
∗
T , i.e. equal to the maximum of the dual. But by duality theory this must then be the solution to

(24). This means that the if part in ii. of the theorem has been proven as well as (26). The final part of ii. follows by
noticing that

lim
T→∞

βT =
π2

6
(64)

For the cases when S is singular or S ≻ 0 but (25) does not hold, we proceed by computing the Lagrange dual function
of (59), with Λ ⪰ 0 as dual variable,

D(Λ) := inf
Qt,12,t=1,...,T

2

T∑
t=1

tr
{
Qt,12W̃

}
+

T∑
t=1

t tr
{
Qt,12SQ

⊤
t,12

}
(65)

− tr

{
Λ

(
I −

T∑
k=1

Q⊤
t,12Qt,12

)}
(66)

= inf
Qt,12,t=1,...,T

T∑
t=1

tr
{
2Qt,12W̃ +Qt,12(tS + Λ)Q⊤

t,12

}
− tr{Λ} (67)

For this expression to be larger than −∞, S+Λ ≻ 0 is required as otherwise we can take Qt,12 = −nn⊤ where n is any
vector in the null-space of S and obtain that the above expression is over-bounded by

−2Tn⊤W̃n− tr{Λ} (68)
which can be made arbitrarily small by letting ∥n∥ → ∞. For S + Λ ≻ 0 we have

D(Λ) = (69)

= inf
Qt,12,t=1,...,T

T∑
t=1

tr
{(

Qt,12 + W̃ (tS + Λ)−1
)
(tS + Λ)

(
Qt,12 + W̃ (tS + Λ)−1

)}
(70)

−
T∑

t=1

tr
{
W̃ (tS + Λ)−1W̃

}
− tr {Λ} (71)

=−
T∑

t=1

tr
{
W̃ (tS + Λ)−1W̃

}
− tr {Λ} (72)

where the minimum is obtained by taking
Qt,12 = −W̃ (tS + Λ)−1 (73)

Since (59) is strictly feasible, Slater’s condition gives that the maximum of (72) on Λ ⪰ 0 is the minimum of (59). We
are thus led to consider the minimization problem

inf
Λ

T∑
t=1

tr
{
W̃ (tS + Λ)−1W̃

}
+ tr {Λ} (74)

Λ + S ≻ 0 (75)
Λ ⪰ 0 (76)

which by Schur complement is equivalent to

inf
Λ,Zt,t=1,...,T

T∑
t=1

tr{Zt}+ tr{Λ} (77)

s.t.
[
Zt W̃

W̃ Λ + tS

]
⪰ 0, t = 1, . . . , T (78)

S + Λ ≻ 0 (79)
Λ ⪰ 0 (80)

As problem (59) is strictly feasible, by Slater’s condition the minimum of (77) equals the minimum of (59), but with
opposite sign. Furthermore, as already noted, also by Slater’s condition the minimum of (59) equals the minimum of



(24), but with opposite sign. Thus the minimum of (77) equals the minimum of (24). Let Λ∗ be the solution to (77).
Then in view of that (24) is equivalent to (40), we see that taking X1 = Λ∗ and Xt = 0, t = 2, . . . , T , is a feasible point
for (24) for which the objective function takes the same value as the minimum of (77). In summary, we have shown
that when (25) does not hold, the solution to Problem (24) satisfies Xt = 0, t =, . . . , T , which proves i. in the theorem.
Now the condition that X1 + S ≻ 0 gives also the only if part in ii.
It remains to obtain the bounds on the minimum objective function in iii. and iv. First we notice that (33) corresponds

to a feasible point also when S is singular, with objective function (34). This is thus an upper bound of the minimum
objective function, giving the upper bound in (31). Continuing with the case where S is singular, let {nk} be as in iv.
of the theorem and take

Qt,12 = − 1√
T

m∑
k=1

nkn
⊤
k (81)

then

I −
T∑

t=1

Qt,12Q
⊤
t,12 = I −

m∑
k=1

nkn
⊤
k ⪰ 0 (82)

implying that this corresponds to a feasible point of (59). The corresponding objective function is

−2
√
T

m∑
k=1

n⊤
k W̃nk (83)

which, using that (59) is the negative of the dual of (24), gives the lower bound in (31).
Now consider that S ≻ 0 but that (25) does not hold. Take

Qt,12 = −cT
t
W̃S−1 (84)

Then
T∑

t=1

Q⊤
t,12Qt,12 = c2TβTS

−1WS−1 =
S−1WS−1

λmax{S−1WS−1
≤ I (85)

so that this corresponds to a feasible point of (59). The corresponding objective function is
−2cTαTJ

∗
T + c2TαTJ

∗
T = (cT − 2)cTαTJ

∗
T (86)

Again using duality theory, this gives that
(2− cT )cTαTJ

∗
T ≤ J({X∗

t }Tt=1) (87)
which is the lower bound in iii.
The upper bound in iii. is obtained by taking Xt = 0, t = 2, . . . , T and

X1 =
√
T

m∑
k=1

n⊤
k W̃nk nkn

⊤
k (88)

and using that

(X1 + tS)−1 =
1√
T

m∑
k=1

nkn
⊤
k

n⊤
k W̃nk

+
1

t

∑
k

eke
⊤
k

λk
(89)

holds due to the construction of X1. This concludes the proof.


