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Abstract

Building on the recent trend of new deep generative models known as Normaliz-
ing Flows (NF), simulation-based inference (SBI) algorithms can now efficiently
accommodate arbitrary complex and high-dimensional data distributions. The
development of appropriate validation methods however has fallen behind. Indeed,
most of the existing metrics either require access to the true posterior distribution,
or fail to provide theoretical guarantees on the consistency of the inferred approxi-
mation beyond the one-dimensional setting. This work proposes easy to interpret
validation diagnostics for multi-dimensional conditional (posterior) density esti-
mators based on NF. It also offers theoretical guarantees based on results of local
consistency. The proposed workflow can be used to check, analyse and guarantee
consistent behavior of the estimator. The method is illustrated with a challenging
example that involves tightly coupled parameters in the context of computational
neuroscience. This work should help the design of better specified models or drive
the development of novel SBI-algorithms, hence allowing to build up trust on their
ability to address important questions in experimental science.

1 Introduction

Recent advances in computing have led to a new generation of expressive simulators used to study
complex systems in many scientific fields [4]. They implicitly encode the intractable likelihood
p(x | θ) of the underlying mechanistic model which relates observed data x ∈ Rd to scientifically
meaningful internal parameters θ ∈ Rm. To perform statistical inference in this setting, one can
recur to simulation based inference (SBI) [4] to approximate the posterior distribution p(θ | x) using
samples from the joint pdf p(x,θ). In this work, we consider SBI methods based on normalizing
flows [14], which are invertible neural networks that can be trained via maximum likelihood. Once
the flow is trained, and for any new observation x, one can directly evaluate the estimated density
over the parameter space (i.e. θ-space) [6], draw samples to construct confidence regions [11], etc.

Flow-based SBI has been used in many recent applied works [10, 1, 6], but it lacks an important
feature before becoming a technology for experimental science: validation. Ideally, one would
like to have a method that provides finite-sample guarantees of nominal coverage (or calibration)
of the estimated posterior regions, but also ensures that the approximation fits the true underlying
posterior of the model when new data is observed. While solutions have been proposed to provide
such finite-sample guarantees [5, 11], assessing the convergence and consistency of the underlying
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inference remains a challenging task [10]. Simulation based calibration (SBC) [18] is arguably the
most popular metric for validating posterior approximations in the applied SBI community [3], but it
only provides necessary conditions for consistency and fails to give any insight on the local behavior
of the estimator. Moreover, it is a univariate procedure, thus ignoring any information about the
coupling between parameters. Zhao et al. [19] recently proposed local coverage tests (LCT). They
leverage machine learning to evaluate their test quantities on different locations of the feature space
(i.e. x-space). In 1D, the probability integral transform (PIT) provides necessary and sufficient
conditions for consistency, which is not the case for the proposed multivariate extensions (e.g. HPD).

In this work, we present a multivariate version of LCT for density models based on normalizing
flows. Our method comes with the same theoretical guarantees on local consistency and interpretable
diagnostics as provided by [19] in 1D. We also present a workflow that can be used as a practical
user guide. Lastly, we provide numerical illustrations on a well known model from computational
neuroscience [8], and demonstrate the importance of trustworthy diagnostics for multivariate posterior
distributions when correlations between parameter variables can play an important role.

2 Methods

Our conditional density estimator qϕ is a normalizing flow defined for samples θ ∈ Rm and is
conditioned on observations x ∈ Rd. It uses a Gaussian base distribution p(z) = N (0, Im) and a
bijective transformation defined for every x, Tϕ(.;x) := (Tϕ,1(.;x), . . . , Tϕ,m(.;x)), with Jacobian
JTϕ

(.;x), such that qϕ(θ | x) = p(Tϕ(z;x)) = p(z)
∣∣det JTϕ

(z;x)
∣∣−1

.

Our goal is to evaluate the local consistency [9] of qϕ with respect to the true posterior density, i.e.
whether for a given x the following null hypothesis holds:

H0(x) : qϕ(θ | x) = p(θ | x), ∀θ ∈ Rm . (1)

We define the multivariate probability integral transform (PIT) of θ at x and associated to qϕ as the
vector of m one-dimensional projections:

PITm(θ, x, qϕ) = [P1(θ, x), . . . , Pm(θ, x)], Pi(., x) = FN (0,1) ◦ T−1
ϕ,i (.;x), ∀i ∈ [1,m] (2)

where FN (0,1) is the cumulative distribution function (c.d.f.) of the univariate normal distribution.

Theorem 1: Local Consistency and multivariate PIT. For any x ∈ Rd, the null hypothesis H0(x)
holds if, and only if, the covariates of PITm(θ, x, qϕ) conditioned on x are mutually independent and
uniformly distributed over (0, 1). We refer to Appendix A for a detailed proof of this result.

p(θ | x) = qϕ(θ | x) ⇐⇒ p(T−1
ϕ (θ, x) | x) = p(z)

⇐⇒ p(T−1
ϕ,1(θ, x), . . . T

−1
ϕ,m(θ, x) | x) = N (0, Im)

⇐⇒

{
p(Pi(θ, x) | x) = U(0, 1) ∀i ∈ [1,m] and

{Pi(θ, x) | x}i=1,...,m are mutually independent

We can now verify the null hypothesis of local consistency H0(x) (1) via m statistical tests for the
uniformity of the 1D local PIT covariates and an additional test for their mutual independence.

Multivariate Local Coverage Tests (LCT). Noting that for every i = 1, . . . ,m we have

Pi(θ, x) | x ∼ U(0, 1) ⇐⇒ ∀α ∈ [0, 1] ri,α(x) = P(Pi(θ, x) ≤ α | x) = α (3)

and following the same approach as in [19], we propose m test statistics

Ti(x) :=
1

|G|
∑
α∈G

(
r̂i,α(x)− α

)2

∀i ∈ [1,m] , (4)

where G is a grid of α-values and the estimators r̂i,α are obtained by regressing I{Pi(θ,x)≤α} on x,
which is optimal for E[I{Pi(θ,x)≤α} | x] = ri,α(x) (when using appropriate loss-functions [12]). We
refer to Algorithm 1 (resp. 2) in [19] for computing the p-values (resp. confidence bands) associated
to each test. Since there are m independent tests, we recur to a Bonferroni correction of the p-values
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(resp. confidence levels) [2]. These tests come with interpretable graphical diagnostics such as
PP-plots or histograms that depict distributional deviations in 1D, as shown in Figure 1. If any of the
uniformity tests is rejected, we reject H0(x). If not, we proceed to the mutual independence test.

We now assume that the covariates of PITm conditioned on x are uniformly distributed over (0, 1),
which also means that every coordinate of the flow-transformation T−1

ϕ (θ, x) follows a normal
distribution given x (cf. Theorem 1). Their mutual independence is thus characterized by a covariance
matrix equal to the identity Im. We are currently working on how to perform this check in practice.

The workflow in practice. Let D = {xn,θn}Nn=1 be a calibration dataset with (xn,θn) ∼ p(x,θ)
which were not used to train qϕ. We use D to calculate the PIT values PITm(θn, xn, qϕ) (2) and
estimate our local test quantities as functions of x. We investigate the consistency of qϕ in two parts:

(1) Global consistency check: first, we look at the global PIT-distribution, i.e. on average over the
entire x-space. More specifically, we directly compute the empirical approximation of

ri,α = P(Pi(θ, x) ≤ α) ≈ 1
N

∑N
n=1 I{Pi(θn,xn)≤α}, ∀i ∈ [1,m]

with samples from D to test the global uniformity of each PIT-covariate and check which one(s)
might be responsible for making qϕ deviate from the true posterior distribution. Note that
passing such global test is only a neccessary condition for consistency of qϕ, as it is insensitive to
covariate transformations in x-space [19] (and ignores the condition on mutual independence).

(2) Local consistency check: we construct m× |G| transformed datasets from D

Di,α = {(xn,W
i,α
n )}Nn=1, α ∈ G, ∀i ∈ [1,m]

where W i,α
n = I{Pi(θn,xn)≤α}. We can then compute the test statistics defined in (4) for any new

observation x and check whether H0(x) should be rejected or not. In the latter case we proceed
to the mutual independence test. Only then can we conclude on the validity of H0(x) according
to Theorem 1. If the check in (1) passes, this allows us to guarantee (or reject) consistency
anywhere in x-space. Even if the check in (1) does not pass, analyzing local consistency allows
to ‘open the box’ and better understand why and where in x-space the estimator fails. In such
situations – as the goal is not to guarantee local consistency – it can be enough to test for
the covariate-wise uniformity of PITm, putting the test for mutual independence aside. This
approach was adopted for our numerical illustrations in Section 3.

3 Numerical illustrations

We apply our method to check the validity of a posterior estimate qϕ of the Jansen and Rit neural mass
model (JRNMM) [8]. This well known model from computational neuroscience takes parameters
θ = (C, µ, σ, g) ∈ R4 as input and generates time series x ∈ R1024 with properties similar to brain
signals obtained in neurophysiology. Parameter C influences the oscillatory behavior of the signals
and (µ, σ) characterize their amplitude. The gain factor g rescales the signals and models the effects
of the amplifier used for measuring them in practice. Note that the coupling-effect of g and (µ, σ) on
the amplitude leads to intrinsic indeterminacies in the inversion of the model [16]. Our approximation
qϕ is a conditioned masked autoregressive flow (MAF) [13] with 10 layers and implemented in the
sbi package [20]. Based on the setup in [16], we train qϕ on 50 000 simulations from the JRNMM
with a uniform prior defined on physiologically relevant values (cf. pair-plots in Figure 2).

Results and discussion. All test quantities are computed with a calibration dataset D containing
10 000 simulations and a grid of |G| = 100 α-values in [0, 1]. Following the workflow described
in Section 2, we first check the global consistency of qϕ. In the left part of Figure 1, our graphical
diagnostics illustrate how the c.d.f. for every PIT-covariate deviates from the identity function (black
dashed line), outside of the 95%-confidence region (in gray), thus rejecting the null hypothesis of
global consistency. We compare our method to SBC (right part of Figure 1) as implemented in the
sbi package. We observe that SBC is unable to detect any inconsistencies in qϕ.

We proceed to investigate the local consistency of qϕ on different locations of x-space. Note that
since the global test for consistency has not passed, we may focus on the uniformity of the local
PIT-covariates (cf. (2) of the workflow in Section 2). We consider a 1D subspace in θ-space, where
(C0, µ0, σ0) are fixed and the gain g0 varies in [−20, 20] to generate observations x0. The upper-left
part of Figure 2 shows how the test statistics evolve with g0. We observe a strong deviation from
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Figure 1: Global Consistency of the JRNMM
posterior estimator: PP-plots and correspond-
ing histograms obtained for every global PIT
covariate Pi(θ) (right) and for SBC applied
to every element θi of θ (left). The gray zone
indicates the 95%-confidence region of accep-
tance outside of which the uniformity test is
rejected. SBC fails to reject the null hypothe-
sis of global consistency.

Figure 2: Local Consistency Analysis. (Left) Diagnostics obtained for every PIT-covariate, when
evaluated for different x0, simulated via the JRNMM with fixed parameters (C0, µ0, σ0) and variable
g0 in [−20, 20]. The test-statistics are plotted as a function of g0 and indicate inconsistent behavior
(values are not constantly close to zero). Below, the PP-plots report the nature (bias/dispersion) of
these inconsistencies for g0 ∈ {−20, 0, 20}. The gray zone indicates the 95%-confidence region of
acceptance outside of which the uniformity test is rejected. (Right) Pair-plots of qϕ(θ | x0) with
ground-truth parameters θ0 = (C0, µ0, σ0, g0) (black dots and dashed lines) for g0 ∈ {−20, 0, 20}.

uniformity for covariates P2 and P3: they vary smoothly in a ‘U-shape’, with higher values as g0
deviates from zero. We also generate local PP-plots (lower-left part of Figure 2) and observe positive
(resp. negative) bias for small (resp. high) values of g0. Our procedure shows that there are certain
locations in x-space (here g0 = 0) where qϕ performs well (i.e. test statistics are close to zero
and PP-plots show little deviations from the 95%-confidence region in gray), even though global
consistency does not hold. These observations can be compared to the pair-plots (right part of Figure
2) which shows the estimated posterior density over the entire θ-space. We observe that gain values
at the boundary of the prior support (g0 = −20 and g0 = 20) induce discrepancies (cf. marginals
plotted in the diagonals of the pair-plots in Figure 2) that are detected by our PIT-based diagnostics.

The above results are obtained by directly applying the method from [19] using their default regressor,
MLPClassifier from scikit-learn [15]. Indeed, this model is well suited for the binary target vari-
ables W i,α and, based on neural networks, is able to scale to high-dimensional x-spaces. Furthermore,
it has been shown [12] that for a large enough dataset D (and number of training iterations), the
cross-entropy loss converges to the optimal solution of our regression problem. Note that although
such method allows to capture and visualize local discrepancies, it does not cope well with our
high-dimensional, complex data-distributions (high variances represented by large confidence regions
computed over 100 trials). Also, it requires the training of a large number (m× |G|) of regressors
(one for each θ-dimension and α-value). Finally, this method is only applicable for the uniformity
tests. We are currently investigating algorithms that are computationally more efficient and more
accurate in estimating the full multivariate local PIT-distribution.
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Conclusions. Numerical illustrations demonstrate that our diagnostics capture well the inconsisten-
cies in qϕ with respect to the true JRNMM posterior. To be precise, the proposed validation method is
statistically more powerful and computationally more efficient than SBC and, importantly, it allows
for a local analysis that reveals where in x-space the estimations should be improved. Our method
exploits useful properties of modern normalizing flows. Indeed, contrarily to other SBI-strategies [7],
they allow for efficient density evaluation and use bijective transformations involving the mixing
between elements of θ. These transformations can be interpreted as a set of 1D-projections of θ,
including information about its joint p.d.f. (i.e. interactions between its elements θi). The covariates
of our multivariate PIT therefore define fast and easy to compute 1D test-quantities on which we can
perform univariate LCTs that do not completely ignore correlations in the θ-space. Combined with a
test to check their mutual independence, this would provide theoretical guarantees for consistency,
which is not the case for HPD, the existing multivariate version of LCT proposed in [19].

Ongoing work will investigate the link between PIT-covariates and their deviations from uniformity
with the actual parameters of the model. This could reveal the true nature of their coupling which can
be used for the development of better specified models (e.g. hierarchical posterior estimation [16, 17]).
Ultimately, the goal is to use our diagnostics as a tool for model selection.

Broader Impact

This work tackles an important open question in simulation based inference. We introduce theo-
retically valid and interpretable validation diagnostics that scale to both high-dimensional data and
parameter spaces. Our contribution should help to further improve SBI methods and drive the design
of better specified models, hence allowing to build up trust on their ability to address important
questions in experimental science. Moreover, our work is in line with many other tentatives in the
machine learning community of ensuring the quality and calibration of complex models based on
neural networks.
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A Appendix

Proof of Theorem 1. Let x ∈ Rd. We consider the random variables defined on Rm: Θ ∼ p(θ | x)
and Θϕ ∼ qϕ(θ | x). Our local null hypothesis (cf. Equation 1), can be rewritten as

H0(x) : Prob
(
Θ ∈ Ωθ

)
= Prob

(
Θϕ ∈ Ωθ

)
∀Ωθ ⊂ Rm (5)

From the definition of our normalizing flow qϕ with bijective transformation Tϕ and normal base
distribution, there exists Z ∼ p(z) = N (0, Im), such that Θϕ = Tϕ(Z, x).

Replacing Θϕ by Tϕ(Z, x) in (5) and defining Ωz = T−1
ϕ (Ωθ;x), we have

Prob
(
Θ ∈ Ωθ

)
= Prob

(
Tϕ(Z;x) ∈ Ωθ

)
⇐⇒ Prob

(
T−1
ϕ (Θ;x) ∈ Ωz

)
= Prob

(
Z ∈ Ωz

)
Considering T−1

ϕ,i , the i-th coordinate of T−1
ϕ , and Z1, . . . , Zm the mutually independent and normally

distributed covariates of Z ∼ N (0, Im), we can rewrite the right part of the above equivalence as:

Prob
(
T−1
ϕ,1(Θ;x) ∈ Ωz,1 ∩ · · · ∩ T−1

ϕ,m(Θ;x) ∈ Ωz,m

)
=

m∏
i=1

Prob
(
Zi ∈ Ωz,i

)
(6)

where the Ωz,i are projections of the set Ωz on each of its dimensions.

Note that since the above equivalence is true for any choice of Ωθ, hence of Ωz , we can write what
happens when we fix a given Ωz,1 and let Ωz,2 = · · · = Ωz,m = R:

Prob
(
T−1
ϕ,1(Θ;x) ∈ Ωz,1

)
= Prob

(
Z1 ∈ Ωz,1

)
Doing the same for all other coordinates and using these equalities in (6), we end up with

∀i ∈ [1,m], ∀Ωz,i ⊂ R, Prob
(
T−1
ϕ,i (Θ;x) ∈ Ωz,i

)
= Prob

(
Zi ∈ Ωz,i

)
(7)

and Prob
(
T−1
ϕ,1(Θ;x) ∈ Ωz,1 ∩ · · · ∩ T−1

ϕ,m(Θ;x) ∈ Ωz,p

)
=

m∏
i=1

Prob
(
T−1
ϕ,i (Θ;x) ∈ Ωz,i

)
(8)

where (8) is the definition of mutual independence itself.

We now apply the c.d.f. FN (0,1) to each random variable in (7) and (8). Mutual independence stays
true and the probability integral transform theorem (in 1D) states that FN (0,1)(Zi) ∼ U(0, 1). We
therefore get that the null hypothesis H0(x) holds if, and only if,{

Pi(Θ, x) = FN (0,1)(T
−1
ϕ,i (Θ;x)) ∼ U(0, 1), ∀i = [1,m] and

{Pi(Θ, x)}i=1,...,m are mutually independent
(9)

The result in Theorem 1 directly follows from rewriting (5) and (9) with initial notations from Section
2: remember that Θ ∼ p(θ | x), so Pi(Θ, x) ∼ p(Pi(θ, x) | x) and we get:

p(θ | x) = qϕ(θ | x) ⇐⇒

{
p(Pi(θ, x) | x) = U(0, 1) ∀i ∈ [1,m] and

{Pi(θ, x) | x}i=1,...,m are mutually independent

where Pi(θ, x) is the ith covariate of PITm(θ, x, qϕ), the multivariate PIT of θ at x, associated to qϕ.

Conclusion: The null hypothesis H0(x) holds if, and only if, the covariates of PITm conditioned on
x are mutually independent and uniformly distributed over (0, 1).
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